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Investment in the stock market: Growth rate

The model:
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S
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Static portfolio selection: single period investment

The aim is to achieve maxj W (j).

Static portfolio selection:

Fix a portfolio vector b = (b(1), . . . b(d)).

S0b
(j) denotes the proportion of the investor’s capital invested

in asset j . Assumptions:

no short-sales b(j) ≥ 0

self-financing
∑

j b(j) = 1

After n day

Sn = S0

∑
j

b(j)S
(j)
n

Use the following simple bound

S0 max
j

b(j)S
(j)
n ≤ Sn ≤ dS0 max

j
b(j)S

(j)
n
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assume that b(j) > 0
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n
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j
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1
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ln(dS0b

(j)) +
1

n
lnS

(j)
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)

lim
n→∞

1

n
lnSn = lim
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j

1

n
lnS

(j)
n = max

j
W (j)

Conclusion: any static portfolio achieves the maximal growth rate
maxj W (j). We can do much better!
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Dynamic portfolio selection: multi-period investment

The model:

Let xi = (x
(1)
i , . . . x

(d)
i ) the return vector on trading period i ,

where

x
(j)
i =

S
(j)
i

S
(j)
i−1

.

is the price relatives of two consecutive days.

x
(j)
i is the factor by which capital invested in stock j grows during

the market period i
One of the simplest dynamic portfolio strategy is the
Constantly Re-balanced Portfolio (CRP):

Fix a portfolio vector b = (b(1), . . . b(d)), where b(j) gives the
proportion of the investor’s capital invested in stock j .
This b is the portfolio vector for each trading day.
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Dynamic portfolio selection: multi-period investment:2

Repeatedly investment:

for the first trading period S0 denotes the initial capital

S1 = S0

d∑
j=1

b(j)x
(j)
1 = S0 〈b , x1〉

for the second trading period, S1 new initial capital

S2 = S1 · 〈b , x2〉 = S0 · 〈b , x1〉 · 〈b , x2〉 .

for the nth trading period:

Sn = Sn−1 〈b , xn〉 = S0

n∏
i=1

〈b , xi 〉

= S0e
nWn(b)

with the average growth rate

Wn(b) =
1

n

n∑
i=1

ln 〈b , xi 〉 .
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log-optimum portfolio

The CRP is the optimal portfolio for special market process, where
X1,X2, . . . is independent and identically distributed (i.i.d.)

Log-optimum portfolio b∗

E{ln 〈b∗ , X1〉} = max
b

E{ln 〈b , X1〉}

Best Constantly Re-balanced Portfolio (BCRP)
Properties:

needed full-knowledge on the distribution

in experiments: not a causal strategy. We can calculate it
only in hindsight.
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Optimality

If S∗n = Sn(b∗) denotes the capital after trading period n achieved
by a log-optimum portfolio strategy b∗, then for any portfolio
strategy b with capital Sn = Sn(b) and for any i.i.d. process
{Xn}∞−∞,

lim
n→∞

1

n
lnSn ≤ lim

n→∞

1

n
lnS∗n almost surely

and

lim
n→∞

1

n
lnS∗n = W ∗ almost surely,

where
W ∗ = E{ln 〈b∗ , X1〉}

is the maximal growth rate of any portfolio.
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Semi-log-optimal portfolio

log-optimal:
arg max

b
E{ln 〈b , X1〉}

It is a non-linear (convex) optimization problem with linear
constraints. Calculation: not cheap.

Idea: use the Taylor expansion:

ln z ≈ h(z) = z − 1 − 1

2
(z − 1)2

Only the two biggest principal components, others are drop.
semi-log-optimal:

arg max
b

E{h(〈b , X1〉)} = arg max
b

{〈b , m〉 − 〈b , Cb〉}

Cheaper: Quadratic Programming (QP)
Connection to the Markowitz theory.
Gy. Ottucsák and I. Vajda, ”An Asymptotic Analysis of the

Mean-Variance portfolio selection”, Statistics&Decisions, 25, pp. 63-88,

2007. http://www.szit.bme.hu/ õti/portfolio/articles/marko.pdf
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2007. http://www.szit.bme.hu/ õti/portfolio/articles/marko.pdf

Ottucsák, Györfi Principal component and constantly re-balanced portfolio



Semi-log-optimal portfolio

log-optimal:
arg max

b
E{ln 〈b , X1〉}

It is a non-linear (convex) optimization problem with linear
constraints. Calculation: not cheap.
Idea: use the Taylor expansion:

ln z ≈ h(z) = z − 1 − 1

2
(z − 1)2

Only the two biggest principal components, others are drop.
semi-log-optimal:

arg max
b

E{h(〈b , X1〉)} = arg max
b

{〈b , m〉 − 〈b , Cb〉}

Cheaper: Quadratic Programming (QP)

Connection to the Markowitz theory.
Gy. Ottucsák and I. Vajda, ”An Asymptotic Analysis of the

Mean-Variance portfolio selection”, Statistics&Decisions, 25, pp. 63-88,

2007. http://www.szit.bme.hu/ õti/portfolio/articles/marko.pdf

Ottucsák, Györfi Principal component and constantly re-balanced portfolio



Semi-log-optimal portfolio

log-optimal:
arg max

b
E{ln 〈b , X1〉}

It is a non-linear (convex) optimization problem with linear
constraints. Calculation: not cheap.
Idea: use the Taylor expansion:

ln z ≈ h(z) = z − 1 − 1

2
(z − 1)2

Only the two biggest principal components, others are drop.
semi-log-optimal:

arg max
b

E{h(〈b , X1〉)} = arg max
b

{〈b , m〉 − 〈b , Cb〉}

Cheaper: Quadratic Programming (QP)
Connection to the Markowitz theory.

Gy. Ottucsák and I. Vajda, ”An Asymptotic Analysis of the

Mean-Variance portfolio selection”, Statistics&Decisions, 25, pp. 63-88,

2007. http://www.szit.bme.hu/ õti/portfolio/articles/marko.pdf
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Principal component

We may write

E{〈b , X1〉 − 1} − 1

2
E{(〈b , X1〉 − 1)2}

= 2E{〈b , X1〉} −
1

2
E{〈b , X1〉2} −

3

2

= −1

2
E{(〈b , X1〉 − 2)2} +

1

2

then

arg max
b

−1

2
E{(〈b , X1〉 − 2)2} +

1

2
=

arg min
b

E{(〈b , X1〉 − 2)2},

that is, we are looking for the portfolio which minimize the
expected squared error.
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Conditions of the model:

Assume that

the assets are arbitrarily divisible,

the assets are available in unbounded quantities at the current
price at any given trading period,

there are no transaction costs,
(go to Session 1 today at 17.30)

the behavior of the market is not affected by the actions of
the investor using the strategy under investigation.
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NYSE data sets

At www.szit.bme.hu/~oti/portfolio there are two benchmark
data sets from NYSE:

The first data set consists of daily data of 36 stocks with
length 22 years.

The second data set contains 23 stocks and has length 44
years.

Both sets are corrected with the dividends.

Our experiment is on the second data set.
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Experimental results on CRP

Stock’s name AAY BCRP
log-NLP weights semi-log-QP weights

COMME 18% 0.3028 0.2962
HP 15% 0.0100 0.0317

KINAR 4% 0.2175 0.2130
MORRIS 20% 0.4696 0.4590

AAY 24% 24%
running time (sec) 9002 3

Table: Comparison of the two algorithms for CRPs.

The other 19 assets have 0 weight

KINAR had the smallest AAY
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Dynamic portfolio selection: Causal-CRP

BCRP is not a causal strategy. A simple causal version could be,
that we use the CRP that was optimal up to n − 1 for the next
(nth) day.

Stock’s name AAY BCRP CCRP Static
log-NLP w. semi-log-QP w.

COMME 18% 0.3028 0.2962
HP 15% 0.0100 0.0317

KINAR 4% 0.2175 0.2130
MORRIS 20% 0.4696 0.4590

AAY 24% 24% 14% 16%
running t. (sec) 9002 3 111 3

we can even do much better!!
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Dynamic portfolio selection: general case

xi = (x
(1)
i , . . . x

(d)
i ) the return vector on day i

b = b1 is the portfolio vector for the first day
initial capital S0

S1 = S0 · 〈b1 , x1〉

for the second day, S1 new initial capital, the portfolio vector
b2 = b(x1)

S2 = S0 · 〈b1 , x1〉 · 〈b(x1) , x2〉 .

nth day a portfolio strategy bn = b(x1, . . . , xn−1) = b(xn−1
1 )

Sn = S0

n∏
i=1

〈
b(xi−1

1 ) , xi

〉
=

S0e
nWn(B)

with the average growth rate

Wn(B) =
1

n

n∑
i=1

ln
〈
b(xi−1

1 ) , xi

〉
.
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log-optimum portfolio

X1,X2, . . . drawn from the vector valued stationary and ergodic
process
log-optimum portfolio B∗ = {b∗(·)}

E{ln
〈
b∗(Xn−1

1 ) , Xn

〉
| Xn−1

1 } = max
b(·)

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 }

Xn−1
1 = X1, . . . ,Xn−1
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Optimality

Algoet and Cover (1988): If S∗n = Sn(B∗) denotes the capital after
day n achieved by a log-optimum portfolio strategy B∗, then for
any portfolio strategy B with capital Sn = Sn(B) and for any
process {Xn}∞−∞,

lim sup
n→∞

(
1

n
lnSn −

1

n
lnS∗n

)
≤ 0 almost surely

for stationary ergodic process {Xn}∞−∞.
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Kernel-based portfolio selection

fix integers k, ` = 1, 2, . . .
elementary portfolios
choose the radius rk,` > 0 such that for any fixed k,

lim
`→∞

rk,` = 0.

for n > k + 1, define the expert b(k,`) by

b(k,`)(xn−1
1 ) = arg max

b

∑
{k<i<n:‖xi−1

i−k−xn−1
n−k‖≤rk,`}

ln 〈b , xi 〉 ,

if the sum is non-void, and b0 = (1/d , . . . , 1/d) otherwise.
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Combining elementary portfolios

let {qk,`} be a probability distribution on the set of all pairs (k, `)
such that for all k, `, qk,` > 0.

The strategy B is the combination of the elementary portfolio

strategies B(k,`) = {b(k,`)
n } such that the investor’s capital becomes

Sn(B) =
∑
k,`

qk,`Sn(B
(k,`)).
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Experiments on average annual yields (AAY)

Kernel based log-optimal portfolio selection with
k = 1, . . . , 5 and ` = 1, . . . , 10

r2
k,` = 0.0001 · d · k · `,

AAY of kernel based semi-log-optimal portfolio is 128%
double the capital
MORRIS had the best AAY, 20%
the BCRP had average AAY 24%
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The average annual yields of the individual experts.

k 1 2 3 4 5
`

1 20% 19% 16% 16% 16%

2 118% 77% 62% 24% 58%

3 71% 41% 26% 58% 21%

4 103% 94% 63% 97% 34%

5 134% 102% 100% 102% 67%

6 140% 125% 105% 108% 87%

7 148% 123% 107% 99% 96%

8 132% 112% 102% 85% 81%

9 127% 103% 98% 74% 72%

10 123% 92% 81% 65% 69%
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