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Chapter 6

Empirical Pricing American Put Options
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Department of Computer Science and Information Theory,
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H-1117, Magyar tudosok koriutja 2., Budapest, Hungary ,
{gyorfi,telcs} @shannon.szit.bme.hu

In this note we study the empirical pricing American options. The pric-
ing American option is an optimal stopping problem, which can be de-
rived from a backward recursion such that in each step of the recursion
one needs conditional expectations. For empirical pricing, [Longstaff
and Schwartz (2001)] suggested to replace the conditional expectations
by regression function estimates. We survey the current literature and
the main techniques of nonparametric regression estimates, and derive
new empirical pricing algorithms.

6.1. Introduction: the valuation of option price

6.1.1. Notations

One of the most important problems in option pricing theory is the val-
uation and optimal exercise of derivatives with American-style exercise
features. Such derivatives are, for example, the equity, commodity, for-
eign exchange, insurance, energy, municipal, mortgage, credit, convertible,
swap, emerging markets, etc. Despite recent progresses, the valuation and
optimal exercise of American options remains one of the most challenging
problems in derivatives finance. In many financial contracts it is allowed
to exercise the contract early before expiry. For example, many exchange
traded options are of American type and allow the holder any exercise date
before expiry, mortgages have often embedded prepayment options such
that the mortgage can be amortized or repayed, or life insurance contracts
allow often for early surrender. In this paper we consider data driven pric-
ing of options with early exercise features.
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Let X; be the asset price at time ¢, K the strike price, r the discount
rate. For American put option, the payoff function f; with discount factor

e s

(X)) =e K — X)) .

For maturity time T, let T={1,...,T} be the time frame for American
options. Let F; denote the o-algebra generated by Xo =1, X1,..., X; then
an integer valued random variable 7 is called stopping time if {T =t} € F,
for all t = 1,...,7. If %(O, ..., T) stands for the set of stopping times
taking values in (0,...,T) then the task of pricing the American option is
to determine

Vo= sup  E{f-(X:)}. (6.1)

The main principles of pricing American put option described below can
be extended to more general payoffs, for example, the payoffs may depend
on many assets’ prices (cf. [Tsitsiklis and Roy (2001)]).

Let 7* be the optimum stopping time, i.e.,

E{fr (X;-)} = sup E{fr (X:)}
r€%(0,...,T)

6.1.2. Optimal stopping

An alternative formulation of 7* can be derived as follows. Introduce the
notation

qt(x) = sup E{f-(X;)| Xt =z} (6.2)
TET{t+1,....,T}

continuation value, where ‘E{t +1,...,T} refers to the possible stopping
times taking values in {t +1,...,T}.

Theorem 6.1 (cf. Chow et. al, 1971, Shiryayev, 1978, Kohler, 2010).
Put

TP =min{l <s<T:qs(Xs) < fs (Xs)}.
If the assets prices {X;} form a Markov process then
* q

T =T

The intuition behind the optimal stopping rule 77 is that at any exercise
time, the holder of an American option optimally compares the payoff from
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immediate exercise with the expected payoff from continuation, and then
exercises if the immediate payoff is higher. Thus, the optimal exercise
strategy is fundamentally determined by the conditional expectation of the
payoff from continuing to keep the option alive. The key insight underlying
the current approaches is that this conditional expectation can be estimated
from data.

As a byproduct of the proof of Theorem 6.1, one may check the the
following:

Theorem 6.2 (cf. Tsitsiklis and Roy, 1999, Kohler, 2010). We get
that

while at any t <T

qi(z) = E{max {fis1 (Xi51) , qe41 (Xeg1)} | Xo = 2} (6.3)

which means that there is a backward recursive scheme.
(6.3) implies that

g1 () = E{max {fi+1 (Xes1) s o1 (Xig1)} | Xo = 2}
=E {max {efr(tﬂ) (K = Xe41)" a1 (Xt+1)} | Xy = SB}

X + X
=E {max {er(tﬂ) (K — )?:Xt) s Qt+1 < ;(:1 Xt)} | Xi = x}
=E{max{e "D (K — &x : Xt+133 | X, ==
X, y Gt+1 X, t .

(6.4)

6.1.3. Martingale approach: the primal-dual problem

As we defined in the Introduction, the initial problem is to find the optimal
stopping time which provides the price of American option:

VO = Nsup E{f‘r (XT)}a
r€3(0,...,T)

where the sup is taken over the stopping times 7. The dual problem is
formulated by [Rogers (2002)], [Haugh and Kogan (2004)] to obtain an
alternative valuation method. Let
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Up= inf E X)) — M, 6.5
o= nf {te{l&lﬁ?fn (fe (Xe) t)} (6.5)

where M is the set of martingales with My = 0 and with the same filtration
0 (Xt,...,X1). The dual method is based on the next theorem.

Theorem 6.3. (cf. Rogers, 2002, Haugh and Kogan, 2004,
Glasserman, 2004, Kohler, 2010) If X, is a Markov process then

Uo=Wo

This result is based on the important observation that one can obtain
a martingale from the pay-off function and continuation value in a natural
way.

Theorem 6.4. (cf. Glasserman, 2004, Tsitsiklis and Roy, 1999,
Kohler, 2010) The optimal martingale is of form

My =" (max {fs (Xs),qs (Xo)} = qsm1 (Xom1))

s=1

and indeed M is a martingale.

The valuation task now is converted into an estimate of the martingale
M.

6.1.4. Lower and upper bounds of q:(x)

In pricing American option, the continuation values ¢;(x) play an impor-
tant role. For empirical pricing, one has to estimate them, which is possible
using the backward recursion (6.3). However, using this recursion the es-
timation errors are accumulated, therefore there is a need to control the
error propagation.

We introduce a lower bound of ¢;(x):

D(z) = E{f.(X,)|X; =
@ (@)= _max  E{f(X)IX =a}.

Since any constant 7 = s is a stopping time, we have that
1
ot (z) < ().

We shall show that q,gl)(x) can be estimated easier than that of g;(x)
and the estimate has a fast rate of convergence, so if g\ (x) and g, () are

,n
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the estimates of qt(l)(:c) and ¢;(x), resp., then

G () == max{ge o (2), ¢i") ()}

is an (hopefully) improved estimate of g;(z).

Next we introduce an upper bound. For 7 € r:"{t +1,...,T}, we have

that
(X)) < (X)),
/ ( - se{trf%).(..,T} ( )
therefore
qe(r) = sup E{fr(X:)|X; =2} < E{ max  fo(X) [ Xy = m} .
reT{t+1,..., T} se{t+1,....,T}

Introduce the notation

“W(z):=E X)) | Xy =
0 =] _max | A0 =a),

then we get an upper bound

a(z) < ¢/ ().

Again, qgu)(a:) can be estimated easier than that of ¢,(z) and the estimate

(u)(x) and ¢; () are the estimates of

has a fast rate of convergence, so if ¢; ,,

qgu) (z) and ¢(x), resp., then

dr.n () := min{ge . (z), ¢") ()}

is an improved estimate of q:(z).
The combination of the lower an upper bounds reads as follows:

E s XS X = S SE s Xs X = 9
se{tr_f_li}fj} {fs(X5)| Xy = 2} < () {Se{tf_{li?‘j}f( )| Xy x}

while the improved estimate has the form

@ (@) if g (@) < qunl2),
Grn (@) = { quale) i ¢ (2) = gulz) > g ) (2),

o) (@) if gen(z) < ) (2).
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6.1.5. Sampling

In a real life problem we have a single historical data sequence Xi,..., Xy.

Definition 6.1. The process {X;} is called of memoryless multiplicative
increments, if X;/Xo, X2/X1,... are independent random variables.

Definition 6.2. The process {X;} is called of stationary multiplicative
increments, if the sequence X;/Xo = X1, Xo/X7, ... is strictly stationary.

As mentioned earlier, the continuation value ¢;(x) plays an important
role in the optimum pricing, which is the supremum of conditional expecta-
tions. Conditional expectations can be considered as regression functions,
and in the empirical pricing the regression function is replaced by its es-
timate. For regression function estimation, we are given independent and
identically distributed (i.i.d) copies of X1,..., X, i.e., one generates i.i.d.
sample path prices:

Xi,17"'7Xi,T7 (66)

1 =1,..n.
Based on the historical data sequence Xi,..., Xy, one can construct
samples for (6.6) as follows:

(i) For the Monte Carlo sampling, one assumes that the data generating
process is completely known, i.e., that there is perfect parametric model
and all parameters of this process are already estimated from histori-
cal data Xy,..., Xy (cf. Longstaff, Schwartz [Longstaff and Schwartz
(2001)]). Thus, one can artificially generate independent sample paths
(6.6). The weakness of this approach is that usually the size N of the
historical data is not large enough in order to have a good model and
reliable parameter estimates.

(ii) For disjoint sampling, N = nT and2i = 1,...,n = N/T. However, we
haven’t the required i.i.d. property unless the process X7, ..., X, have
memoryless and stationary multiplicative increments, which means that
Xl/XQ, XQ/Xl, . 7XnT/XnT—1 are 1.i.d.

(iii) For sliding sampling,

X
X = 7“ (6.7)
i=1,...,n=N-—T. In this way we get a large sample, however, there

is no i.i.d. property.



January 26, 2011  12:53 World Scientific Review Volume - 9in x 6in MLFFE

Empirical Pricing American Put Options 237

(iv) For bootstrap sampling, we generate i.i.d. random variables 77, ..., T,
uniformly distributed on 1,..., N — T and

p.cow
Xiq = ,
X1

i

(6.8)

1=1,...,n.

6.1.6. Empirical pricing and optimal exercising of American
option

If the continuation values ¢;(z), t = 1,...T were known, then the optimal
stopping time 7; for path X, 1,...,X; 7 can be calculated:

T, = mln{l S S S T: ds (Xi,s) S .fs (Xl,e)} .

Then the price V can be estimated by the average
1 n
— (X)) 6.9
PIAC (6.9)

The continuation values ¢ (x), t = 1,...T are unknown, there-
fore one has to generate some estimates ¢ ,(z), t = 1,...7T. [Kohler
et al. (2008)] suggested a splitting approach as follows.  Split the
sample {X;1,...,X;7},_, into two samples: {Xj1,...,X;r},~, and
{Xin, o, Xir}i_, - We estimate gi(z) by g m(z), (t = 1,...T) from
{Xi’h...,XZ-’T}?;17 and construct some approximations of the optimal
stopping time 7; for path X; 1,..., X; 7

Tim = mln{]- S S S T: ds,m (Xi,s) S fs (Xi,s)}a

and then the price V) can be estimated by the average

S fron (Xn)-

i=m-+1

1

n—m

For empirical exercising at the time frame [N + 1, N + T, we are given
the past data Xi,..., Xy based on which generate some estimates ¢, v (z),
t =1,...T. Then the empirical exercising of American option can
be defined by the stopping time

v =min{l < s <T:qsn (Xnt+s/XN) < fs (Xngs/Xn)}-
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If the continuation values g;(x), t = 1,...T were known, then the op-
timal martingale M, for path X;1,..., X; 7 can be calculated:

t

My =" (max {fs (Xis),qs (Xi0)} — qam1 (Xiam1)) -

s=1
Then the price V can be estimated by the average

n

n Xit) = M) - 6.10
n = te{g}ﬁ?.{.T} (ft( ) m) ( )

The continuation values ¢;(x), ¢ = 1,...T are unknown, then using
the splitting approach described above generate some estimates g, (z),
t=1,...T are available and the approximations of the optimal martingale
M}, for path X;1,..., X; 1

t
M;it,m = Z (maX {fs (Xzs) vqs,m (Xz,s)} - QS71,m (Xi,sfl)) .

s=1
Then the price V; can be estimated by the average

n

Vv()7 Z fe{O 1 ft ( ) Mift,m) .

For option pricing, a nonparametric estimation scheme was firstly pro-
posed by [Carrier (1996)], while [Tsitsiklis and Roy (1999)] and [Longstaff
and Schwartz (2001)] estimated the continuation value.

6.2. Special case: pricing for process with memoryless and
stationary multiplicative increments

In this section we assume that the assets prices {X;} have memoryless
and stationary multiplicative increments. This properties imply that, for
5>, X
P X

distribution.

—t = X,_; have the same
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6.2.1. FEstimating q;

For t < T, the recursion (6.4) implies that

qt(z) = E{max {fir1 (Xeq1) s @1 (Xeg1)} | Xo = 2}

x
—r(t+1) Xiq1 - Xy
=E<{max{e K — th S Q41 Ttx | X =
e +
E {max{e_r(ﬂ'l) (K — ;;—1 x) » Qt+1 (
t

E {max {e_r(t'H) (K —X12)" g (Xlgc)}} , (6.11)

where in the last two steps we assumed independent and stationary mul-
tiplicative increments. By a backward induction we get that, for fixed ¢,
gt (x) is a monotonically decreasing and convex function of z.

If we are given data Xi,..., Xy, ¢ =1,..., N then, for any fixed t, let
¢i+1,~5 () be an estimate of ¢¢41(x). Thus, introduce the estimate of ¢ (x)
in a backward recursive way as follows:

N
1
q.n(T) = N Zmax {64(”1) (K —2X;/Xi-1)" 7(]t+1,N(xXi/Xi71)} .
i—1

(6.12)
From (6.12) we can derive a numerical procedure such that consider a
grid

G:{jh}a

j =1,2,..., where the step size of the grid h > 0, for example h = 0.01.
In each step of (6.12) we make the recursion for z € G, and then linearly
interpolate for z ¢ G.

The weakness of this estimate can be that maybe the estimation errors
are cumulated, therefore we consider the estimates of the lower and upper
bounds, too.
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6.2.2. Estimating the lower and upper bounds of q.(x)

For memoryless process, the lower bound of ¢;(x) has a simple form:

D(z) = E{f.(X,)|X, =
3 (x) sephax {fs(Xs)|X¢ =z}
X, \*
= max e °E (K—Xt> |Xt:x}
se{t+1,...,T} X

+
= max e "E <K - sz) }
se{t+1,....,T} X

= max e EJ{(K - Xs_tx)+} ,
se{t+1,...,T}

X +
= max e E <K - Sx) | X ==z
se{t+1,....T} Xt

where in the last two steps we assumed memoryless and stationary multi-

plicative increments.
Thus

qil)(x) = sup e E {(K - Xs_ta:)+} .
se{t+1,...,T}

If we are given data X, 1,..., X; 7, ¢ = 1,...n then the estimate of q,@(x)
would be

MLFFE
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Concerning the upper bound, the previous arguments imply that

se{t+1,....,T}

g (x) = IE{ max  fo(X,) | X; = :c}

max e (K- X, | Xy = LL‘}

X +
max e '° <K - SX}) | X ==z
se{t+1,....,T} X

= { max e "7 (K — Xs_t:n)Jr} .
If we are given data X;i,...,X;7, ¢ = 1,..n, then the estimate of
qiu) (z) would be

(u) _ l —rs o . +
Qt,n (ﬂ?) - n IZZI sE{tI—Ela:}.(..,T} € (K X173,t$)

The combination of the lower an upper bounds reads as follows:

a E{ s (K — X,_ +}< <E a —rs (K — X2t
sty 6 ( s=®) " g S ail7) < seftriryC ( s=t7)

Again, using the estimates of the lower and upper bound, we suggest a
truncation of the estimates of the continuation value:
g (x) if g’
G (@) =< gy (@) if gl
1
ah@) i qon(a) < gl (@),

6.2.3. The growth rate of an asset and the Black-Scholes
model

In this section we still assume that the assets prices {X;} have memoryless
and stationary multiplicative increments, and in discrete time show that the
Black-Scholes formula results in a good approximation of the lower bound
q,gl) (z). Consider an asset, the evolution of which characterized by its price
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X, at trading period (let’s say trading day) ¢. In order to normalize, put
Xo = 1. X; has exponential trend:

Xt _ etWt ~ etVV7
with average growth rate (average daily yield)
1
Wt = Z In Xt
and with asymptotic average growth rate

1
W .= lim n In X;.

t—r00
Introduce the returns Z; as follows:

— Xt
X

Z

Thus, the return Z; denotes the amount obtained after investing a unit cap-
ital in the asset on the ¢-th trading period. Because {X;} is of independent
and stationary multiplicative increments, the sequence {Z;} is i.i.d. Then
the strong law of large numbers (cf. [Stout (1974)]) implies that

1
Wt = ;h’lXt
1 X
= 71 ¢
¢ ngxz,l
]
B n ni:l '
1 n
= meZZ
n “
=1

—E{lnZ:} =E{ln X3}
almost surely (a.s.), therefore
W =E{ln X;}.

The problem is how to calculate E{In X;}. It is not an easy task, one
should know the distribution of X;. For the approximate calculation of log-
optimal portfolio, [Vajda (2006)] suggested to use the second order Taylor
expansion of the function Inz at z = 1:

h(z) :=2z—-1— %(z —1)2
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Table 6.1.

The average empirical daily yield, variance,
growth rate and estimated growth rate for the 19 stocks

from [Gelencsér and Ottucsdk (2006)].

STOCK Ta o w w

AHP 0.000602  0.0160  0.000473  0.000474
ALCOA 0.000516  0.0185  0.000343  0.000343
AMERB 0.000616  0.0145  0.000511  0.000510
COKE 0.000645  0.0152  0.000528  0.000528
DOW 0.000576  0.0167  0.000436  0.000436
DUPONT  0.000442  0.0153  0.000325  0.000324
FORD 0.000526  0.0184  0.000356  0.000356
GE 0.000591  0.0151  0.000476  0.000476
GM 0.000408  0.0171  0.000261  0.000261
HP 0.000807  0.0227  0.000548  0.000548
IBM 0.000495  0.0161  0.000365  0.000365
INGER 0.000571  0.0177  0.000413  0.000413
INJ 0.000712  0.0153  0.000593  0.000593
KIMBC 0.000599  0.0154  0.000479  0.000480
MERCK 0.000669  0.0156  0.000546  0.000546
MMM 0.000513  0.0144  0.000408  0.000408
MORRIS ~ 0.000874  0.0169  0.000729  0.000730
PANDG 0.000579  0.0140  0.000478  0.000479
SCHLUM  0.000741  0.0191  0.000557  0.000557

243

For daily returns, this is a very good approximation, so it is a natural idea

to introduce the semi-log approximation of the asymptotic growth rate:

W =E{h(X1)}.

W has the advantage that it can be calculated just knowing the first and
second moments of X;. Put

and

then

W =E{h(X))} =E{X; —1— %(X1 -1 =r, -

E{X1}21+Ta

Var(X;) = o2,

Jz—l—r?l

2

Table 6.1 summarizes the growth rate of some big stocks on New York
Stock Exchange (NYSE). The used database contains daily relative closing
prices of several stocks and it is normalized by divident and splits for all

trading days. For more information about the database see the homepage

MLFFE



January 26, 2011  12:53 World Scientific Review Volume - 9in x 6in MLFFE

244 L. Gyéorfi and A. Telcs

[Gelencsér and Ottucsék (2006)]. Omne can see that W s really a good
approximation of W.

If the expiration time 7' is much larger than 1 day then for In X1 we
cannot apply the semi-log approximation, we should approximate the dis-
tribution of In X.

As for the binomial model or for the Cox-Ross-Rubinstein model or for
the construction of geometric Brownian motion (cf. [Luenberger (1998)]),
in addition, we assumed that {Z;} are i.i.d. Then

Var (i: In ZZ->
i=1
~ Var (Z h(Zi)>

= tVar (h(Z}))
=tVar(X; —1— %(X1 — 1)2)

1 1
— ¢ (B{CH - %)~ E(CG - 1P+ JE(CG - 1) — (1o — 507+ 72)?)
~ to’.
Thus, by the central limit theorem we get that In X, is approximately Gaus-

sian distributed with mean ¢(r, — (02 +72)/2) ~ t(r, — 0 /2) and variance

to?:

In X, RN (t(ra — 0?/2),t0?),

so we derived the discrete time version of the Black-Scholes model.
We have that

In X, & N (tvg, to?)
where
Vg =14 —0%)2.
Let Z 2 N (0,1) then
E {(K - xXt)+} —E { (K — a:e“‘Xt)+}

> S
= / (K - xet””\/’zaz) ———e 2:2(dz.
o V2mo
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We have
K — getvotVioz 5

if and only if
K
log — > tvg 4+ Vtoz,
x

equivalently

log % — tvg

Vito

20 ¢ > z.

Thus

20

+ 2
E{(K - xXt)+} = / (K - xet“ﬁ‘ﬁ”) %e*%dz
—00 mo

xetvo 70 2
=Ko (z) — eVioz=z/2q,
(z0) v 2T /_oo
xet(v0+d2/2) 20 (27\/20)2

_ e 2 dz
2T S
=Ko (z) — wet (00 °/2) @ (zo — \/ia) .

=Ko (20) -

Consequently
e~ 'R {(K - xXt)+}

K K
oo (o () et (ME g Y)
\/ia to

therefore we get that

o ()

= sup e °E {(K - Xs_ta:)Jr}
se{t+1,...,T}

— efrt

MLFFE

\/so

K _ K _ _
sup e " <K<I> <log z SvO) — zet(vota®/2) g <log z —SY0 759

\/so

se{l,....T—t}

6.3. Nonparametric regression estimation

In order to introduce efficient estimates of ¢:(x), for general Markov process,
we briefly summarize the basics of nonparametric regression estimation. In
regression analysis one considers a random vector (X,Y’), where X and

)
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Y are R-valued, and one is interested how the value of the so-called re-
sponse variable Y depends on the value of the observation X. This means
that one wants to find a function f : R — R, such that f(X) is a “good
approximation of Y,” that is, f(X) should be close to Y in some sense,
which is equivalent to making |f(X) — Y| “small.” Since X and Y are
random, |f(X)—Y] is random as well, therefore it is not clear what “small
|f(X) —Y|” means. We can resolve this problem by introducing the so-
called mean squared error of f,

E|f(X) =Y,

and requiring it to be as small as possible. So we are interested in a function
m : R — R such that

o 2: . o 2
Em(X) = Y[* = min E[f(X) - Y]

According to Chapter 5 of this volume, such a function can be obtained
explicitly by the regression function:

m(z) =E{Y|X = z}.

In applications the distribution of (X,Y") (and hence also the regression
function) is usually unknown. Therefore it is impossible to predict Y using
m(X). But it is often possible to observe data according to the distribution
of (X,Y) and to estimate the regression function from these data.

To be more precise, denote by (X,Y), (X1,Y7), (X2,Y2),... iid. ran-
dom variables with EY? < co. Let D,, be the set of data defined by

D, ={(X1,Y1),....,(Xp,Y)}.

In the regression function estimation problem one wants to use the data D,,
in order to construct an estimate m,, : R — R of the regression function m.
Here my, () = my(x,Dy,) is a measurable function of # and the data. For
simplicity, we will suppress D,, in the notation and write m,,(z) instead of
My (2, Dy).

In this section we describe the basic principles of nonparametric regres-
sion estimation: local averaging, or least squares estimation). (Concerning
the details see Chapter 5 of this volume and [Gyorfi et al. (2002)].)

The local averaging estimates of m(z) can be written as

my(x) = Z Whi(z) - Yi,
i=1
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where the weights W, ;(x) = W,i(z,X1,...,X,) € R depend on
X1,...,Xp. Usually the weights are nonnegative and W, ;(x) is “small” if
X, is “far” from x.

An example of such an estimate is the partitioning estimate. Here one
chooses a finite or countably infinite partition P, = {A,1,Anz2,...} of
R consisting of cells A, ; C R and defines, for z € A, ;, the estimate by
averaging Y;’s with the corresponding X;’s in A, ;, i.e.,

2im1 Iixiea, 1Y
Yimi lixiean )
where [ 4 denotes the indicator function of set A. Here and in the following

my(x) = for x € A, ;,

we use the convention % = 0. For the partition P,,, the most important
example is when the cells A, ; are intervals of length h,. For interval
partition, the consistency conditions mean that

lim h, =0 and lim nh, = c. (6.13)

n—oo n—oo
The second example of a local averaging estimate is the Nadaraya—
Watson kernel estimate. Let K : R — Ry be a function called the kernel
function, and let A > 0 be a bandwidth. The kernel estimate is defined by
’fl K z—X; }/7,
mn(z) = lenl ( xh_X)
2 K ( h 1')

Here the estimate is a weighted average of the Y;, where the weight of Y;

(i.e., the influence of Y; on the value of the estimate at x) depends on the
distance between X; and xz. For the bandwidth h = h,, the consistency
conditions are (6.13). If one uses the so-called naive kernel (or window
kernel) K (z) = Ijjjz<1}, then
it Ija—x<ny Vi

X Ia—xii<ny
i.e., one estimates m(x) by averaging Y;’s such that the distance between

X; and z is not greater than h.
Our final example of local averaging estimates is the k-nearest neighbor

mp(z) =

(k-NN) estimate. Here one determines the k nearest X;’s to « in terms of
distance ||z — X;|| and estimates m(x) by the average of the corresponding
Y;’s. More precisely, for x € R, let

be a permutation of

(X17Y1)a e (Xnv}/n)
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such that
[z = Xy@)] < <o = Xy (2)].
The k-NN estimate is defined by

Lk
my(x) = EZY@) (x).

If k = k,, — oo such that k,/n — 0 then the k-nearest-neighbor regression
estimate is consistent.
Least squares estimates are defined by minimizing the empirical Lo risk

%Zlf(xi) ~ Y2
=1

over a general set of functions F,. Observe that it doesn’t make sense to
minimize the empirical Lo risk over all functions f, because this may lead
to a function which interpolates the data and hence is not a reasonable
estimate. Thus one has to restrict the set of functions over which one
minimizes the empirical Lo risk. Examples of possible choices of the set
Fn are sets of piecewise polynomials with respect to a partition P,, or
sets of smooth piecewise polynomials (splines). The use of spline spaces
ensures that the estimate is a smooth function. An important member of
least squares estimates is the generalized linear estimates. Let {¢; }?‘;1 be
real-valued functions defined on R and let F,, be defined by

L
Fan=11; f:Ziji)j
i=1

Then the generalized linear estimate is defined by

fern i=1
2
1 n 2
= argmin{ — E c;9;(X;) =Y,
e, | I j=1

If the set

14
ZCj(bj; (Cl,...,Cg), ! = 1,2,...
7j=1
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is dense in the set of continuous functions, ¢,, — oo and ¢,,/n — 0 then the
generalized linear regression estimate defined above is consistent. For least
squares estimates, other example can be the neural networks or radial basis
functions or orthogonal series estimates or splines.

6.4. General case: pricing for process with stationary mul-
tiplicative increments

6.4.1. The backward recursive estimation scheme

Using the recursion (6.3), if the function ;41 () were known, then g;(x)
would be a regression function, which can be estimated from data

Dy = {(Xi, Yie)}

=17

with
Yie = max { fir1(Xi 1), @1 (Xije41)} -

However, the function g;41(z) is unknown. Once we have an estimate g;4+1,,,
of q;11 we can get an estimate of the next ¢; by generating samples D; with

Yz(?) = max { fi41 (Xit+1), @er1,0 (Xigs1)} -

6.4.2. The Longstaff-Schwartz (LS) method

In this section we briefly survey on recent papers which generalized or
improved the Markov chain Monte Carlo and/or LS method.

First we recall the original method developed by [Longstaff and Schwartz
(2001)] then we elaborate on some refinements and variations. All these
methods have the following basic characteristics. They assume that the
price process of the underlying asset very well described by a theoretical
model, by the Black-Scholes (BS) model or a Markov chain model. In
both cases it is also assumed that we have from historical data a perfect
estimate of the model parameters hence Monte Carlo (MC) generation of
arbitrary large number of sample paths of the price process provide arbi-
trarily good approximation of the real situation, i.e., one applies a Monte
Carlo sampling.

[Longstaff and Schwartz (2001)] suggested a quadratic regression as fol-
lows. Given that ¢; is expressed by a conditional expectation (6.2), we
can seek for a regression function which determine the value of ¢;. Let us
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consider a function space e.g. Lo and an orthonormal basis, the weighted
Laguerre polynomials

Lo (z) = exp(—x/2)

Ly (x) = (1*99)Lo( )

Ly (z) = (1—2x+x/2)L0()
dn

L, (z) = n' e (z"e™™).

we determine the coefficients: in case of k = 2, a1, a2, a3 :

n

(ao,t, 01,4, a2,) = argmin Z (aoLo (X)) +a1Lq (Xiy) +asle (X;4) — Yz‘,t)Q

(ao,al,a2) i=1

and obtain the estimate of ¢;

qt, n Zaz tL

Other choices might be, Hermite, Legendre, Chebysev, Gegenbauer, Jacoby,
trigonometric or even power functions do the job.

[Egloff (2005)] suggested to replace the parametric regression in the LS
method by nonparametric estimates. For example, in the possession of the
generated variables one can get the least square estimate of ¢; by

n
G = argimin { ! Z (f (Xie) — Y;,t)z} ;
where F is a function space.

[Kohler (2008)] studied the possible refinement, improvement of the LS
method in several papers. One significant extension is the computational
adaptation of the original LS method to options based on d underlying
assets, which lifts up the problem. This amounts to analyze d-dimensional
time-series such that [Kohler (2008)] suggested a penalized spline estimate
over a Sobolev space.

[Kohler et al. (2010)] investigated a least squares method for empirical
pricing compound American option if the corresponding space of functions
F is defined by neural networks (NN).

[Egloff et al. (2007)] reduced the error propagation with the rule such
that the non-in the money paths are sorted out, and for (X ;,Y; ;) generate
new path working on ¢,...T" (not the already used for ¢ + 1...T") reducing
error propagation. They studied an empirical error minimization estimate
for a function space of polynomial splines.
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6.4.3. A new estimator

Let’s introduce a partitioning like estimate, i.e., for the grid G and for

z € G put

Yoy max { frr1(Xi1)s Ger1.n(Xi e 1)} (X0 —al<h/2}
i1 [ix, i —al<n/2y

where I denotes the indicator, and 0/0 = 0 by definition. Obviously, this
estimate should be slightly modified if the denominator of the estimate is

Gt,n(2) = , (6.14)

not large enough. Then linearly interpolate for z ¢ G.
We have that

E s XS X = S SE s Xs X = ’
B BULCE) | X, =) S o) <B{ o 106 | % = 2

where both the lower and the upper bounds are true regression function.
For z € G, the lower bound can be estimated by
"X DX
@@ = max Lz oK) H o —al<n/zy.
’ se(tHlonTh D I(x, o —al<n/2)

while an estimate of the upper bound can be

Yoy maXge (i1, 7} fo (X ) I{ X0 —al<h/2}
Yim Lxi—al<n/2y

") (z) =

Again, a truncation is proposed:

@ (@) if g (@) < qual2),
Gin(@) = { qua(@) it ¢ (2) > grulz) > ¢ (2),

l . l
@) (@) i gen(z) < g (2).
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