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Chapter 5
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We present simple procedures for the prediction of a real valued time se-
ries with side information. For squared loss (regression problem), survey
the basic principles of universally consistent estimates. The prediction
algorithms are based on a combination of several simple predictors. We
show that if the sequence is a realization of a stationary and ergodic ran-
dom process then the average of squared errors converges, almost surely,
to that of the optimum, given by the Bayes predictor. We offer an analog
result for the prediction of stationary gaussian processes. These predic-
tion strategies have some consequences for 0−1 loss (pattern recognition
problem).

5.1. Introduction

We study the problem of sequential prediction of a real valued sequence.

At each time instant t = 1, 2, . . ., the predictor is asked to guess the value of

the next outcome yt of a sequence of real numbers y1, y2, . . . with knowledge

of the pasts yt−1
1 = (y1, . . . , yt−1) (where y

0
1 denotes the empty string) and

the side information vectors xt
1 = (x1, . . . , xt), where xt ∈ R

d . Thus, the

predictor’s estimate, at time t, is based on the value of xt
1 and yt−1

1 . A

prediction strategy is a sequence g = {gt}∞t=1 of functions

gt :
(
R

d
)t × R

t−1 → R

so that the prediction formed at time t is gt(x
t
1, y

t−1
1 ).

In this study we assume that (x1, y1), (x2, y2), . . . are realizations of the

random variables (X1, Y1), (X2, Y2), . . . such that {(Xn, Yn)}∞−∞ is a jointly

stationary and ergodic process.

177
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After n time instants, the normalized cumulative prediction error is

Ln(g) =
1

n

n∑

t=1

(gt(X
t
1, Y

t−1
1 )− Yt)

2.

Our aim to achieve small Ln(g) when n is large.

For this prediction problem, an example can be the forecasting daily rel-

ative prices yt of an asset, while the side information vector xt may contain

some information on other assets in the past days or the trading volume

in the previous day or some news related to the actual assets, etc. This

is a widely investigated research problem. However, in the vast majority

of the corresponding literature the side information is not included in the

model, moreover, a parametric model (AR, MA, ARMA, ARIMA, ARCH,

GARCH, etc.) is fitted to the stochastic process {Yt}, its parameters are
estimated, and a prediction is derived from the parameter estimates. (cf.

[Tsay (2002)]). Formally, this approach means that there is a parameter θ

such that the best predictor has the form

E{Yt | Y t−1
1 } = gt(θ, Y

t−1
1 ),

for a function gt. The parameter θ is estimated from the past data Y t−1
1 ,

and the estimate is denoted by θ̂. Then the data-driven predictor is

gt(θ̂, Y
t−1
1 ).

Here we don’t assume any parametric model, so our results are fully non-

parametric. This modelling is important for financial data when the process

is only approximately governed by stochastic differential equations, so the

parametric modelling can be weak, moreover the error criterion of the pa-

rameter estimate (usually the maximum likelihood estimate) has no relation

to the mean square error of the prediction derived. The main aim of this

research is to construct predictors, called universally consistent predictors,

which are consistent for all stationary time series. Such universal feature

can be proven using the recent principles of nonparametric statistics and

machine learning algorithms.

The results below are given in an autoregressive framework, that is, the

value Yt is predicted based on Xt
1 and Y t−1

1 . The fundamental limit for the

predictability of the sequence can be determined based on a result of [Al-

goet (1994)], who showed that for any prediction strategy g and stationary

ergodic process {(Xn, Yn)}∞−∞,

lim inf
n→∞

Ln(g) ≥ L∗ almost surely, (5.1)
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where

L∗ = E

{(
Y0 − E{Y0

∣∣X0
−∞, Y −1

−∞}
)2}

is the minimal mean squared error of any prediction for the value of Y0

based on the infinite past X0
−∞, Y −1

−∞. Note that it follows by stationarity
and the martingale convergence theorem (see, e.g., [Stout (1974)]) that

L∗ = lim
n→∞

E

{(
Yn − E{Yn

∣∣Xn
1 , Y

n−1
1 }

)2}
.

This lower bound gives sense to the following definition:

Definition 5.1. A prediction strategy g is called universally consistent

with respect to a class C of stationary and ergodic processes {(Xn, Yn)}∞−∞,

if for each process in the class,

lim
n→∞

Ln(g) = L∗ almost surely.

Universally consistent strategies asymptotically achieve the best possi-

ble squared loss for all ergodic processes in the class. [Algoet (1992)] and

[Morvai et al. (1996)] proved that there exists a prediction strategy uni-

versal with respect to the class of all bounded ergodic processes. However,

the prediction strategies exhibited in these papers are either very complex

or have an unreasonably slow rate of convergence even for well-behaved

processes.

Next we introduce several simple prediction strategies which, apart from

having the above mentioned universal property of [Algoet (1992)] and [Mor-

vai et al. (1996)], promise much improved performance for “nice” processes.

The algorithms build on a methodology worked out in recent years for pre-

diction of individual sequences, see [Vovk (1990)], [Feder et al. (1992)], [Lit-

tlestone and Warmuth (1994)], [Cesa-Bianchi et al. (1997)], [Kivinen and

Warmuth (1999)], [Singer and Feder (1999)], [Merhav and Feder (1998)],

[Cesa-Bianchi and Lugosi (2006)] for a survey.

An approach similar to the one of this paper was adopted by [Györfi

et al. (1999)], where prediction of stationary binary sequences was ad-

dressed. There they introduced a simple randomized predictor which pre-

dicts asymptotically as well as the optimal predictor for all binary ergodic

processes. The present setup and results differ in several important points

from those of [Györfi et al. (1999)]. On the one hand, special properties of

the squared loss function considered here allow us to avoid randomization

of the predictor, and to define a significantly simpler prediction scheme. On
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the other hand, possible unboundedness of a real-valued process requires

special care, which we demonstrate on the example of gaussian processes.

We refer to [Nobel (2003)], [Singer and Feder (1999, 2000)], [Yang (2000)]

to recent closely related work.

In Section 5.2 we survey the basic principles of nonparametric regression

estimates. In Section 5.3 introduce universally consistent strategies for

bounded ergodic processes which are based on a combination of partitioning

or kernel or nearest neighbor or generalized linear estimates. In Section

5.4 consider the prediction of unbounded sequences including the ergodic

gaussian process. In Section 5.5 study the classification problem of time

series.

5.2. Nonparametric regression estimation

5.2.1. The regression problem

For the prediction of time series, an important source of the basic princi-

ples is the nonparametric regression. In regression analysis one considers a

random vector (X,Y ), where X is Rd-valued and Y is R-valued, and one

is interested how the value of the so-called response variable Y depends on

the value of the observation vector X. This means that one wants to find

a function f : Rd → R, such that f(X) is a “good approximation of Y ,”

that is, f(X) should be close to Y in some sense, which is equivalent to

making |f(X)−Y | “small.” Since X and Y are random vectors, |f(X)−Y |
is random as well, therefore it is not clear what “small |f(X)− Y |” means.
We can resolve this problem by introducing the so-called L2 risk or mean

squared error of f ,

E|f(X)− Y |2,

and requiring it to be as small as possible.

So we are interested in a function m∗ : Rd → R such that

E|m∗(X)− Y |2 = min
f :Rd→R

E|f(X)− Y |2.

Such a function can be obtained explicitly as follows. Let

m(x) = E{Y |X = x}

be the regression function. We will show that the regression function min-

imizes the L2 risk. Indeed, for an arbitrary f : Rd → R, a version of the
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Steiner theorem implies that

E|f(X)− Y |2 = E|f(X)−m(X) +m(X)− Y |2

= E|f(X)−m(X)|2 + E|m(X)− Y |2,
where we have used

E {(f(X)−m(X))(m(X)− Y )}
= E

{
E
{
(f(X)−m(X))(m(X)− Y )

∣∣X
}}

= E {(f(X)−m(X))E{m(X)− Y |X}}
= E {(f(X)−m(X))(m(X)−m(X))}
= 0.

Hence,

E|f(X)− Y |2 =
∫

Rd

|f(x)−m(x)|2µ(dx) + E|m(X)− Y |2, (5.2)

where µ denotes the distribution of X. The first term is called the L2

error of f . It is always nonnegative and is zero if f(x) = m(x). Therefore,

m∗(x) = m(x), i.e., the optimal approximation (with respect to the L2 risk)

of Y by a function of X is given by m(X).

5.2.2. Regression function estimation and L2 error

In applications the distribution of (X,Y ) (and hence also the regression

function) is usually unknown. Therefore it is impossible to predict Y using

m(X). But it is often possible to observe data according to the distribution

of (X,Y ) and to estimate the regression function from these data.

To be more precise, denote by (X,Y ), (X1, Y1), (X2, Y2), . . . indepen-

dent and identically distributed (i.i.d.) random variables with EY 2 < ∞.

Let Dn be the set of data defined by

Dn = {(X1, Y1), . . . , (Xn, Yn)} .
In the regression function estimation problem one wants to use the data Dn

in order to construct an estimate mn : Rd → R of the regression function

m. Here mn(x) = mn(x,Dn) is a measurable function of x and the data.

For simplicity, we will suppress Dn in the notation and write mn(x) instead

of mn(x,Dn).

In general, estimates will not be equal to the regression function. To

compare different estimates, we need an error criterion which measures

the difference between the regression function and an arbitrary estimate
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mn. One of the key points we would like to make is that the motivation

for introducing the regression function leads naturally to an L2 error cri-

terion for measuring the performance of the regression function estimate.

Recall that the main goal was to find a function f such that the L2 risk

E|f(X)− Y |2 is small. The minimal value of this L2 risk is E|m(X)− Y |2,
and it is achieved by the regression function m. Similarly to (5.2), one can

show that the L2 risk E{|mn(X)− Y |2|Dn} of an estimate mn satisfies

E
{
|mn(X)− Y |2|Dn

}
=

∫

Rd

|mn(x)−m(x)|2µ(dx)+E|m(X)−Y |2. (5.3)

Thus the L2 risk of an estimate mn is close to the optimal value if and only

if the L2 error

∫

Rd

|mn(x)−m(x)|2µ(dx) (5.4)

is close to zero. Therefore we will use the L2 error (5.4) in order to measure

the quality of an estimate and we will study estimates for which this L2

error is small.

In this section we describe the basic principles of nonparametric regres-

sion estimation: local averaging, local modelling, global modelling (or least

squares estimation), and penalized modelling. (Concerning the details see

[Györfi et al. (2002)].)

Recall that the data can be written as

Yi = m(Xi) + ǫi,

where ǫi = Yi −m(Xi) satisfies E(ǫi|Xi) = 0. Thus Yi can be considered

as the sum of the value of the regression function at Xi and some error

ǫi, where the expected value of the error is zero. This motivates the con-

struction of the estimates by local averaging, i.e., estimation of m(x) by

the average of those Yi where Xi is “close” to x. Such an estimate can be

written as

mn(x) =

n∑

i=1

Wn,i(x) · Yi,

where the weights Wn,i(x) = Wn,i(x,X1, . . . , Xn) ∈ R depend on

X1, . . . , Xn. Usually the weights are nonnegative and Wn,i(x) is “small” if

Xi is “far” from x.
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5.2.3. Partitioning estimate

An example of such an estimate is the partitioning estimate. Here one

chooses a finite or countably infinite partition Pn = {An,1, An,2, . . . } of Rd

consisting of cells An,j ⊆ R
d and defines, for x ∈ An,j , the estimate by

averaging Yi’s with the corresponding Xi’s in An,j , i.e.,

mn(x) =

∑n
i=1 I{Xi∈An,j}Yi∑n
i=1 I{Xi∈An,j}

for x ∈ An,j , (5.5)

where IA denotes the indicator function of set A, so

Wn,i(x) =
I{Xi∈An,j}∑n
l=1 I{Xl∈An,j}

for x ∈ An,j .

Here and in the following we use the convention 0
0 = 0. In order to have

consistency, on the one hand we need that the cells An,j should be ”small”,

and on the other hand the number of non-zero terms in the denominator of

(5.5) should be “large”. These requirements can be satisfied if the sequences

of partition Pn is asymptotically fine, i.e., if

diam(A) = sup
x,y∈A

‖x− y‖

denotes the diameter of a set, then for each sphere S centered at the origin

lim
n→∞

max
j:An,j∩S 6=∅

diam(An,j) = 0

and

lim
n→∞

|{j : An,j ∩ S 6= ∅}|
n

= 0.

For the partition Pn, the most important example is when the cells An,j are

cubes of volume hd
n. For cubic partition, the consistency conditions above

mean that

lim
n→∞

hn = 0 and lim
n→∞

nhd
n =∞. (5.6)

Next we bound the rate of convergence of E‖mn −m‖2 for cubic parti-
tions and regression functions which are Lipschitz continuous.

Proposition 5.1. For a cubic partition with side length hn assume that

Var(Y |X = x) ≤ σ2, x ∈ R
d,

|m(x)−m(z)| ≤ C‖x− z‖, x, z ∈ R
d, (5.7)
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and that X has a compact support S. Then

E‖mn −m‖2 ≤ c1
n · hd

n

+ d · C2 · h2
n,

thus for

hn = c2n
− 1

d+2

we get

E‖mn −m‖2 ≤ c3n
−2/(d+2).

In order to prove Proposition 5.1 we need the following technical lemma.

An integer-valued random variable B(n, p) is said to be binomially dis-

tributed with parameters n and 0 ≤ p ≤ 1 if

P{B(n, p) = k} =
(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Lemma 5.1. Let the random variable B(n, p) be binomially distributed with

parameters n and p. Then:

(i)

E

{
1

1 +B(n, p)

}
≤ 1

(n+ 1)p
,

(ii)

E

{
1

B(n, p)
I{B(n,p)>0}

}
≤ 2

(n+ 1)p
.

Proof. Part (i) follows from the following simple calculation:

E

{
1

1 +B(n, p)

}
=

n∑

k=0

1

k + 1

(
n

k

)
pk(1− p)n−k

=
1

(n+ 1)p

n∑

k=0

(
n+ 1

k + 1

)
pk+1(1− p)n−k

≤ 1

(n+ 1)p

n+1∑

k=0

(
n+ 1

k

)
pk(1− p)n−k+1

=
1

(n+ 1)p
(p+ (1− p))

n+1

=
1

(n+ 1)p
.
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For (ii) we have

E

{
1

B(n, p)
I{B(n,p)>0}

}
≤ E

{
2

1 +B(n, p)

}
≤ 2

(n+ 1)p

by (i). �

Proof of Proposition 5.1. Set

m̂n(x) = E{mn(x)|X1, . . . , Xn} =
∑n

i=1 m(Xi)I{Xi∈An(x)}
nµn(An(x))

,

where µn denotes the empirical distribution for X1, . . . , Xn. Then

E{(mn(x)−m(x))2|X1, . . . , Xn}
= E{(mn(x)− m̂n(x))

2|X1, . . . , Xn}+ (m̂n(x)−m(x))2. (5.8)

We have

E{(mn(x)− m̂n(x))
2|X1, . . . , Xn}

= E

{(∑n
i=1(Yi −m(Xi))I{Xi∈An(x)}

nµn(An(x))

)2 ∣∣∣X1, . . . , Xn

}

=

∑n
i=1 Var(Yi|Xi)I{Xi∈An(x)}

(nµn(An(x)))2

≤ σ2

nµn(An(x))
I{nµn(An(x))>0}.

By Jensen’s inequality

(m̂n(x)−m(x))2 =

(∑n
i=1(m(Xi)−m(x))I{Xi∈An(x)}

nµn(An(x))

)2

I{nµn(An(x))>0}

+m(x)2I{nµn(An(x))=0}

≤
∑n

i=1(m(Xi)−m(x))2I{Xi∈An(x)}
nµn(An(x))

I{nµn(An(x))>0}

+m(x)2I{nµn(An(x))=0}

≤ d · C2h2
nI{nµn(An(x))>0} +m(x)2I{nµn(An(x))=0}

(by (5.7) and max
z∈An(x)

‖x− z‖ ≤ d · h2
n)

≤ d · C2h2
n +m(x)2I{nµn(An(x))=0}.

Without loss of generality assume that S is a cube and the union of

An,1, . . . , An,ln is S. Then

ln ≤
c̃

hd
n
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for some constant c̃ proportional to the volume of S and, by Lemma 5.1

and (5.8),

E

{∫
(mn(x)−m(x))2µ(dx)

}

= E

{∫
(mn(x)− m̂n(x))

2µ(dx)

}
+ E

{∫
(m̂n(x)−m(x))2µ(dx)

}

=

ln∑

j=1

E

{∫

An,j

(mn(x)− m̂n(x))
2µ(dx)

}

+

ln∑

j=1

E

{∫

An,j

(m̂n(x)−m(x))2µ(dx)

}

≤
ln∑

j=1

E

{
σ2µ(An,j)

nµn(An,j)
I{µn(An,j)>0}

}
+ dC2h2

n

+

ln∑

j=1

E

{∫

An,j

m(x)2µ(dx)I{µn(An,j)=0}

}

≤
ln∑

j=1

2σ2µ(An,j)

nµ(An,j)
+ dC2h2

n +

ln∑

j=1

∫

An,j

m(x)2µ(dx)P{µn(An,j) = 0}

≤ ln
2σ2

n
+ dC2h2

n + sup
z∈S

{
m(z)2

} ln∑

j=1

µ(An,j)(1− µ(An,j))
n

≤ ln
2σ2

n
+ dC2h2

n + ln
supz∈S m(z)2

n
sup
j

nµ(An,j)e
−nµ(An,j)

≤ ln
2σ2

n
+ dC2h2

n + ln
supz∈S m(z)2e−1

n
(since supz ze

−z = e−1)

≤ (2σ2 + supz∈S m(z)2e−1)c̃

nhd
n

+ dC2h2
n.

�

5.2.4. Kernel estimate

The second example of a local averaging estimate is the Nadaraya–Watson

kernel estimate. Let K : Rd → R+ be a function called the kernel function,
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and let h > 0 be a bandwidth. The kernel estimate is defined by

mn(x) =

∑n
i=1 K

(
x−Xi

h

)
Yi∑n

i=1 K
(
x−Xi

h

) , (5.9)

so

Wn,i(x) =
K

(
x−Xi

h

)
∑n

j=1 K
(

x−Xj

h

) .

Here the estimate is a weighted average of the Yi, where the weight of Yi

(i.e., the influence of Yi on the value of the estimate at x) depends on the

distance between Xi and x. For the bandwidth h = hn, the consistency

conditions are (5.6). If one uses the so-called näıve kernel (or window

kernel) K(x) = I{‖x‖≤1}, then

mn(x) =

∑n
i=1 I{‖x−Xi‖≤h}Yi∑n
i=1 I{‖x−Xi‖≤h}

,

i.e., one estimates m(x) by averaging Yi’s such that the distance between

Xi and x is not greater than h.

In the sequel we bound the rate of convergence of E‖mn − m‖2 for a
näıve kernel and a Lipschitz continuous regression function.

Proposition 5.2. For a kernel estimate with a näıve kernel assume that

Var(Y |X = x) ≤ σ2, x ∈ R
d,

and

|m(x)−m(z)| ≤ C‖x− z‖, x, z ∈ R
d,

and X has a compact support S∗. Then

E‖mn −m‖2 ≤ c1
n · hd

n

+ C2h2
n,

thus for

hn = c2n
− 1

d+2

we have

E‖mn −m‖2 ≤ c3n
−2/(d+2).

Proof. We proceed similarly to Proposition 5.1. Put

m̂n(x) =

∑n
i=1 m(Xi)I{Xi∈Sx,hn}

nµn(Sx,hn
)

,
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then we have the decomposition (5.8). If Bn(x) = {nµn(Sx,hn
) > 0}, then

E{(mn(x)− m̂n(x))
2|X1, . . . , Xn}

= E

{(∑n
i=1(Yi −m(Xi))I{Xi∈Sx,hn}

nµn(Sx,hn
)

)2

|X1, . . . , Xn

}

=

∑n
i=1 Var(Yi|Xi)I{Xi∈Sx,hn}

(nµn(Sx,hn
))2

≤ σ2

nµn(Sx,hn
)
IBn(x).

By Jensen’s inequality and the Lipschitz property of m,

(m̂n(x)−m(x))2

=

(∑n
i=1(m(Xi)−m(x))I{Xi∈Sx,hn}

nµn(Sx,hn
)

)2

IBn(x) +m(x)2IBn(x)c

≤
∑n

i=1(m(Xi)−m(x))2I{Xi∈Sx,hn}
nµn(Sx,hn

)
IBn(x) +m(x)2IBn(x)c

≤ C2h2
nIBn(x) +m(x)2IBn(x)c

≤ C2h2
n +m(x)2IBn(x)c .

Using this, together with Lemma 5.1,

E

{∫
(mn(x)−m(x))2µ(dx)

}

= E

{∫
(mn(x)− m̂n(x))

2µ(dx)

}
+ E

{∫
(m̂n(x)−m(x))2µ(dx)

}

≤
∫

S∗
E

{
σ2

nµn(Sx,hn
)
I{µn(Sx,hn )>0}

}
µ(dx) + C2h2

n

+

∫

S∗
E
{
m(x)2I{µn(Sx,hn )=0}

}
µ(dx)

≤
∫

S∗

2σ2

nµ(Sx,hn
)
µ(dx) + C2h2

n +

∫

S∗
m(x)2(1− µ(Sx,hn

))nµ(dx)

≤
∫

S∗

2σ2

nµ(Sx,hn
)
µ(dx) + C2h2

n + sup
z∈S∗

m(z)2
∫

S∗
e−nµ(Sx,hn )µ(dx)

≤ 2σ2

∫

S∗

1

nµ(Sx,hn
)
µ(dx) + C2h2

n

+ sup
z∈S∗

m(z)2max
u

ue−u

∫

S∗

1

nµ(Sx,hn
)
µ(dx).
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We can find z1, . . . , zMn
such that the union of Sz1,rhn/2, . . . , SzMn ,rhn/2

covers S∗, and

Mn ≤
c̃

hd
n

.

Then

∫

S∗

1

nµ(Sx,rhn
)
µ(dx) ≤

Mn∑

j=1

∫ I{x∈Szj,rhn/2}

nµ(Sx,rhn
)

µ(dx)

≤
Mn∑

j=1

∫ I{x∈Szj,rhn/2}

nµ(Szj ,rhn/2)
µ(dx)

≤ Mn

n

≤ c̃

nhd
n

.

Combining these inequalities the proof is complete. �

5.2.5. Nearest neighbor estimate

Our final example of local averaging estimates is the k-nearest neighbor

(k-NN) estimate. Here one determines the k nearest Xi’s to x in terms of

distance ‖x−Xi‖ and estimates m(x) by the average of the corresponding
Yi’s. More precisely, for x ∈ R

d, let

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x))

be a permutation of

(X1, Y1), . . . , (Xn, Yn)

such that

‖x−X(1)(x)‖ ≤ · · · ≤ ‖x−X(n)(x)‖.

The k-NN estimate is defined by

mn(x) =
1

k

k∑

i=1

Y(i)(x). (5.10)

Here the weight Wni(x) equals 1/k if Xi is among the k nearest neighbors

of x, and equals 0 otherwise. If k = kn →∞ such that kn/n→ 0 then the

k-nearest-neighbor regression estimate is consistent.



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

190 L. Györfi and Gy. Ottucsák

Next we bound the rate of convergence of E‖mn−m‖2 for a kn-nearest

neighbor estimate.

Proposition 5.3. Assume that X is bounded,

σ2(x) = Var(Y |X = x) ≤ σ2 (x ∈ R
d)

and

|m(x)−m(z)| ≤ C‖x− z‖ (x, z ∈ R
d).

Assume that d ≥ 3. Let mn be the kn-NN estimate. Then

E‖mn −m‖2 ≤ σ2

kn
+ c1

(
kn
n

)2/d

,

thus for kn = c2n
2

d+2 ,

E‖mn −m‖2 ≤ c3n
− 2

d+2 .

For the proof of Proposition 5.3 we need the rate of convergence of

nearest neighbor distances.

Lemma 5.2. Assume that X is bounded. If d ≥ 3, then

E{‖X(1,n)(X)−X‖2} ≤ c̃

n2/d
.

Proof. For fixed ǫ > 0,

P{‖X(1,n)(X)−X‖ > ǫ} = E{(1− µ(SX,ǫ))
n}.

Let A1, . . . , AN(ǫ) be a cubic partition of the bounded support of µ such

that the Aj ’s have diameter ǫ and

N(ǫ) ≤ c

ǫd
.

If x ∈ Aj , then Aj ⊂ Sx,ǫ, therefore

E{(1− µ(SX,ǫ))
n} =

N(ǫ)∑

j=1

∫

Aj

(1− µ(Sx,ǫ))
nµ(dx)

≤
N(ǫ)∑

j=1

∫

Aj

(1− µ(Aj))
nµ(dx)

=

N(ǫ)∑

j=1

µ(Aj)(1− µ(Aj))
n.
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Obviously,

N(ǫ)∑

j=1

µ(Aj)(1− µ(Aj))
n ≤

N(ǫ)∑

j=1

max
z

z(1− z)n

≤
N(ǫ)∑

j=1

max
z

ze−nz

=
e−1N(ǫ)

n
.

If L stands for the diameter of the support of µ, then

E{‖X(1,n)(X)−X‖2} =
∫ ∞

0

P{‖X(1,n)(X)−X‖2 > ǫ} dǫ

=

∫ L2

0

P{‖X(1,n)(X)−X‖ > √ǫ} dǫ

≤
∫ L2

0

min

{
1,

e−1N(
√
ǫ)

n

}
dǫ

≤
∫ L2

0

min
{
1,

c

en
ǫ−d/2

}
dǫ

=

∫ (c/(en))2/d

0

1 dǫ+
c

en

∫ L2

(c/(en))2/d
ǫ−d/2dǫ

≤ c̃

n2/d

for d ≥ 3. �

Proof of Proposition 5.3. We have the decomposition

E{(mn(x)−m(x))2} = E{(mn(x)− E{mn(x)|X1, . . . , Xn})2}
+E{(E{mn(x)|X1, . . . , Xn} −m(x))2}

= I1(x) + I2(x).

The first term is easier:

I1(x) = E





(
1

kn

kn∑

i=1

(
Y(i,n)(x)−m(X(i,n)(x))

)
)2





= E

{
1

k2n

kn∑

i=1

σ2(X(i,n)(x))

}

≤ σ2

kn
.
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For the second term

I2(x) = E





(
1

kn

kn∑

i=1

(m(X(i,n)(x))−m(x))

)2




≤ E





(
1

kn

kn∑

i=1

|m(X(i,n)(x))−m(x)|
)2





≤ E





(
1

kn

kn∑

i=1

C‖X(i,n)(x)− x‖
)2



 .

Put N = kn⌊ n
kn
⌋. Split the data X1, . . . , Xn into kn + 1 segments such

that the first kn segments have length ⌊ n
kn
⌋, and let X̃x

j be the first nearest

neighbor of x from the jth segment. Then X̃x
1 , . . . , X̃

x
kn

are kn different

elements of {X1, . . . , Xn}, which implies
kn∑

i=1

‖X(i,n)(x)− x‖ ≤
kn∑

j=1

‖X̃x
j − x‖,

therefore, by Jensen’s inequality,

I2(x) ≤ C2
E






 1

kn

kn∑

j=1

‖X̃x
j − x‖




2




≤ C2 1

kn

kn∑

j=1

E

{
‖X̃x

j − x‖2
}

= C2
E

{
‖X̃x

1 − x‖2
}

= C2
E

{
‖X(1,⌊ n

kn
⌋)(x)− x‖2

}
.

Thus, by Lemma 5.2,

1

C2

⌊ n

kn

⌋2/d ∫
I2(x)µ(dx) ≤

⌊ n

kn

⌋2/d
E

{
‖X(1,⌊ n

kn
⌋)(X)−X‖2

}

≤ const.

�

5.2.6. Empirical error minimization

A generalization of the partitioning estimate leads to global modelling or

least squares estimates. Let Pn = {An,1, An,2, . . . } be a partition of Rd and
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let Fn be the set of all piecewise constant functions with respect to that

partition, i.e.,

Fn =




∑

j

ajIAn,j
: aj ∈ R



 . (5.11)

Then it is easy to see that the partitioning estimate (5.5) satisfies

mn(·) = argmin
f∈Fn

{
1

n

n∑

i=1

|f(Xi)− Yi|2
}
. (5.12)

Hence it minimizes the empirical L2 risk

1

n

n∑

i=1

|f(Xi)− Yi|2 (5.13)

over Fn. Least squares estimates are defined by minimizing the empirical

L2 risk over a general set of functions Fn (instead of (5.11)). Observe

that it doesn’t make sense to minimize (5.13) over all functions f , because

this may lead to a function which interpolates the data and hence is not

a reasonable estimate. Thus one has to restrict the set of functions over

which one minimizes the empirical L2 risk. Examples of possible choices of

the set Fn are sets of piecewise polynomials with respect to a partition Pn,

or sets of smooth piecewise polynomials (splines). The use of spline spaces

ensures that the estimate is a smooth function. An important member of

least squares estimates is the generalized linear estimates. Let {φj}∞j=1 be

real-valued functions defined on R
d and let Fn be defined by

Fn =



f ; f =

ℓn∑

j=1

cjφj



 .

Then the generalized linear estimate is defined by

mn(·) = argmin
f∈Fn

{
1

n

n∑

i=1

(f(Xi)− Yi)
2

}

= argmin
c1,...,cℓn




1

n

n∑

i=1




ℓn∑

j=1

cjφj(Xi)− Yi




2




.

If the set 



ℓ∑

j=1

cjφj ; (c1, . . . , cℓ), ℓ = 1, 2, . . .




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is dense in the set of continuous functions of d variables, ℓn → ∞ and

ℓn/n → 0 then the generalized linear regression estimate defined above is

consistent. For least squares estimates, other example can be the neural

networks or radial basis functions or orthogonal series estimates.

Next we bound the rate of convergence of empirical error minimization

estimates.

Condition (sG). The error ε := Y −m(X) is subGaussian random vari-

able, that is, there exist constants λ > 0 and Λ <∞ with

E
{
exp(λε2)

∣∣X
}
< Λ

a.s. Furthermore, define σ2 := E{ε2} and set λ0 = 4Λ/λ.

Condition (C). The class Fn is totally bounded with respect to the supre-

mum norm. For each δ > 0, let M(δ) denote the δ-covering number of

F . This means that for every δ > 0, there is a δ-cover f1, . . . , fM with

M =M(δ) such that

min
1≤i≤M

sup
x
|fi(x)− f(x)| ≤ δ

for all f ∈ Fn. In addition, assume that Fn is uniformly bounded by L,

that is,

|f(x)| ≤ L <∞

for all x ∈ R and f ∈ Fn.

Proposition 5.4. Assume that conditions (C) and (sG) hold and

|m(x)| ≤ L <∞.

Then, for the estimate mn defined by (5.5) and for all δn > 0, n ≥ 1,

E
{
(mn(X)−m(X))2

}

≤ 2 inf
f∈Fn

E{(f(X)−m(X))2}

+(16L+ 4σ)δn +
(
16L2 + 4max

{
L
√
2λ0, 8λ0

}) logM(δn)

n
.

In the proof of this proposition we use the following lemma:

Lemma 5.3 (Wegkamp, 1999). Let Z be a random variable with

E{Z} = 0 and E
{
exp(λZ2)

}
≤ A
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for some constants λ > 0 and A ≥ 1. Then

E {exp(βZ)} ≤ exp

(
2Aβ2

λ

)

holds for every β ∈ R.

Proof. Since for all t > 0, P{|Z| > t} ≤ A exp(−λt2) holds, we have for
all integers m ≥ 2,

E {|Z|m} =
∫ ∞

0

P
{
|Z|m > t

}
dt ≤ A

∫ ∞

0

exp
(
−λt2/m

)
dt = Aλ−m/2Γ

(m
2
+ 1

)
.

Note that Γ2(m2 + 1) ≤ Γ(m + 1) by Cauchy-Schwarz. The following in-

equalities are now self-evident.

E {exp (βZ)} = 1 +

∞∑

m=2

1

m!
E(βZ)m

≤ 1 +

∞∑

m=2

1

m!
|β|mE|Z|m

≤ 1 +A

∞∑

m=2

λ−m/2|β|mΓ
(
m
2 + 1

)

Γ (m+ 1)

≤ 1 +A
∞∑

m=2

λ−m/2|β|m 1

Γ
(
m
2 + 1

)

= 1 +A
∞∑

m=1

(
β2

λ

)m
1

Γ (m+ 1)

+A

∞∑

m=1

(
β2

λ

)m+ 1
2 1

Γ
(
m+ 3

2

)

≤ 1 +A

∞∑

m=1

(
β2

λ

)m
(
1 +

(
β2

λ

) 1
2

)
1

Γ (m+ 1)
.

Finally, invoke the inequality 1+(1+
√
x)(exp(x)−1) ≤ exp(2x) for x > 0,

to obtain the result. �

Lemma 5.4 (Antos et al., 2005). Let Xij, i = 1, . . . , n, j = 1, . . .M be

random variables such that for each fixed j, X1j , . . . , Xnj are independent

and identically distributed such that for each s0 ≥ s > 0

E{esXij} ≤ es
2σ2

j .
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For δj > 0, put

ϑ = min
j≤M

δj
σ2
j

.

Then

E

{
max
j≤M

(
1

n

n∑

i=1

Xij − δj

)}
≤ logM

min{ϑ, s0}n
. (5.14)

If

E{Xij} = 0

and

|Xij | ≤ K,

then

E

{
max
j≤M

(
1

n

n∑

i=1

Xij − δj

)}
≤ max{1/ϑ∗,K} logM

n
, (5.15)

where

ϑ∗ = min
j≤M

δj
Var(Xij)

.

Proof. For the notation

Yj =
1

n

n∑

i=1

Xij − δj

we have that for any s0 ≥ s > 0

E{esnYj} = E{esn( 1
n

∑n
i=1 Xij−δj)}

= e−snδj
(
E{esX1j}

)n

≤ e−snδjens
2σ2

j

≤ e−snασ2
j+s2nσ2

j .

Thus

esnE{maxj≤M Yj} ≤ E{esnmaxj≤M Yj}
= E{max

j≤M
esnYj}

≤
∑

j≤M

E{esnYj}

≤
∑

j≤M

e−snσ2
j (α−s).
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For s = min{α, s0} it implies that

E{max
j≤M

Yj} ≤
1

sn
log


∑

j≤M

e−snσ2
j (α−s)


 ≤ logM

min{α, s0}n
.

In order to prove the second half of the lemma, notice that, for any L > 0

and |x| ≤ L we have the inequality

ex = 1 + x+ x2
∞∑

i=2

xi−2

i!

≤ 1 + x+ x2
∞∑

i=2

Li−2

i!

= 1 + x+ x2 e
L − 1− L

L2
,

therefore 0 < s ≤ s0 = L/K implies that s|Xij | ≤ L, so

esXij ≤ 1 + sXij + (sXij)
2 e

L − 1− L

L2
.

Thus,

E{esXij} ≤ 1 + s2Var(Xij)
eL − 1− L

L2
≤ es

2
Var(Xij)

eL−1−L

L2 ,

so (5.15) follows from (5.14). �

Proof of Proposition 5.4. This proof is due to [Györfi and Wegkamp

(2008)]. Set

D(f) = E{(f(X)− Y )2}
and

D̂(f) =

n∑

i=1

(f(Xi)− Yi)
2

and

∆f (x) = (m(x)− f(x))2

and define

R(Fn) := sup
f∈Fn

[
D(f)− 2D̂(f)

]
≤ R1(Fn) +R2(Fn),

where

R1(Fn) := sup
f∈Fn

[ 2
n

n∑

i=1

{E∆f (Xi)−∆f (Xi)} −
1

2
E{∆f (X)}

]
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and

R2(Fn) := sup
f∈Fn

[ 4
n

n∑

i=1

εi(f(Xi)−m(Xi))−
1

2
E{∆f (X)}

]
,

with εi := Yi −m(Xi). By the definition of R(Fn) and mn, we have for all

f ∈ Fn

E
{
(mn(X)−m(X))2 | Dn

}
= E {D(mn) | Dn} −D(m)

≤ 2{D̂(mn)− D̂(m)}+R(Fn)

≤ 2{D̂(f)− D̂(m)}+R(Fn) .

After taking expectations on both sides, we obtain

E
{
(mn(X)−m(X))2

}
≤ 2E

{
(f(X)−m(X))2

}
+ E{R(Fn)}.

Let F ′n be a finite δn-covering net (with respect to the sup-norm) of Fn

with M(δn) = |F ′n|. It means that for any f ∈ Fn there is an f ′ ∈ F ′n such
that

sup
x
|f(x)− f ′(x)| ≤ δn,

which implies that

| (m(Xi)− f(Xi))
2 − (m(Xi)− f ′(Xi))

2 |
≤ |f(Xi)− f ′(Xi)| ·

(
|m(Xi)− f(Xi)|+ |m(Xi)− f ′(Xi)|

)

≤ 4L|f(Xi)− f ′(Xi)|
≤ 4Lδn,

and, by Cauchy-Schwarz inequality,

E{|εi(m(Xi)− f(Xi))− εi(m(Xi)− f ′(Xi))|}

≤
√

E{ε2i }
√
E{(f(Xi)− f ′(Xi))2}

≤ σδn.

Thus,

E{R(Fn)} ≤ 2δn(4L+ σ) + E{R(F ′n)},
and therefore

E
{
(mn(X)−m(X))2

}

≤ 2E
{
(f(X)−m(X))2

}
+ E{R(Fn)}

≤ 2E
{
(f(X)−m(X))2

}
+ (16L+ 4σ)δn + E {R(F ′n)}

≤ 2E
{
(f(X)−m(X))2

}
+ (16L+ 4σ)δn + E {R1(F ′n)}+ E {R2(F ′n)} .
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Define, for all f ∈ Fn with D(f) > D(m),

ρ̃(f) :=
E
{
(m(X)− f(X))4

}

E {(m(X)− f(X))2} .

Since |m(x)| ≤ 1 and |f(x)| ≤ 1, we have that

ρ̃(f) ≤ 4L2 .

Invoke the second part of Lemma 5.4 below to obtain

E {R1(F ′n)} ≤ max

(
8L2, 4L2 sup

f∈F ′n
ρ̃(f)

)
logM(δn)

n

≤ max
(
8L2, 16L2

) logM(δn)

n

= 16L2 logM(δn)

n
.

By Condition (sG) and Lemma 5.3, we have for all s > 0,

E {exp (sε(f(X)−m(X)))|X} ≤ exp(λ0s
2(m(X)− f(X))2/2).

For |z| ≤ 1, apply the inequality ez ≤ 1 + 2z. Choose

s0 =
1

L
√
2λ0

,

then

1

2
λ0s

2(f(X)−m(X))2 ≤ 1,

therefore, for 0 < s ≤ s0,

E {exp (sε(f(X)−m(X)))} ≤ E

{
exp

(
1

2
λ0s

2(f(X)−m(X))2
)}

≤ 1 + λ0s
2
E
{
(f(X)−m(X))2

}

≤ exp
(
λ0s

2
E
{
(f(X)−m(X))2

})
.

Next we invoke the first part of Lemma 5.4. We find that the value ϑ in

Lemma 5.4 becomes

1/ϑ = 8 sup
f∈F ′n

λ0E{(f(X)−m(X))2}
E{∆f (X)} ≤ 8λ0,

and we get

E {R2(F ′n)} ≤ 4
logM(δn)

n
max

(
L
√
2λ0, 8λ0

)
,
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and this completes the proof of Proposition 5.4. �

Instead of restricting the set of functions over which one minimizes,

one can also add a penalty term to the functional to be minimized. Let

Jn(f) ≥ 0 be a penalty term penalizing the “roughness” of a function f .

The penalized modelling or penalized least squares estimate mn is defined

by

mn = argmin
f

{
1

n

n∑

i=1

|f(Xi)− Yi|2 + Jn(f)

}
, (5.16)

where one minimizes over all measurable functions f . Again we do not

require that the minimum in (5.16) be unique. In the case it is not unique,

we randomly select one function which achieves the minimum.

A popular choice for Jn(f) in the case d = 1 is

Jn(f) = λn

∫
|f ′′(t)|2dt, (5.17)

where f ′′ denotes the second derivative of f and λn is some positive con-

stant. One can show that for this penalty term the minimum in (5.16) is

achieved by a cubic spline with knots at the Xi’s, i.e., by a twice differen-

tiable function which is equal to a polynomial of degree 3 (or less) between

adjacent values of the Xi’s (a so-called smoothing spline).

5.3. Universally consistent predictions: bounded Y

5.3.1. Partition-based prediction strategies

In this section we introduce our first prediction strategy for bounded ergodic

processes. We assume throughout the section that |Y0| is bounded by a

constant B > 0, with probability one, and the bound B is known.

The prediction strategy is defined, at each time instant, as a convex

combination of elementary predictors, where the weighting coefficients de-

pend on the past performance of each elementary predictor.

We define an infinite array of elementary predictors h(k,ℓ), k, ℓ = 1, 2, . . .

as follows. Let Pℓ = {Aℓ,j , j = 1, 2, . . . ,mℓ} be a sequence of finite par-
titions of R, and let Qℓ = {Bℓ,j , j = 1, 2, . . . ,m′ℓ} be a sequence of finite
partitions of Rd. Introduce the corresponding quantizers:

Fℓ(y) = j, if y ∈ Aℓ,j
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and

Gℓ(x) = j, if x ∈ Bℓ,j .

With some abuse of notation, for any n and yn1 ∈ R
n, we write Fℓ(y

n
1 )

for the sequence Fℓ(y1), . . . , Fℓ(yn), and similarly, for x
n
1 ∈ (Rd)n, we write

Gℓ(x
n
1 ) for the sequence Gℓ(x1), . . . , Gℓ(xn).

Fix positive integers k, ℓ, and for each k+1-long string z of positive inte-

gers, and for each k-long string s of positive integers, define the partitioning

regression function estimate

Ê(k,ℓ)
n (xn

1 , y
n−1
1 , z, s) =

∑
{k<t<n:Gℓ(xt

t−k)=z, Fℓ(y
t−1
t−k)=s} yt∣∣{k < t < n : Gℓ(xt

t−k) = z, Fℓ(y
t−1
t−k) = s}

∣∣ ,

for all n > k + 1 where 0/0 is defined to be 0.

Define the elementary predictor h(k,ℓ) by

h(k,ℓ)
n (xn

1 , y
n−1
1 ) = Ê(k,ℓ)

n (xn
1 , y

n−1
1 , Gℓ(x

n
n−k), Fℓ(y

n−1
n−k)),

for n = 1, 2, . . . . That is, h
(k,ℓ)
n quantizes the sequence xn

1 , y
n−1
1 according

to the partitions Qℓ and Pℓ, and looks for all appearances of the last seen

quantized strings Gℓ(x
n
n−k) of length k+1 and Fℓ(y

n−1
n−k) of length k in the

past. Then it predicts according to the average of the yt’s following the

string.

In contrast to the nonparametric regression estimation problem from

i.i.d. data, for ergodic observations, it is impossible to choose k = kn and

ℓ = ℓn such that the corresponding predictor is universally consistent for the

class of bounded ergodic processes. The very important new principle is the

combination or aggregation of elementary predictors (cf. [Cesa-Bianchi and

Lugosi (2006)]). The proposed prediction algorithm proceeds as follows: let

{qk,ℓ} be a probability distribution on the set of all pairs (k, ℓ) of positive
integers such that for all k, ℓ, qk,ℓ > 0. Put c = 8B2, and define the weights

wt,k,ℓ = qk,ℓe
−(t−1)Lt−1(h

(k,ℓ))/c (5.18)

and their normalized values

pt,k,ℓ =
wt,k,ℓ

Wt
, (5.19)

where

Wt =

∞∑

i,j=1

wt,i,j . (5.20)
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The prediction strategy g is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑

k,ℓ=1

pt,k,ℓh
(k,ℓ)(xt

1, y
t−1
1 ) , t = 1, 2, . . . (5.21)

i.e., the prediction gt is the convex linear combination of the elementary

predictors such that an elementary predictor has non-negligible weight in

the combination if it has good performance until time t− 1.

Theorem 5.1 (Györfi and Lugosi, 2001). Assume that

(a) the sequences of partition Pℓ is nested, that is, any cell of Pℓ+1 is a

subset of a cell of Pℓ, ℓ = 1, 2, . . .;

(b) the sequences of partition Qℓ is nested;

(c) the sequences of partition Pℓ is asymptotically fine;

(d) the sequences of partition Qℓ is asymptotically fine;

Then the prediction scheme g defined above is universal with respect to the

class of all jointly stationary and ergodic processes {(Xn, Yn)}∞−∞ such that

|Y0| ≤ B.

One of the main ingredients of the proof is the following lemma, whose

proof is a straightforward extension of standard arguments in the prediction

theory of individual sequences, see, for example, [Kivinen and Warmuth

(1999)], [Singer and Feder (2000)].

Lemma 5.5. Let h̃1, h̃2, . . . be a sequence of prediction strategies (experts),

and let {qk} be a probability distribution on the set of positive integers.

Assume that h̃i(x
n
1 , y

n−1
1 ) ∈ [−B,B] and yn1 ∈ [−B,B]n. Define

wt,k = qke
−(t−1)Lt−1(h̃k)/c

with c ≥ 8B2, and

vt,k =
wt,k∑∞
i=1 wt,i

.

If the prediction strategy g̃ is defined by

g̃t(x
n
1 , y

t−1
1 ) =

∞∑

k=1

vt,kh̃k(x
n
1 , y

t−1
1 ) t = 1, 2, . . .

then for every n ≥ 1,

Ln(g̃) ≤ inf
k

(
Ln(h̃k)−

c ln qk
n

)
.

Here − ln 0 is treated as ∞.
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Proof. Introduce W1 = 1 and Wt =
∑∞

k=1 wt,k for t > 1. First we show

that for each t > 1,
[ ∞∑

k=1

vt,k

(
yt − h̃k(x

n
1 , y

t−1
1 )

)]2

≤ −c ln Wt+1

Wt
. (5.22)

Note that

Wt+1 =

∞∑

k=1

wt,ke
−(yt−h̃k(x

n
1 ,y

t−1
1 ))

2
/c =Wt

∞∑

k=1

vt,ke
−(yt−h̃k(x

n
1 ,y

t−1
1 ))

2
/c,

so that

−c ln Wt+1

Wt
= −c ln

( ∞∑

k=1

vt,ke
−(yt−h̃k(x

n
1 ,y

t−1
1 ))

2
/c

)
.

Therefore, (5.22) becomes

exp


−1

c

[ ∞∑

k=1

vt,k

(
yt − h̃k(x

n
1 , y

t−1
1 )

)]2

 ≥

∞∑

k=1

vt,ke
−(yt−h̃k(x

n
1 ,y

t−1
1 ))

2
/c,

which is implied by Jensen’s inequality and the concavity of the function

Ft(z) = e−(yt−z)2/c for c ≥ 8B2. Thus, (5.22) implies that

nLn(g̃) =
n∑

t=1

(
yt − g̃(xn

1 , y
t−1
1 )

)2

=
n∑

t=1

[ ∞∑

k=1

vt,k

(
yt − h̃k(x

n
1 , y

t−1
1 )

)]2

≤ −c
n∑

t=1

ln
Wt+1

Wt

= −c lnWn+1

and therefore

nLn(g̃) ≤ −c ln
( ∞∑

k=1

wn+1,k

)

= −c ln
( ∞∑

k=1

qke
−nLn(h̃k)/c

)

≤ −c ln
(
sup
k

qke
−nLn(h̃k)/c

)

= inf
k

(
−c ln qk + nLn(h̃k)

)
,
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which concludes the proof. �

Another main ingredient of the proof of Theorem 5.1 is known as

Breiman’s generalized ergodic theorem [Breiman (1957)], see also [Algoet

(1994)] and [Györfi et al. (2002)].

Lemma 5.6 (Breiman, 1957). Let Z = {Zi}∞−∞ be a stationary and er-

godic process. Let T denote the left shift operator. Let fi be a sequence of

real-valued functions such that for some function f , fi(Z) → f(Z) almost

surely. Assume that E{supi |fi(Z)|} <∞. Then

lim
t→∞

1

n

n∑

i=1

fi(T
iZ) = E{f(Z)} almost surely.

Proof of Theorem 5.1. Because of (5.1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

By a double application of the ergodic theorem, as n→∞, almost surely,

Ê(k,ℓ)
n (Xn

1 , Y
n−1
1 , z, s) =

1
n

∑
{k<i<n:Gℓ(Xt

t−k)=z, Fℓ(Y
t−1
t−k )=s} Yi

1
n

∣∣{k < i < n : Gℓ(Xt
t−k) = z, Fℓ(Y

t−1
t−k ) = s}

∣∣

→
E{Y0I{Gℓ(X0

−k)=z, Fℓ(Y
−1
−k )=s}}

P{Gℓ(X0
−k) = z, Fℓ(Y

−1
−k ) = s}

= E{Y0|Gℓ(X
0
−k) = z, Fℓ(Y

−1
−k ) = s},

and therefore

lim
n→∞

sup
z
sup
s
|Ê(k,ℓ)

n (Xn
1 , Y

n−1
1 , z, s)−E{Y0|Gℓ(X

0
−k) = z, Fℓ(Y

−1
−k ) = s}| = 0

almost surely. Thus, by Lemma 5.6, as n→∞, almost surely,

Ln(h
(k,ℓ)) =

1

n

n∑

i=1

(h(k,ℓ)(Xi
1, Y

i−1
1 )− Yi)

2

=
1

n

n∑

i=1

(Ê(k,ℓ)
n (Xi

1, Y
i−1
1 , Gℓ(X

i
i−k), Fℓ(Y

i−1
i−k ))− Yi)

2

→ E{(Y0 − E{Y0|Gℓ(X
0
−k), Fℓ(Y

−1
−k )})2}

def
= ǫk,ℓ.

Since the partitions Pℓ and Qℓ are nested, E
{
Y0|Gℓ(X

0
−k), Fℓ(Y

−1
−k )

}
is a

martingale indexed by the pair (k, ℓ). Thus, the martingale convergence
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theorem (see, e.g., [Stout (1974)]) and assumption (c) and (d) for the se-

quence of partitions implies that

inf ǫk,ℓ = lim
k,ℓ→∞

ǫk,ℓ = E

{(
Y0 − E{Y0|X0

−∞, Y −1
−∞}

)2}
= L∗.

Now by Lemma 5.5,

Ln(g) ≤ inf
k,ℓ

(
Ln(h

(k,ℓ))− c ln qk,ℓ
n

)
, (5.23)

and therefore, almost surely,

lim sup
n→∞

Ln(g) ≤ lim sup
n→∞

inf
k,ℓ

(
Ln(h

(k,ℓ))− c ln qk,ℓ
n

)

≤ inf
k,ℓ

lim sup
n→∞

(
Ln(h

(k,ℓ))− c ln qk,ℓ
n

)

≤ inf
k,ℓ

lim sup
n→∞

Ln(h
(k,ℓ))

= inf
k,ℓ

ǫk,ℓ

= lim
k,ℓ→∞

ǫk,ℓ

= L∗

and the proof of the theorem is finished. �

Theorem 5.1 shows that asymptotically, the predictor gt defined by

(5.21) predicts as well as the optimal predictor given by the regression

function E{Yt|Y t−1
−∞ }. In fact, gt gives a good estimate of the regression

function in the following (Cesáro) sense:

Corollary 5.1. Under the conditions of Theorem 5.1

lim
n→∞

1

n

n∑

i=1

(
E{Yi|Xi

−∞, Y i−1
−∞ } − gi(X

i
1, Y

i−1
1 )

)2
= 0 almost surely.

Proof. By Theorem 5.1,

lim
n→∞

1

n

n∑

i=1

(
Yi − gi(X

i
1, Y

i−1
1 )

)2
= L∗ almost surely.

Consider the following decomposition:
(
Yi − gi(X

i
1, Y

i−1
1 )

)2

=
(
Yi − E{Yi|Xi

−∞, Y i−1
−∞ }

)2

+2
(
Yi − E{Yi|Xi

−∞, Y i−1
−∞ }

) (
E{Yi|Xi

−∞, Y i−1
−∞ } − gi(X

i
1, Y

i−1
1 )

)

+
(
E{Yi|Xi

−∞, Y i−1
−∞ } − gi(X

i
1, Y

i−1
1 )

)2
.
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Then the ergodic theorem implies that

lim
n→∞

1

n

n∑

i=1

(
Yi − E{Yi|Xi

−∞, Y i−1
−∞ }

)2
= L∗ almost surely.

It remains to show that

lim
n→∞

1

n

n∑

i=1

(
Yi − E{Yi|Xi

−∞, Y i−1
−∞ }

) (
E{Yi|Y i−1

−∞ } − gi(X
i
1, Y

i−1
1 )

)
= 0.

(5.24)

almost surely. But this is a straightforward consequence of Kolmogorov’s

classical strong law of large numbers for martingale differences due to [Chow

(1965)] (see also Theorem 3.3.1 in [Stout (1974)]). It states that if {Zi} is
a martingale difference sequence with

∞∑

n=1

EZ2
n

n2
<∞, (5.25)

then

lim
n→∞

1

n

n∑

i=1

Zi = 0 almost surely.

Thus, (5.24) is implied by Chow’s theorem since the martingale dif-

ferences Zi =
(
Yi − E{Yi|Xi

−∞, Y i−1
−∞ }

) (
E{Yi|Xi

−∞, Y i−1
−∞ } − gi(X

i
1, Y

i−1
1 )

)

are bounded by 4B2. (To see that the Zi’s indeed form a martingale dif-

ference sequence just note that E{Zi|Xi
−∞, Y i−1

−∞ } = 0 for all i.) �

Remark 5.1 (Choice of qk,ℓ). . Theorem 5.1 is true independently of

the choice of the qk,ℓ’s as long as these values are strictly positive for all k

and ℓ. In practice, however, the choice of qk,ℓ may have an impact on the

performance of the predictor. For example, if the distribution {qk,ℓ} has a

very rapidly decreasing tail, then the term − ln qk,ℓ/n will be large for mod-

erately large values of k and ℓ, and the performance of g will be determined

by the best of just a few of the elementary predictors h(k,ℓ). Thus, it may be

advantageous to choose {qk,ℓ} to be a large-tailed distribution. For example,

qk,ℓ = c0k
−2ℓ−2 is a safe choice, where c0 is an appropriate normalizing

constant.
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5.3.2. Kernel-based prediction strategies

We introduce in this section a class of kernel-based prediction strategies for

stationary and ergodic sequences. The main advantage of this approach

in contrast to the partition-based strategy is that it replaces the rigid dis-

cretization of the past appearances by more flexible rules. This also often

leads to faster algorithms in practical applications.

To simplify the notation, we start with the simple “moving-window”

scheme, corresponding to a uniform kernel function, and treat the general

case briefly later. Just like before, we define an array of experts h(k,ℓ),

where k and ℓ are positive integers. We associate to each pair (k, ℓ) two

radii rk,ℓ > 0 and r′k,ℓ > 0 such that, for any fixed k

lim
ℓ→∞

rk,ℓ = 0, (5.26)

and

lim
ℓ→∞

r′k,ℓ = 0. (5.27)

Finally, let the location of the matches be

J (k,ℓ)
n =

{
k < t < n : ‖xt

t−k − xn
n−k‖ ≤ rk,ℓ, ‖yt−1

t−k − yn−1
n−k‖ ≤ r′k,ℓ

}
.

Then the elementary expert h
(k,ℓ)
n at time n is defined by

h(k,ℓ)
n (xn

1 , y
n−1
1 ) =

∑
{t∈J(k,ℓ)

n } yt

|J (k,ℓ)
n |

, n > k + 1, (5.28)

where 0/0 is defined to be 0. The pool of experts is mixed the same way

as in the case of the partition-based strategy (cf. (5.18), (5.19), (5.20) and

(5.21)).

Theorem 5.2. Suppose that (5.26) and (5.27) are verified. Then the

kernel-based strategy defined above is universally consistent with respect to

the class of all jointly stationary and ergodic processes {(Xn, Yn)}∞−∞ such

that |Y0| ≤ B.

Remark 5.2. This theorem may be extended to a more general class of

kernel-based strategies. Define a kernel function as any map K : R+ →
R+. The kernel-based strategy parallels the moving-window scheme defined

above, with the only difference that in definition (5.28) of the elementary
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strategy, the regression function estimate is replaced by

h(k,ℓ)
n (xn

1 , y
n−1
1 )

=

∑
{k<t<n}K

(
‖xt

t−k − xn
n−k‖/rk,ℓ

)
K

(
‖yt−1

t−k − yn−1
n−k‖/r′k,ℓ

)
yt

∑
{k<t<n}K

(
‖xt

t−k − xn
n−k‖/rk,ℓ

)
K

(
‖yt−1

t−k − yn−1
n−k‖/r′k,ℓ

) .

Observe that ifK is the näıve kernelK(x) = I{x≤1}, we recover the moving-
window strategy discussed above. Typical nonuniform kernels assign a

smaller weight to the observations xt
t−k and yt−1

t−k whose distance from xn
n−k

and yn−1
n−k is larger. Such kernels promise a better prediction of the local

structure of the conditional distribution.

5.3.3. Nearest neighbor-based prediction strategy

This strategy is yet more robust with respect to the kernel strategy and

thus also with respect to the partition strategy. Since it does not suffer from

scaling problem as partition and kernel-based strategies where the quantizer

and the radius has to be carefully chosen to obtain “good” performance.

As well as this, in practical applications it runs extremely fast compared

with the kernel and partition schemes as it is much less likely to get bogged

down in calculations for certain experts.

To introduce the strategy, we start again by defining an infinite array

of experts h(k,ℓ), where k and ℓ are positive integers. Just like before, k is

the length of the past observation vectors being scanned by the elementary

expert and, for each ℓ, choose pℓ ∈ (0, 1) such that
lim
ℓ→∞

pℓ = 0 , (5.29)

and set

ℓ̄ = ⌊pℓn⌋
(where ⌊.⌋ is the floor function). At time n, for fixed k and ℓ (n > k +

ℓ̄ + 1), the expert searches for the ℓ̄ nearest neighbors (NN) of the last

seen observation xn
n−k and yn−1

n−k in the past and predicts accordingly. More

precisely, let

J (k,ℓ)
n =

{
k < t < n : (xt

t−k, y
t−1
t−k) is among the ℓ̄ NN of (xn

n−k, y
n−1
n−k) in

(xk+1
1 , yk1 ), . . . , (x

n−1
n−k−1, y

n−2
n−k−1)

}

and introduce the elementary predictor

h(k,ℓ)
n (xn

1 , y
n−1
1 ) =

∑
{t∈J(k,ℓ)

n } yt

|J (k,ℓ)
n |
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if the sum is nonvoid, and 0 otherwise. Finally, the experts are mixed as

before (cf. (5.18), (5.19), (5.20) and (5.21)).

Theorem 5.3. Suppose that (5.29) is verified and that for each vector s

the random variable

‖(Xk+1
1 , Y k

1 )− s‖

has a continuous distribution function. Then the nearest neighbor strategy

defined above is universally consistent with respect to the class of all jointly

stationary and ergodic processes {(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

5.3.4. Generalized linear estimates

This section is devoted to an alternative way of defining a universal pre-

dictor for stationary and ergodic processes. It is in effect an extension of

the approach presented in [Györfi and Lugosi (2001)]. Once again, we ap-

ply the method described in the previous sections to combine elementary

predictors, but now we use elementary predictors which are generalized lin-

ear predictors. More precisely, we define an infinite array of elementary

experts h(k,ℓ), k, ℓ = 1, 2, . . . as follows. Let {φ(k)
j }ℓj=1 be real-valued func-

tions defined on (Rd)
(k+1) ×R

k. The elementary predictor h
(k,ℓ)
n generates

a prediction of form

h(k,ℓ)
n (xn

1 , y
n−1
1 ) =

ℓ∑

j=1

cn,jφ
(k)
j (xn

n−k, y
n−1
n−k) ,

where the coefficients cn,j are calculated according to the past observa-

tions xn
1 , y

n−1
1 . More precisely, the coefficients cn,j are defined as the real

numbers which minimize the criterion

n−1∑

t=k+1




ℓ∑

j=1

cjφ
(k)
j (xt

t−k, y
t−1
t−k)− yt




2

(5.30)

if n > k + 1, and the all-zero vector otherwise. It can be shown using

a recursive technique (see e.g., [Tsypkin (1971)], [Györfi (1984)], [Singer

and Feder (2000)], and [Györfi and Lugosi (2001)]) that the cn,j can be

calculated with small computational complexity.

The experts are mixed via an exponential weighting, which is defined

the same way as earlier (cf. (5.18), (5.19), (5.20) and (5.21)).



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

210 L. Györfi and Gy. Ottucsák

Theorem 5.4 (Györfi and Lugosi, 2001). Suppose that |φ(k)
j | ≤ 1 and,

for any fixed k, suppose that the set




ℓ∑

j=1

cjφ
(k)
j ; (c1, . . . , cℓ), ℓ = 1, 2, . . .





is dense in the set of continuous functions of d(k + 1) + k variables.

Then the generalized linear strategy defined above is universally consis-

tent with respect to the class of all jointly stationary and ergodic processes

{(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

5.4. Universally consistent predictions: unbounded Y

5.4.1. Partition-based prediction strategies

Let Ê
(k,ℓ)
n (xn

1 , y
n−1
1 , z, s) be defined as in Section 5.3.1. Introduce the trun-

cation function

Tm(z) =





m if z > m

z if |z| < m

−m if z < −m,

Define the elementary predictor h(k,ℓ) by

h(k,ℓ)
n (xn

1 , y
n−1
1 ) = Tnδ

(
Ê(k,ℓ)

n (xn
1 , y

n−1
1 , Gℓ(x

n
n−k), Fℓ(y

n−1
n−k))

)
,

where

0 < δ < 1/8,

for n = 1, 2, . . . . That is, h
(k,ℓ)
n is the truncation of the elementary predictor

introduced in Section 5.3.1.

The proposed prediction algorithm proceeds as follows: let {qk,ℓ} be a
probability distribution on the set of all pairs (k, ℓ) of positive integers such

that for all k, ℓ, qk,ℓ > 0. For a time dependent learning parameter ηt > 0,

define the weights

wt,k,ℓ = qk,ℓe
−ηt(t−1)Lt−1(h

(k,ℓ)) (5.31)

and their normalized values

pt,k,ℓ =
wt,k,ℓ

Wt
, (5.32)
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where

Wt =

∞∑

i,j=1

wt,i,j . (5.33)

The prediction strategy g is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑

k,ℓ=1

pt,k,ℓh
(k,ℓ)(xt

1, y
t−1
1 ) , t = 1, 2, . . . (5.34)

Theorem 5.5 (Györfi and Ottucsák, 2007). Assume that the condi-

tions (a), (b), (c) and (d) of Theorem 5.1 are satisfied. Choose ηt = 1/
√
t.

Then the prediction scheme g defined above is universally consistent with

respect to the class of all ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
1 } <∞.

Here we describe a result, which is used in the analysis. This lemma is

a modification of the analysis of et al. [Auer et al. (2002)], which allows of

the handling the case when the learning parameter of the algorithm (ηt) is

time-dependent and the number of the elementary predictors is infinite.

Lemma 5.7 (Györfi and Ottucsák, 2007). Let h(1), h(2), . . . be a se-

quence of prediction strategies (experts). Let {qk} be a probability distri-

bution on the set of positive integers. Denote the normalized loss of the

expert h = (h1, h2, . . . ) by

Ln(h) =
1

n

n∑

t=1

ℓt(h),

where

ℓt(h) = ℓ(ht, Yt)

and the loss function ℓ is convex in its first argument h. Define

wt,k = qke
−ηt(t−1)Lt−1(h

(k))

where ηt > 0 is monotonically decreasing, and

pt,k =
wt,k

Wt

where

Wt =
∞∑

k=1

wt,k .
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If the prediction strategy g = (g1, g2, . . . ) is defined by

gt =

∞∑

k=1

pt,kh
(k)
t t = 1, 2, . . .

then for every n ≥ 1,

Ln(g) ≤ inf
k

(
Ln(h

(k))− ln qk
nηn+1

)
+

1

2n

n∑

t=1

ηt

∞∑

k=1

pt,kℓ
2
t (h

(k)).

Proof. Introduce some notations:

w′t,k = qke
−ηt−1(t−1)Lt−1(h

(k)),

which is the weight wt,k, where ηt is replaced by ηt−1 and the sum of these

are

W ′
t =

∞∑

k=1

w′t,k.

We start the proof with the following chain of bounds:

1

ηt
ln

W ′
t+1

Wt
=

1

ηt
ln

∑∞
k=1 wt,ke

−ηtℓt(h
(k))

Wt

=
1

ηt
ln

∞∑

k=1

pt,ke
−ηtℓt(h

(k))

≤ 1

ηt
ln

∞∑

k=1

pt,k

(
1− ηtℓt(h

(k)) +
η2t
2
ℓ2t (h

(k))

)
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because of e−x ≤ 1− x+ x2/2 for x ≥ 0. Moreover,

1

ηt
ln

W ′
t+1

Wt

≤ 1

ηt
ln

(
1− ηt

∞∑

k=1

pt,kℓt(h
(k)) +

η2t
2

∞∑

k=1

pt,kℓ
2
t (h

(k))

)

≤ −
∞∑

k=1

pt,kℓt(h
(k)) +

ηt
2

∞∑

k=1

pt,kℓ
2
t (h

(k)) (5.35)

= −
∞∑

k=1

pt,kℓ(h
(k)
t , Yt) +

ηt
2

∞∑

k=1

pt,kℓ
2
t (h

(k))

≤ −ℓ
( ∞∑

k=1

pt,kh
(k)
t , Yt

)
+

ηt
2

∞∑

k=1

pt,kℓ
2
t (h

(k)) (5.36)

= −ℓt(g) +
ηt
2

∞∑

k=1

pt,kℓ
2
t (h

(k)) (5.37)

where (5.35) follows from the fact that ln(1 + x) ≤ x for all x > −1 and
in (5.36) we used the convexity of the loss ℓ(h, y) in its first argument h.

From (5.37) after rearranging we obtain

ℓt(g) ≤ −
1

ηt
ln

W ′
t+1

Wt
+

ηt
2

∞∑

k=1

pt,kℓ
2
t (h

(k)) .

Then write a telescope formula:

1

ηt
lnWt −

1

ηt
lnW ′

t+1 =

(
1

ηt
lnWt −

1

ηt+1
lnWt+1

)

+

(
1

ηt+1
lnWt+1 −

1

ηt
lnW ′

t+1

)

= (At) + (Bt).
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We have that
n∑

t=1

At =
n∑

t=1

(
1

ηt
lnWt −

1

ηt+1
lnWt+1

)

=
1

η1
lnW1 −

1

ηn+1
lnWn+1

= − 1

ηn+1
ln

∞∑

k=1

qke
−ηn+1nLn(h

(k))

≤ − 1

ηn+1
ln sup

k
qke

−ηn+1nLn(h
(k))

= − 1

ηn+1
sup
k

(
ln qk − ηn+1nLn(h

(k))
)

= inf
k

(
nLn(h

(k))− ln qk
ηn+1

)
.

ηt+1

ηt
≤ 1, therefore applying Jensen’s inequality for concave function, we

get that

Wt+1 =
∞∑

i=1

qie
−ηt+1tLt(h

(i))

=

∞∑

i=1

qi

(
e−ηttLt(h

(i))
) ηt+1

ηt

≤
( ∞∑

i=1

qie
−ηttLt(h

(i))

) ηt+1
ηt

=
(
W ′

t+1

) ηt+1
ηt .

Thus,

Bt =
1

ηt+1
lnWt+1 −

1

ηt
lnW ′

t+1

≤ 1

ηt+1

ηt+1

ηt
lnW ′

t+1 −
1

ηt
lnW ′

t+1

= 0.

We can summarize the bounds:

Ln(g) ≤ inf
k

(
Ln(h

(k))− ln qk
nηn+1

)
+

1

2n

n∑

t=1

ηt

∞∑

k=1

pt,kℓ
2
t (h

(k)) .

�
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Proof of Theorem 5.5. Because of (5.1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

Because of the proof of Theorem 5.1, as n→∞, a.s.,

Ê(k,ℓ)
n (Xn

1 , Y
n−1
1 , z, s)→ E{Y0 | Gℓ(X

0
−k) = z, Fℓ(Y

−1
−k ) = s},

and therefore for all z and s

Tnδ

(
Ê(k,ℓ)

n (Xn
1 , Y

n−1
1 , z, s)

)
→ E{Y0 | Gℓ(X

0
−k) = z, Fℓ(Y

−1
−k ) = s}.

By Lemma 5.6, as n→∞, almost surely,

Ln(h
(k,ℓ))

=
1

n

n∑

t=1

(h(k,ℓ)(Xt
1, Y

t−1
1 )− Yt)

2

=
1

n

n∑

t=1

(
Ttδ

(
Ê

(k,ℓ)
t (Xt

1, Y
t−1
1 , Gℓ(X

t
t−k), Fℓ(Y

t−1
t−k ))

)
−Yt

)2

→ E{(Y0 − E{Y0 | Gℓ(X
0
−k), Fℓ(Y

−1
−k )})2}

def
= ǫk,ℓ.

In the same way as in the proof of Theorem 5.1, we get that

inf
k,l

ǫk,l = lim
k,ℓ→∞

ǫk,ℓ = E

{(
Y0 − E{Y0|X0

−∞, Y −1
−∞}

)2}
= L∗.

Apply Lemma 5.7 with choice ηt =
1√
t
and for the squared loss ℓt(h) =

(ht − Yt)
2, then the square loss is convex in its first argument h, so

Ln(g) ≤ inf
k,ℓ

(
Ln(h

(k,ℓ))− 2 ln qk,ℓ√
n

)

+
1

2n

n∑

t=1

1√
t

∞∑

k,ℓ=1

pt,k,ℓ
(
h(k,ℓ)(Xt

1, Y
t−1
1 )− Yt

)4
. (5.38)
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On the one hand, almost surely,

lim sup
n→∞

inf
k,ℓ

(
Ln(h

(k,ℓ))− 2 ln qk,ℓ√
n

)

≤ inf
k,ℓ

lim sup
n→∞

(
Ln(h

(k,ℓ))− 2 ln qk,ℓ√
n

)

= inf
k,ℓ

lim sup
n→∞

Ln(h
(k,ℓ))

= inf
k,ℓ

ǫk,ℓ

= lim
k,ℓ→∞

ǫk,ℓ

= L∗.

On the other hand,

1

n

n∑

t=1

1√
t

∑

k,ℓ

pt,k,ℓ(h
(k,ℓ)(Xt

1, Y
t−1
1 )− Yt)

4

≤ 8

n

n∑

t=1

1√
t

∑

k,ℓ

pt,k,ℓ

(
h(k,ℓ)(Xt

1, Y
t−1
1 )4 + Y 4

t

)

≤ 8

n

n∑

t=1

1√
t

∑

k,ℓ

pt,k,ℓ
(
t4δ + Y 4

t

)

=
8

n

n∑

t=1

t4δ + Y 4
t√

t
,

therefore, almost surely,

lim sup
n→∞

1

n

n∑

t=1

1√
t

∑

k,ℓ

pt,k,ℓ(h
(k,ℓ)(Xt

1, Y
t−1
1 )− Yt)

4

≤ lim sup
n→∞

8

n

n∑

t=1

Y 4
t√
t

= 0,

where we applied that E{Y 4
1 } < ∞ and 0 < δ < 1

8 . Summarizing these

bounds, we get that, almost surely,

lim sup
n→∞

Ln(g) ≤ L∗

and the proof of the theorem is finished. �
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Corollary 5.2 (Györfi and Ottucsák, 2007). Under the conditions of

Theorem 5.5,

lim
n→∞

1

n

n∑

t=1

(
E{Yt | Xt

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2
= 0 a.s. (5.39)

Proof. By Theorem 5.5,

lim
n→∞

1

n

n∑

t=1

(
Yt − gt(X

t
1, Y

t−1
1 )

)2
= L∗ a.s. (5.40)

and by the ergodic theorem we have

lim
n→∞

1

n

n∑

t=1

E

{(
Yt − E{Yt | Xt

−∞, Y t−1
−∞ }

)2 | Xt
−∞, Y t−1

−∞

}
= L∗ (5.41)

almost surely. Now we may write as n→∞, that

1

n

n∑

t=1

(
E{Yt | Xt

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2

=
1

n

n∑

t=1

E{
(
Yt − gt(X

t
1, Y

t−1
1 )

)2 | Xt
−∞, Y t−1

−∞ }

− 1
n

n∑

t=1

E{
(
Yt − E{Yt | Xt

−∞, Y t−1
−∞ }

)2 | Xt
−∞, Y t−1

−∞ }

=
1

n

n∑

t=1

E{
(
Yt − gt(X

t
1, Y

t−1
1 )

)2 | Xt
−∞, Y t−1

−∞ }

− 1
n

n∑

t=1

(
Yt − gt(X

t
1, Y

t−1
1 )

)2
+ o(1) (5.42)

= 2
1

n

n∑

t=1

gt(X
t
1, Y

t−1
1 )(Yt − E{Yt | Xt

−∞, Y t−1
−∞ })

− 1
n

n∑

t=1

(
Y 2
t − E{Y 2

t | Xt
−∞, Y t−1

−∞ }
)
+ o(1) a.s.

where (5.42) holds because of (5.40) and (5.41). The second sum is

1

n

n∑

t=1

(
Y 2
t − E{Y 2

t | Xt
−∞, Y t−1

−∞ }
)
→ 0 a.s.

by the ergodic theorem. Put

Zt = gt(X
t
1, Y

t−1
1 )(Yt − E{Yt | Xt

−∞, Y t−1
−∞ }).
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In order to finish the proof it suffices to show

lim
n→∞

1

n

n∑

t=1

Zt = 0 . (5.43)

Then

E{Zt | Xt
−∞, Y t−1

−∞ } = 0,

for all t, so the Zt’s form a martingale difference sequence. By the strong

law of large numbers for martingale differences due to [Chow (1965)], one

has to verify (5.25). By the construction of gn,

E
{
Z2
n

}
=E

{(
gn(X

n
1 , Y

n−1
1 )(Yn − E{Yn | Xn

−∞, Y n−1
−∞ })

)2}

≤E
{
gn(X

n
1 , Y

n−1
1 )2Y 2

n

}

≤n2δ
E
{
Y 2
1

}
,

therefore (5.25) is verified, (5.43) is proved and the proof of the corollary

is finished. �

5.4.2. Kernel-based prediction strategies

Apply the notations of Section 5.3.2. Then the elementary expert h
(k,ℓ)
n at

time n is defined by

h(k,ℓ)
n (xn

1 , y
n−1
1 ) = Tmin{nδ,ℓ}

(∑
{t∈J(k,ℓ)

n } yt

|J (k,ℓ)
n |

)
, n > k + 1,

where 0/0 is defined to be 0 and 0 < δ < 1/8. The pool of experts is mixed

the same way as in the case of the partition-based strategy (cf. (5.31),

(5.32), (5.33) and (5.34)).

Theorem 5.6 (Biau et al., 2010). Choose ηt = 1/
√
t and suppose that

(5.26) and (5.27) are verified. Then the kernel-based strategy defined above

is universally consistent with respect to the class of all jointly stationary

and ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
0 } <∞.



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

Nonparametric Sequential Prediction of Stationary Time Series 219

5.4.3. Nearest neighbor-based prediction strategy

Apply the notations of Section 5.3.3. Then the elementary expert h
(k,ℓ)
n at

time n is defined by

h(k,ℓ)
n (xn

1 , y
n−1
1 ) = Tmin{nδ,ℓ}

(∑
{t∈J(k,ℓ)

n } yt

|J (k,ℓ)
n |

)
, n > k + 1,

if the sum is nonvoid, and 0 otherwise and 0 < δ < 1/8. The pool of experts

is mixed the same way as in the case of the histogram-based strategy (cf.

(5.31), (5.32), (5.33) and (5.34)).

Theorem 5.7 (Biau et al., 2010). Choose ηt = 1/
√
t and suppose that

(5.29) is verified. Suppose also that for each vector s the random variable

‖(Xk+1
1 , Y k

1 )− s‖
has a continuous distribution function. Then the nearest neighbor strategy

defined above is universally consistent with respect to the class of all jointly

stationary and ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
0 } <∞.

5.4.4. Generalized linear estimates

Apply the notations of Section 5.3.4 . The elementary predictor h
(k,ℓ)
n

generates a prediction of form

h(k,ℓ)
n (xn

1 , y
n−1
1 ) = Tmin{nδ,ℓ}




ℓ∑

j=1

cn,jφ
(k)
j (xn

n−k, y
n−1
n−k)


 ,

with 0 < δ < 1/8. The pool of experts is mixed the same way as in the

case of the histogram-based strategy (cf. (5.31), (5.32), (5.33) and (5.34)).

Theorem 5.8 (Biau et al., 2010). Choose ηt = 1/
√
t and suppose that

|φ(k)
j | ≤ 1 and, for any fixed k, suppose that the set





ℓ∑

j=1

cjφ
(k)
j ; (c1, . . . , cℓ), ℓ = 1, 2, . . .





is dense in the set of continuous functions of d(k + 1) + k variables.

Then the generalized linear strategy defined above is universally consis-

tent with respect to the class of all jointly stationary and ergodic processes

{(Xn, Yn)}∞−∞ such that

E{Y 4
0 } <∞.
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5.4.5. Prediction of Gaussian processes

We consider in this section the classical problem of Gaussian time series

prediction. In this context, parametric models based on distribution as-

sumptions and structural conditions such as AR(p), MA(q), ARMA(p,q)

and ARIMA(p,d,q) are usually fitted to the data (cf. [Gerencsér and Ris-

sanen (1986)], [Gerencsér (1992, 1994)]). However, in the spirit of modern

nonparametric inference, we try to avoid such restrictions on the process

structure. Thus, we only assume that we observe a string realization yn−1
1

of a zero mean, stationary and ergodic, Gaussian process {Yn}∞−∞, and try
to predict yn, the value of the process at time n. Note that there is no side

information vectors xn
1 in this purely time series prediction framework.

It is well known for Gaussian time series that the best predictor is a

linear function of the past:

E{Yn | Yn−1, Yn−2, . . .} =
∞∑

j=1

c∗jYn−j ,

where the c∗j minimize the criterion

E







∞∑

j=1

cjYn−j − Yn




2




.

Following [Györfi and Lugosi (2001)], we extend the principle of general-

ized linear estimates to the prediction of Gaussian time series by considering

the special case

φ
(k)
j (yn−1

n−k) = yn−jI{1≤j≤k},

i.e.,

h̃(k)
n (yn−1

1 ) =

k∑

j=1

cn,jyn−j .

Once again, the coefficients cn,j are calculated according to the past obser-

vations yn−1
1 by minimizing the criterion:

n−1∑

t=k+1




k∑

j=1

cjyt−j − yt




2

if n > k, and the all-zero vector otherwise.

With respect to the combination of elementary experts h̃(k), applied in

[Györfi and Lugosi (2001)] the so-called “doubling-trick”, which means that
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the time axis is segmented into exponentially increasing epochs and at the

beginning of each epoch the forecaster is reset.

In this section we propose a much simpler procedure which avoids in

particular the doubling-trick. To begin, we set

h(k)
n (yn−1

1 ) = Tmin{nδ,k}
(
h̃(k)
n (yn−1

1 )
)
,

where 0 < δ < 1
8 , and combine these experts as before. Precisely, let {qk}

be an arbitrarily probability distribution over the positive integers such

that for all k, qk > 0, and for ηn > 0, define the weights

wk,n = qke
−ηn(n−1)Ln−1(h

(k)
n )

and their normalized values

pk,n =
wk,n∑∞
i=1 wi,n

.

The prediction strategy g at time n is defined by

gn(y
n−1
1 ) =

∞∑

k=1

pk,nh
(k)
n (yn−1

1 ), n = 1, 2, . . .

Theorem 5.9 (Biau et al., 2010). Choose ηt = 1/
√
t. Then the predic-

tion strategy g defined above is universally consistent with respect to the

class of all jointly stationary and ergodic zero-mean Gaussian processes

{Yn}∞−∞.

The following corollary shows that the strategy g provides asymptoti-

cally a good estimate of the regression function in the following sense:

Corollary 5.3 (Biau et al., 2010). Under the conditions of Theorem

5.9,

lim
n→∞

1

n

n∑

t=1

(
E{Yt | Y t−1

1 } − g(Y t−1
1 )

)2
= 0 almost surely.

Corollary 5.3 is expressed in terms of an almost sure Cesáro consistency.

It is an open problem to know whether there exists a prediction rule g such

that

lim
n→∞

(
E{Yn|Y n−1

1 } − g(Y n−1
1 )

)
= 0 almost surely (5.44)

for all stationary and ergodic Gaussian processes. [Schäfer (2002)] proved

that, under some additional mild conditions on the Gaussian time series,

the consistency (5.44) holds.
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5.5. Pattern recognition for time series

In this section we apply the same ideas to the seemingly more difficult clas-

sification (or pattern recognition) problem. The setup is the following: let

{(Xn, Yn)}∞−∞ be a stationary and ergodic sequence of pairs taking values

in R
d × {0, 1}. The problem is to predict the value of Yn given the data

(Xn
1 , Y

n−1
1 ).

We may formalize the prediction (classification) problem as follows. The

strategy of the classifier is a sequence f = {ft}∞t=1 of decision functions

ft :
(
R

d
)t × {0, 1}t−1 → {0, 1}

so that the classification formed at time t is ft(X
t
1, Y

t−1
1 ). The normalized

cumulative 0− 1 loss for any fixed pair of sequences Xn
1 , Y n

1 is now

Rn(f) =
1

n

n∑

t=1

I{ft(Xt
1,Y

t−1
1 ) 6=Yt}.

In this case there is a fundamental limit for the predictability of the

sequence, i.e., [Algoet (1994)] proved that for any classification strategy f

and stationary ergodic process {(Xn, Yn)}∞n=−∞,

lim inf
n→∞

Rn(f) ≥ R∗ a.s., (5.45)

where

R∗= E

{
min

(
P{Y0 = 1|X0

−∞, Y −1
−∞},P{Y0 = 0|X0

−∞, Y −1
−∞}

)}
,

therefore the following definition is meaningful:

Definition 5.2. A classification strategy f is called universally consistent

if for all stationary and ergodic processes {Xn, Yn}∞−∞,

lim
n→∞

Rn(f) = R∗ almost surely.

Therefore, universally consistent strategies asymptotically achieve the

best possible loss for all ergodic processes. The first question is, of course,

if such a strategy exists. [Ornstein (1978)] and [Bailey (1976)] proved the

existence of universally consistent predictors. This was later generalized by

[Algoet (1992)]. A simpler estimator with the same convergence property

was introduced by [Morvai et al. (1996)]. Motivated by the need of a practi-

cal estimator, [Morvai et al. (1997)] introduced an even simpler algorithm.

However, it is not known whether their predictor is universally consistent.
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[Györfi et al. (1999)] introduced a simple randomized universally consistent

procedure with a practical appeal. Their idea was to combine the decisions

of a small number of simple experts in an appropriate way.

The same idea was used in [Weissman and Merhav (2004)]. They studied

the consistency in noisy environment. In their model the past of Yt is not

available for the predictor, it has only access to the noisy past Xt−1
1 . Xt

is a noisy function of Yt, that is, Xt = u(Yt, Nt), where u : {0, 1} × R →
R is a function and {Nt} is some noise process. A general loss function

ℓ(f ′t(X
t−1
1 ), Yt) is considered, where f ′t : R

t−1 → R and f ′t(X
t−1
1 ) is the

estimate of Yt. They used an algorithm based on [Vovk (1998)] to combine

the simple experts and used doubling trick to fit the algorithm to infinite

time horizon. In case of 0− 1 loss, one may easily modify the results in the
sequel such that, they can be applied for the problem of [Weissman and

Merhav (2004)].

5.5.1. Pattern recognition

In pattern recognition, the label Y takes only finitely many values. For

simplicity assume that Y takes two values, say 0 and 1. The aim is to

predict the value of Y given the value of feature vector X (e.g., to predict

whether a patient has a special disease or not, given some measurements of

the patient like body temperature, blood pressure, etc.). The goal is to find

a function g∗ : Rd → {0, 1} which minimizes the probability of g∗(X) 6= Y ,

i.e., to find a function g∗ such that

P{g∗(X) 6= Y } = min
g:Rd→{0,1}

P{g(X) 6= Y }, (5.46)

where g∗ is called the Bayes decision function, and P{g(X) 6= Y ) is the

probability of misclassification. (Concerning the details see [Devroye et al.

(1996)].)

The Bayes decision function can be obtained explicitly.

Lemma 5.8.

g∗(x) =

{
1 if P{Y = 1|X = x} ≥ 1/2,

0 if P{Y = 1|X = x} < 1/2,

is the Bayes decision function, i.e., g∗ satisfies (5.46).

Proof. Let g : Rd → {0, 1} be an arbitrary (measurable) function. Fix
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x ∈ R
d. Then

P{g(X) 6= Y |X = x} = 1− P{g(X) = Y |X = x}
= 1− P{Y = g(x)|X = x}.

Hence,

P{g(X) 6= Y |X = x} − P{g∗(X) 6= Y |X = x}
= P{Y = g∗(x)|X = x} − P{Y = g(x)|X = x} ≥ 0,

because

P{Y = g∗(x)|X = x} = max {P{Y = 0|X = x},P{Y = 1|X = x}}
by the definition of g∗. This proves

P{g∗(X) 6= Y |X = x} ≤ P{g(X) 6= Y |X = x}
for all x ∈ R

d, which implies

P{g∗(X) 6= Y } =
∫

P{g∗(X) 6= Y |X = x}µ(dx)

≤
∫

P{g(X) 6= Y |X = x}µ(dx)

= P{g(X) 6= Y }.
�

P{Y = 1|X = x} and P{Y = 0|X = x} are the so-called a posteriori

probabilities. Observe that

P{Y = 1|X = x} = E{Y |X = x} = m(x).

A natural approach is to estimate the regression function m by an estimate

mn using data Dn = {(X1, Y1), . . . , (Xn, Yn)} and then to use a so-called

plug-in estimate

gn(x) =

{
1 if mn(x) ≥ 1/2,

0 if mn(x) < 1/2,

to estimate g∗. The next lemma implies that if mn is close to the real

regression function m, then the error probability of decision gn is near to

the error probability of the optimal decision g∗.

Lemma 5.9. Let m̂ : Rd → R be a fixed function and define the plug-in

decision ĝ by

ĝ(x) =

{
1 if m̂(x) ≥ 1/2,

0 if m̂(x) < 1/2.
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Then

0 ≤ P{ĝ(X) 6= Y } − P{g∗(X) 6= Y }

≤ 2

∫

Rd

|m̂(x)−m(x)|µ(dx)

≤ 2

(∫

Rd

|m̂(x)−m(x)|2µ(dx)
) 1

2

.

Proof. It follows from the proof of Lemma 5.8 that, for arbitrary x ∈ R
d,

P{ĝ(X) 6= Y |X = x} − P{g∗(X) 6= Y |X = x}

= P{Y = g∗(x)|X = x} − P{Y = ĝ(x)|X = x}

= I{g∗(x)=1}m(x) + I{g∗(x)=0}(1−m(x))

−
(
I{ĝ(x)=1}m(x) + I{ĝ(x)=0}(1−m(x))

)

= I{g∗(x)=1}m(x) + I{g∗(x)=0}(1−m(x))

−
(
I{g∗(x)=1}m̂(x) + I{g∗(x)=0}(1− m̂(x))

)

+
(
I{g∗(x)=1}m̂(x) + I{g∗(x)=0}(1− m̂(x))

)

−
(
I{ĝ(x)=1}m̂(x) + I{ĝ(x)=0}(1− m̂(x))

)

+
(
I{ĝ(x)=1}m̂(x) + I{ĝ(x)=0}(1− m̂(x))

)

−
(
I{ĝ(x)=1}m(x) + I{ĝ(x)=0}(1−m(x))

)

≤ I{g∗(x)=1}(m(x)− m̂(x)) + I{g∗(x)=0}(m̂(x)−m(x))

+ I{ĝ(x)=1}(m̂(x)−m(x)) + I{ĝ(x)=0}(m(x)− m̂(x))

(because of

I{ĝ(x)=1}m̂(x) + I{ĝ(x)=0}(1− m̂(x)) = max{m̂(x), 1− m̂(x)}
by definition of ĝ)

≤ 2|m̂(x)−m(x)|.
Hence

0 ≤ P{ĝ(X) 6= Y } − P{g∗(X) 6= Y }

=

∫
(P{ĝ(X) 6= Y |X = x} − P{g∗(X) 6= Y |X = x})µ(dx)

≤ 2

∫
|m̂(x)−m(x)|µ(dx).

The second assertion follows from the Cauchy-Schwarz inequality. �
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It follows from Lemma 5.9 that the error probability of the plug-in

decision gn defined above satisfies

0 ≤ P{gn(X) 6= Y |Dn} − P{g∗(X) 6= Y }

≤ 2

∫

Rd

|mn(x)−m(x)|µ(dx)

≤ 2

(∫

Rd

|mn(x)−m(x)|2µ(dx)
) 1

2

.

Thus estimates mn with small L2 error automatically lead to estimates gn
with small misclassification probability.

This can be generalized to the case where Y takesM ≥ 2 distinct values,

without loss of generality (w.l.o.g.) 1, . . . , M (e.g., depending on whether

a patient has a special type of disease or no disease). The goal is to find a

function g∗ : Rd → {1, . . . ,M} such that

P{g∗(X) 6= Y } = min
g:Rd→{1,...,M}

P{g(X) 6= Y },

where g∗ is called the Bayes decision function. It can be computed using
the a posteriori probabilities P{Y = k|X = x} (k ∈ {1, . . . ,M}):

g∗(x) = arg max
1≤k≤M

P{Y = k|X = x}.

The a posteriori probabilities are the regression functions

P{Y = k|X = x} = E{I{Y=k}|X = x} = m(k)(x).

Given data Dn = {(X1, Y1), . . . , (Xn, Yn)}, estimates m(k)
n of m(k) can be

constructed from the data set

D(k)
n = {(X1, I{Y1=k}), . . . , (Xn, I{Yn=k})},

and one can use a plug-in estimate

gn(x) = arg max
1≤k≤M

m(k)
n (x)

to estimate g∗. If the estimates m
(k)
n are close to the a posteriori proba-

bilities, then again the error of the plug-in estimate is close to the optimal

error.
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5.5.2. Prediction for binary labels

In this section we present a simple (non-randomized) on-line classifica-

tion strategy, and prove its universal consistency. Consider the prediction

scheme gt(X
t
1, Y

t−1
1 ) introduced in Sections 5.3.1 or 5.3.2 or 5.3.3 or 5.3.4,

and then introduce the corresponding classification scheme:

ft(X
t
1, Y

t−1
1 ) =

{
1 if gt(X

t
1, Y

t−1
1 ) > 1/2

0 otherwise.

The main result of this section is the universal consistency of this simple

classification scheme:

Theorem 5.10 (Györfi and Ottucsák, 2007). Assume that the condi-

tions of Theorems 5.1 or 5.2 or 5.3 or 5.4. Then the classification scheme

f defined above satisfies

lim
n→∞

Rn(f) = R∗ almost surely

for any stationary and ergodic process {(Xn, Yn)}∞n=−∞.

Proof. Because of (5.45) we have to show that

lim sup
n→∞

Rn(f) ≤ R∗ a.s.

By Corollary 5.1,

lim
n→∞

1

n

n∑

t=1

(
E{Yt | Xt

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2
= 0 a.s. (5.47)

Introduce the Bayes classification scheme using the infinite past:

f∗t (X
t
−∞, Y t−1

−∞ ) =

{
1 if P{Yt = 1 | Xt

−∞, Y t−1
−∞ } > 1/2

0 otherwise,

and its normalized cumulative 0− 1 loss:

Rn(f
∗) =

1

n

n∑

t=1

I{f∗t (Xt
−∞,Y t−1

−∞ ) 6=Yt}.

Put

R̄n(f) =
1

n

n∑

t=1

P{ft(Xt
1, Y

t−1
1 ) 6= Yt | Xt

−∞, Y t−1
−∞ }

and

R̄n(f
∗) =

1

n

n∑

t=1

P{f∗t (Xt
−∞, Y t−1

−∞ ) 6= Yt | Xt
−∞, Y t−1

−∞ }.
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Then

Rn(f)− R̄n(f)→ 0 a.s.

and

Rn(f
∗)− R̄n(f

∗)→ 0 a.s.,

since they are the averages of bounded martingale differences. Moreover,

by the ergodic theorem

R̄n(f
∗)→ R∗ a.s.,

so we have to show that

lim sup
n→∞

(R̄n(f)− R̄n(f
∗)) ≤ 0 a.s.

Lemma 5.9 implies that

R̄n(f)− R̄n(f
∗) =

1

n

n∑

t=1

(
P{ft(Xt

1, Y
t−1
1 ) 6= Yt | Xt

−∞, Y t−1
−∞ }

−P{f∗t (Xt
−∞, Y t−1

−∞ ) 6= Yt | Xt
−∞, Y t−1

−∞ }
)

≤ 2
1

n

n∑

t=1

∣∣E{Yt | Xt
−∞, Y t−1

−∞ } − gt(X
t
1, Y

t−1
1 )

∣∣

≤ 2

√√√√ 1

n

n∑

t=1

∣∣E{Yt | Xt
−∞, Y t−1

−∞ } − gt(Xt
1, Y

t−1
1 )

∣∣2

→ 0 a.s.,

where in the last step we applied (5.47). �

References

Algoet, P. (1992). Universal schemes for prediction, gambling, and portfolio se-
lection, Annals of Probability 20, pp. 901–941.

Algoet, P. (1994). The strong law of large numbers for sequential decisions under
uncertainity, IEEE Transactions on Information Theory 40, pp. 609–634.

Auer, P., Cesa-Bianchi, N. and Gentile, C. (2002). Adaptive and self-confident
on-line learning algorithms, Journal of Computer and System Sciences 64,
1, pp. 48–75, a preliminary version has appeared in Proc. 13th Ann. Conf.

Computational Learning Theory.

Bailey, D. H. (1976). Sequential schemes for classifying and predicting ergodic

processes, Ph.D. thesis, Stanford University.



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

Nonparametric Sequential Prediction of Stationary Time Series 229

Breiman, L. (1957). The individual ergodic theorem of information theory, Annals
of Mathematical Statistics 28, pp. 809–811, correction. Annals of Mathe-

matical Statistics, 31:809–810, 1960.

Cesa-Bianchi, N., Freund, Y., Helmbold, D. P., Haussler, D., Schapire, R. and
Warmuth, M. K. (1997). How to use expert advice, Journal of the ACM

44, 3, pp. 427–485.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning, and Games (Cam-
bridge University Press, Cambridge).

Chow, Y. S. (1965). Local convergence of martingales and the law of large num-
bers, Annals of Mathematical Statistics 36, pp. 552–558.

Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern

Recognition (Springer-Verlag, New York).

Feder, M., Merhav, N. and Gutman, M. (1992). Universal prediction of individual
sequences, IEEE Trans. Inform. Theory IT-38, pp. 1258–1270.

Gerencsér, L. (1992). ar(∞) estimation and nonparametric stochastic complexity,
IEEE Transactions on Information Theory 38, pp. 1768–1779.

Gerencsér, L. (1994). On rissanen’s predictive stochastic complexity for stationary
arma processes, Journal of Statistical Planning and Inference 41, pp. 303–
325.

Gerencsér, L. and Rissanen, J. (1986). A prediction bound for gaussian arma
processes, in Proc. of the 25th Conference on Decision and Control, pp.
1487–1490.

Györfi, L. (1984). Adaptive linear procedures under general conditions, IEEE

Transactions on Information Theory 30, pp. 262–267.
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