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The growth optimal strategy on non-leveraged, long only memoryless
markets is the best constantly rebalanced portfolio (BCRP), also called
log-optimal strategy. Optimality conditions are derived to frameworks
on leverage and short selling, and generalizing BCRP by establishing no-
ruin conditions. Moreover the strategy and its asymptotic growth rate
are investigated under memoryless assumption, both from theoretical
and empirical points of view. The empirical performance of the methods
was tested forNYSE data, demonstrating spectacular gains for leveraged
portfolios and showing unimportance of short selling in the growth-rate
sense both in case of BCRP and dynamic portfolios.

4.1. Introduction

Earlier results in the non-parametric statistics, information theory and eco-

nomics literature (such as [Kelly (1956)], [Latané (1959)], [Breiman (1961)],

[Markowitz (1952)], [Markowitz (1976)], [Finkelstein and Whitley (1981)])

established optimality criterion for long-only, non-leveraged investment.

These results have shown that the market is inefficient, i.e. substantial

gain is achievable by rebalancing and predicting market returns based on

market’s history. Our aim is to show that using leverage through mar-

gin buying (the act of borrowing money and increasing market exposure)

yields substantially higher growth rate in the case of memoryless (inde-

pendent identically distributed, i.i.d.) assumption on returns. Besides a

framework for leveraged investment, we also establish mathematical basis

for short selling, i.e. creating negative exposure to asset prices. Short sell-

151



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE
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ing means the process of borrowing assets and selling them immediately,

with the obligation to rebuy them later.

It can be shown that the optimal asymptotic growth rate on a memory-

less market coincides with that of the best constantly rebalanced portfolio

(BCRP). The idea is that on a frictionless market the investor can rebalance

his portfolio for free at each trading period. Hence asymptotic optimiza-

tion on a memoryless market means that the growth optimal strategy will

pick the same portfolio vector at each trading period. Strategies based on

this observation are called constantly rebalanced portfolios (CRP), while

the one with the highest asymptotic average growth rate is referred to as

BCRP. Our results include the generalization of BCRP for margin buying

and short selling frameworks.

To allow short and leverage our formulation weakens the constraints on

feasible set of possible portfolio vectors, thus they are expected to improve

performance. Leverage is anticipated to have substantial merit in terms

of growth rate, while short selling is not expected to yield much better

results. We do not expect increased profits on short CRP strategy, since

companies worth to short in our test period should have already defaulted

by now. Nonetheless short selling might yield increased profits in case of

markets with memory, since earlier results have shown that the market

was inefficient (cf. [Györfi et al. (2006)]). In case of i.i.d. returns with

known distribution, [Cover (1984)] has introduced a gradient based method

for optimization of long-only log-optimal portfolios, and gave necessary

and sufficient conditions on growth optimal investment in [Bell and Cover

(1980)]. We extend these results to short selling and leverage.

Contrary to non-leveraged long only investment in earlier literature,

in case of margin buying and short selling it is easy to default on total

initial investment. In this case asymptotic growth rate is minus infinity.

By bounding possible market returns, we establish circumstances such that

default is impossible. We do this in such a way that debt and positions

are limited and the investor is always able to satisfy his liabilities selling

assets. Restriction of market exposure and amount of debt is in line with

the practice of brokerages and regulators.

Our notation for asset prices and returns are as follows. Consider a mar-

ket consisting of d assets. Evolution of prices is represented by a sequence

of price vectors s1, s2, . . . ∈ R
d
+, where

sn = (s(1)n , . . . , s(d)n ). (4.1)

s
(j)
n denotes the price of the j-th asset at the end of the n-th trading period.
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In order to apply the usual techniques for time series analysis, we transform

the sequence of price vectors {sn} into return vectors:

xn = (x(1)
n , . . . , x(d)

n ),

where

x(j)
n =

s
(j)
n+1

s
(j)
n

.

Here the j-th component x
(j)
n of the return vector xn denotes the amount

obtained by investing unit capital in the j-th asset during the n-th trading

period.

4.2. Non-leveraged, long only investment

A representative example of the dynamic portfolio selection in the long only

case is the constantly rebalanced portfolio (CRP), introduced and studied

by [Kelly (1956)], [Latané (1959)], [Breiman (1961)], [Markowitz (1976)],

[Finkelstein and Whitley (1981)], [Móri (1982)], [Móri and Székely (1982)]

and [Cover (1984)]. For a comprehensive survey, see also Chapters 6 and

15 in [Cover and Thomas (1991)], and Chapter 15 in [Luenberger (1998)].

CRP is a self-financing portfolio strategy, rebalancing to the same pro-

portional portfolio in each investment period. This means that the investor

neither consumes from, nor deposits new cash into his account, but rein-

vests his capital in each trading period. Using this strategy the investor

chooses a proportional portfolio vector b = (b(1), . . . , b(d)), and rebalances

his portfolio after each period to correct the price shifts in the market. This

way the proportion of his wealth invested in each asset at the beginning of

trading periods is constant.

The j-th component b(j) of b denotes the proportion of the investor’s

capital invested in asset j. Thus the portfolio vector has nonnegative com-

ponents that sum up to 1. The set of portfolio vectors is denoted by

∆d =



b = (b(1), . . . , b(d)); b(j) ≥ 0,

d∑

j=1

b(j) = 1



 . (4.2)

Let S0 denote the investor’s initial capital. At the beginning of the first

trading period S0b
(j) is invested into asset j, and it results in position size

S0b
(j)x

(j)
1 after changes in market prices. Therefore, at the end of the first
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trading period the investor’s wealth becomes

S1 = S0

d∑

j=1

b(j)x
(j)
1 = S0 〈b , x1〉 ,

where 〈· , ·〉 denotes inner product. For the second trading period S1 is the

new initial capital, hence

S2 = S1 〈b , x2〉 = S0 〈b , x1〉 〈b , x2〉 .

By induction for trading period n,

Sn = Sn−1 〈b , xn〉 = S0

n∏

i=1

〈b , xi〉 . (4.3)

Including cash account into the framework is straight forward by as-

suming

x(j)
n = 1

for some j and for all n. The asymptotic average growth rate of this port-

folio selection is

W (b) = lim
n→∞

ln n

√
Sn = lim

n→∞

1

n
lnSn

= lim
n→∞

(
1

n
lnS0 +

1

n

n∑

i=1

ln 〈b , xi〉
)

= lim
n→∞

1

n

n∑

i=1

ln 〈b , xi〉 ,

if the limit exists. This also means that without loss of generality we can

assume that the initial capital S0 = 1.

If the market process {Xi} is memoryless, i.e., is a sequence of inde-

pendent and identically distributed (i.i.d.) random return vectors, then the

asymptotic rate of growth exists almost surely (a.s.), where, with random

vector X being distributed as Xi,

W (b) = lim
n→∞

1

n

n∑

i=1

ln 〈b , Xi〉 = E ln 〈b , X〉 a.s., (4.4)

given that E ln 〈b , X〉 is finite, due to strong law of large numbers. We can

ensure this property by assuming finiteness of E lnX(j), i.e., E| lnX(j)| <∞
for each j ∈ {1, . . . , d} .
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In fact, because of b(i) > 0 for some i, we have

E ln 〈b , X〉 ≥ E ln
(
b(i)X(j)

)

= ln b(i) + E lnX(i) > −∞ ,

and because of b(j) ≤ 1 for all j, we have

E ln 〈b , X〉 ≤ E ln

(
dmax

j
X(j)

)

= ln d+ Emax
j

lnX(j)

≤ ln d+ Emax
j

ln |X(j)|

≤ ln d+
∑

j

E ln |X(j)| <∞ .

From (4.4) it follows that rebalancing according to the best log-optimal

strategy

b∗ ∈ arg max
b∈∆d

E ln 〈b , X〉 ,

is also an asymptotically optimal trading strategy, i.e., a strategy with a.s.

optimum asymptotic growth

W (b∗) ≥W (b),

for any b ∈∆d. The strategy of rebalancing according to b∗ at the begin-

ning of each trading period, is called best constantly rebalanced portfolio

(BCRP).

In the following we repeat calculations of [Bell and Cover (1980)]. Our

aim is to maximize asymptotic average rate of growth. W (b) being concave,

we minimize the convex objective function

fX(b) = −W (b) = −E ln 〈b,X〉 . (4.5)

To use Kuhn-Tucker theorem we establish linear, inequality type con-

straints over the search space ∆d in (4.2):

−b(i) ≤ 0,

for i = 1, . . . , d, i.e.

〈b, ai〉 ≤ 0, (4.6)

where ai ∈ R
d denotes the i-th unit vector, having −1 at position i.
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Our only equality type constraint is

d∑

j=1

b(j) − 1 = 0,

i.e.

〈b, e〉 − 1 = 0, (4.7)

where e ∈ R
d, e = (1, 1, . . . , 1).

The partial derivatives of the objective function are

∂fX(b)

∂b(i)
= −E X(i)

〈b,X〉 ,

for i = 1, . . . , d.

According to Kuhn-Tucker theorem ([Kuhn and Tucker (1951)]), the

portfolio vector b∗ is optimal if and only if, there are constants µi ≥ 0 (i =

1, . . . , d) and ϑ ∈ R, such that

f ′
X
(b∗) +

d∑

i=1

µiai + ϑe = 0

and

µj 〈b∗, aj〉 = 0,

for j = 1, . . . , d.

This means that

−E X(j)

〈b∗,X〉 − µj + ϑ = 0 (4.8)

and

µjb
∗(j) = 0,

for j = 1, . . . , d. Summing up (4.8) weighted by b∗(j), we obtain:

−E 〈b
∗,X〉

〈b∗,X〉 −
d∑

j=1

µjb
∗(j) +

d∑

j=1

ϑb∗(j) = 0,

hence

ϑ = 1.

We can state the following necessary condition for optimality of b∗. If

b∗ ∈ arg max
b∈∆d

W (b),



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

Growth Optimal Portfolio Selection with Short Selling and Leverage 157

then

b∗(j) > 0 =⇒ µj = 0 =⇒ E
X(j)

〈b∗,X〉 = 1, (4.9)

and

b∗(j) = 0 =⇒ µj ≥ 0 =⇒ E
X(j)

〈b∗,X〉 ≤ 1. (4.10)

Because of convexity of fX(b) the former conditions are sufficient, too.

Assume b∗∈∆d. If for any fixed j = 1, . . . , d either

E
X(j)

〈b∗,X〉 = 1 and b∗(j) > 0,

or

E
X(j)

〈b∗,X〉 ≤ 1 and b∗(j) = 0,

then b∗ is optimal. The latter two conditions pose a necessary and sufficient

condition on optimality of b∗.

Remark 4.1. In case of an independent asset, i.e. for some j ∈ 1, . . . , d,

X(j) being independent from the rest of the assets,

b∗(j) = 0 =⇒ E
X(j)

〈b∗,X〉 ≤ 1

implies by b∗(j) = 0 that X(j) is independent of 〈b∗,X〉. This means that

b∗(j) = 0 =⇒ EX(j)
E

1

〈b∗,X〉 ≤ 1,

therefore

b∗(j) = 0 =⇒ EX(j) ≤ 1

E
1

〈b∗,X〉

.

According to Kuhn-Tucker theorem, for any fixed j = 1, . . . , d either

E
X(j)

〈b∗,X〉 = 1 and b∗(j) > 0,

or

EX(j) ≤ 1

E
1

〈b∗,X〉

and b∗(j) = 0,

if and only if b∗ is optimal, i.e.,

b∗ ∈ arg max
b∈∆d

W (b). (4.11)
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Remark 4.2. Assume optimal portfolio b∗ for d assets

X = (X(1), X(2), . . . , X(d))

is already established. Given a new asset – being independent of our pre-

vious d assets – we can formulate a condition on its inclusion in the new

optimal portfolio b∗∗. If

EX(d+1) <
1

E
1

〈b∗,X〉

then

b∗∗(d+1) = 0.

This means that, for a new independent asset like the cash, we do not have

to do the optimization for each asset in the portfolio, and we can reach

substantial reduction in dimension of the search for an optimal portfolio.

Remark 4.3. The same trick can be applied in case of dependent returns

as well. If

E
X(d+1)

〈b∗,X〉 < 1 then b∗∗(d+1) = 0,

which is much simpler to verify then performing optimization of asymptotic

average growth. This condition can be formulated as

EX(d+1)
E

1

〈b∗,X〉 +Cov

(
X(d+1),

1

〈b∗,X〉

)
≤ 1,

which poses a condition on covariance and expected value of the new asset.

Remark 4.4. [Roll (1973)], [Pulley (1994)] and [Vajda (2006)] suggested

an approximation of b∗ using

ln z ≈ h(z) = z − 1− 1

2
(z − 1)2,

which is the second order Taylor approximation of the function ln z at z = 1.

Then the semi-log-optimal portfolio selection is

b ∈ arg max
b∈∆d

E{h 〈b , X〉}.
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Our new objective function is convex:

f
X
(b) = −E{h 〈b,X〉}

= −E{ 〈b,X〉 − 1− 1

2
(〈b,X〉 − 1)2}

= E{− 〈b,X〉+ 1 +
1

2
(〈b,X〉 − 1)2}

= E{− 〈b,X〉+ 1 +
1

2
〈b,X〉2 − 〈b,X〉+ 1

2
}

= E{1
2
〈b,X〉2 − 2 〈b,X〉+ 3

2
}

=
1

2
〈b,E(XXT )b〉 − 〈b, 2EX〉+ 3

2

= E

{( 1√
2
〈b,X〉 −

√
2
)2
− 1

2

}
,

where X is column vector, XXT denotes outer product. This is equivalent

to minimizing

f
X
(b) = E( 〈b,X〉 − 2)

2
.

Thus b can be simply calculated to minimize the squared distance from 2.

In case of data driven algorithms, the solution is using linear regression,

under the constraint b∗∈∆d.

f
X
(b) = Var 〈b,X〉+ (2− E 〈b,X〉)2

= Var 〈b,X〉+ (2− 〈b,EX〉)2.

This means we minimize variance of returns while maximizing expected re-

turn. This is in close resemblance with Markowitz type portfolio selection.

For a discussion of the relationship between Markowitz type portfolio selec-

tion and the semi-log-optimal strategy (see [Ottucsák and Vajda (2007)] and

Chapter 2 of this volume). The problem can be formulated as a quadratic

optimization problem as well,

f
X
(b) = 〈b,Rb〉+ 4− 4 〈b,m〉

where

R =E(XX
T
),

and

m =E(X).
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Note that R is symmetric, and positive semidefinite, since for any z ∈Rd

zTRz = zTE(XX
T
)z =E(zTX)

2≥ 0.

This means we face a convex programming problem again.

4.3. Short selling

4.3.1. No-ruin constraints

Short selling an asset is usually done by borrowing the asset under consid-

eration and selling it. As collateral the investor has to provide securities

of the same value to the lender of the shorted asset. This ensures that if

anything goes wrong, the lender still has high recovery rate.

While the investor has to provide collateral, after selling the assets hav-

ing been borrowed, he obtains the price of the shorted asset again. This

means that short selling is virtually for free.

S′ = S − C + P,

where S′ is wealth after opening the short position, S is wealth before, C

is collateral for borrowing and P is price income of selling the asset being

shorted. For simplicity we assume

C = P,

hence

S′ = S,

and short selling is free. In practice the act of short selling is more compli-

cated. For institutional investors the size of collateral depends on supply

and demand on the short market, and the receiver of the more liquid asset

usually pays interest. For simplicity we ignore these problems.

Let us elaborate this process on a real life example. Assume the investor

wants to short sell 10 shares of IBM at $100, and he has $1000 in cash. First

he has to find a lender – the short provider – who is willing to lend the

shares. After exchanging the shares and the $1000 collateral, the investor

sells the borrowed shares. After selling the investor has $1000 in cash again,

and the obligation to cover the shorted assets later.

In contrast with our modelling approach where short selling is free, it is

also modelled in literature such that selling an asset short yields immediate

cash – this is called naked short transaction. This is the case in the Chapter
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on Mean-Variance Portfolio Theory of [Luenberger (1998)] and in [Cover

and Ordentlich (1998)].

Assume our only investment is in asset j and our initial wealth is S0.

We invest a proportion of b ∈ (−1, 1) of our wealth. If the position is long

(b > 0) it results in wealth

S0(1− b) + S0bx
(j)
1 = S0 + S0b(x

(j)
1 − 1),

while if the position is short (b < 0), we win as much money, as price drop

of the asset:

S0 + S0|b|(1− x
(j)
1 ) = S0 + S0b(x

(j)
1 − 1).

In line with the previous example, assume that our investor has shorted

10 shares of IBM, at $100. If the price drops $10, he has to cover the short

position at $90, thus he gains 10 x $10. If the price rises $10, he has to

cover at $110, loosing 10 x $10.

Let b = (b(0), b(1), . . . , b(d)) be the portfolio vector such that the 0-th

component corresponds to cash. At the end of the first trading period the

investor’s wealth becomes

S1 = S0


b(0)+

d∑

j=1

[
b(j)

+
x
(j)
1 + b(j)

−
(x

(j)
1 − 1)

]



+

, (4.12)

where (.)− denotes the negative part operation. In case of the investor’s net

wealth falling to zero or below he defaults. Negative wealth is not allowed

in our framework, thus the outer positive part operation. Since only long

positions cost money in this setup, we will constrain to portfolios such that∑d

j=0 b
(j)+ = 1. Considering this it is also true that

S1 = S0




d∑

j=0

b(j)
+
+

d∑

j=1

[
b(j)

+
(x

(j)
1 − 1) + b(j)

−
(x

(j)
1 − 1)

]



+

(4.13)

= S0


1+

d∑

j=1

[
b(j)(x

(j)
1 − 1)

]



+

. (4.14)

This shows that we gain as much as long positions raise and short positions

fall.

We can see that short selling is a risky investment, because it is possible

to default on total initial wealth without the default of any of the assets in
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the portfolio. The possibility of this would lead to a growth rate of minus

infinity, thus we restrict our market according to

1−B + δ < x(j)
n < 1 +B − δ, j = 1, . . . , d. (4.15)

Besides aiming at no-ruin, the role of δ > 0 is ensuring that rate of growth

is finite for any portfolio vector (i.e. > −∞).

For the usual stock market daily data, there exist 0 < a1 < 1 < a2 <∞
such that

a1 ≤ x(j)
n ≤ a2

for all j = 1, . . . , d, for example, a1 = 0.7 and with a2 = 1.2 (cf. [Fernholz

(2000)]). Thus, we can choose B = 0.3.

Given (4.14) and (4.15) it is easy to see that maximal loss that we could

suffer is B
∑d

j=1 |b(j)|. This value has to be constrained to ensure no-ruin.

We denote the set of possible portfolio vectors by

∆
(−B)
d =



b = (b(0), b(1), . . . , b(d)); b(0) ≥ 0,

d∑

j=0

b(j)
+
= 1, B

d∑

j=1

|b(j)| ≤ 1



 .

(4.16)∑d

j=0 b
(j)+ = 1 means that we invest all of our initial wealth into some

assets – buying long – or cash. By B
∑d

j=1 |b(j)| ≤ 1, maximal exposure

is limited such that ruin is not possible, and rate of growth it is finite.

b(0) is not included in the latter inequality, since possessing cash does not

pose risk. Notice that if B ≤ 1 then ∆d+1 ⊂ ∆
(−B)
d , and so the achievable

growth rate with short selling can not be smaller than in long only case.

According to (4.14) and (4.15) with B ≤ 1 we show that ruin is impos-

sible:

1 +

d∑

j=1

[
b(j)(x

(j)
1 − 1)

]

> 1+

d∑

j=1

[
b(j)

+
(1−B + δ − 1) + b(j)

−
(1 +B − δ − 1)

]

= 1− (B − δ)
d∑

j=1

|b(j)|

≥ δ

d∑

j=1

|b(j)|.
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If
∑d

j=1 |b(j)| = 0 then b(0) = 1, hence no-ruin. In any other case,

δ
∑d

j=1 |b(j)| > 0, hence we have not only ensured no-ruin, but also

E ln


1+

d∑

j=1

[
b(j)(X

(j)
1 − 1)

]



+

> −∞.

4.3.2. Optimality condition for short selling with cash ac-

count

A problem with ∆
(−B)
d is its non-convexity. To see this consider

b1 = (0, 1) ∈ ∆
(−1)
1 ,

b2 = (1,−1/2) ∈ ∆
(−1)
1 ,

with

b1 + b2

2
= (1/2, 1/4) /∈ ∆

(−1)
1 .

This means we can not simply apply Kuhn-Tucker theorem on ∆
(−B)
d .

Given cash balance, we can transform our non-convex ∆
(−B)
d to a con-

vex region ∆̃
(−B)
d , where application of our tools established in long only

investment becomes feasible. The new set of possible portfolio vectors is a

convex region:

∆̃
(−B)
d =

{
b̃ = (̃b(0+), b̃(1+), b̃(1−), . . . , b̃(d+), b̃(d−)) ∈ R

+
0

2d+1
;

d∑

j=0

b̃(j+) = 1, B

d∑

j=1

(̃b(j+)+b̃(j−)) ≤ 1
}

.

Mapping from ∆
(−B)
d to ∆̃

(−B)
d happens by

b̃ = (b(0), (b(1))+, |(b(1))−|, . . . , (b(d))+, |(b(d))−|). (4.17)

(4.12) implies that

S1 = S0


b̃(0+)+

d∑

j=1

[
b̃(j+)x

(j)
1 + b̃(j−)(1− x

(j)
1 )
]



+

,

thus in line with the portfolio vector being transformed we transform the

market vector too

X̃ = (1, X(1), 1−X(1), . . . , X(d), 1−X(d)),
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so that

S1 = S0

〈
b̃, X̃

〉
.

To use the Kuhn-Tucker theorem we enumerate linear, inequality type

constraints over the search space

B

d∑

j=1

(̃b(j+)+b̃(j−)) ≤ 1,

and

b̃(0+) ≥ 0, b̃(i+) ≥ 0, b̃(i−) ≥ 0,

for i = 1, . . . , d. Our only equality type constraint is

d∑

j=0

b̃(j+) = 1.

The partial derivatives of the convex objective function fX(b̃) =

−E ln
〈
b̃ , X̃

〉
are

∂fX(b̃)

∂b̃(0+)
= −E 1〈

b̃, X̃
〉 ,

∂fX(b̃)

∂b̃(i+)
= −E X(i)

〈
b̃, X̃

〉 ,

∂fX(b̃)

∂b̃(i−)
= −E1−X(i)

〈
b̃, X̃

〉 ,

for i = 1, . . . , d.

According to Kuhn-Tucker theorem (KT), the portfolio vector b̃∗ is

optimal if and only if, there are KT multipliers assigned to each of the

former 2d + 3 constraints µ0+ ≥ 0, µi+ ≥ 0, µi− ≥ 0, νB ≥ 0 (i = 1, . . . , d)

and ϑ ∈ R, such that

−E 1〈
b̃∗,X

〉 + ϑ− µ0+ = 0, (4.18)

−E X(i)

〈
b̃∗,X

〉 + ϑ− µi+ + νBB = 0,

−E1−X(i)

〈
b̃∗,X

〉 − µi− + νBB = 0,
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and

µ0+ b̃
∗(0+) = 0,

µi+ b̃
∗(i+) = 0,

µi− b̃
∗(i−) = 0,

for i = 1, . . . , d, while

νB [B

d∑

j=1

(̃b(j+)+b̃(j−))− 1] = 0, (4.19)

νBB

d∑

j=1

(̃b(j+)+b̃(j−)) = νB .

Summing up equations in (4.18) weighted by b̃∗(0), b̃∗(i+), b̃∗(i−), we ob-

tain:

−E

〈
b̃∗, X̃

〉

〈
b̃∗, X̃

〉 + ϑ

d∑

j=0

b̃∗(j+) + νBB

d∑

j=1

(̃b(j+)+b̃(j−)) = 0,

−1 + ϑ+ νB = 0,

ϑ = 1− νB , (4.20)

ϑ ≤ 1.

In case of B
∑d

j=1(̃b
(j+)+b̃(j−)) < 1, because of (4.19) and (4.20) we

have that

νB = 0, hence ϑ = 1.

This implies

−E 1〈
b̃∗, X̃

〉 + 1− µ0+ = 0,

−E X(i)

〈
b̃∗, X̃

〉 + 1− µi+ = 0,

−E1−X(i)

〈
b̃∗, X̃

〉 − µi− = 0.
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These equations result in the following additional properties

b̃∗(0+) > 0 =⇒ µ0+ = 0 =⇒ E
1〈

b̃∗, X̃
〉 = 1,

b̃∗(0+) = 0 =⇒ µ0+ ≥ 0 =⇒ E
1〈

b̃∗, X̃
〉 ≤ 1,

and

b̃∗(i+) > 0 =⇒ µi+ = 0 =⇒ E
X(i)

〈
b̃∗, X̃

〉 = 1,

b̃∗(i+) = 0 =⇒ µi+ ≥ 0 =⇒ E
X(i)

〈
b̃∗, X̃

〉 ≤ 1,

and

b̃∗(i−) > 0 =⇒ µi− = 0 =⇒ E
1−X(i)

〈
b̃∗, X̃

〉 = 0,

b̃∗(i−) = 0 =⇒ µi− ≥ 0 =⇒ E
1−X(i)

〈
b̃∗, X̃

〉 ≤ 0 ,

for i = 1, . . . , d.

We transform the vector b̃∗ to the vector b∗ such that

b∗(i) = b̃∗(i+) − b̃∗(i−)

(i = 1, . . . , d), while

b∗(0) = b̃∗(0) +
d∑

i=1

min{b̃∗(i+), b̃∗(i−)}.

This way

d∑

j=1

|b∗(j)| = 1,

and we have the same market exposure with b∗ as with b̃.
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Due to the simple mapping (4.17), with regard to the original portfolio

vector b∗ this means

b∗(0) > 0 =⇒ E
1〈

b̃∗, X̃
〉 = 1, (4.21)

b∗(0) = 0 =⇒ E
1〈

b̃∗, X̃
〉 ≤ 1.

Also

b∗(i) > 0 =⇒ E
X(i)

〈
b̃∗, X̃

〉 = 1 and E
1−X(i)

〈
b̃∗, X̃

〉 ≤ 0,

which is equivalent to

E
1〈

b̃∗, X̃
〉 ≤ E

X(i)

〈
b̃∗, X̃

〉 = 1,

and

b∗(i) = 0 =⇒ E
X(i)

〈
b̃∗, X̃

〉 ≤ 1 and E
1−X(i)

〈
b̃∗, X̃

〉 ≤ 0,

which is equivalent to

E
1〈

b̃∗, X̃
〉 ≤ E

X(i)

〈
b̃∗, X̃

〉 ≤ 1,

and

b∗(i) < 0 =⇒ E
X(i)

〈
b̃∗, X̃

〉 ≤ 1 and E
1−X(i)

〈
b̃∗, X̃

〉 = 0,

which is equivalent to

E
1〈

b̃∗, X̃
〉 ≤ E

X(i)

〈
b̃∗, X̃

〉 ≤ 1,

for i = 1, . . . , d.
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4.4. Long only leveraged investment

4.4.1. No-ruin condition

In the leveraged frameworks we assume (4.15), thus market exposure can

be increased over one without the possibility of ruin. Again, we denote the

portfolio vector by

b = (b(0), b(1), . . . , b(d)),

where b(0) ≥ 0 stands for the cash balance, and since no short selling

b(i) ≥ 0, i = 1, . . . , d.

Assume the investor can borrow money and invest it on the same rate

r. Assume also that the maximal investable amount of cash LB,r (relative

to initial wealth S0), is always available for the investor. In the sequel we

refer to LB,r as buying power. LB,r is chosen to be the maximal amount,

investing of which ruin is not possible given 4.15. Because our investor

decides over the distribution of his buying power

d∑

j=0

b(j) = LB,r.

Unspent cash earns the same interest r, as the rate of lending. The

market vector is defined as

Xr = (X(0), X(1), . . . , X(d)) = (1 + r,X(1), . . . , X(d)),

so X(0) = 1 + r. The feasible set of portfolio vectors is

r∆+B
d =



b = (b(0), b(1), . . . , b(d)) ∈ R

+
0

d+1
,

d∑

j=0

b(j) = LB,r



 ,

where b(0) denotes unspent buying power. Market evolves according to

S1 = S0(〈b,Xr〉 − (LB,r − 1)(1 + r))+,

where S0r(LB,r − 1) is interest on borrowing LB,r − 1 times initial wealth

S0.

To ensure no-ruin and finiteness of growth rate choose

LB,r =
1 + r

B + r
. (4.22)
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This ensures that ruin is not possible:

〈b,Xr〉 − (LB,r − 1)(1 + r)

=

d∑

j=0

b(j)X(j) − (LB,r − 1)(1 + r)

= b(0)(1 + r) +

d∑

j=1

b(j)X(j) − (LB,r − 1)(1 + r)

> b(0)(1 + r) +
d∑

j=1

b(j)(1−B + δ)− (LB,r − 1)(1 + r)

= b(0)(1 + r) + (LB,r − b(0))(1−B + δ)− (LB,r − 1)(1 + r)

= b(0)(r +B − δ)− LB,r(B − δ + r) + 1 + r

≥ − 1 + r

B + r
(B − δ + r) + 1 + r

= δ
1 + r

B + r
.

4.4.2. Kuhn-Tucker characterization

Our convex objective function, the negative of asymptotic rate of growth is

f+B
Xr

(b) = −E ln(〈b,Xr〉 − (LB,r − 1)(1 + r)).

The linear inequality type constraints are as follows:

−b(i) ≤ 0,

for i = 0, . . . , d, while our only equality type constraint is

d∑

j=0

b(j) − LB,r = 0.

The partial derivatives of the optimized function are

∂f+B
Xr

(b)

∂b(i)
= −E X(i)

〈b,Xr〉 − (LB,r − 1)(1 + r)
.

According to the Kuhn-Tucker necessary and sufficient theorem, a

portfolio vector b∗, is optimal if and only if there are KT multipliers

µj ≥ 0 (j = 0, . . . , d) and ϑ ∈ R, such that

−E X(j)

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
− µj + ϑ = 0 (4.23)
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and

µjb
∗(j) = 0,

for j = 0, . . . , d. Summing up (4.23) weighted by b∗(j) we obtain:

−E 〈b∗,Xr〉
〈b∗,Xr〉 − (LB,r − 1)(1 + r)

−
d∑

j=0

µjb
∗(j) +

d∑

j=0

b∗(j)ϑ = 0,

1 + E
(LB,r − 1)(1 + r)

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
= LB,rϑ,

1

LB,r

+
(LB,r − 1)(1 + r)

LB,r

E
1

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
= ϑ. (4.24)

This means that

b∗(j) > 0 =⇒ µj = 0 =⇒ E
X(j)

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
= ϑ, (4.25)

and

b∗(j) = 0 =⇒ E
X(j)

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
≤ ϑ.

For the cash account this means

b∗(0) > 0 =⇒ µj = 0 =⇒ E
1 + r

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
= ϑ, (4.26)

and

b∗(0) = 0 =⇒ E
1 + r

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
≤ ϑ.

4.5. Short selling and leverage

For this case we need to use both tricks of the previous sections. The

market evolves according to

S1 = S0

(
b(0)(1 + r)

+

d∑

j=1

[
b(j)

+
x
(j)
1 + b(j)

−
(x

(j)
1 − 1− r)

]
− (LB,r − 1)(1 + r)

)+
,

over the non-convex region

r∆±B
d =



b = (b(0), b(1), b(2), . . . , b(d));

d∑

j=0

|b(j)| = LB,r



 ,
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where LB,r is the buying power defined in (4.22), and b(0) denotes unspent

buying power. Again, one can check that the choice of LB,r ensures no-ruin

and finiteness of growth rate.

With the help of our technique developed in the short selling framework,

we convert to the following convex region:

r∆̃±B
d =

{
b̃ = (̃b(0+), b̃(1+), b̃(1−), . . . , b̃(d+), b̃(d−)) ∈ R

+
0

2d+1
;

b̃(0+) +

d∑

j=1

(̃b(j+) + b̃(j−)) = LB,r

}

such that

b̃ = (̃b(0), b̃(1+), b̃(1−) . . . , b̃(d+), b̃(d−)) = (b(0), b(1)
+
, |b(1)−|, . . . , b(d)+, |b(d)−|).

Similarly to the short selling case we introduce the transformed return

vector. Given

X = (X(1), . . . , X(d)),

we introduce

X±r = (1 + r,X(1), 2−X(1) + r, . . . ,X(d), 2−X(d) + r).

We introduce r in 2−X(i)+r terms, since short selling is free, hence buying

power spent on short positions still earns interest. We use 2−X(i)+r instead

of 1 − X(i) + r, since while short selling is actually free, it still limits our

buying power, which is the basis of the convex formulation.

Because of r∆̃±B
d = r∆+B

2d , we can easily apply (4.25) and (4.26), hence

b∗(0) > 0 =⇒ E
1 + r〈

b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

= ϑ,

b∗(0) = 0 =⇒ E
1 + r〈

b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

≤ ϑ,

where ϑ is defined by (4.24) with Xr = X±r in place, and

b∗(i) > 0 =⇒

E
X(i)

〈
b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

= ϑ,

E
2−X(i) + r〈

b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

≤ ϑ
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and

b∗(i) = 0 =⇒

E
X(i)

〈
b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

≤ ϑ,

E
2−X(i) + r〈

b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

≤ ϑ

and

b∗(i) < 0 =⇒

E
X(i)

〈
b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

≤ ϑ,

E
2−X(i) + r〈

b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

= ϑ.

Note, that in the special case of LB,r = 1, we have ϑ = 1 because of

(4.24).

4.6. Experiments

Our empirical investigation consider three setups, each of which is consid-

ered in long only, short, leveraged and leveraged short cases. We examine

the BCRP strategy, which chooses the best constant portfolio vector with

hindsight, and its empirical causal counterpart, the causal i.i.d. strategy.

The latter strategy uses the best portfolio based on past data, and it is

asymptotically optimal for i.i.d. returns. The third algorithm is asymp-

totically optimal in case of Markovian time series. Using nearest-neighbor-

based portfolio selection (cf. Chapter 2 of this volume) with 100 neighbors,

we investigate whether shorting yields extra growth in case of dependent

market returns.

The New York Stock Exchange (NYSE) data set [Gelencsér and Ot-

tucsák (2006)] includes daily closing prices of 19 assets along a 44-year

period ending in 2006. The same data is used in Chapter 2 of this volume,

which facilitates comparison of algorithms.

Interest rate is constant in our experiments. We calculated effective

daily yield over the 44 years based on Federal Reserve Fund Rate from the

FRED database. The annual rate in this period is 6.3%, which is equivalent

to r = 0.000245 daily interest.
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Table 4.1. Average Annual Yields and optimal portfolios on NYSE data.

Asset AAY b
∗

b
∗
−B

b
∗
+B

b
∗
±B

Cash/Debt – 0 0 -1.4991 -1.4991
AHP 13% 0 0 0 0
ALCOA 9% 0 0 0 0
AMERB 14% 0 0 0.01 0.01
COKE 14% 0 0 0 0
DOW 12% 0 0 0 0

DUPONT 9% 0 0 0 0
FORD 9% 0 0 0 0
GE 13% 0 0 0 0
GM 7% 0 0 0 0

HP 15% 0.17 0.17 0.32 0.32
IBM 10% 0 0 0 0
INGER 11% 0 0 0 0

JNJ 16% 0 0 0.48 0.48
KIMBC 13% 0 0 0.03 0.03
MERCK 15% 0 0 0.14 0.14

MMM 11% 0 0 0 0

MORRIS 20% 0.75 0.75 1.15 1.15
PANDG 13% 0 0 0 0
SCHLUM 15% 0.08 0.08 0.36 0.36

AAY 20% 20% 34% 34%

Table 4.2. Average Annual Yields.

Strategy Annual Average Yield

BCRP
Long only 20%
Short 20%
Leverage 34%
Short & Leverage 34%

IID

Long only 13%
Short 11%
Leverage 16%
Short & Leverage 14%

Nearest Neighbor

Long only 32%
Short 30%
Leverage 66%

Short & Leverage 83%
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Regarding (4.15), we chose the conservative bound B = 0.4, as the

largest one day change in asset value over the 44 years has been 0.3029.

This bound implies that in the case of r = 0 the maximal leverage is

LB,r = 2.5 fold, while in case of r = 0.000245, LB,r = 2.4991. Performance

of BCRP algorithms improve further by decreasing B until B = 0.2, but

this limit would not guarantee no-ruin. This property also implies that

optimal leverage factor on our dataset is less than 5.

Given our convex formalism for the space of portfolio vector and con-

vexity of log utility, we use Lagrange multipliers and active-set algorithms

for the optimization.

Table 4.1 shows the results of the BCRP experiments. Shorting does

not have any effect in this case, while leverage results in significant gain.

Behavior of shorting strategies is in line with intuition, since taking perma-

nently short position of an asset is not beneficial. The leveraged strategies

use maximal leverage, and they do not only increase market exposure, but

invest into more assets in order to reduce variation of the portfolio. This is

in contrast with behavior of leveraged mean-variance optimal portfolios.
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Fig. 4.1. Cumulative wealth of the nearest neighbor strategy starting from 1962.
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Table 4.2 presents growth rates of the three setups we consider. BCRP

being an optimistically anticipating estimate of possible growth, our i.i.d.

strategies do significantly underperform, while the Average Annual Yields

(AAYs) of the nearest neighbor strategies including leverage are spectac-

ular. Figure 4.1 presents evolution of wealth in the latter case. While

allowing short positions results in large drawdowns in the beginning, these

algorithms catch up later. Figure 4.2 shows the result of the algorithms

starting from 1980; it reveals that short selling does not offer any significant

plus gain in this period benchmarking against the long-only approaches.
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Fig. 4.2. Cumulative wealth of the nearest neighbor strategy starting from 1980.
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