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Discrete time growth optimal investment in stock markets with propor-
tional transactions costs is considered. The market process is a sequence
of daily relative prices (called returns), and it is modelled by a first order
Markov process. Assuming that the distribution of the market process
is known, we show sequential investment strategies such that, in the
long run, the growth rate on trajectories achieves the maximum with
probability 1. Investment with consumption and with fixed transaction
cost where the cost depends on the number of the shares involved in the
transaction is also analyzed.

3.1. Introduction

The purpose of this chapter is to investigate sequential investment strategies

for financial markets such that the strategies are allowed to use information

collected from the past of the market and determine, at the beginning of a

trading period, a portfolio, that is, a way to distribute their current capi-

tal among the available assets. The goal of the investor is to maximize his

wealth on the long run. If there is no transaction cost then the only assump-

tion used in the mathematical analysis is that the daily price relatives form

a stationary and ergodic process. Under this assumption the best strategy
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(called log-optimum strategy) can be constructed in full knowledge of the

distribution of the entire process, see [Algoet and Cover (1988)]. Moreover,

[Györfi and Schäfer (2003)], [Györfi et al. (2006)] and [Györfi et al. (2008)]

constructed empirical (data driven) growth optimum strategies in case of

unknown distributions. The empirical results show that the performance of

these empirical investment strategies measured on past nyse data is solid,

and sometimes even spectacular.

The problem of optimal investment with proportional transaction cost

has been essentially formulated and studied in continuous time only (cf.

[Akien et al. (2001)], [Davis and Norman (1990)], [Eastham and Hastings

(1988)], [Korn (1998)], [Morton and Pliska (1995)], [Palczewski and Stettner

(2006)], [Pliska and Suzuki (2004)], [Shreve et al. (1991)], [Shreve and Soner

(1994)], [Taksar et al. (1988)]).

Papers dealing with growth optimal investment with transaction costs

in discrete time setting are seldom. [Iyengar and Cover (2000)] formulated

the problem of horse race markets, where in every market period one of

the assets has positive pay off and all the others pay nothing. Their model

included proportional transaction costs and they used a long run expected

average reward criterion. There are results for more general markets as well.

[Sass and Schäl (2010)] investigated the numeraire portfolio in context of

bond and stock as assets. [Iyengar (2002, 2005)] investigated growth op-

timal investment with several assets assuming independent and identically

distributed (i.i.d.) sequence of asset returns. [Bobryk and Stettner (1999)]

considered the case of portfolio selection with consumption, when there are

two assets, a bond and a stock. Furthermore, long run expected discounted

reward and i.i.d asset returns were assumed. In the case of discrete time

and non i.i.d. market process, [Schäfer (2002)] considered the maximiza-

tion of the long run expected average growth rate with several assets and

proportional transaction costs, when the asset returns follow a stationary

Markov process. [Györfi and Vajda (2008)] extended the expected growth

optimality mentioned above to the almost sure (a.s.) growth optimality.

In this chapter we study the problem of discrete time growth optimal

investment in stock markets with proportional, fixed transactions costs and

consumption. In Section 3.2 the mathematical setup is introduced. Section

3.3 shows the empirical simulated results of two heuristic algorithms using

NYSE data. If the market process is first order Markov process and the

distribution of the market process is known, then we show simple sequential

investment strategies such that, in the long run, the growth rate on trajec-

tories achieves the maximum with probability 1 in Section 3.4 and Section
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3.6 (Proofs). Finally Section 3.5 studies the portfolio selection strategies

with consumption and fixed transaction cost.

3.2. Mathematical setup: investment with proportional

transaction cost

Consider a market consisting of d assets. The evolution of the market in

time is represented by a sequence of market vectors s1, s2, . . . ∈ R
d
+, where

si = (s
(1)
i , . . . , s

(d)
i )

such that the j-th component s
(j)
i of si denotes the price of the j-th asset

at the end of the i-th trading period. (s
(j)
0 = 1.)

In order to apply the usual prediction techniques for time series analysis

one has to transform the sequence {si} into a sequence of return vectors

{xi} as follows:

xi = (x
(1)
i , . . . , x

(d)
i )

such that

x
(j)
i =

s
(j)
i

s
(j)
i−1

.

Thus, the j-th component x
(j)
i of the return vector xi denotes the amount

obtained at the end of the i-th trading period after investing a unit capital

in the j-th asset.

The investor is allowed to diversify his capital at the beginning of each

trading period according to a portfolio vector b = (b(1), . . . b(d))T . The

j-th component b(j) of b denotes the proportion of the investor’s capital

invested in asset j. Throughout the chapter we assume that the portfolio

vector b has nonnegative components with
∑d

j=1 b
(j) = 1. The fact that

∑d
j=1 b

(j) = 1 means that the investment strategy is self financing and con-

sumption of capital is excluded (besides Section 3.5). The non-negativity of

the components of b means that short selling and buying stocks on margin

are not permitted. To make the analysis feasible, some simplifying assump-

tions are used that need to be taken into account. We assume that assets

are arbitrarily divisible and all assets are available in unbounded quantities

at the current price at any given trading period. We also assume that the

behavior of the market is not affected by the actions of the investor using

the strategies under investigation.
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For j ≤ i we abbreviate by xi
j the array of return vectors (xj , . . . ,xi).

Denote by ∆d the simplex of all vectors b ∈ R
d
+ with nonnegative com-

ponents summing up to one. An investment strategy is a sequence B of

functions

bi :
(

R
d
+

)i−1
→ ∆d , i = 1, 2, . . .

so that bi(x
i−1
1 ) denotes the portfolio vector chosen by the investor on the

i-th trading period, upon observing the past behavior of the market. We

write b(xi−1
1 ) = bi(x

i−1
1 ) to ease the notation.

In this section our presentation of the transaction cost problem utilized

the formulation in [Kalai and Blum (1997)] and [Schäfer (2002)] and [Györfi

and Vajda (2008)]. Let Sn denote the gross wealth at the end of trading

period n, n = 0, 1, 2, · · · , where without loss of generality let the investor’s

initial capital S0 be 1 dollar, while Nn stands for the net wealth at the end

of trading period n. Using the above notations, for the trading period n,

the net wealth Nn−1 can be invested according to the portfolio bn, therefore

the gross wealth Sn at the end of trading period n is

Sn = Nn−1

d
∑

j=1

b(j)n x(j)
n = Nn−1 〈bn , xn〉 ,

where 〈· , ·〉 denotes inner product.

At the beginning of a new market day n + 1, the investor sets up his

new portfolio, i.e. buys/sells stocks according to the actual portfolio vector

bn+1. During this rearrangement, he has to pay transaction cost, therefore

at the beginning of a new market day n + 1 the net wealth Nn in the

portfolio bn+1 is less than Sn.

The rate of proportional transaction costs (commission factors) levied

on one asset are denoted by 0 < cs < 1 and 0 < cp < 1, i.e., the sale of 1

dollar worth of asset i nets only 1 − cs dollars, and similarly we take into

account the purchase of an asset such that the purchase of 1 dollar’s worth

of asset i costs an extra cp dollars. We consider the special case when the

rate of costs are constant over the assets.

Let’s calculate the transaction cost to be paid when select the port-

folio bn+1. Before rearranging the capitals, at the j-th asset there are

b
(j)
n x

(j)
n Nn−1 dollars, while after rearranging we need b

(j)
n+1Nn dollars. If

b
(j)
n x

(j)
n Nn−1 ≥ b

(j)
n+1Nn then we have to sell and the transaction cost at the

j-th asset is

cs

(

b(j)n x(j)
n Nn−1 − b

(j)
n+1Nn

)

,
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otherwise we have to buy and the transaction cost at the j-th asset is

cp

(

b
(j)
n+1Nn − b(j)n x(j)

n Nn−1

)

.

Let x+ denote the positive part of x. Thus, the gross wealth Sn decom-

poses to the sum of the net wealth and cost in the following - self-financing

- way

Nn = Sn −

d
∑

j=1

cs

(

b(j)n x(j)
n Nn−1 − b

(j)
n+1Nn

)+

−

d
∑

j=1

cp

(

b
(j)
n+1Nn − b(j)n x(j)

n Nn−1

)+

,

or equivalently

Sn = Nn + cs

d
∑

j=1

(

b(j)n x(j)
n Nn−1 − b

(j)
n+1Nn

)+

+ cp

d
∑

j=1

(

b
(j)
n+1Nn − b(j)n x(j)

n Nn−1

)+

.

Dividing both sides by Sn and introducing ratio

wn =
Nn

Sn

,

0 < wn < 1, we get

1 = wn + cs

d
∑

j=1

(

b
(j)
n x

(j)
n

〈bn , xn〉
− b

(j)
n+1wn

)+

+ cp

d
∑

j=1

(

b
(j)
n+1wn −

b
(j)
n x

(j)
n

〈bn , xn〉

)+

. (3.1)

For given previous return vector xn and portfolio vector bn, there is a

portfolio vector b̃n+1 = b̃n+1(bn,xn) for which there is no trading:

b̃
(j)
n+1 =

b
(j)
n x

(j)
n

〈bn , xn〉
(3.2)

such that there is no transaction cost, i.e., wn = 1.

For arbitrary portfolio vectors bn, bn+1, and return vector xn there

exist unique cost factors wn ∈ [0, 1), i.e., the portfolio is self financing. The
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value of cost factor wn at day n is determined by portfolio vectors bn and

bn+1 as well as by return vector xn, i.e.

wn = w(bn,bn+1,xn),

for some function w. If we want to rearrange our portfolio substantially,

then our net wealth decreases more considerably, however, it remains pos-

itive. Note also, that the cost does not restrict the set of new portfolio

vectors, i.e., the optimization algorithm searches for optimal vector bn+1

within the whole simplex ∆d. The value of the cost factor ranges between

1− cs
1 + cp

≤ wn ≤ 1.

Without loss of generality we consider the special case of cs = cp =: c.

Then

cs

(

b(j)n x(j)
n Nn−1 − b

(j)
n+1Nn

)+

+ cp

(

b
(j)
n+1Nn − b(j)n x(j)

n Nn−1

)+

= c
∣

∣

∣
b(j)n x(j)

n Nn−1 − b
(j)
n+1Nn

∣

∣

∣
.

Starting with an initial wealth S0 = 1 and w0 = 1, wealth Sn at the

closing time of the n-th market day becomes

Sn = Nn−1〈bn , xn〉

= wn−1Sn−1〈bn , xn〉

=
n
∏

i=1

[w(bi−1,bi,xi−1) 〈bi , xi〉].

Introduce the notation

g(bi−1,bi,xi−1,xi) = log(w(bi−1,bi,xi−1) 〈bi , xi〉),

then the average growth rate becomes

1

n
logSn =

1

n

n
∑

i=1

log(w(bi−1,bi,xi−1) 〈bi , xi〉)

=
1

n

n
∑

i=1

g(bi−1,bi,xi−1,xi). (3.3)

Our aim is to maximize this average growth rate.

In the sequel xi will be random variable and is denoted by Xi, and we

assume the following

Conditions:
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(i) {Xi} is a homogeneous and first order Markov process,

(ii) the Markov kernel is continuous, which means that for µ(B|x) being

the Markov kernel defined by

µ(B|x) := P{X2 ∈ B | X1 = x}

we assume that the Markov kernel is continuous in total variation, i.e.,

V (x,x′) := sup
B∈B

|µ(B|x)− µ(B|x′)| → 0

if x′ → x such that B denotes the family of Borel σ-algebra, further

V (x,x′) < 1 for all x,x′,

(iii) and there exist 0 < a1 < 1 < a2 <∞ such that a1 ≤ X(j) ≤ a2 for all

j = 1, . . . , d.

We note that Conditions (ii) and (iii) imply uniform continuity of V

and thus

max
x,x′

V (x,x′) < 1. (3.4)

For the usual stock market daily data, Condition (iii) is satisfied with

a1 = 0.7 and with a2 = 1.2 (cf. [Fernholz (2000)]).

In the realistic case that the state space of the Markov process (Xn) is

a finite set D of rational vectors (components being quotients of integer-

valued $-amounts ) containing e = (1, . . . , 1), the second part of (ii) is

fulfilled under the plausible assumption µ({e}|x) > 0 for all x ∈ D. An-

other example for finite state Markov process is when one rounds down the

components of x to a grid applying, for example, a grid size 0.00001.

Let’s use the decomposition

1

n
logSn = In + Jn, (3.5)

where In is

1

n

n
∑

i=1

(g(bi−1,bi,Xi−1,Xi)− E{g(bi−1,bi,Xi−1,Xi)|X
i−1
1 })

and

Jn =
1

n

n
∑

i=1

E{g(bi−1,bi,Xi−1,Xi)|X
i−1
1 }.
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In is an average of martingale differences. Under the condition (iii), the

random variable g(bi−1,bi,Xi−1,Xi) is bounded, therefore In is an average

of bounded martingale differences, which converges to 0 almost surely, since

according to the Chow Theorem (cf. Theorem 3.3.1 in [Stout (1974)])

∞
∑

i=1

E{g(bi−1,bi,Xi−1,Xi)
2}

i2
<∞

implies that

In → 0

almost surely. Thus, the asymptotic maximization of the average growth

rate 1
n
logSn is equivalent to the maximization of Jn.

Under the condition (i), we have that

E{g(bi−1,bi,Xi−1,Xi)|X
i−1
1 }

= E{log(w(bi−1,bi,Xi−1) 〈bi , Xi〉)|X
i−1
1 }

= logw(bi−1,bi,Xi−1) + E{log 〈bi , Xi〉 |X
i−1
1 }

= logw(bi−1,bi,Xi−1) + E{log 〈bi , Xi〉 |bi,Xi−1}
def
= v(bi−1,bi,Xi−1),

therefore the maximization of the average growth rate 1
n
logSn is asymp-

totically equivalent to the maximization of

Jn =
1

n

n
∑

i=1

v(bi−1,bi,Xi−1). (3.6)

The terms in the average Jn have a memory, which transforms the problem

into a dynamic programming setup (cf. [Merhav et al. (2002)]).

3.3. Experiments on heuristic algorithms

In this section we experimentally study two heuristic algorithms, which

performed well without transaction cost (cf. Chapter 2 of this volume).

Algorithm 1. For transaction cost, one may apply the log-optimal port-

folio

b∗n(Xn−1) = argmax
b(·)

E{ln 〈b(Xn−1) , Xn〉 | Xn−1}

or its empirical approximation. For example, we may apply the kernel

based log-optimal portfolio selection introduced by [Györfi et al. (2006)] as

follows: Define an infinite array of experts B(ℓ) = {b(ℓ)(·)}, where ℓ is a
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positive integer. For fixed positive integer ℓ, choose the radius rℓ > 0 such

that

lim
ℓ→∞

rℓ = 0.

Then, for n > 1, define the expert b(ℓ) as follows. Put

b(ℓ)
n = argmax

b∈∆d

∑

{i<n:‖xi−1−xn−1‖≤rℓ}

ln 〈b , xi〉 , (3.7)

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise, where ‖·‖ denotes

the Euclidean norm.

Similarly to Chapter 2 of this volume, these experts are aggregated

(mixed) as follows: let {qℓ} be a probability distribution over the set of

all positive integers ℓ such that for all ℓ, qℓ > 0. Consider two types of

aggregations:

• Here the initial capital S0 = 1 is distributed among the expert ac-

cording to the distribution {qℓ}, and the expert makes the portfolio

selection and pays for transaction cost individually. If Sn(B
(ℓ)) is the

capital accumulated by the elementary strategy B(ℓ) after n periods

when starting with an initial capital S0 = 1, then, after period n, the

investor’s aggregated wealth after period n is

Sn =
∑

ℓ

qℓSn(B
(ℓ)). (3.8)

• Here Sn(B
(ℓ)) is again the capital accumulated by the elementary strat-

egy B(ℓ) after n periods when starting with an initial capital S0 = 1,

but it is virtual figure, i.e., the experts make no trading, its wealth

is just the base of aggregation. Then, after period n, the investor’s

aggregated portfolio becomes

bn =

∑

ℓ qℓSn−1(B
(ℓ))b

(ℓ)
n

∑

ℓ qℓSn−1(B(ℓ))
. (3.9)

Moreover, the investor’s capital is

Sn = Sn−1〈bn , xn〉w(bn−1,bn,xn−1),

so only the aggregated portfolio pays for the transaction cost.

In Chapter 2 of this volume we proved that without transaction cost

the two aggregations are equivalent. However, in case of transaction cost

the aggregation (3.9) is much better.
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Algorithm 2. We may introduce a suboptimal algorithm, called naive

portfolio, by a one-step optimization as follows: put b1 = {1/d, . . . , 1/d}

and for n ≥ 1,

b(ℓ)
n = argmax

b∈∆d

∑

{i<n:‖xi−1−xn−1‖≤rℓ}

(ln 〈b , xi〉+ lnw(bn−1,b,xn−1)) ,

(3.10)

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise. These elementary

portfolios are mixed as in (3.8) or (3.9). Obviously, this portfolio has no

global optimality property.

Next we present some numerical results for transaction cost obtained

by applying the kernel based semi-log-optimal algorithm to the 19 assets of

the second NYSE data set as in Chapter 2 of this volume. We take a finite

set of of experts of size L. In the experiment we selected L = 10. Choose

the uniform distribution qℓ = 1/L over the experts in use, and the radius

r2ℓ = 0.0002 · d(1 + ℓ/10), for ℓ = 1, . . . , L .

Table 3.1 summarizes the average annual yield achieved by each expert

at the last period when investing one unit for the kernel-based log-optimal

portfolio. Experts are indexed by ℓ = 1 . . . 10 in rows. The second column

contains the average annual yields of experts for kernel based log-optimal

portfolio if there is no transaction cost, and in this case the results of the two

aggregations are the same: 35%. Mention that, out of the 19 assets, MOR-

RIS had the best average annual yield, 20%, so, for no transaction cost, with

Table 3.1. The average annual yields of the individual
experts for kernel strategy and of the aggregations with

c = 0.0015.
ℓ c = 0 Algorithm 1 Algorithm 2

1 31% -22% 18%
2 34% -22% 10%
3 35% -24% 9 %
4 35% -23% 14%
5 34% -21% 13%
6 35% -19% 13%
7 33% -20% 12%
8 34% -18% 8 %
9 37% -17% 6 %

10 34% -18% 11%

Wealth Agg. (3.8) 35% -19% 13%

Portfolio Agg. (3.9) 35% -15% 17%
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kernel based log-optimal portfolio we have a spectacular improvement. The

third and fourth columns contain the average annual yields of experts for

kernel based log-optimal portfolio if the commission factor is c = 0.0015.

Notice that the growth rate of the Algorithm 1 is negative, and the growth

rate of the Algorithm 2 is poor, too, it is less than the growth rate of the

best asset, and the results of aggregations are different.

In Table 3.2 we have got similar results for nearest neighbor strategy,

where ℓ is the number of nearest neighbors. As we mentioned in Chapter

2 of this volume, the time varying portfolio is very undiversified such that

the subset of assets with non-zero weight is changing from time to time,

which makes the problem of transaction cost challenging. Moreover, the

better the nearest neighbor strategy is without transaction cost, the worse

it is with transaction cost, and the main reasoning of this fact is that for

the good time varying portfolio, the portfolio vector component is very

fluctuating, and so the proper handling of the transaction cost is still an

open question and an important direction of the further research.

3.4. Growth optimal portfolio selection algorithms

An essential tool in the definition and investigation of portfolio selection

algorithms under transaction costs are optimality equations of Bellman

type. First we present an informal and heuristic way to them in our context

of portfolio selection. Later on a rigorous treatment will be given.

Table 3.2. The average annual yields of the individual ex-
perts for nearest neighbor strategy and of the aggregations

with c = 0.0015.
ℓ c = 0 Algorithm 1 Algorithm 2

50 31% -35% -14%
100 33% -33% 3%

150 38% -29% 3%

200 38% -28% 9%

250 37% -28% 9%
300 41% -26% 7%
350 39% -26% 9%

400 39% -26% 10%
450 39% -25% 14%
500 42% -23% 14%

Wealth Agg. (3.8) 39% -25% 11%

Portfolio Agg. (3.9) 39% -23% 11%
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Let us start with a finite-horizon problem concerning JN defined by

(3.6): For fixed integer N > 0, maximize

E{N · JN | b0 = b,X0 = x} = E

{

N
∑

i=1

v(bi−1,bi,Xi−1) | b0 = b,X0 = x

}

by suitable choice of b1, . . . ,bN . For general problems of dynamic pro-

gramming (dynamic optimization), on page 89 [Bellman (1957)] formulates

his famous principle of optimality as follows: “An optimality policy has

the property that whatever the initial state and initial decisions are, the

remaining decisions must constitute an optimal policy with regard to the

state resulting from the first decision.”

By this principle, which for stochastic models is not so obvious as it

seems (cf. pp. 14, 15 in [Hinderer (1970)]), one can show the following. Let

the functions G0, G1, . . . , GN on ∆d × [a1, a2]
d be defined by the so-called

dynamic programming equations (optimality equations, Bellman equations)

GN (b,x) := 0,

Gn(b,x) := max
b′

[v(b,b′,x) + E{Gn+1(b
′,X2) | X1 = x}]

(n = N − 1, N − 2, . . . , 0) with maximizer b′n = gn(b,x). Setting

Fn := GN−n

(n = 0, 1, . . . , N), one can write these backward equations in the forward

form

F 0(b,x) := 0,

Fn(b,x) := max
b′

[

v(b,b′,x) + E{Fn−1(b′,X2) | X1 = x}
]

(3.11)

(n = 1, 2, . . . , N) with maximizer fn(b,x) = gN−n(b,x). Then the choices

bn = fn(bn−1,Xn−1) are optimal.

For the situations, which are favorite for the investor, one has

Fn(b,x) → ∞ as n → ∞, which does not allow distinguishing between

the qualities of competing choice sequences in the infinite-horizon case. If

one considers (3.11) as a Value Iteration formula, then the underlying Bell-

man type equation

F∞(b,x) = max
b′
{v(b,b′,x) + E{F∞(b′,X2) | X1 = x}}

has, roughly speaking, the degenerate solution F∞ = ∞. Therefore one

uses a discount factor 0 < δ < 1 and arrives at the discounted Bellman
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equation

Fδ(b,x) = max
b′
{v(b,b′,x) + (1− δ)E{Fδ(b

′,X2) | X1 = x}} . (3.12)

Its solution allows to solve the discounted problem maximizing

E

{

∞
∑

i=1

(1− δ)iv(bi−1,bi,Xi−1) | b0 = b,X0 = x

}

=

∞
∑

i=1

(1− δ)iE {v(bi−1,bi,Xi−1) | b0 = b,X0 = x} .

The classic Hardy-Littlewood theorem (see, e.g., Theorem 95, together with

Theorem 55 in [Hardy (1949)]) states that for a real valued bounded se-

quence an, n = 1, 2, . . . ,

lim
δ↓0

δ

∞
∑

i=0

(1− δ)iai

exists if and only if

lim
n→∞

1

n

n−1
∑

i=0

ai

exists and that then the limits are equal. Therefore, for maximizing

lim
n→∞

1

n

n
∑

i=1

E {v(bi−1,bi,Xi−1) | b0 = b,X0 = x} ,

(if it exists), it is important to solve the equation (3.12) for small δ. This

principle results in Rule 1 below. Letting δ ↓ 0, (3.12) with solution F ∗δ
leads to the non-discounted Bellman equation

λ+ F (b,x) = max
b′
{v(b,b′,x) + E{F (b′,X2) | X1 = x}} . (3.13)

The interpretation of (3.11) as Value Iteration motivates solving (3.12) and

(3.13) also by Value Iterations Fδ,n (see below) and F ′n with discount factors

δn ↓ 0 (see Rule 4). As to the corresponding problems in Markov control

theory we refer to [Hernández-Lerma and Lassere (1996)].

[Györfi and Vajda (2008)] studied the following two optimal portfolio

selection rules. Let 0 < δ < 1 denote a discount factor. Let the discounted

Bellman equation (3.12). One can show that this discounted Bellman equa-

tion (3.12) and also the more general Bellman equation (3.19) below, have

a unique solution (cf. [Schäfer (2002)] and the proof of Proposition 3.1
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below). Concerning the discounted Bellman equation (3.12), the so-called

Value Iteration may result in the solution: for fixed 0 < δ < 1, put

Fδ,0 = 0

and

Fδ,k+1(b,x)

= max
b′
{v(b,b′,x) + (1− δ)E{Fδ,k(b

′,X2) | X1 = x}} ,

k = 0, 1, . . . . Then Banach’s fixed point theorem implies that the value

iteration converges uniformly to the unique solution.

Rule 1. [Schäfer (2002)] introduced the following non-stationary rule. Put

b̄1 = {1/d, . . . , 1/d}

and

b̄i+1 = argmax
b′

{

v(b̄i,b
′,Xi) + (1− δi)E{Fδi(b

′

,Xi+1)|Xi}},

for 1 ≤ i, where 0 < δi < 1 is a discount factor such that δi ↓ 0. [Schäfer

(2002)] proved that for the conditions (i), (ii) (in a weakened form) and

(iii) and under some mild conditions on δi’s for Rule 1, the portfolio {b̄i}

with capital S̄n is optimal in the sense that for any portfolio strategy {bi}

with capital Sn,

lim inf
n→∞

(

1

n
E{log S̄n} −

1

n
E{logSn}

)

≥ 0.

[Györfi and Vajda (2008)] extended this optimality in expectation to path-

wise optimality such that under the same conditions

lim inf
n→∞

(

1

n
log S̄n −

1

n
logSn

)

≥ 0

a.s.

Rule 2. [Györfi and Vajda (2008)] introduced a portfolio with stationary

(time invariant) recursion. For any integer 1 ≤ k, put

b
(k)
1 = {1/d, . . . , 1/d}

and

b
(k)
i+1 = argmax

b′

{

v(b
(k)
i ,b′,Xi) + (1− δk)E{Fδk(b

′

,Xi+1)|Xi}},
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for 1 ≤ i, where 0 < δk < 1. The portfolio B(k) = {b
(k)
i } is called the

portfolio of expert k with capital Sn(B
(k)). Choose an arbitrary probability

distribution qk > 0, and introduce the combined portfolio with its capital

S̃n =
∞
∑

k=1

qkSn(B
(k)).

[Györfi and Vajda (2008)] proved that under the above mentioned condi-

tions, for Rule 2,

lim
n→∞

(

1

n
log S̄n −

1

n
log S̃n

)

= 0

a.s. Notice that maybe non of the averaged growth rates 1
n
log S̄n and

1
n
log S̃n are convergent to a constant, since we didn’t assume the ergodicity

of {Xi}.

Next we introduce further portfolio selection rules. According to Propo-

sition 3.1 below a solution (λ = W ∗
c , F ) of the (non-discounted) Bellman

equation (3.13) exists, where W ∗
c ∈ R is unique according to Proposition

3.2 below. W ∗
c is the maximum growth rate (see Theorem 3.1 below).

Rule 3. Introduce a stationary rule such that put

b∗1 = {1/d, . . . , 1/d}

and

b∗i+1 = argmax
b′

{

v(b∗i ,b
′,Xi) + E{F (b

′

,Xi+1)|Xi}}. (3.14)

Theorem 3.1. Under the Conditions (i), (ii) and (iii), if S∗n denotes the

wealth at period n using the portfolio {b∗n} then

lim
n→∞

1

n
logS∗n = W ∗

c

a.s., while if Sn denotes the wealth at period n using any other portfolio

{bn} then

lim sup
n→∞

1

n
logSn ≤W ∗

c

a.s.
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Remark 3.1. There is an obvious question, how to ensure that W ∗
c > 0?

Next we show a simple sufficient condition for W ∗
c > 0. We prove that if

the best asset has positive growth rate then W ∗
c > 0, for any c. Consider

the uniform static portfolio (uniform index), i.e., at time n = 0 we apply

the uniform portfolio and later on there is no trading. It means that the

wealth at time n is defined by

Sn = S0
1

d

d
∑

j=1

s(j)n .

Apply the following simple bounds

S0
1

d
max

j
s(j)n ≤ Sn ≤ S0 max

j
s(j)n .

These bounds imply that

lim sup
n→∞

1

n
lnSn = lim sup

n→∞
max

j

1

n
ln s(j)n

≥ max
j

lim sup
n→∞

1

n
ln s(j)n

=: max
j

W (j) > 0.

Thus,

W ∗
c ≥ max

j
W (j) > 0.

Remark 3.2. For i.i.d. (independent identically distributed) market pro-

cess, [Iyengar (2002, 2005)] observed that even in discrete time setup there

is no trading with positive probability, i.e.,

P{b̃n+1(b
∗
n,Xn) = b∗n+1} > 0,

where the no-trading portfolio b̃n+1 has been defined by (3.2). Moreover,

one may get an approximately optimal selection rule, if b∗n+1 is restricted

on an appropriate neighborhood of b̃n+1(b
∗
n,Xn).

Remark 3.3. The problem is more simple if the market process is i.i.d.

Then, on the one hand v has the form

v(b,b′,x) = logw(b,b′,x) + E{log 〈b′ , X2〉 |X1 = x}

= logw(b,b′,x) + E{log 〈b′ , X2〉},
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while the Bellman equation (3.13) looks like as follows:

W ∗
c + F (b,x) = max

b′
{v(b,b′,x) + E{F (b′,X2) | X1 = x}}

= max
b′
{v(b,b′,x) + E{F (b′,X2)}} .

This problem was studied by [Iyengar (2002, 2005)]. As to Theorem 3.1,

also conditional expectation in context of F in (3.14) simplifies to expecta-

tion, and its proof shows that the last assumption in Condition (ii) can be

omitted. For Theorem 3.2 the analogue holds.

Remark 3.4. Use of portfolio b∗n in Theorem 3.1 needs a solution of the

non-discounted Bellman equation (3.13). For this, an iteration procedure

is given in Lemma 3.2 below.

Remark 3.5. In practice, the conditional expectations are unknown and

they can be replaced by estimates. It’s an open problem what is the loss

in growth rate if we apply estimates in the Bellman equation

W ∗
c + F (b,x) = max

b′
{logw(b,b′,x) + E{log 〈b′ , X2〉 |X1 = x}

+E{F (b′,X2) | X1 = x}}.

Rule 4. Choose a sequence 0 < δn < 1, n = 1, 2, . . . such that

δn ↓ 0,
∑

n

δn =∞,
δn+1

δn
→ 1 (n→∞),

e.g., δn = 1
n+1 . Set

F ′1 := 0,

and iterate

F ′n+1 := MδnF
′
n −max

b,x
(MδnF

′
n)(b,x) (n = 1, 2, . . . )

with

(MδnF )(b,x) := max
b̃

{

v(b, b̃,x) + (1− δn)E{F (b̃,X2) | X1 = x}
}

, F ∈ C.

Put

b′1 = {1/d, . . . , 1/d}

and

b′i+1 = argmax
b̃

{

v(b′i, b̃,Xi) + (1− δi)E{F
′
i (b̃,Xi+1)|Xi}},
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for 1 ≤ i. This non-stationary rule can be interpreted as a combination of

the value iteration and Rule 1.

Theorem 3.2. Under the Conditions (i), (ii) and (iii), if S′n denotes the

wealth at period n using the portfolio {b′n} then

lim
n→∞

1

n
logS′n = W ∗

c

a.s.

Note that according to Theorem 3.1, if Sn denotes the wealth at period

n using any portfolio {bn} then

lim sup
n→∞

1

n
logSn ≤W ∗

c

a.s.

3.5. Portfolio selection with consumption

For a real number x, let x+ be the positive part of x. Assume that at the

end of trading period n there is a consumption cn ≥ 0. For the trading

period n the initial capital is Sn−1, therefore

Sn = (Sn−1 〈bn , xn〉 − cn)
+
.

If Sj > 0 for all j = 1, . . . , n then we show by induction that

Sn = S0

n
∏

i=1

〈bi , xi〉 −
n

∑

k=1

ck

n
∏

i=k+1

〈bi , xi〉 , (3.15)

where the empty product is 1, by definition. For n = 1, (3.15) holds.

Assume (3.15) for n− 1:

Sn−1 = S0

n−1
∏

i=1

〈bi , xi〉 −
n−1
∑

k=1

ck

n−1
∏

i=k+1

〈bi , xi〉 .

Then

Sn = Sn−1 〈bn , xn〉 − cn

=

(

S0

n−1
∏

i=1

〈bi , xi〉 −

n−1
∑

k=1

ck

n−1
∏

i=k+1

〈bi , xi〉

)

〈bn , xn〉 − cn

= S0

n
∏

i=1

〈bi , xi〉 −

n
∑

k=1

ck

n
∏

i=k+1

〈bi , xi〉 .
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One has to emphasize that (3.15) holds for all n iff Sn > 0 for all n,

otherwise there is a ruin. In the sequel, we study the average growth rate

under no ruin and the probability of ruin.

By definition,

P{ ruin } = P

{

∞
⋃

n=1

{Sn = 0}

}

= P

{

∞
⋃

n=1

{

S0

n
∏

i=1

〈bi , xi〉 −

n
∑

k=1

ck

n
∏

i=k+1

〈bi , xi〉 ≤ 0

}}

,

therefore

P{ ruin } = P

{

∞
⋃

n=1

{

n
∏

i=1

〈bi , xi〉

(

S0 −

n
∑

k=1

ck
∏k

i=1 〈bi , xi〉

)

≤ 0

}}

≤ P

{

∞
⋃

n=1

{

n
∏

i=1

〈bi , xi〉

(

S0 −

∞
∑

k=1

ck
∏k

i=1 〈bi , xi〉

)

≤ 0

}}

≤ P

{

S0 ≤
∞
∑

k=1

ck
∏k

i=1 〈bi , xi〉

}

(3.16)

and

P{ ruin } = P

{

∞
⋃

n=1

{

n
∏

i=1

〈bi , xi〉

(

S0 −
n

∑

k=1

ck
∏k

i=1 〈bi , xi〉

)

≤ 0

}}

≥ max
n

P

{

n
∏

i=1

〈bi , xi〉

(

S0 −

n
∑

k=1

ck
∏k

i=1 〈bi , xi〉

)

≤ 0

}

= P

{

S0 ≤

∞
∑

k=1

ck
∏k

i=1 〈bi , xi〉

}

. (3.17)

(3.16) and (3.17) imply that

P{ ruin } = P

{

S0 ≤

∞
∑

k=1

ck
∏k

i=1 〈bi , xi〉

}

.

Under no ruin, on the one hand we get the upper bound on the average
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growth rate

Wn =
1

n
lnSn

=
1

n
ln

(

S0

n
∏

i=1

〈bi , xi〉 −

n
∑

k=1

ck

n
∏

i=k+1

〈bi , xi〉

)

≤
1

n
lnS0

n
∏

i=1

〈bi , xi〉

=
1

n

n
∑

i=1

ln 〈bi , xi〉+
1

n
lnS0.

On the other hand we have the lower bound

Wn =
1

n
lnSn

=
1

n
ln

(

S0

n
∏

i=1

〈bi , xi〉 −
n

∑

k=1

ck

n
∏

i=k+1

〈bi , xi〉

)

=
1

n
ln

n
∏

i=1

〈bi , xi〉

(

S0 −

n
∑

k=1

ck
∏k

i=1 〈bi , xi〉

)

≥
1

n
ln

n
∏

i=1

〈bi , xi〉

(

S0 −

∞
∑

k=1

ck
∏k

i=1 〈bi , xi〉

)

=
1

n

n
∑

i=1

ln 〈bi , xi〉+
1

n
ln

(

S0 −

∞
∑

k=1

ck
∏k

i=1 〈bi , xi〉

)

,

therefore under no ruin the asymptotic average growth rate with consump-

tion is the same as without consumption:

Wn =
1

n
lnSn ≈

1

n

n
∑

i=1

ln 〈bi , xi〉 .

Consider the case of constant consumption, i.e., cn = c > 0. Then there

is no ruin if

S0 > c
∞
∑

k=1

1
∏k

i=1 〈bi , xi〉
.

Because of the definition of the average growth rate we have that

Wk ≈
1

k
ln

k
∏

i=1

〈bi , xi〉 ,
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which implies that

∞
∑

k=1

1
∏k

i=1 〈bi , xi〉
≈

∞
∑

k=1

e−kWk .

Assume that our portfolio selection is asymptotically optimal, which means

that

lim
n→∞

Wn = W ∗.

Then
∞
∑

k=1

1
∏k

i=1 〈bi , xi〉
≈

∞
∑

k=1

e−kW∗

=
e−W∗

1− e−W∗
.

This approximation implies that the ruin probability can be small only if

S0 > c
e−W∗

1− e−W∗
.

A special case of this model is when there is only one risk-free asset:

Sn = (Sn−1(1 + r)− c)
+

with some r > 0. Obviously, there is no ruin if S0r > c. It is easy to verify

that this assumption can be derived from the general condition if

eW
∗

= 1 + r.

The ruin probability can be decreased if the consumptions happen in

blocks of size N trading periods. Let Sn denote the wealth at the end of

n-th block. Then

Sn =



Sn−1

nN
∏

j=(n−1)N+1

〈bj , xj〉 −Nc





+

.

Similarly to the previous calculations, we can check that under no ruin the

average growth rates with and without consumption are the same. More-

over

P{ ruin } = P

{

S0 ≤ cN

∞
∑

k=1

1
∏kN

i=1 〈bi , xi〉

}

.

This ruin probability is a monotonically decreasing function of N , and for

large N the exact condition of no ruin is the same as the approximation

mentioned above.
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This model can be applied for the analysis of portfolio selection strate-

gies with fixed transaction cost such that cn is the transaction cost to be

paid when change the portfolio bn to bn+1. In this case the transaction

cost cn depends on the number of shares involved in the transaction.

Let’s calculate cn. At the end of the n-th trading period and before

paying for transaction cost the wealth at asset j is Sn−1b
(j)
n x

(j)
n , which

means that the number of shares j is

m(j)
n =

Sn−1b
(j)
n x

(j)
n

S
(j)
n

.

In the model of fixed transaction cost, we assume that m
(j)
n is integer. If

one changes the portfolio bn to bn+1 then the wealth at asset j should be

Sn−1 〈bn , xn〉 b
(j)
n+1, so the number of shares j should be

m
(j)
n+1 =

Sn−1 〈bn , xn〉 b
(j)
n+1

S
(j)
n

.

If m
(j)
n+1 < m

(j)
n then we have to sell, and the wealth what we got is

d
∑

j=1

(

m(j)
n −m

(j)
n+1

)+

S(j)
n =

d
∑

j=1

(

Sn−1b
(j)
n x(j)

n − Sn−1 〈bn , xn〉 b
(j)
n+1

)+

.

If m
(j)
n+1 > m

(j)
n then we have to buy, and the wealth what we pay is

d
∑

j=1

(

m
(j)
n+1 −m(j)

n

)+

S(j)
n =

d
∑

j=1

(

Sn−1 〈bn , xn〉 b
(j)
n+1 − Sn−1b

(j)
n x(j)

n

)+

.

Let C > 0 be the fixed transaction cost, then the transaction fee is

cn = cn(bn+1) = C

d
∑

j=1

∣

∣

∣m(j)
n −m

(j)
n+1

∣

∣

∣ .

The portfolio selection bn+1 is self-financing if

d
∑

j=1

(

Sn−1b
(j)
n x(j)

n − Sn−1 〈bn , xn〉 b
(j)
n+1

)+

≥

d
∑

j=1

(

Sn−1 〈bn , xn〉 b
(j)
n+1 − Sn−1b

(j)
n x(j)

n

)+

+ cn.

bn+1 is an admissible portfolio if m
(j)
n+1 is integer for all j and it satisfies

the self-financing condition. The set of admissible portfolios is denoted by

∆n,d.
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Taking into account the fixed transaction cost, a kernel based portfolio

selection can be defined as follows: choose the radius rk,ℓ > 0 such that for

any fixed k,

lim
ℓ→∞

rk,ℓ = 0.

For n > k + 1, introduce the expert b(k,ℓ) by

b
(k,ℓ)
n+1 = argmax

b∈∆n,d

∑

i∈J

ln
{

(S
(k,ℓ)
n−1

〈

b(k,ℓ)
n , xn

〉

− cn(b)) 〈b , xi〉
}

,

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise, where

J =
{

k < i ≤ n : ‖xi−1
i−k − xn

n−k+1‖ ≤ rk,ℓ
}

.

Combine the elementary portfolio strategies B(k,ℓ) = {b
(k,ℓ)
n } as in (3.9).

3.6. Proofs

We split the statement of Theorem 3.1 into two propositions.

Proposition 3.1. Under the Conditions (i), (ii) and (iii) the Bellman

equation (3.13) has a solution (W ∗
c , F ) such that the function F is bounded

and continuous, where

max
b,x

F (b,x) = 0.

Proof. Let C be the Banach space of continuous functions F defined on

the compact set ∆d× [a1, a2]
d with the sup norm ‖ · ‖∞. For 0 ≤ δ < 1 and

for f ∈ C, define the operator

(Mδf)(b,x) := max
b′
{v(b,b′,x) + (1− δ)E{f(b′,X2) | X1 = x}} .

(3.18)

By continuity assumption (ii) this leads to an operator

Mδ : C → C.

(See [Schäfer (2002)] p.114.)

The operatorMδ is continuous, even Lipschitz continuous with Lipschitz

constant 1− δ. Indeed, for f, f ′ ∈ C from the representation

(Mδf)(b,x) = v(b,b∗f (b,x),x) + (1− δ)E{f(b∗f (b,x),X2) | X1 = x}
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and from the corresponding representation of (Mδf
′)(b,x) one obtains

(Mδf
′)(b,x) ≥ v(b,b∗f (b,x),x) + (1− δ)E{f ′(b∗f (b,x),X2) | X1 = x}

≥ v(b,b∗f (b,x),x) + (1− δ)E{f(b∗f (b,x),X2) | X1 = x}

−(1− δ)‖f − f ′‖∞

= (Mδf)(b,x)− (1− δ)‖f − f ′‖∞

for all (b,x) ∈ ∆d × [a1, a2]
d, therefore

‖Mδf −Mδf
′‖∞ ≤ (1− δ)‖f − f ′‖∞.

Thus, by Banach’s fixed point theorem, the Bellman equation

λ+ F (b,x) = max
b′
{v(b,b′,x) + (1− δ)E{F (b′,X2) | X1 = x}} , (3.19)

i.e.,

λ+ F = MδF

with λ ∈ R, has a unique solution if 0 < δ < 1. (3.19) corresponds to (3.12)

for λ = 0, 0 < δ < 1 with the unique solution denoted by Fδ, and to (3.13)

for λ = W ∗
c and δ = 0.

We notice

sup
0<δ<1

δ‖Fδ‖∞ ≤ max
b,b′,x

|v(b,b′,x)| <∞,

(cf. [Schäfer (2002)], Lemma 4.2.3). Similarly to [Iyengar (2002)], put

mδ := max
(b,x)

Fδ(b,x), (3.20)

where we get that

sup
0<δ<1

δmδ <∞.

Put

W ∗
c := lim sup

δ↓0
δmδ

and

F̃δ(b,x) := Fδ(b,x)−mδ. (3.21)

Thus,

max
(b,x)

F̃δ(b,x) = 0. (3.22)
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F̃δ satisfies the Bellman equation (3.19) with λ = δmδ, therefore

δmδ + F̃δ = MδF̃δ = M0F̃δ + (MδF̃δ −M0F̃δ) (3.23)

It is easy to check that

‖MδF̃δ −M0F̃δ‖∞ ≤ δ‖F̃δ‖∞. (3.24)

By Lemma 3.1 below

sup
0<δ<1

‖F̃δ‖∞ <∞. (3.25)

Now we choose a sequence δn with δn ↓ 0 such that

δnmδn →W ∗
c . (3.26)

Lemma 3.1 further states that

sup
0<δ<1

|F̃δ(b̄, x̄)− F̃δ(b,x)| → 0

(even uniformly with respect to (b,x), because of compactness of ∆d ×

[a1, a2]
d) when (b̄, x̄)→ (b,x), i.e., there is equicontinuity for {F̃δ}, which

together with (3.25) implies that there exist a subsequence δnl
and a func-

tion F̃ ∈ C such that F̃δnl
converges in C to F̃ (cf. Ascoli-Arzelá theorem,

[Yosida (1968)]). Thus, by continuity of M0, we get the convergence of

M0F̃δnl
in C to M0F̃ . Therefore

W ∗
c + F̃ = M0F̃ ,

i.e., F̃ ∈ C solves the Bellman equation (3.13). F̃ is continuous on a

compact set, therefore it is bounded, where

max
b,x

F̃ (b,x) = 0.

�

Lemma 3.1. If Fδ denotes the solution of the discounted Bellman equation

(3.12) then (3.25) holds and it implies that

sup
0<δ<1

|Fδ(b̄, x̄)− Fδ(b,x)| → 0 (3.27)

when (b̄, x̄)→ (b,x).
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Proof. We use the decomposition

Fδ(b̄, x̄)− Fδ(b,x) = Fδ(b̄, x̄)− Fδ(b, x̄) + Fδ(b, x̄)− Fδ(b,x).

Concerning the first term in this decomposition we assumed that Fδ the

solution of the discounted Bellman equation (3.12), therefore

Fδ(b̄, x̄)− Fδ(b, x̄)

= max
b′

{

v(b̄,b′, x̄) + (1− δ)E{Fδ(b
′,X2) | X1 = x̄}

}

−max
b′′

{v(b,b′′, x̄) + (1− δ)E{Fδ(b
′′,X2) | X1 = x̄}}

≤ max
b′
{v(b̄,b′, x̄) + (1− δ)E{Fδ(b

′,X2) | X1 = x̄}

−(v(b,b′, x̄) + (1− δ)E{Fδ(b
′,X2) | X1 = x̄})}

= max
b′
{v(b̄,b′, x̄)− v(b,b′, x̄)},

therefore

sup
0<δ<1

|Fδ(b̄, x̄)− Fδ(b, x̄)| ≤ max
b′
|v(b̄,b′, x̄)− v(b,b′, x̄)| → 0 (3.28)

when (b̄, x̄) → (b,x). Concerning the second term in this decomposition,

we analogously get that

Fδ(b, x̄)− Fδ(b,x) ≤ max
b′
{v(b,b′, x̄) + (1− δ)E{Fδ(b

′,X2) | X1 = x̄}

−(v(b,b′,x) + (1− δ)E{Fδ(b
′,X2) | X1 = x})}

≤ max
b′
{v(b,b′, x̄)− v(b,b′,x)}

+(1− δ)max
b′
{E{Fδ(b

′,X2) | X1 = x̄}

−E{Fδ(b
′,X2) | X1 = x}}.

Moreover

E{Fδ(b
′,X2) | X1 = x̄} − E{Fδ(b

′,X2) | X1 = x}}

= E{F̃δ(b
′,X2) | X1 = x̄} − E{F̃δ(b

′,X2) | X1 = x}}

≤ ‖F̃δ‖∞V (x, x̄),

where the function V has been defined for Condition (ii). Thus,

sup
0<δ<1

|Fδ(b, x̄)− Fδ(b,x)|

≤ max
b′
|v(b,b′, x̄)− v(b,b′,x)|+ sup

0<δ<1
‖F̃δ‖∞V (x, x̄).

(3.29)
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The inequalities in (3.28) and (3.29) and boundedness of g and also of v

(by Condition (iii)) yield

sup
0<δ<1

|Fδ(b̄, x̄)− Fδ(b,x)| ≤ const+ sup
0<δ<1

‖F̃δ‖∞V (x, x̄)

for some const <∞. Noticing

sup
(b,x),(b̄,x̄)

|Fδ(b̄, x̄)− Fδ(b,x)| = sup
(b,x),(b̄,x̄)

|F̃δ(b̄, x̄)− F̃δ(b,x)| = ‖F̃δ‖∞

(by (3.21) and (3.22)), we then obtain

sup
0<δ<1

‖F̃δ‖∞ ≤ const+ sup
0<δ<1

‖F̃δ‖∞max
x,x̄

V (x, x̄)

and thus (3.25) by (3.4). Condition (ii) and (3.25) yield that the right hand

side of (3.29) converges to 0 when (b̄, x̄)→ (b,x). Then (3.28) and (3.29)

imply (3.27). �

Proposition 3.2. Assume that the Bellman equation (3.13) has a solution

(W ∗
c , F ) such that the function F is bounded. If S∗n denotes the wealth at

period n using the portfolio {b∗n} then

lim
n→∞

1

n
logS∗n = W ∗

c

a.s., while if Sn denotes the wealth at period n using any other portfolio

{bn} then

lim sup
n→∞

1

n
logSn ≤W ∗

c

a.s. These statements imply that W ∗
c in the Bellman equation (3.13) is

unique.

Proof. We have to show that

lim
n→∞

1

n

n
∑

i=1

g(b∗i ,b
∗
i+1,Xi,Xi+1) = W ∗

c

a.s. and

lim sup
n→∞

1

n

n
∑

i=1

g(bi,bi+1,Xi,Xi+1) ≤W ∗
c

a.s. Because of the martingale difference argument in Section 3.2, these

two limit relations are equivalent to

lim
n→∞

1

n

n
∑

i=1

v(b∗i ,b
∗
i+1,Xi) = W ∗

c
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a.s. and

lim sup
n→∞

1

n

n
∑

i=1

v(bi,bi+1,Xi) ≤W ∗
c

a.s. (3.13) and (3.14) imply that

W ∗
c + F (b∗i ,Xi) = v(b∗i ,b

∗
i+1,Xi) + E{F (b∗i+1,Xi+1) | b

∗
i+1,Xi},

(3.30)

while for any portfolio {bi},

W ∗
c + F (bi,Xi) ≥ v(bi,bi+1,Xi) + E{F (bi+1,Xi+1) | bi+1,Xi}. (3.31)

Because of (3.30), we get that

1

n

n
∑

i=1

v(b∗i ,b
∗
i+1,Xi)

= W ∗
c +

1

n

n
∑

i=1

(

F (b∗i ,Xi)− E{F (b∗i+1,Xi+1) | b
∗
i+1,Xi}

)

= W ∗
c +

1

n

n
∑

i=1

F (b∗i ,Xi)−
1

n

n
∑

i=1

E{F (b∗i+1,Xi+1) | X
i
1}

= W ∗
c +

1

n

n
∑

i=2

(

F (b∗i ,Xi)− E{F (b∗i ,Xi) | X
i−1
1 }

)

+
1

n

(

F (b∗1,X1)− E{F (b∗n+1,Xn+1) | X
n
1}

)

.

By the condition of Theorem 3.1, the function F is bounded, therefore the

Chow theorem can be applied for martingale differences, and so

1

n

n
∑

i=1

v(b∗i ,b
∗
i+1,Xi)→W ∗

c

a.s. Similarly, because of (3.31), we get that

1

n

n
∑

i=1

v(bi,bi+1,Xi)

≤ W ∗
c +

1

n

n
∑

i=1

(F (bi,Xi)− E{F (bi+1,Xi+1)|bi+1,Xi})

= W ∗
c +

1

n

n
∑

i=1

F (bi,Xi)−
1

n

n
∑

i=1

E{F (bi+1,Xi+1)|X
i
1}

→ W ∗
c
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a.s. �

Corollary 3.1. Assume the conditions of Proposition 3.1 and let mδ de-

fined by (3.20). Then

δmδ →W ∗
c as δ ↓ 0.

For each sequence 0 < δn < 1 with δn ↓ 0, the sequence F̃δn ∈ C defined by

(3.21) converges to a set of solutions F of the Bellman equation (3.13).

Proof. Since in the proof of Proposition 3.1 lim supδ↓0 δmδ can be replaced

by lim infδ↓0 δmδ, uniqueness of W ∗
c yields existence of limδ↓0 δmδ = W ∗

c .

For each sequence δn ↓ 0 a subsequence δnℓ
exists such that F̃δnℓ

converges

in C to some solution F of (3.13). This proves the second assertion. �

For the proof of Theorem 3.2 we need the following lemma:

Lemma 3.2. Assume Conditions (i), (ii) and (iii). Let δn and F ′n be as

in Rule 4. Then F ′n converges in C to a set of solutions F of the Bellman

equation (3.13), further

wn := max
b,x

(MδnF
′
n)(b,x)→W ∗

c as n→∞.

Proof. We can write

F ′n+1 = MδnF
′
n − wn (3.32)

with the continuous operator Mδn : C → C according to (3.18). It holds

|F ′n+1(b̄, x̄)− F ′n+1(b,x)| = |(MδnF
′
n)(b̄, x̄)− (MδnF

′
n)(b,x)|

≤ |(MδnF
′
n)(b̄, x̄)− (MδnF

′
n)(b, x̄)|

+|(MδnF
′
n)(b, x̄)− (MδnF

′
n)(b,x)|

≤ max
b′
|v(b̄,b′, x̄)− v(b,b′, x̄)|

+max
b′
|v(b,b′, x̄)− v(b,b′,x)|

+max
x,x̄

V (x, x̄)‖F ′n‖∞, (3.33)

where the inequalities are obtained as in the proof of Lemma 3.1. Noticing

max
b,x

F ′n(b,x) = 0

and thus

max
(b,x),(b̄,x̄)

|F ′n(b,x)− F ′n(b̄, x̄)| = ‖F
′
n‖∞,
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moreover, the boundedness of v implies that

‖F ′n+1‖∞ ≤ const+max
x,x̄

V (x, x̄)‖F ′n‖∞

with const <∞. Then, by induction,

‖F ′n‖∞ ≤
const

1−maxx,x̄ V (x, x̄)
=: K <∞. (3.34)

It can be easily checked that

‖Mδn+1
F ′n+1 −MδnF

′
n+1‖∞ ≤ (δn − δn+1)‖F

′
n+1‖∞. (3.35)

According to the proof of Proposition 3.1, the operator Mδn is Lipschitz

continuous with Lipschitz constant 1− δn. Then

‖F ′n+2 − F ′n+1‖∞

= ‖Mδn+1
F ′n+1 −MδnF

′
n‖∞

≤ ‖MδnF
′
n+1 −MδnF

′
n‖∞ + ‖Mδn+1

F ′n+1 −MδnF
′
n+1‖∞

≤ (1− δn)‖F
′
n+1 − F ′n‖∞ +

(

1−
δn+1

δn

)

δnK.

By the condition on δn, we then obtain

‖F ′n+1 − F ′n‖∞ → 0 as n→∞, (3.36)

(cf. Lemma 1(c) in [Walk and Zsidó (1989)]). Now let (δnk
) be an arbitrary

subsequence of (δn). From (3.33) and (3.34) and Condition (ii) we obtain

sup
i

|F ′i (b̄, x̄)− F ′i (b,x)| → 0

when (b̄, x̄)→ (b,x), even uniformly with respect to (b,x). This together

with (3.34) yields existence of a subsequence (δnkℓ
) and of a function F̄ ∈ C

(bounded, where maxb,x F̄ (b,x) = 0) such that

‖F ′nkℓ
− F̄‖∞ → 0 as ℓ→∞. (3.37)

Thus, by continuity of M0,

‖M0F
′
nkℓ
−M0F̄‖∞ → 0 as ℓ→∞. (3.38)

By (3.32),

F ′nkℓ
+ (F ′nkℓ

+1 − F ′nkℓ
) = M0F

′
nkℓ

+ (Mδnkℓ

F ′nkℓ
−M0F

′
nkℓ

)− wnkℓ
.

(3.36) implies that

‖F ′nkℓ
+1 − F ′nkℓ

‖∞ → 0.
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By (3.24) and (3.34),

‖Mδnkℓ

F ′nkℓ
−M0F

′
nkℓ
‖∞ ≤ δnkℓ

K → 0.

This together with (3.37) and (3.38) yields convergence of (wnkℓ
) and

lim
ℓ

wnkℓ
+ F̄ = M0F̄ .

This means that F̄ solves the Bellman equation (3.13) such that limℓ wnkℓ
=

W ∗
c (unique by Proposition 3.2). These convergence results yield the asser-

tion. �

Proof of Theorem 3.2. According to Proposition 3.2 and its proof it is

enough to show

lim
n→∞

1

n

n
∑

i=1

v(b′i,b
′
i+1,Xi) = W ∗

c (3.39)

a.s. Rule 4 yields

wn + F ′n+1(b
′
n,Xn)

= v(b′n,b
′
n+1,Xn) + (1− δn)E{F

′
n(b

′
n+1,Xn+1) | b

′
n+1,Xn},

where

wn = max
b,x

(MδnF
′
n)(b,x).

Then

1

n

n
∑

i=1

v(b′i,b
′
i+1,Xi) =

1

n

n
∑

i=1

wi +
1

n

n
∑

i=1

(

F ′i+1(b
′
i,Xi)

−(1− δi)E{F
′
i (b

′
i+1,Xi+1) | b

′
i+1,Xi}

)

=
1

n

n
∑

i=1

wi

+
1

n

n
∑

i=1

(

F ′i (b
′
i+1,Xi+1)− E{F ′i (b

′
i+1,Xi+1) | X

i
1}

)

+
[ 1

n

n
∑

i=1

(

F ′i+1(b
′
i,Xi)− F ′i (b

′
i+1,Xi+1)

)

+
1

n

n
∑

i=1

δiE{F
′
i (b

′
i+1,Xi+1) | X

i
1}

]

=: An +Bn + Cn.
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By Lemma 3.2, An → W ∗
c . By (3.34) and Chow’s theorem Bn → 0 a.s.

Further

|Cn| ≤
1

n

∣

∣

∣

∣

∣

n−1
∑

i=1

(

F ′i+2(b
′
i+1,Xi+1)− F ′i (b

′
i+1,Xi+1)

)

∣

∣

∣

∣

∣

+
1

n
|F ′2(b

′
1,X1)|+

1

n
|F ′n(b

′
n+1,Xn+1)|+

1

n

n
∑

i=1

δiK

→ 0

by (3.34) and (3.36) and δn → 0. Thus (3.39) is obtained. �
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