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This chapter provides a survey of discrete time, multi-period, sequen-
tial investment strategies for financial markets. Under memoryless as-
sumption on the underlying process generating the asset prices the best
rebalancing is the log-optimal portfolio, which achieves the maximal
asymptotic average growth rate. We show some examples (Kelly game,
horse racing, St. Petersburg game) illustrating the surprising possi-
bilities for rebalancing. Semi-log-optimal portfolio selection as a small
computational complexity alternative of the log-optimal portfolio selec-
tion is studied both theoretically and empirically. For generalized dy-
namic portfolio selection, when asset prices are generated by a station-
ary and ergodic process, universally consistent empirical methods are
shown. The empirical performance of the methods are illustrated for
NYSE data.

2.1. Introduction

This chapter gives an overview on the investment strategies in financial

stock markets inspired by the results of information theory, non-parametric

statistics and machine learning. Investment strategies are allowed to use

information collected from the past of the market and determine, at the

beginning of a trading period, a portfolio, that is, a way to distribute their

current capital among the available assets. The goal of the investor is to

maximize his wealth in the long run without knowing the underlying distri-

bution generating the stock prices. Under this assumption the asymptotic

rate of growth has a well-defined maximum which can be achieved in full

knowledge of the underlying distribution generated by the stock prices.

79
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Both static (buy and hold) and dynamic (daily rebalancing) portfolio

selections are considered under various assumptions on the behavior of the

market process. In case of static portfolio selection, it was shown that ev-

ery static portfolio asymptotically approximates the growth rate of the best

asset in the study. One can achieve larger growth rate with daily rebalanc-

ing. Under memoryless assumption on the underlying process generating

the asset prices, the log-optimal portfolio achieves the maximal asymptotic

average growth rate, that is the expected value of the logarithm of the

return for the best constant portfolio vector. Semi-log optimal portfolio se-

lection as a small computational complexity alternative of the log-optimal

portfolio selection is investigated both theoretically and empirically. Apply-

ing recent developments in nonparametric estimation and machine learning

algorithms, for generalized dynamic portfolio selection, when asset prices

are generated by a stationary and ergodic process, universal consistent (em-

pirical) methods that achieve the maximal possible growth rate are shown.

The spectacular empirical performance of the methods are illustrated for

NYSE data.

Consider a market consisting of d assets. The evolution of the market

in time is represented by a sequence of price vectors s1, s2, . . . ∈ R
d
+, where

sn = (s(1)n , . . . , s(d)n )

such that the j-th component s
(j)
n of sn denotes the price of the j-th asset

on the n-th trading period. In order to normalize, put s
(j)
0 = 1. {sn} has

exponential trend:

s(j)n = enW
(j)
n ≈ enW

(j)

,

with average growth rate (average yield)

W (j)
n :=

1

n
ln s(j)n

and with asymptotic average growth rate

W (j) := lim
n→∞

1

n
ln s(j)n .

The static portfolio selection is a single period investment strategy. A

portfolio vector is denoted by b = (b(1), . . . b(d)). (In Chapter 1 of this

volume the components b(j) of this portfolio vector are called fractions

and they are denoted by πj .) The j-th component b(j) of b denotes the

proportion of the investor’s capital invested in asset j. We assume that the

portfolio vector b has nonnegative components sum up to 1, that means
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that short selling is not permitted. The set of portfolio vectors is denoted

by

∆d =



b = (b(1), . . . , b(d)); b(j) ≥ 0,

d∑

j=1

b(j) = 1



 .

The aim of static portfolio selection is to achieve max1≤j≤d W
(j). The

static portfolio is an index, for example, the S&P 500 such that at time

n = 0 we distribute the initial capital S0 according to a fix portfolio vector

b, i.e., if Sn denotes the wealth at the trading period n, then

Sn = S0

d∑

j=1

b(j)s(j)n .

Apply the following simple bounds

S0 max
j

b(j)s(j)n ≤ Sn ≤ dS0 max
j

b(j)s(j)n .

If b(j) > 0 for all j = 1, . . . , d then these bounds imply that

W := lim
n→∞

1

n
lnSn = lim

n→∞
max

j

1

n
ln s(j)n = max

j
W (j).

Thus, any static portfolio selection achieves the growth rate of the best

asset in the study, maxj W
(j), and so the limit does not depend on the

portfolio b. In case of uniform portfolio (uniform index) b(j) = 1/d and the

convergence above is from below:

S0 max
j

s(j)n /d ≤ Sn ≤ S0 max
j

s(j)n .

The rest of the chapter is organized as follows. In Section 2.2 the con-

stantly rebalanced portfolio is introduced, and the properties of log-optimal

portfolio selection is analyzed in case of memoryless market. Next, a small

computational complexity alternative of the log-optimal portfolio selection,

the semi-log optimal portfolio is introduced. In Section 2.3 the general

model of the dynamic portfolio selection is introduced and the basic fea-

tures of the conditionally log-optimal portfolio selection in case of stationary

and ergodic market are summarized. Using the principles of nonparametric

statistics and machine learning, universal consistent, empirical investment

strategies that are able to achieve the maximal asymptotic growth rate are

introduced. Experiments on the NYSE data are given in Section 2.3.7.
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2.2. Constantly rebalanced portfolio selection

In order to apply the usual prediction techniques for time series analysis

one has to transform the sequence price vectors {sn} into a more or less

stationary sequence of return vectors (price relatives) {xn} as follows:

xn = (x(1)
n , . . . , x(d)

n )

such that

x(j)
n =

s
(j)
n+1

s
(j)
n

.

Thus, the j-th component x
(j)
n of the return vector xn denotes the amount

obtained after investing a unit capital in the j-th asset on the n-th trading

period.

With respect to the static portfolio, one can achieve even higher growth

rate for long run investments, if we make rebalancing, i.e., if the tuning

of the portfolio is allowed dynamically after each trading period. The dy-

namic portfolio selection is a multi-period investment strategy, where at the

beginning of each trading period we can rearrange the wealth among the

assets. A representative example of the dynamic portfolio selection is the

constantly rebalanced portfolio (CRP), which was introduced and studied

by [Kelly (1956)], [Latané (1959)], [Breiman (1961)], [Markowitz (1976)],

[Finkelstein and Whitley (1981)], [Móri (1982b)], [Móri and Székely (1982)]

and [Barron and Cover (1988)]. For a comprehensive survey see also Chap-

ter 1 of this volume, and Chapters 6 and 15 in [Cover and Thomas (1991)],

and Chapter 15 in [Luenberger (1998)].
[Luenberger (1998)] summarizes the main conclusions as follows:

“Conclusions about multi-period investment situations are not mere vari-
ations of single-period conclusions – rather they offer reverse those earlier
conclusions. This makes the subject exciting, both intellectually and in
practice. Once the subtleties of multi-period investment are understood,
the reward in terms of enhanced investment performance can be sub-
stantial.”

“Fortunately the concepts and the methods of analysis for multi-period
situation build on those of earlier chapters. Internal rate of return,
present value, the comparison principle, portfolio design, and lattice and
tree valuation all have natural extensions to general situations. But con-
clusions such as volatility is “bad” or diversification is “good” are no
longer universal truths. The story is much more interesting.”
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In case of CRP we fix a portfolio vector b ∈ ∆d, i.e., we are concerned

with a hypothetical investor who neither consumes nor deposits new cash

into his portfolio, but reinvests his portfolio each trading period. In fact,

neither short selling, nor leverage is allowed. (Concerning short selling and

leverage see Chapter 4 of this volume.) Note that in this case the investor

has to rebalance his portfolio after each trading day to “corrigate” the daily

price shifts of the invested stocks.

Let S0 denote the investor’s initial capital. Then at the beginning of the

first trading period S0b
(j) is invested into asset j, and it results in return

S0b
(j)x

(j)
1 , therefore at the end of the first trading period the investor’s

wealth becomes

S1 = S0

d∑

j=1

b(j)x
(j)
1 = S0 〈b , x1〉 ,

where 〈· , ·〉 denotes inner product. For the second trading period, S1 is the

new initial capital

S2 = S1 · 〈b , x2〉 = S0 · 〈b , x1〉 · 〈b , x2〉 .
By induction, for the trading period n the initial capital is Sn−1, therefore

Sn = Sn−1 〈b , xn〉 = S0

n∏

i=1

〈b , xi〉 .

The asymptotic average growth rate of this portfolio selection is

lim
n→∞

1

n
lnSn = lim

n→∞

(
1

n
lnS0 +

1

n

n∑

i=1

ln 〈b , xi〉
)

= lim
n→∞

1

n

n∑

i=1

ln 〈b , xi〉 ,

therefore without loss of generality one can assume in the sequel that the

initial capital S0 = 1.

2.2.1. Log-optimal portfolio for memoryless market process

If the market process {Xi} is memoryless, i.e., it is a sequence of indepen-

dent and identically distributed (i.i.d.) random return vectors then we show

that the best constantly rebalanced portfolio (BCRP) is the log-optimal

portfolio:

b∗ := argmax
b∈∆d

E{ln 〈b , X1〉}.
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This optimality means that if S∗n = Sn(b
∗) denotes the capital after day

n achieved by a log-optimal portfolio strategy b∗, then for any portfolio

strategy b with finite E{(ln 〈b , X1〉)2} and with capital Sn = Sn(b) and

for any memoryless market process {Xn}∞−∞,

lim
n→∞

1

n
lnSn ≤ lim

n→∞
1

n
lnS∗n almost surely

and maximal asymptotic average growth rate is

lim
n→∞

1

n
lnS∗n = W ∗ := E{ln 〈b∗ , X1〉} almost surely.

The proof of the optimality is a simple consequence of the strong law of

large numbers. Introduce the notation

W (b) = E{ln 〈b , X1〉}.

Then

1

n
lnSn =

1

n

n∑

i=1

ln 〈b , Xi〉

=
1

n

n∑

i=1

E{ln 〈b , Xi〉}+
1

n

n∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉})

= W (b) +
1

n

n∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉}) .

The strong law of large numbers implies that

1

n

n∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉})→ 0 almost surely,

therefore

lim
n→∞

1

n
lnSn = W (b) = E{ln 〈b , X1〉} almost surely.

Similarly,

lim
n→∞

1

n
lnS∗n = W (b∗) = max

b
W (b) almost surely.

We have to emphasize the basic conditions of the model: assume that

(i) the assets are arbitrarily divisible, and they are available for buying

and for selling in unbounded quantities at the current price at any

given trading period,

(ii) there are no transaction costs,
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(iii) the behavior of the market is not affected by the actions of the investor

using the strategy under investigation.

Avoiding (ii), see Chapter 3 of this volume. For memoryless or Marko-

vian market process, optimal strategies have been introduced if the dis-

tributions of the market process are known. For the time being, there

is no asymptotically optimal, empirical algorithm taking into account the

proportional transaction cost. Condition (iii) means that the market is

inefficient.

The principle of log-optimality has the important consequence that

Sn(b) is not close to E{Sn(b)}.
We prove a bit more. The optimality property proved above means that,

for any δ > 0, the event
{
−δ <

1

n
lnSn(b)− E{ln 〈b , X1〉} < δ

}

has probability close to 1 if n is large enough. On the one hand, we have

that {
−δ <

1

n
lnSn(b)− E{ln 〈b , X1〉} < δ

}

=

{
−δ + E{ln 〈b , X1〉} <

1

n
lnSn(b) < δ + E{ln 〈b , X1〉}

}

=
{
en(−δ+E{ln〈b ,X1〉}) < Sn(b) < en(δ+E{ln〈b ,X1〉})

}
,

therefore

Sn(b) is close to enE{ln〈b ,X1〉}.

On the other hand,

E{Sn(b)} = E

{
n∏

i=1

〈b , Xi〉
}

=

n∏

i=1

〈b , E{Xi}〉 = en ln〈b ,E{X1}〉.

By Jensen inequality,

ln 〈b , E{X1}〉 > E{ln 〈b , X1〉},
therefore

Sn(b) is much less than E{Sn(b)}.
Not knowing this fact, one can apply a naive approach

argmax
b

E{Sn(b)}.
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Because of

E{Sn(b)} = 〈b , E{X1}〉n ,

this naive approach has the equivalent form

argmax
b

E{Sn(b)} = argmax
b

〈b , E{X1}〉 ,

which is called the mean approach. It is easy to see that

argmaxb 〈b , E{X1}〉 is a portfolio vector having 1 at the position, where

the vector E{X1} has the largest component.

In his seminal paper [Markowitz (1952)] realized that the mean approach

is inadequate, i.e., it is a dangerous portfolio. In order to avoid this difficulty

he suggested a diversification, which is called mean-variance portfolio such

that

b̃ = argmax
b:Var(〈b ,X1〉)≤λ

〈b , E{X1}〉 ,

where λ > 0 is the investor’s risk aversion parameter.

For appropriate choice of λ, the performance (average growth rate) of

b̃ can be close to the performance of the optimal b∗, however, the good

choice of λ depends on the (unknown) distribution of the return vector X.

The calculation of b̃ is a quadratic programming (QP) problem, where

a linear function is maximized under quadratic constraints.

In order to calculate the log-optimal portfolio b∗, one has to know the

distribution of X1. If this distribution is unknown then the empirical log-

optimal portfolio can be defined by

b∗n = argmax
b

1

n

n∑

i=1

ln 〈b , Xi〉

with linear constraints

d∑

j=1

b(j) = 1 and 0 ≤ b(j) ≤ 1 j = 1, . . . , d .

The behavior of the empirical portfolio b∗n and its modifications was studied

by [Móri (1984, 1986)] and by [Morvai (1991, 1992)].

The calculation of b∗n is a nonlinear programming (NLP) problem.

[Cover (1984)] introduced an algorithm for calculating b∗n. An alterna-

tive possibility is the software routine donlp2 of [Spellucci (1999)]. The
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routine is based on sequential quadratic programming method, which com-

putes sequentially a local solution of NLP by solving a quadratic program-

ming problem and it estimates the global maximum according to these local

maximums.

2.2.2. Examples for constantly rebalanced portfolio

Next we show some examples of portfolio games.

Example 2.1. (Kelly game [Kelly (1956)])

Consider the example of d = 2 and X = (X(1), X(2)) such that the first

component X(1) of the return vector X is the payoff of the Kelly game:

X(1) =

{
2 with probability 1/2,

1/2 with probability 1/2,
(2.1)

and the second component X(2) of the return vector X is the cash:

X(2) = 1.

Obviously, the cash has zero growth rate. Using the expectation of the first

component

E{X(1)} = 1/2 · (2 + 1/2) = 5/4 > 1,

Assume that we are given an i.i.d. sequence of Kelly payoffs {X(1)
i }∞i=1.

One can introduce the sequential Kelly game S
(1)
n such that there is a

reinvestment:

S(1)
n =

n∏

i=1

X
(1)
i .

The i.i.d. property of the payoffs {X(1)
i }∞i=1 implies that

E{S(1)
n } = E

{
n∏

i=1

X
(1)
i

}
= (5/4)n, (2.2)

therefore E{S(1)
n } grows exponentially. However, it does not imply that the

random variable S
(1)
n grows exponentially, too. Let’s calculate the growth

rate W (1):

W (1) := lim
n→∞

1

n
lnS(1)

n = lim
n→∞

1

n

n∑

i=1

lnX
(1)
i = E{lnX(1)}

= 1/2 ln 2 + 1/2 ln(1/2) = 0,
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a.s., which means that the first component X(1) of the return vector X has

zero growth rate, too.

The following viewpoint may help explain this at first sight surprising

property. First, we write the evolution of the wealth of the sequential Kelly

game as follows: let S
(1)
n = 22B(n,1/2)−n, where B(n, 1/2) is a binomial

random variable with parameters (n, 1/2) (it is easy to check if we choose

n = 1 then we return back to the one-step performance of the game). Now

we write according to the Moivre-Laplace theorem (a special case of the

central limit theorem for binomial distribution):

P

(
2B(n, 1/2)− n√
Var(2B(n, 1/2))

≤ x

)
≃ φ(x),

where φ(x) is cumulative distribution function of the standard normal dis-

tribution. Rearranging the left-hand side we have

P

(
2B(n, 1/2)− n√
Var(2B(n, 1/2))

≤ x

)
= P

(
2B(n, 1/2)− n ≤ x

√
n
)

= P

(
22B(n,1/2)−n ≤ 2x

√
n
)

= P

(
S(1)
n ≤ 2x

√
n
)

that is

P

(
S(1)
n ≤ 2x

√
n
)
≃ φ(x) .

Now let xε choose so that φ(xε) = 1− ε then

P

(
S(1)
n ≤ 2xε

√
n
)
≃ 1− ε

and for a fixed ε > 0 let n0 be so that

2xε

√
n < ES(1)

n =

(
5

4

)n

for all n > n0 then we have

P

(
S(1)
n ≥ ES(1)

n

)
≤ P

(
S(1)
n ≥ 2xε

√
n
)
≃ ε.

It means that most of the values of S
(1)
n are far smaller than its expected

value ES
(1)
n (see in Figure 2.1).

Now let’s turn back to the original problem and calculate the log-optimal

portfolio for this return vector, where both components have zero growth

rate. The portfolio vector has the form

b = (b, 1− b).
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Fig. 2.1. The distribution of S
(1)
n in case of n = 5

Then

W (b) = E{ln 〈b , X〉}
= 1/2 (ln(2b+ (1− b)) + ln(b/2 + (1− b)))

= 1/2 ln[(1 + b)(1− b/2)].

One can check that W (b) has the maximum for b = 1/2, so the log-optimal

portfolio is

b∗ = (1/2, 1/2),

and the asymptotic average growth rate is

W ∗ = E{ln 〈b∗ , X〉} = 1/2 ln(9/8) = 0.059,

which is a positive growth rate.

Example 2.2. Consider the example of d = 3 and X = (X(1), X(2), X(3))

such that the first and the second components of the return vector X are

Kelly payoffs of form (2.1), while the third component is the cash. One can

show that the log-optimal portfolio is

b∗ = (0.46, 0.46, 0.08),

and the maximal asymptotic average growth rate is

W ∗ = E{ln 〈b∗ , X〉} = 0.112.
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Example 2.3. Consider the example of d > 3 and X =

(X(1), X(2), . . . , X(d)) such that the first d − 1 components of the return

vector X are Kelly payoffs of form (2.1), while the last component is the

cash. One can show that the log-optimal portfolio is

b∗ = (1/(d− 1), . . . , 1/(d− 1), 0),

which means that, for d > 3, according to the log-optimal portfolio the cash

has zero weight. Let N denote the number of components of X equal to 2,

then N is binomially distributed with parameters (d− 1, 1/2), and

ln 〈b∗ , X〉 = ln

(
2N + (d− 1−N)/2

d− 1

)
= ln

(
3N

2(d− 1)
+

1

2

)
,

therefore

W ∗ = E{ln 〈b∗ , X〉} = E

{
ln

(
3N

2(d− 1)
+

1

2

)}
.

For d = 4, the formula implies that the maximal asymptotic average growth

rate is

W ∗ = E{ln 〈b∗ , X〉} = 0.152,

while for d→∞,

W ∗ = E{ln 〈b∗ , X〉} → ln(5/4) = 0.223,

which means that

Sn ≈ enW
∗

= (5/4)n,

so with many such Kelly components

Sn ≈ E{Sn}

(cf. (2.2)).

Example 2.4. (Horse racing [Cover and Thomas (1991)])

Consider the example of horse racing with d horses in a race. Assume that

horse j wins with probability pj . The payoff is denoted by oj , which means

that investing $1 on horse j results in oj if it wins, otherwise $0. Then the

return vector is of form

X = (0, . . . , 0, oj , 0, . . . , 0)
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if horse j wins. For repeated races, it is a constantly rebalanced portfolio

problem. Let’s calculate the expected log-return:

W (b) = E{ln 〈b , X〉} =
d∑

j=1

pj ln(b
(j)oj) =

d∑

j=1

pj ln b
(j) +

d∑

j=1

pj ln oj ,

therefore

argmax
b

E{ln 〈b , X〉} = argmax
b

d∑

j=1

pj ln b
(j).

In order to solve the optimization problem

argmax
b

d∑

j=1

pj ln b
(j),

we introduce the Kullback-Leibler divergence of the distributions p and b:

KL(p,b) =
d∑

j=1

pj ln
pj
b(j)

.

The basic property of the Kullback-Leibler divergence is that

KL(p,b) ≥ 0,

and is equal to zero if and only if the two distributions are equal. The proof

of this property is simple:

KL(p,b) = −
d∑

j=1

pj ln
b(j)

pj
≥ −

d∑

j=1

pj

(
b(j)

pj
− 1

)
= −

d∑

j=1

b(j) +
d∑

j=1

pj = 0.

This inequality implies that

argmax
b

d∑

j=1

pj ln b
(j) = p.

Surprisingly, the log-optimal portfolio is independent of the payoffs, and

W ∗ =
d∑

j=1

pj ln(pjoj).

Knowing the distribution p, the usual choice of payoffs is

oj =
1

pj
,
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and then

W ∗ = 0.

It means that, for this choice of payoffs, any gambling strategy has negative

growth rate.

Example 2.5. (Sequential St. Petersburg games.)

Consider the simple St. Petersburg game, where the player invests 1 dollar

and a fair coin is tossed until a tail first appears, ending the game. If the

first tail appears in step k then the the payoff X is 2k and the probability

of this event is 2−k:

P{X = 2k} = 2−k.

Since E{X} =∞, this game has delicate properties (cf. [Aumann (1977)],

[Bernoulli (1954)], [Durand (1957)], [Haigh (1999)], [Martin (2004)],

[Menger (1934)], [Rieger and Wang (2006)] and [Samuelson (1960)].) In

the literature, usually the repeated St. Petersburg game (called iterated St.

Petersburg game, too) means multi-period game such that it is a sequence

of simple St. Petersburg games, where in each round the player invest 1

dollar. Let Xn denote the payoff for the n-th simple game. Assume that

the sequence {Xn}∞n=1 is independent and identically distributed. After n

rounds the player’s wealth in the repeated game is

S̃n =

n∑

i=1

Xi,

then

lim
n→∞

S̃n

n log2 n
= 1

in probability, where log2 denotes the logarithm with base 2 (cf. [Feller

(1945)]). Moreover,

lim inf
n→∞

S̃n

n log2 n
= 1 a.s.

and

lim sup
n→∞

S̃n

n log2 n
=∞ a.s.

(cf. [Chow and Robbins (1961)]). Introducing the notation for the largest

payoff

X∗
n = max

1≤i≤n
Xi
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and for the sum with the largest payoff withheld

S∗n = S̃n −X∗
n,

one has that

lim
n→∞

S∗n
n log2 n

= 1

a.s. (cf. [Csörgő and Simons (1996)]). According to the previous results

S̃n ≈ n log2 n. Next we introduce a multi-period game, called sequential St.

Petersburg game, having exponential growth. The sequential St. Peters-

burg game means that the player starts with initial capital S0 = 1 dollar,

and there is an independent sequence of simple St. Petersburg games, and

for each simple game the player reinvest his capital. If S
(c)
n−1 is the capital

after the (n − 1)-th simple game then the invested capital is S
(c)
n−1(1 − c),

while S
(c)
n−1c is the proportional cost of the simple game with commission

factor 0 < c < 1. It means that after the n-th round the capital is

S(c)
n = S

(c)
n−1(1− c)Xn = S0(1− c)n

n∏

i=1

Xi = (1− c)n
n∏

i=1

Xi.

Because of its multiplicative definition, S
(c)
n has exponential trend:

S(c)
n = enW

(c)
n ≈ enW

(c)

,

with average growth rate

W (c)
n :=

1

n
lnS(c)

n

and with asymptotic average growth rate

W (c) := lim
n→∞

1

n
lnS(c)

n .

Let’s calculate the the asymptotic average growth rate. Because of

W (c)
n =

1

n
lnS(c)

n =
1

n

(
n ln(1− c) +

n∑

i=1

lnXi

)
,

the strong law of large numbers implies that

W (c) = ln(1− c) + lim
n→∞

1

n

n∑

i=1

lnXi = ln(1− c) + E{lnX1}

a.s., so W (c) can be calculated via expected log-utility (cf. [Kenneth

(1974)]). A commission factor c is called fair if

W (c) = 0,
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so the growth rate of the sequential game is 0. Let’s calculate the fair c:

ln(1− c) = −E{lnX1} = −
∞∑

k=1

k ln 2 · 2−k = −2 ln 2,

i.e.,

c = 3/4.

[Györfi and Kevei (2009)] studied the portfolio game, where a fraction of

the capital is invested in the simple fair St. Petersburg game and the rest

is kept in cash. This is the model of the constantly rebalanced portfolio

(CRP). Fix a portfolio vector b = (b, 1 − b), with 0 ≤ b ≤ 1. Let S0 = 1

denote the player’s initial capital. Then at the beginning of the portfolio

game S0b = b is invested into the fair game, and it results in return bX1/4,

while S0(1 − b) = 1 − b remains in cash, therefore after the first round of

the portfolio game the player’s wealth becomes

S1 = S0(bX1/4 + (1− b)) = b(X1/4− 1) + 1.

For the second portfolio game, S1 is the new initial capital

S2 = S1(b(X2/4− 1) + 1) = (b(X1/4− 1) + 1)(b(X2/4− 1) + 1).

By induction, for n-th portfolio game the initial capital is Sn−1, therefore

Sn = Sn−1(b(Xn/4− 1) + 1) =

n∏

i=1

(b(Xi/4− 1) + 1).

The asymptotic average growth rate of this portfolio game is

W (b) := lim
n→∞

1

n
log2 Sn

= lim
n→∞

1

n

n∑

i=1

log2(b(Xi/4− 1) + 1)

→ E{log2(b(X1/4− 1) + 1)} a.s.

The function ln is concave, therefore W (b) is concave, too, so W (0) = 0

(keep everything in cash) and W (1) = 0 (the simple St. Petersburg game

is fair) imply that for all 0 < b < 1, W (b) > 0. Let’s calculate

max
b

W (b).
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We have that

W (b) =
∞∑

k=1

log2(b(2
k/4− 1) + 1) · 2−k

= log2(1− b/2) · 2−1 +
∞∑

k=3

log2(b(2
k−2 − 1) + 1) · 2−k.

One can show that b∗ = (0.385, 0.615) and W ∗ = 0.149.

Example 2.6. We can extend Example 2.5 such that in each round there

are d St. Petersburg components, i.e., the return vector has the form

X = (X(1), . . . , X(d), X(d+1)) = (X1/4, . . . , Xd/4, 1)

(d ≥ 1), where the first d i.i.d. components of X are fair St. Pe-

tersburg payoffs, while the last component is the cash. For d = 2,

b∗ = (0.364, 0.364, 0.272). For d ≥ 3, the best portfolio is the uniform

portfolio such that the cash has zero weight:

b∗ = (1/d, . . . , 1/d, 0)

and the asymptotic average growth rate is

W ∗
d = E

{
log2

(
1

4d

d∑

i=1

Xi

)}
.

Here are the first few values:

Table 2.1. Numerical results

d 1 2 3 4 5 6 7 8

W ∗

d
0.149 0.289 0.421 0.526 0.606 0.669 0.721 0.765

[Györfi and Kevei (2011)] proved that

W ∗
d ≈ log2 log2 d− 2 +

log2 log2 d

ln 2 log2 d
,

which results in some figures for large d:

Table 2.2. Simulation results

d 8 16 32 64

W ∗

d
0.76 0.97 1.17 1.35
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2.2.3. Semi-log-optimal portfolio

[Roll (1973)], [Pulley (1994)] and [Vajda (2006)] suggested an approxima-

tion of b∗ and b∗n using

h(z) := z − 1− 1

2
(z − 1)2,

which is the second order Taylor expansion of the function ln z at z = 1.

Then, the semi-log-optimal portfolio selection is

b̄ = argmax
b

E{h(〈b , X1〉)},

and the empirical semi-log-optimal portfolio is

b̄n = argmax
b

1

n

n∑

i=1

h(〈b , xi〉).

In order to compute b∗n, one has to make an optimization over b. In each

optimization step the computational complexity is proportional to n. For

b̄n, this complexity can be reduced. We have that

1

n

n∑

i=1

h(〈b , xi〉) =
1

n

n∑

i=1

(〈b , xi〉 − 1)− 1

2

1

n

n∑

i=1

(〈b , xi〉 − 1)2.

If 1 denotes the all 1 vector, then

1

n

n∑

i=1

h(〈b , xi〉) = 〈b , m〉 − 〈b , Cb〉 ,

where

m =
1

n

n∑

i=1

(xi − 1)

and

C =
1

2

1

n

n∑

i=1

(xi − 1)(xi − 1)T .

If we calculate the vector m and the matrix C beforehand then in each

optimization step the complexity does not depend on n, so the running

time for calculating b̄n is much smaller than for b∗n. The other advantage

of the semi-log-optimal portfolio is that it can be calculated via quadratic

programming, which is doable, e.g., using the routine QuadProg++ of

[Gaspero (2006)]. This program uses Goldfarb-Idnani dual method for solv-

ing quadratic programming problems [Goldfarb and Idnani (1983)].
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2.3. Time varying portfolio selection

For a general dynamic portfolio selection, the portfolio vector may depend

on the past data. As before, xi = (x
(1)
i , . . . x

(d)
i ) denotes the return vector

on trading period i. Let b = b1 be the portfolio vector for the first trading

period. For initial capital S0, we get that

S1 = S0 · 〈b1 , x1〉 .

For the second trading period, S1 is new initial capital, the portfolio vector

is b2 = b(x1), and

S2 = S0 · 〈b1 , x1〉 · 〈b(x1) , x2〉 .

For the nth trading period, a portfolio vector is bn = b(x1, . . . ,xn−1) =

b(xn−1
1 ) and

Sn = S0

n∏

i=1

〈
b(xi−1

1 ) , xi

〉
= S0e

nWn(B)

with the average growth rate

Wn(B) =
1

n

n∑

i=1

ln
〈
b(xi−1

1 ) , xi

〉
.

2.3.1. Log-optimal portfolio for stationary market process

The fundamental limits, determined in [Móri (1982a)], in [Algoet and Cover

(1988)], and in [Algoet (1992, 1994)], reveal that the so-called (condition-

ally) log-optimal portfolio B∗ = {b∗(·)} is the best possible choice. More

precisely, on trading period n let b∗(·) be such that

E
{
ln
〈
b∗(Xn−1

1 ) , Xn

〉∣∣Xn−1
1

}
= max

b(·)
E
{
ln
〈
b(Xn−1

1 ) , Xn

〉∣∣Xn−1
1

}
.

If S∗n = Sn(B
∗) denotes the capital achieved by a log-optimal portfolio

strategy B∗, after n trading periods, then for any other investment strategy

B with capital Sn = Sn(B) and with

sup
n

E
{
(ln
〈
bn(X

n−1
1 ) , Xn

〉
)2
}
<∞,

and for any stationary and ergodic process {Xn}∞−∞,

lim sup
n→∞

(
1

n
lnSn −

1

n
lnS∗n

)
≤ 0 almost surely (2.3)
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and

lim
n→∞

1

n
lnS∗n = W ∗ almost surely,

where

W ∗ := E

{
max
b(·)

E
{
ln
〈
b(X−1

−∞) , X0

〉∣∣X−1
−∞
}}

is the maximal possible growth rate of any investment strategy. (Note that

for memoryless markets W ∗ = maxb E {ln 〈b , X0〉} which shows that in

this case the log-optimal portfolio is the best constantly rebalanced portfo-

lio.)

For the proof of this optimality we use the concept of martingale differ-

ences:

Definition 2.1. There are two sequences of random variables {Zn} and

{Xn} such that

• Zn is a function of X1, . . . , Xn,

• E{Zn | X1, . . . , Xn−1} = 0 almost surely.

Then {Zn} is called martingale difference sequence with respect to {Xn}.

For martingale difference sequences, there is a strong law of large num-

bers: If {Zn} is a martingale difference sequence with respect to {Xn}
and

∞∑

n=1

E{Z2
n}

n2
<∞

then

lim
n→∞

1

n

n∑

i=1

Zi = 0 a.s.

(cf. [Chow (1965)], see also Theorem 3.3.1 in [Stout (1974)]).

In order to be self-contained, for martingale differences, we prove a

weak law of large numbers. We show that if {Zn} is a martingale difference

sequence with respect to {Xn} then {Zn} are uncorrelated. Put i < j, then

E{ZiZj} = E{E{ZiZj | X1, . . . , Xj−1}}
= E{ZiE{Zj | X1, . . . , Xj−1}} = E{Zi · 0} = 0.
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It implies that

E





(
1

n

n∑

i=1

Zi

)2


 =

1

n2

n∑

i=1

n∑

j=1

E{ZiZj} =
1

n2

n∑

i=1

E{Z2
i } → 0

if, for example, E{Z2
i } is a bounded sequence.

One can construct martingale difference sequence as follows: let {Yn}
be an arbitrary sequence such that Yn is a function of X1, . . . , Xn. Put

Zn = Yn − E{Yn | X1, . . . , Xn−1}.

Then {Zn} is a martingale difference sequence:

• Zn is a function of X1, . . . , Xn,

• E{Zn|X1, . . . , Xn−1} = E{Yn − E{Yn|X1, . . . , Xn−1}|X1, . . . , Xn−1} =
0 almost surely.

Now we can prove of optimality of the log-optimal portfolio: introduce

the decomposition

1

n
lnSn =

1

n

n∑

i=1

ln
〈
b(Xi−1

1 ) , Xi

〉

=
1

n

n∑

i=1

E{ln
〈
b(Xi−1

1 ) , Xi

〉
| Xi−1

1 }

+
1

n

n∑

i=1

(
ln
〈
b(Xi−1

1 ) , Xi

〉
− E{ln

〈
b(Xi−1

1 ) , Xi

〉
| Xi−1

1 }
)
.

The last average is an average of martingale differences, so it tends to zero

a.s. Similarly,

1

n
lnS∗n =

1

n

n∑

i=1

E{ln
〈
b∗(Xi−1

1 ) , Xi

〉
| Xi−1

1 }

+
1

n

n∑

i=1

(
ln
〈
b∗(Xi−1

1 ) , Xi

〉
− E{ln

〈
b∗(Xi−1

1 ) , Xi

〉
| Xi−1

1 }
)
.

Because of the definition of the log-optimal portfolio we have that

E{ln
〈
b(Xi−1

1 ) , Xi

〉
| Xi−1

1 } ≤ E{ln
〈
b∗(Xi−1

1 ) , Xi

〉
| Xi−1

1 },

and the proof is finished.
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2.3.2. Empirical portfolio selection

The optimality relations proved above give rise to the following definition:

Definition 2.2. An empirical (data driven) portfolio strategy B is called

universally consistent with respect to a class C of stationary and

ergodic processes {Xn}∞−∞, if for each process in the class,

lim
n→∞

1

n
lnSn(B) = W ∗ almost surely.

It is not at all obvious that such universally consistent portfolio strat-

egy exists. The surprising fact that there exists a strategy, universal with

respect to a class of stationary and ergodic processes was proved by [Algoet

(1992)].

Most of the papers dealing with portfolio selections assume that the

distributions of the market process are known. If the distributions are

unknown then one can apply a two stage splitting scheme.

1: In the first time period the investor collects data, and estimates the

corresponding distributions. In this period there is no any investment.

2: In the second time period the investor derives strategies from the dis-

tribution estimates and performs the investments.

In the sequel we show that there is no need to make any splitting, one

can construct sequential algorithms such that the investor can make trading

during the whole time period, i.e., the estimation and the portfolio selection

is made on the whole time period.

Let’s recapitulate the definition of log-optimal portfolio:

E{ln
〈
b∗(Xn−1

1 ) , Xn

〉
| Xn−1

1 } = max
b(·)

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 } .

For a fixed integer k > 0 large enough, we expect that

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 } ≈ E{ln
〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k}

and

b∗(Xn−1
1 ) ≈ bk(X

n−1
n−k) = argmax

b(·)
E{ln

〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k}.
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Because of stationarity

bk(x
k
1) = argmax

b(·)
E{ln

〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k = xk
1}

= argmax
b(·)

E{ln
〈
b(xk

1) , Xk+1

〉
| Xk

1 = xk
1}

= argmax
b

E{ln 〈b , Xk+1〉 | Xk
1 = xk

1} ,

which is the maximization of the regression function

mb(x
k
1) = E{ln 〈b , Xk+1〉 | Xk

1 = xk
1}.

Thus, a possible way for asymptotically optimal empirical portfolio selection

is that, based on the past data, sequentially estimate the regression function

mb(x
k
1), and choose the portfolio vector, which maximizes the regression

function estimate.

2.3.3. Regression function estimation

Briefly summarize the basics of nonparametric regression function estima-

tion. Concerning the details we refer to the book of [Györfi et al. (2002)]

and to Chapter 5 of this volume. Let Y be a real valued random variable,

and let X denote an observation vector taking values in R
d. The regression

function is the conditional expectation of Y given X:

m(x) = E{Y | X = x}.

If the distribution of (X,Y ) is unknown then one has to estimate the re-

gression function from data. The data is a sequence of i.i.d. copies of

(X,Y ):

Dn = {(X1, Y1), . . . , (Xn, Yn)}.

The regression function estimate is of form

mn(x) = mn(x,Dn).

An important class of estimates is the local averaging estimates

mn(x) =

n∑

i=1

Wn,i(x;X1, . . . , Xn)Yi,

where usually the weights Wn,i(x;X1, . . . , Xn) are non-negative and sum

up to 1. Moreover, Wn,i(x;X1, . . . , Xn) is relatively large if x is close to

Xi, otherwise it is zero.
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An example of such an estimate is the partitioning estimate. Here one

chooses a finite or countably infinite partition Pn = {An,1, An,2, . . . } of Rd

consisting of cells An,j ⊆ R
d and defines, for x ∈ An,j , the estimate by

averaging Yi’s with the corresponding Xi’s in An,j , i.e.,

mn(x) =

∑n
i=1 I{Xi∈An,j}Yi∑n
i=1 I{Xi∈An,j}

for x ∈ An,j , (2.4)

where IA denotes the indicator function of set A. Here and in the following

we use the convention 0
0 = 0. In order to have consistency, on the one

hand we need that the cells An,j should be “small”, and on the other

hand the number of non-zero terms in the denominator of (2.4) should be

“large”. These requirements can be satisfied if the sequences of partition

Pn is asymptotically fine, i.e., if

diam(A) = sup
x,y∈A

‖x− y‖

denotes the diameter of a set such that || · || is the Euclidean norm, then

for each sphere S centered at the origin

lim
n→∞

max
j:An,j∩S 6=∅

diam(An,j) = 0

and

lim
n→∞

|{j : An,j ∩ S 6= ∅}|
n

= 0.

For the partition Pn, the most important example is when the cells An,j are

cubes of volume hd
n. For cubic partition, the consistency conditions above

mean that

lim
n→∞

hn = 0 and lim
n→∞

nhd
n =∞. (2.5)

The second example of a local averaging estimate is the Nadaraya–

Watson kernel estimate. Let K : Rd → R+ be a function called the kernel

function, and let h > 0 be a bandwidth. The kernel estimate is defined by

mn(x) =

∑n
i=1 K

(

x−Xi

h

)

Yi
∑n

i=1 K
(

x−Xi

h

)

The kernel estimate is a weighted average of the Yi, where the weight of Yi

(i.e., the influence of Yi on the value of the estimate at x) depends on the

distance between Xi and x. For the bandwidth h = hn, the consistency

conditions are (2.5). If one uses the so-called näıve kernel (or window

kernel) K(x) = I{‖x‖≤1}, where I{·} denotes the indicator function of the
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events in the brackets, that is, it equals 1 if the event is true and 0 otherwise.

Then

mn(x) =

∑n
i=1 I{‖x−Xi‖≤h}Yi

∑n
i=1 I{‖x−Xi‖≤h}

,

i.e., one estimates m(x) by averaging Yi’s such that the distance between

Xi and x is not greater than h.

Our final example of local averaging estimates is the k-nearest neighbor

(k-NN) estimatel. Here one determines the k nearest Xi’s to x in terms of

distance ‖x−Xi‖ and estimates m(x) by the average of the corresponding

Yi’s. More precisely, for x ∈ R
d, let

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x))

be a permutation of

(X1, Y1), . . . , (Xn, Yn)

such that

‖x−X(1)(x)‖ ≤ · · · ≤ ‖x−X(n)(x)‖.
The k-NN estimate is defined by

mn(x) =
1

k

k
∑

i=1

Y(i)(x).

If k = kn →∞ such that kn/n→ 0 then the k-nearest-neighbor regression

estimate is consistent.

We use the following correspondence between the general regression

estimation and portfolio selection:

X ∼ Xk
1 ,

Y ∼ ln 〈b , Xk+1〉 ,
m(x) = E{Y | X = x} ∼ mb(x

k
1) = E{ln 〈b , Xk+1〉 | Xk

1 = xk
1}.

2.3.4. Histogram based strategy

Next we describe histogram based strategy due to [Györfi and Schäfer

(2003)] and denote it by BH . We first define an infinite array of elemen-

tary strategies (the so-called experts) B(k,ℓ) = {b(k,ℓ)(·)}, indexed by the

positive integers k, ℓ = 1, 2, . . .. Each expert B(k,ℓ) is determined by a pe-

riod length k and by a partition Pℓ = {Aℓ,j}, j = 1, 2, . . . ,mℓ of Rd
+ into
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mℓ disjoint cells. To determine its portfolio on the nth trading period,

expert B(k,ℓ) looks at the return vectors xn−k, . . . ,xn−1 of the last k pe-

riods, discretizes this kd-dimensional vector by means of the partition Pℓ,

and determines the portfolio vector which is optimal for those past trading

periods whose preceding k trading periods have identical discretized return

vectors to the present one. Formally, let Gℓ be the discretization function

corresponding to the partition Pℓ, that is,

Gℓ(x) = j, if x ∈ Aℓ,j .

With some abuse of notation, for any n and xn
1 ∈ R

dn, we write Gℓ(x
n
1 )

for the sequence Gℓ(x1), . . . , Gℓ(xn). Then define the expert B(k,ℓ) =

{b(k,ℓ)(·)} by writing, for each n > k + 1,

b(k,ℓ)(xn−1
1 ) = argmax

b∈∆d

∏

i∈Jk,l,n

〈b , xi〉 , (2.6)

where Jk,l,n =
{

k < i < n : Gℓ(x
i−1
i−k) = Gℓ(x

n−1
n−k)

}

,

if Jk,l,n 6= ∅, and uniform b0 = (1/d, . . . , 1/d) otherwise. That is, b
(k,ℓ)
n

discretizes the sequence xn−1
1 according to the partition Pℓ, and browses

through all past appearances of the last seen discretized string Gℓ(x
n−1
n−k)

of length k. Then it designs a fixed portfolio vector optimizing the return

for the trading periods following each occurrence of this string.

The problem left is how to choose k, ℓ. There are two extreme cases:

• small k or small ℓ implies that the corresponding regression estimate

has large bias,

• large k and large ℓ implies that usually there are few matching, which

results in large variance.

The good, data-driven choice of k and ℓ is doable borrowing recent

techniques from machine learning. In online sequential machine learning

setup k and ℓ are considered as parameters of the estimates, called experts.

The basic idea of online sequential machine learning is the combination of

the experts. The combination is an aggregated estimate, where an expert

has large weight if its past performance is good (cf. [Cesa-Bianchi and

Lugosi (2006)]).

The most appealing combination-type of the experts is exponential

weighting due to its nice theoretical and practical properties. Combine

the elementary portfolio strategies B(k,ℓ) = {b(k,ℓ)
n } as follows: let {qk,ℓ}

be a probability distribution on the set of all pairs (k, ℓ) such that for all

k, ℓ, qk,ℓ > 0.



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

Empirical Log-Optimal Portfolio Selections: a Survey 105

For a learning parameter η > 0, introduce the exponential weights

wn,k,ℓ = qk,ℓe
η lnSn−1(B

(k,ℓ)).

For η = 1, it means that

wn,k,ℓ = qk,ℓe
lnSn−1(B

(k,ℓ)) = qk,ℓSn−1(B
(k,ℓ))

and

vn,k,ℓ =
wn,k,ℓ

∑

i,j wn,i,j
.

The combined portfolio b is defined by

bn(x
n−1
1 ) =

∞
∑

k=1

∞
∑

ℓ=1

vn,k,ℓb
(k,ℓ)
n (xn−1

1 ).

This combination has a simple interpretation:

Sn(B
H) =

n
∏

i=1

〈

bi(x
i−1
1 ) , xi

〉

=

n
∏

i=1

∑

k,ℓ wi,k,ℓ

〈

b
(k,ℓ)
i (xi−1

1 ) , xi

〉

∑

k,ℓ wi,k,ℓ

=

n
∏

i=1

∑

k,ℓ qk,ℓSi−1(B
(k,ℓ))

〈

b
(k,ℓ)
i (xi−1

1 ) , xi

〉

∑

k,ℓ qk,ℓSi−1(B(k,ℓ))

=
n
∏

i=1

∑

k,ℓ qk,ℓSi(B
(k,ℓ))

∑

k,ℓ qk,ℓSi−1(B(k,ℓ))

=
∑

k,ℓ

qk,ℓSn(B
(k,ℓ)).

The strategyBH then arises from weighting the elementary portfolio strate-

gies B(k,ℓ) = {b(k,ℓ)
n } such that the investor’s capital becomes

Sn(B
H) =

∑

k,ℓ

qk,ℓSn(B
(k,ℓ)). (2.7)

It is shown in [Györfi and Schäfer (2003)] that the strategy BH is uni-

versally consistent with respect to the class of all ergodic processes such

that E{| logX(j)|} < ∞, for all j = 1, 2, . . . , d under the following two

conditions on the partitions used in the discretization:

(a) the sequence of partitions is nested, that is, any cell of Pℓ+1 is a subset

of a cell of Pℓ, ℓ = 1, 2, . . .;
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(b) if diam(A) = supx,y∈A ‖x− y‖ denotes the diameter of a set, then for

any sphere S ⊂ R
d centered at the origin,

lim
ℓ→∞

max
j:Aℓ,j∩S 6=∅

diam(Aℓ,j) = 0 .

2.3.5. Kernel based strategy

[Györfi et al. (2006)] introduced kernel-based portfolio selection strategies.

Define an infinite array of experts B(k,ℓ) = {b(k,ℓ)(·)}, where k, ℓ are pos-

itive integers. For fixed positive integers k, ℓ, choose the radius rk,ℓ > 0

such that for any fixed k,

lim
ℓ→∞

rk,ℓ = 0.

Then, for n > k + 1, define the expert b(k,ℓ) by

b(k,ℓ)(xn−1
1 ) = argmax

b∈∆d

∏

{k<i<n:‖xi−1
i−k
−x

n−1
n−k

‖≤rk,ℓ}
〈b , xi〉 ,

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise. These experts

are mixed as in (2.7).

[Györfi et al. (2006)] proved that the portfolio scheme BK = B is uni-

versally consistent with respect to the class of all ergodic processes such

that E{| lnX(j)|} <∞, for j = 1, 2, . . . d.

Sketch of the proof: Because of the fundamental limit (2.3), we have to

prove that

lim inf
n→∞

Wn(B) = lim inf
n→∞

1

n
lnSn(B) ≥W ∗ a.s.

We have that

Wn(B) =
1

n
lnSn(B)

=
1

n
ln





∑

k,ℓ

qk,ℓSn(B
(k,ℓ))





≥ 1

n
ln

(

sup
k,ℓ

qk,ℓSn(B
(k,ℓ))

)

=
1

n
sup
k,ℓ

(

ln qk,ℓ + lnSn(B
(k,ℓ))

)

= sup
k,ℓ

(

Wn(B
(k,ℓ)) +

ln qk,ℓ
n

)

.
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Thus

lim inf
n→∞

Wn(B) ≥ lim inf
n→∞

sup
k,ℓ

(

Wn(B
(k,ℓ)) +

ln qk,ℓ
n

)

≥ sup
k,ℓ

lim inf
n→∞

(

Wn(B
(k,ℓ)) +

ln qk,ℓ
n

)

= sup
k,ℓ

lim inf
n→∞

Wn(B
(k,ℓ))

= sup
k,ℓ

ǫk,ℓ.

Because of limℓ→∞ rk,ℓ = 0, we can show that

sup
k,ℓ

ǫk,ℓ = lim
k→∞

lim
l→∞

ǫk,ℓ = W ∗.

2.3.6. Nearest neighbor based strategy

Define an infinite array of experts B(k,ℓ) = {b(k,ℓ)(·)}, where 0 < k, ℓ are

integers. Just like before, k is the window length of the near past, and for

each ℓ choose pℓ ∈ (0, 1) such that

lim
ℓ→∞

pℓ = 0. (2.8)

Put

ℓ̂ = ⌊pℓn⌋.
At a given time instant n, the expert searches for the ℓ̂ nearest neighbor

(NN) matches in the past. For fixed positive integers k, ℓ (n > k + ℓ̂ + 1),

introduce the set of the ℓ̂ nearest neighbor matches:

Ĵ (k,ℓ)
n = {i; k + 1 ≤ i ≤ n such that xi−1

i−k is among the ℓ̂ NNs of xn−1
n−k

in xk
1 , . . . ,x

n−2
n−k−1}.

Define the expert by

b(k,ℓ)(xn−1
1 ) = argmax

b∈∆d

∏

i∈Ĵ(k,ℓ)
n

〈b , xi〉 .

That is, b
(k,ℓ)
n is a fixed portfolio vector according to the returns following

these nearest neighbors. These experts are mixed in the same way as in

(2.7).

We say that a tie occurs with probability zero if for any vector s = sk1
the random variable

‖Xk
1 − s‖
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has continuous distribution function.

[Györfi et al. (2008)] proved the following theorem: assume (2.8) and

that a tie occurs with probability zero, then the portfolio scheme BNN is

universally consistent with respect to the class of all stationary and ergodic

processes such that E{| logX(j)|} <∞, for j = 1, 2, . . . d.

2.3.7. Numerical results on empirical portfolio selection

The theoretical results above hold under the condition of stationarity. Obvi-

ously, the real data of returns (relative prices) are not stationary, therefore

we performed some experiments for New-York Stock Exchange (NYSE)

data . This section gives numerical results on empirical portfolio selection.

At the web page [Gelencsér and Ottucsák (2006)] there are two benchmark

data set from NYSE:

• The first data set consists of daily data of 36 stocks with length 22

years (5651 trading days ending in 1985). More precisely, the data set

contains the daily price relatives, that was calculated from the nominal

values of the closing prices corrected by the dividends and the splits

for all trading day. This data set has been used for testing portfolio

selection in [Cover (1991)], in [Singer (1997)], in [Györfi et al. (2006)],

in [Györfi et al. (2008)] and in [Györfi et al. (2007)].

• The second data set contains 19 stocks and has length 44 years (11178

trading days ending in 2006) and it was generated same way as the

previous data set (it was augmented by the last 22 years).

Our experiment is on the second data set. To make the analysis feasible,

some simplifying assumptions are used that need to be taken into account.

Remind the reader that we assume that

• the assets are arbitrarily divisible,

• the assets are available for buying or for selling in unbounded quantities

at the current price at any given trading period,

• there are no transaction costs (in Chapter 3 of this volume we offer

solutions to overcome this problem),

• the behavior of the market is not affected by the actions of the investor

using the strategy under investigation.

For the 19 assets in the second data set, the average annual yield (AAY)

of the static uniform portfolio (uniform index) is 14%, while the best asset

was MORRIS (Philip Morris International Inc.) with AAY 20%. These



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

Empirical Log-Optimal Portfolio Selections: a Survey 109

yields match with theoretical consideration derived in Chapter 1 of this

volume (Table 1.1), that is, that 44 years period is too “short” in the sense

in order to show that the limit of the growth rate of the static portfolio

coincides with that of the best asset.

Table 2.3. Comparison of the two algorithms

for CRPs.

Stock’s name AAY BCRP
log Semi-log

AHP 13% 0 0
ALCOA 9% 0 0
AMERB 14% 0 0
COKE 14% 0 0
DOW 12% 0 0

DUPONT 9% 0 0
FORD 9% 0 0
GE 13% 0 0
GM 7% 0 0
HP 15% 0.177 0.178
IBM 10% 0 0

INGER 11% 0 0
JNJ 16% 0 0

KIMBC 13% 0 0
MERCK 15% 0 0
MMM 11% 0 0

MORRIS 20% 0.747 0.746
PANDG 13% 0 0
SCHLUM 15% 0.076 0.076

AAY 20% 20%

Table 2.3 summarizes the numerical results for these 19 assets and for

BCRP. The first column of Table 2.3 lists the stock’s name, the second

column shows the AAY. The third and the fourth columns present the

weights of the stocks (the components of the best constant portfolio vector)

using the log-optimal and semi-log-optimal algorithms. Surprisingly, the

two portfolio vectors are almost the same, according to next-to-the-last

row the growth rates are the same: 20%. Again, the 44 years period is “too

small” in order to get that the growth rate of BCRP is much larger than the

growth rate of the best asset. Here one can make the same observation as

at the end of Chapter 1 of this volume, i.e., the BCRP is very undiversified,
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only three assets have positive weight.

For the calculation of the optimal portfolio we use a recursive greedy

gradient algorithm. Introduce the projection P of a vector b =

(b(1), . . . b(d)) to ∆d:

P (b) =
b

∑d
j=1 b

(j)
.

Put

Wn(b) =
1

n

n
∑

i=1

log 〈b , xi〉 ,

and let ej be the j-th unit vector, i.e., its j-th component is 1, the other

components are 0.

Gradient Algorithm

Parameters: number d of assets, initial portfolio b0 =

(1/d, . . . , 1/d), V0 = Wn(b0) and step size δ > 0 .

At iteration steps k = 1, 2, 3, . . . ,

(1) Calculate

Wn(P (bk−1 + δ · ej)) j = 1, . . . , d ;

(2) If

Vk−1 ≥ max
j

Wn(P (bk−1 + δ · ej))

then stop, and the result of the algorithm is bk−1.

Otherwise, put

Vk = max
j

Wn(P (bk−1 + δ · ej))

and

bk = P (bk−1 + δ · ej∗),
where

j∗ = argmax
j

Wn(P (bk−1 + δ · ej)).

Go to (1);
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Table 2.4. The average annual yields

of the individual experts for the kernel

strategy.

k 1 2 3 4 5

ℓ

1 31% 30% 24% 21% 26%

2 34% 31% 27% 25% 22%

3 35% 29% 26% 24% 23%

4 35% 30% 30% 32% 27%

5 34% 29% 33% 24% 24%

6 35% 29% 28% 24% 27%

7 33% 29% 32% 23% 23%

8 34% 33% 30% 21% 24%

9 37% 33% 28% 19% 21%

10 34% 29% 26% 20% 24%

Next we show experiments for time-varying portfolio selection. One can

combine the kernel based portfolio selection and the principle of semi-log-

optimal algorithm in Section 2.2.3, called kernel based semi-log-optimal

portfolio (cf. [Györfi et al. (2007)]). We present some numerical results

obtained by applying the kernel based semi-log-optimal algorithm to the

second NYSE data set.

The proposed universally consistent empirical portfolio selection algo-

rithms use an infinite array of experts. In practice we take a finite array

of size K × L. In our experiment we selected K = 5 and L = 10. Choose

the uniform distribution {qk,ℓ} = 1/(KL) over the experts in use, and the

radius

r2k,l = 0.0002 · d · k(1 + ℓ/10),

(k = 1, . . . ,K and ℓ = 1, . . . , L).

Table 2.4 summarizes the average annual yield achieved by each expert

at the last period when investing one unit for the kernel-based semi-log-

optimal portfolio. Experts are indexed by k = 1 . . . 5 in columns and ℓ =

1 . . . 10 in rows. The average annual yield of kernel based semi-log-optimal

portfolio is 31%. According to Table 2.3, MORRIS had the best average

annual yield, 20%, while the BCRP had average annual yield 20%, so with

kernel based semi-log-optimal portfolio we have a spectacular improvement.

Another interesting feature of Table 2.4 is that for any fixed ℓ, the best

k is equal to 1, so as far as empirical portfolio is concerned the Markovian

modelling is appropriate. If the time horizon in the experiment were infinity,
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then the numbers in each fixed row would be monotonically increasing.

Here we observe just the contrary, the reasoning of which is that in the k-

th position of a row the dimension of the optimization problem is 19 · k, so
for larger k the dimension is too large with respect to the length of the data,

i.e., for larger k there are not enough data to “learn” the best portfolio.

Again, the time varying portfolio is very undiversified such that the subset

of assets with non-zero weight is changing from time to time, which makes

the problem of transaction cost challenging.

Table 2.5. The average annual yields of

the individual experts for the nearest

neighbor strategy.

k 1 2 3 4 5

ℓ

50 31% 33% 28% 24% 35%

100 33% 32% 25% 29% 28%

150 38% 33% 26% 32% 27%

200 38% 28% 32% 32% 24%

250 37% 31% 37% 28% 26%

300 41% 35% 35% 30% 29%

350 39% 36% 31% 34% 32%

400 39% 35% 33% 32% 35%

450 39% 34% 34% 35% 37%

500 42% 36% 33% 38% 35%

We performed some experiments using nearest neighbor strategy.

Again, we take a finite array of size K × L such that K = 5 and L = 10.

Choose the uniform distribution {qk,ℓ} = 1/(KL) over the experts in

use. Table 2.5 summarizes the average annual yield achieved by each ex-

pert at the last period when investing one unit for the nearest neighbor

portfolio strategy. Experts are indexed by k = 1 . . . 5 in columns and

ℓ = 50, 100, . . . , 500 in rows, where ℓ is the number of nearest neighbors.

The average annual yield of nearest neighbor portfolio is 35% . Comparing

Tables 2.4 and 2.5, one can conclude that the nearest neighbor strategy is

more robust.
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Móri, T. F. (1984). I-divergence geometry of distributions and stochastic games,
in Proc. of the 3rd Pannonian Symp. on Math. Stat (Reidel, Dordrecht),
pp. 231–238.
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