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Preface

The main purpose of this volume is to investigate algorithmic methods

based on machine learning in order to design sequential investment strate-

gies for financial markets. Such sequential investment strategies use in-

formation collected from the past of the market and determine, at the

beginning of a trading period, a portfolio, that is, a way to invest the cur-

rently available capital among the assets that are available for purchase or

investment.

Our aim in writing this volume is to produce a self-contained text in-

tended for a wide audience, including graduate students in finance, statis-

tics, mathematics, computer science, and engineering, as well as researchers

in these fields. Thus the material is presented in a manner that requires

only a basic knowledge of probability.

In the approach that we adopt, the goal of the decider or investor is to

maximize his wealth on the long run; however the investor does not have

direct information about the underlying distributions which are generating

the stock prices. In the area of mathematical finance most of the known

theoretical results have been obtained for models which consider single as-

sets in a single period, and they typically assume a parametric model of

the underlying stochastic process of the prices.

In the last decade it has become clear that decision schemes that con-

sider multiple assets simultaneously, and that try to consider decisions over

multiple periods can increase the investor’s wealth through judicious rebal-

ancing of investments between the assets. Since accurate statistical mod-

elling of stock market behavior is now known to be notoriously difficult,

in our work we take an extreme point of view and work with minimal as-

sumptions on the probabilistic distributions regarding the time series of

interest. Our approach addresses the best rebalancing of portfolio assets in

the sense that it maximizes the expected log-return. If the distributions of

the underlying price processes are unknown then one has to “learn” the op-

timal portfolio from past data, and effective empirical strategies can then
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be derived using methods from nonparametric statistical smoothing and

machine learning.

The growth optimal portfolio (GOP) is defined as having a maximal

expected growth rate over any time horizon. As a consequence, this port-

folio is sure to outperform any other significantly different strategy as the

time horizon increases. This property in particular has fascinated many

researchers in finance and mathematics, and created an exciting literature

on growth optimal investment.

Thus Chapter 1 attempts to provide a comprehensive survey of the lit-

erature and applications of the GOP. In particular, the heated debate of

whether the GOP has a special place among portfolios in the asset allo-

cation decision is reviewed as this still seem to be an area where some

misconceptions exist. The survey also provides a review of the recent use

of the GOP as a pricing tool, for instance in the “benchmark approach”.

Chapter 2 provides a survey of sequential investment strategies for fi-

nancial markets. The GOP can be derived from the log-optimal criterion

(called Kelly-criterion, too), which means that one chooses the portfolio

maximizing the conditional expectation of the log-return given the past

data. Under the memoryless assumption on the underlying market pro-

cess of the assets’ relative prices the best constantly rebalanced portfolio is

studied, called log-optimal portfolio, which achieves the maximal asymp-

totic average growth rate. Semi-log optimal portfolio selection as a small

computational complexity alternative of the log-optimal portfolio selection

is studied both theoretically and empirically. For generalized dynamic port-

folio selection, when the market process is stationary and ergodic, the chal-

lenging problem is whether or not it is possible to learn the conditional

distributions from data, i.e., whether one can construct empirical (data

driven) strategies achieving the optimal growth rate. It turns out that

utilizing the current approaches of nonparametric estimates and machine

learning algorithms such empirical GOPs exist. The empirical performance

of the methods is illustrated for NYSE data.

The theoretical and empirical optimality of GOP will be based on some

assumptions, the most important of which is that the transaction cost is

ignored. In Chapter 3 the discrete time growth optimal investment with

proportional transaction costs is considered. Here the market process is

modelled by a first order Markov process. Assuming that the distribution

of the market process is known, we show sequential investment strategies

such that, in the long run, the growth rate on trajectories achieves the

maximum with probability 1.
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In the previous chapters the model does not include the possibility of

short selling and leverage. Chapter 4, revisits the GOP on non-leveraged,

long only markets for memoryless market process. We derive optimality

conditions to frameworks on leverage and short selling, and establish no-

ruin conditions. Moreover we investigate the strategy and its asymptotic

growth rate from both theoretical and empirical points of view. The empir-

ical performance of the methods is illustrated for NYSE data showing that

with short selling and leverage the growth rate is drastically increasing.

For constructing empirical GOPs, the role of nonparametric estimates

and machine learning algorithms is important. Chapter 5 is devoted to the

application of these principles for the prediction of stationary time series.

This chapter presents simple procedures for the prediction of a real valued

time series with side information. For the regression problem, survey the

basic principles of nonparametric estimates. Based on current machine

learning algorithms, the predictions are the aggregations of several simple

predictors. We show that if the sequence is a realization of a stationary

random process then the average of squared errors converges, almost surely,

to that of the optimum, given by the Bayes predictor. We offer an analog

result for the prediction of gaussian processes. These prediction strategies

have some consequences for the pattern recognition problem, too.

Chapter 6 is on empirical pricing American options, which can be viewed

as an optimal stopping problem derived from a backward recursion such

that in each step of the recursion one needs conditional expectations. For

empirical pricing, Longstaff and Schwartz suggested to replace the condi-

tional expectations by regression function estimates. We survey the current

literature and based on nonparametric regression estimates, some new al-

gorithms are introduced and investigated.

As we conclude this preface, we would like to acknowledge the contri-

bution of many people who influenced this volume. A number of colleagues

and friends have, often without realizing it, contributed to our understand-

ing of rebalancing, nonparametrics and machine learning. In particular we

would like to thank in this respect Paul Algoet, Andrew Barron, Tom Cover,

Miguel Delgado, Luc Devroye, Jürgen Dippon, László Gerencsér, András

György, Péter Kevei, Jussi Klemelä, Michael Kohler, Adam Krzyżak,

Kasper Larsen, Tamás Linder, Gábor Lugosi, Gábor Molnár-Sáska, Eck-

hard Platen, Miklós Rásonyi, Christian Riis Flor, Walter Schachermayer,

Dominik Schäfer, Wolfgang Stummer, Csaba Szepesvári, Frederic Udina,

István Vajda and Sara van de Geer.
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M. Horváth and A. Urbán

5. Nonparametric Sequential Prediction of Stationary Time Series 177

L. Györfi and Gy. Ottucsák

6. Empirical Pricing American Put Options 231

L. Györfi and A. Telcs

Subject Index 253

ix



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

Chapter 1

On the History of the Growth Optimal Portfolio

Morten Mosegaard Christensen∗

morten.mosegaard@danskebank.dk

The growth optimal portfolio (GOP) is a portfolio which has a maximal
expected growth rate over any time horizon. As a consequence, this
portfolio is sure to outperform any other significantly different strategy
as the time horizon increases. This property in particular has fascinated
many researchers in finance and mathematics created a huge and excit-
ing literature on growth optimal investment. This chapter attempts to
provide a comprehensive survey of the literature and applications of the
GOP. In particular, the heated debate of whether the GOP has a spe-
cial place among portfolios in the asset allocation decision is reviewed
as this still seem to be an area where some misconceptions exists. The
survey also provides an extensive review of the recent use of the GOP
as a pricing tool, in for instance the so-called “benchmark approach”.
This approach builds on the numéraire property of the GOP, that is,
the fact that any other asset denominated in units of the GOP become
a supermartingale.

1.1. Introduction and a Historical Overview

Over the past 50 years a large number of papers have investigated the GOP.

As the name implies this portfolio can be used by an investor to maximize

the expected growth rate of his or her portfolio. However, this is only

one among many uses of this object. In the literature it has been applied

in as diverse connections as portfolio theory and gambling, utility theory,

information theory, game theory, theoretical and applied asset pricing, in-

surance, capital structure theory, macro-economy and event studies. The

ambition of the present chapter is to present a reasonably comprehensive

∗Danske Bank A/S, Holmens Kanal 2-12, 1092 København. The views in this paper

represent the views of the author alone and do not represent the views of Danske Bank
A/S or any of its affiliates.
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review of the different connections in which the portfolio has been applied.

An earlier survey in [Hakansson and Ziemba (1995)] focused mainly on the

applications of the GOP for investment and gambling purposes. Although

this will be discussed in Section 1.3, the present chapter has a somewhat

wider scope.

The origins of the GOP have usually been tracked to the paper [Kelly

(1956)], hence the name “Kelly criterion” , which is used synonymously.

(The name Kelly criterion probably originates from [Thorp (1971)].) Kelly’s

motivation came from gambling and information theory, and his paper de-

rived a striking but simple result: There is an optimal gambling strategy,

such that with probability one, this optimal gambling strategy will accu-

mulate more wealth than any other different strategy. Kelly’s strategy was

the growth optimal strategy and in this respect the GOP was discovered

by him. However, whether this is the true origin of the GOP depends on a

point of view. The GOP is a portfolio with several aspects, one of which is

the maximization of the geometric mean. In this respect, the history might

be said to have its origin in [Williams (1936)], who considered speculators in

a multi-period setting and reached the conclusion that due to compounding,

speculators should worry about the geometric mean and not the arithmetic

ditto. Williams did not reach any result regarding the growth properties

of this approach but was often cited as the earliest paper on the GOP in

the seventies seemingly due to the remarks on geometric mean made in

the appendix of his paper. Yet another way of approaching the history

of the GOP is from the perspective of utility theory. As the GOP is the

choice of a log-utility investor, one might investigate the origin of this util-

ity function. In this sense the history dates even further back to the 18th

century. The mathematician Pierre Rèmond Montemort challenged Nicolas

Bernoulli with five problems, one of which was the famous St. Petersburg

paradox. The St. Petersburg paradox refers to the coin tossing game, where

returns are given as 2n−1, where n is the number of games before “heads”

come up the first time. The expected value of participating is infinite, but in

Nicolas Bernoulli’s words, no sensible man would pay 20 dollars for partici-

pating. Nicolas Bernoulli posed the problem to his cousin, Daniel Bernoulli,

who suggested using a utility function to ensure that (rational) gamblers

will use a more conservative strategy. Note that any unbounded utility

function is subject to the generalized St. Petersburg paradox, obtained by

scaling the outcomes of the original paradox sufficiently to provide infinite

expected utility. For more information see e.g. [Bernoulli (1954)], [Menger

(1967)], [Samuelson (1977)] or [Aase (2001)]. Nicolas Bernoulli conjectured
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that gamblers should be risk averse, but less so if they had high wealth. In

particular, he suggested that marginal utility should be inverse proportional

to wealth, which is tantamount to assuming log-utility. However, the choice

of logarithm appears to have nothing to do with the growth properties of

this strategy, as is sometimes suggested. The original article “Specimen

Theoriae Nova de Mensura Sortis” from 1738 is reprinted in Econometrica

[Bernoulli (1954)] and do not mention growth. (Concerning recent devel-

opment on St. Petersburg portfolio games see Chapter 2 of this volume.)

It should be noted that the St. Petersburg paradox was resolved even ear-

lier by Cramer, who used the square-root function in a similar way. Hence

log-utility has a history going back at least 250 years and in this sense, so

has the GOP. It seems to have been Bernoulli who to some extent inspired

the article [Latané (1959)]. Independent of Kelly’s result, Latané suggested

that investors should maximize the geometric mean of their portfolios, as

this would maximize the probability that the portfolio would be more valu-

able than any other portfolio. The cited paper by Latané has a reference

to Kelly’s 1956 paper, but Latané mentions that he was unaware of Kelly’s

result before presenting the paper at an earlier conference in 1956. Inde-

pendent of where the history of the GOP is said to start, the real interest

in the GOP was not awoken until after the papers by Kelly and Latané. As

will be described later on, the goal suggested by Latané caused a great deal

of debate among economists which has not completely died out yet. The

paper by Kelly caused a great deal of immediate interest in the mathematic

and gambling community. [Breiman (1960, 1961)] expanded the analysis

of [Kelly (1956)] and discussed applications for long term investment and

gambling in a more general mathematical setting.

Calculating the growth optimal strategy is generally very difficult in

discrete time and is treated in [Bellman and Kalaba (1957)], [Elton and

Gruber (1974)] and [Maier et al. (1977b)] although the difficulties disappear

whenever the market is complete. This is similar to the case when jumps in

asset prices happen at random. In the continuous-time continuous-diffusion

case, the problem is much easier and was solved in [Merton (1969)]. This

problem along with a general study of the properties of the GOP have

been studied for decades and is still being studied today. Mathematicians

fascinated by the properties of the GOP has contributed to the literature

with a significant number of theoretical articles spelling out the properties

of the GOP in a variety of scenarios and increasingly generalized settings,

including continuous time models based on semimartingale representation

of asset prices. Today, solutions to the problem exist in a semi-explicit
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form and in the general case, the GOP can be characterized in terms of the

semimartingale characteristic triplet. A non-linear integral equation must

still be solved to get the portfolio weights. The properties of the GOP

and the formulas required to calculate the strategy in a given set-up are

discussed in Section 1.2. It has been split into two parts. Section 1.2.1

deals with the simple discrete time case, providing the main properties of

the GOP without the need of demanding mathematical techniques. Sec-

tion 1.2.2 deals with the fully general case, where asset price processes are

modelled as semimartingales, and contains examples on important special

cases.

The growth optimality and the properties highlighted in Section 1.2

inspired authors to recommend the GOP as a universally “best” strategy

and this sparked a heated debate. In a number of papers Paul Samuelson

and other academics argued that the GOP was only one among many other

investment rules and any belief that the GOP was universally superior

rested on a fallacy. The substance of this discussion is explained in details

in Section 1.3.1. The debate from the late sixties and seventies contains

some important lessons to be held in mind when discussing the application

of the GOP as a long term investment strategy.

The use of the GOP became referred to as the growth optimum the-

ory and it was introduced as an alternative to expected utility and the

mean-variance approaches to asset pricing. It was argued that a theory for

portfolio selection and asset pricing based on the GOP would have prop-

erties which are more appealing than those implied by the mean-variance

approach developed by [Markowitz (1952)]. Consequently, a significant

amount of the literature deals with comparing the two approaches. A dis-

cussion of the relation between the GOP and the mean-variance model is

presented in Section 1.3.2. Since a main argument for applying the GOP

is its ability to outperform other portfolios over time, authors have tried to

estimate the time needed to be “reasonably” sure to obtain a better result

using the GOP. Some answers to this question are provided in Section 1.3.3.

The fact that asset prices, when denominated in terms of the GOP,

become supermartingales was realized quite early, appearing in a proof in

[Breiman (1960)][Theorem 1]. It was not until 1990 in [Long (1990)] that

this property was given a more thorough treatment. Although Long sug-

gested this as a method for measuring abnormal returns in event studies and

this approach has been followed recently in working papers by [Gerard et al.

(2000)] and [Hentschel and Long (2004)], the consequences of the numéraire

property stretches much further. It suggested a change of numéraire tech-
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nique for asset pricing under which a change of probability measure would

be unnecessary. The first time this is treated explicitly appears to be in

[Bajeux-Besnaino and Portait (1997a)] in the late nineties. At first, the use

of the GOP for derivative pricing purposes was essentially just the choice

of a particular pricing operator in an incomplete market. Over the past

five years, this idea became developed further in the benchmark framework

of [Platen (2002)] and later papers, who emphasize the applicability of this

idea in the absence of a risk-neutral probability measure. The use of the

GOP as a tool for derivative pricing is reviewed in Section 1.4. This has

motivated a substantial part of this paper, because it essentially challenges

the approach of using some risk neutral measure for pricing derivatives.

During this chapter I am going to conduct a (hopefully) thorough analy-

sis of what arbitrage concepts are relevant in a mathematically consistent

theory of derivative pricing and what role martingale measures play in this

context. Section 1.4 gives a motivation and foreshadows some of the results

I will derive later on. A complete survey of the benchmark approach is

beyond the scope of this chapter, but may be found in [Platen (2006a)].

The suggestion that such GOP denominated prices could be martingales

is important to the empirical work, since this provide a testable assump-

tion which can be verified from market data. The Kuhn-Tucker conditions

for optimum provides only the supermartingale property which may be a

problem, see Section 1.2 and Section 1.5. Few empirical papers exist, and

most appeared during the seventies. Some papers tried to obtain evidence

for or against the assumption that the market was dominated by growth

optimizers and to see how the growth optimum model compared to the

mean-variance approach. Others try to document the performance of the

GOP as an investment strategy, in comparison with other strategies. Sec-

tion 1.5 deals with the existing empirical evidence related to the GOP.

Since an understanding of the properties of the GOP provides a useful

background for analyzing the applications, the first task will be to present

the relevant results which describe some of the remarkable properties of the

GOP. The next section is separated into a survey of discrete time results

which are reasonably accessible and a more mathematically demanding sur-

vey in continuous time. This is not just mathematically convenient but also

fairly chronological. It also discusses the issues related to solving for the

growth optimal portfolio strategy, which is a non-trivial task in the general

case. Readers that are particularly interested in the GOP from an invest-

ment perspective may prefer to skip the general treatment in Section 1.2.2

with very little loss. However, most of this chapter relies extensively on the



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

6 M. M. Christensen

continuous time analysis and later sections builds on the results obtained

in Section 1.2.2. Extensive references will be given in the notes at the end

of each section and only the most important references are kept within the

main text, in order to keep it fluent and short.

1.2. Theoretical Studies of the GOP

The early literature on the GOP was usually framed in discrete time and

considered a restricted number of distributions. Despite the simplicity and

loss of generality, most of the interesting properties of the GOP can be

analyzed within such a framework. The more recent theory has almost

exclusively considered the GOP in continuous time and considers very gen-

eral set-ups, requiring the machinery of stochastic integration and some-

times applies a very general class of processes, semimartingales, which are

well-suited for financial modelling. Although many of the fundamental

properties of the GOP carry over to the general case, there are some quite

technical, but very important differences to the discrete time case.

Section 1.2.1 reviews the major theoretical properties of the GOP in a

discrete time framework, requiring only basic probability theory. Section

1.2.2, on the other hand, surveys the GOP problem in a very general semi-

martingale setting and places modern studies within this framework. It

uses the theory of stochastic integration with

respect to semimartingales, but simpler examples have been provided

for illustrative purposes. Both sections are structured around three basic

issues. Existence, which is fundamental, particularly for theoretical appli-

cations. Growth properties are those that are exploited when using the

GOP as an investment strategy. Finally, the numéraire property which is

essential for the use of the GOP in derivative pricing.

1.2.1. Discrete Time

Consider a market consisting of a finite number of non-dividend paying

assets. The market consists of d+1 assets, represented by a d+1 dimensional

vector process, S, where

S =
{
S(t) = (S(0)(t), . . . S(d)(t)), t ∈ {0, 1, . . . , T}

}
. (1.1)

The first asset S(0) is sometimes assumed to be risk-free from one period to

the next, i.e. the value S(0)(t) is known at time t− 1. In other words, S(0)

is a predictable process. Mathematically, let (Ω,F ,F ,P) denote a filtered
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probability space, where F = (Ft)t∈{0,1,...T} is an increasing sequence of

information sets. Each price process S(i) = {S(i)(t), t ∈ {0, 1, . . . T}} is

assumed to be adapted to the filtration F . In words, the price of each

asset is known at time t, given the information Ft. Sometimes it will

be convenient to work on an infinite time horizon in which case T = ∞.

However, unless otherwise noted, T is assumed to be some finite number.

Define the return process

R =
{
R(t) = (R0(t), . . . Rd(t)), t ∈ {1, 2, . . . , T}

}

by Ri(t) , S(i)(t)
S(i)(t−1)

− 1. Often it is assumed that returns are independent

over time, and for simplicity this assumption is made in this section.

Investors in such a market consider the choice of a strategy

δ =
{
δ(t) = (δ(0)(t), . . . δ(d)(t)), t ∈ {0, . . . , T}

}
,

where δ(i)(t) denotes the number of units of asset i that is being held during

the period (t, t+ 1]. As usual some notion of “reasonable” strategy has to

be used. Definition 1.1 makes this precise.

Definition 1.1. A trading strategy, δ, generates the portfolio value process

S(δ)(t) , δ(t) ·S(t). The strategy is called admissible if it satisfies the three

conditions

(1) Non-anticipative: The process δ is adapted to the filtration F , meaning

that δ(t) can only be chosen based on information available at time t.

(2) Limited liability: The strategy generates a portfolio process S(δ)(t)

which is non-negative.

(3) Self-financing: δ(t− 1) · S(t) = δ(t) · S(t), t ∈ {1, . . . T} or equivalently

∆S(δ)(t) = δ(t− 1) ·∆S(t).

The set of admissible portfolios in the market will be denoted Θ(S), and

Θ(S) will denote the strictly positive portfolios. It is assumed that Θ(S) 6=
∅.

Here, the notation x · y denotes the standard Euclidean inner product.

These assumptions are fairly standard. The first part assumes that any

investor is unable to look into the future, only the current and past infor-

mation is available. The second part requires the investor to remain solvent,

since his total wealth must always be non-negative. This requirement will

prevent him from taking an unreasonably risky position. Technically, this

constraint is not strictly necessary in the very simple set-up described in
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this subsection, unless the time horizon T is infinite. The third part re-

quires that the investor re-invests all money in each time step. No wealth

is withdrawn or added to the portfolio. This means that intermediate

consumption is not possible. Although this is a restriction in generality,

consumption can be allowed at the cost of slightly more complex state-

ments. Since consumption is not important for the purpose of this survey,

I have decided to leave it out altogether. The requirement that it should be

possible to form a strictly positive portfolio is important, since the growth

rate of any portfolio with a chance of defaulting will be minus infinity.

Consider an investor who invests a dollar of wealth in some portfolio.

At the end of period T his wealth becomes

S(δ)(T ) = S(δ)(0)

T−1∏

i=0

(1 +R(δ)(i))

where R(δ)(t) is the return in period t. If the portfolio fractions are fixed

during the period, the right-hand-side is the product of T independent and

identically distributed (i.i.d.) random variables. The geometric average

return over the period is then

(
T−1∏

i=0

(1 +R(δ)(i))

) 1
T

.

Because the returns of each period are i.i.d., this average is a sample of the

geometric mean value of the one-period return distribution. For discrete

random variables, the geometric mean of a random variable X taking (not

necessarily distinct) values x1, . . . xS with equal probabilities is defined as

G(X) ,
(
ΠS

s=1xs

) 1
S =

(
ΠK

k=1x̃
fk
k

)
= exp(E[log(X)]),

where x̃k is the distinct values of X and fk is the frequency of which X =

xk, that is fk = P(X = xk). In other words, the geometric mean is the

exponential function of the growth rate gδ(t) , E[log(1 +R(δ))(t)] of some

portfolio. Hence if Ω is discrete or more precisely if the σ-algebra F on Ω

is countable, maximizing the geometric mean is equivalent to maximizing

the expected growth rate. Generally, one defines the geometric mean of an

arbitrary random variable by

G(X) , exp(E[log(X)])

assuming the mean value E[log(X)] is well defined. Over long stretches

intuition dictates that each realized value of the return distribution should
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appear on average the number of times dictated by its frequency, and hence

as the number of periods increase, it would hold that

(
T−1∏

i=0

(1 +R(δ)(i))

) 1
T

= exp

(∑T
i=1 log(S

(δ)(i))

T

)
→ G(1 +R(δ)(1))

as T → ∞. This states that the average growth rate converges to the

expected growth rate. In fact this heuristic argument can be made precise

by an application of the law of large numbers, but here I only need it

for establishing intuition. In multi-period models, the geometric mean was

suggested by [Williams (1936)] as a natural performance measure, because it

took into account the effects from compounding. Instead of worrying about

the average expected return, an investor who invests repeatedly should

worry about the geometric mean return. As I will discuss later on, not

everyone liked this idea, but it explains why one might consider the problem

sup
S(δ)(T )∈Θ

E

[
log

(
S(δ)(T )

S(δ)(0)

)]
. (1.2)

Definition 1.2. A solution, S(δ), to (1.2) is called a GOP.

Hence the objective given by (1.2) is often referred to as the geometric

mean criteria. Economists may view this as the maximization of expected

terminal wealth for an individual with logarithmic utility. However, it is

important to realize that the GOP was introduced into economic theory,

not as a special case of a general utility maximization problem, but because

it seems as an intuitive objective, when the investment horizon stretches

over several periods. The next section will demonstrate the importance of

this observation. For simplicity it is always assumed that S(δ)(0) = 1, i.e.

the investors start with one unit of wealth.

If an investor can find an admissible portfolio having zero initial cost

and which provides a strictly positive pay-off at some future date, a solution

to (1.2) will not exist. Such a portfolio is called an arbitrage and is formally

defined in the following way.

Definition 1.3. An admissible strategy δ is called an arbitrage strategy if

S(δ)(0) = 0 P(S(δ)(T ) ≥ 0) = 1 P(S(δ)(T ) > 0) > 0.

It seems reasonable that this is closely related to the existence of a

solution to problem (1.2), because the existence of a strategy that creates

“something out of nothing” would provide an infinitely high growth rate.
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In fact, in the present discrete time set-up, the two things are completely

equivalent.

Theorem 1.1. There exists a GOP, S(δ), if and only if there is no arbi-

trage. If the GOP exists its value process is unique.

The necessity of no arbitrage is straightforward as indicated above. The

sufficiency will follow directly once the numéraire property of the GOP has

been established, see Theorem 1.4 below. In a more general continuous

time set-up, the equivalence between no arbitrage and the existence of a

GOP, as predicted from Theorem 1.4, is not completely true and technically

much more involved. The uniqueness of the GOP only concerns the value

process, not the strategy. If there are redundant assets, the GOP strategy is

not necessarily unique. Uniqueness of the value process will follow from the

Jensen inequality, once the numéraire property has been established. The

existence and uniqueness of a GOP plays only a minor role in the theory

of investments, where it is more or less taken for granted. In the line of

literature that deals with the application of the GOP for pricing purposes,

establishing existence is essential.

It is possible to infer some simple properties of the GOP strategy, with-

out further specifications of the model:

Theorem 1.2. The GOP strategy has the following properties:

(1) The fractions of wealth invested in each asset are independent of the

level of total wealth.

(2) The invested fraction of wealth in asset i is proportional to the return

on asset i.

(3) The strategy is myopic.

The first part is to be understood in the sense that the fractions invested

are independent of current wealth. Moreover, the GOP strategy allocates

funds in proportion to the excess return on an asset. Myopia means short-

sighted and implies that the GOP strategy in a given period depends only

on the distribution of returns in the next period. Hence the strategy is

independent of the time horizon. Despite the negative flavor the word

“myopic” can be given, it may for practical reasons be quite convenient to

have a strategy which only requires the estimation of returns one period

ahead. It seems reasonable to assume, that return distributions further out

in the future are more uncertain. To see why the GOP strategy depends
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only on the distribution of asset returns one period ahead note that

E

[
log(S(δ)(T ))

]
= log(S(δ)(0)) +

T∑

i=1

E

[
log(1 +R(δ)(i))

]
.

In general, obtaining the strategy in an explicit closed form is not possible.

This involves solving a non-linear optimization problem. To see this, I

derive the first order conditions of (1.2). Since by Theorem 1.2 the GOP

strategy is myopic and the invested fractions are independent of wealth,

one needs to solve the problem

sup
δ(t)

Et

[
log

(
S(δ)(t+ 1)

S(δ)(t)

)]
(1.3)

for each t ∈ {0, 1, . . . , T − 1}. Using the fractions πi
δ(t) =

δ(i)(t)S(i)(t)
S(δ)(t)

the

problem can be written

sup
πδ(t)∈Rd

E

[
log

(
1 + (1−

n∑

i=1

πi
δ)R

0(t) +

n∑

i=1

πi
δR

i(t)

)]
. (1.4)

The properties of the logarithm ensures that the portfolio will automatically

become admissible. By differentiation, the first order conditions become

Et−1

[
1 +Ri(t)

1 +Rδ(t)

]
= 1 i ∈ {0, 1, . . . , n}. (1.5)

This constitutes a set of d + 1 non-linear equation to be solved simulta-

neously such that one of which is a consequence of the others, due to the

constraint that
∑d

i=0 π
i
δ = 1. Although these equations do not generally

posses an explicit closed-form solution, there are some special cases which

can be handled:

Example 1.1 (Betting on events). Consider a one-period model. At

time t = 1 the outcome of the discrete random variable X is revealed.

If the investor bets on this outcome, he receives a fixed number α times his

original bet, which I normalize to one dollar. If the expected return from

betting is negative, the investor would prefer to avoid betting, if possible.

Let Ai = {ω|X(ω) = xi} be the sets of mutual exclusive possible outcomes,

where xi > 0. Some straightforward manipulations provide

1 = E

[
1 +Ri

1 +Rδ

]
= E

[
1Ai

πi
δ

]
=

P(Ai)

πi
δ

and hence πi
δ = P(Ai). Consequently, the growth-maximizer bets propor-

tionally on the probability of the different outcomes.
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In the example above, the GOP strategy is easily obtained since there

is a finite number of mutually exclusive outcomes and it was possible to bet

on any of these outcomes. It can be seen by extending the example, that

the odds for a given event has no impact on the fraction of wealth used to

bet on the event. In other words, if all events have the same probability

the pay-off if the event come true does not alter the optimal fractions.

Translated into a financial terminology, Example 1.1 illustrates the case

when the market is complete. The market is complete whenever Arrow-

Debreu securities paying one dollar in one particular state of the world can

be replicated, and a bet on each event could be interpreted as buying an

Arrow-Debreu security. Markets consisting of Arrow-Debreu securities are

sometimes referred to as “horse race markets” because only one security,

“the winner”, will make a pay-off in a given state. (See also Example 4 in

Chapter 2 of this volume.) In a financial setting, the securities are most

often not modelled as Arrow-Debreu securities.

Example 1.2 (Complete Markets). Again, a one-period model is con-

sidered. Assume that the probability space Ω is finite, and for ωi ∈ Ω there

is a strategy δωi
such that at time 1

S(δωi
)(ω) = 1(ω=ωi).

Then the growth optimal strategy, by the example above, is to hold a fraction

of total wealth equal to P(ω) in the portfolio S(δω). In terms of the original

securities, the investor needs to invest

πi =
∑

ω∈Ω

P(ω)πi
δω

where πi
δω

is the fraction of asset i held in the portfolio S(δω).

The conclusion that a GOP can be obtained explicitly in a complete

market is quite general. In an incomplete discrete time setting things

are more complicated and no explicit solution will exist, requiring the use

of numerical methods to solve the non-linear first order conditions. The

non-existence of an explicit solution to the problem was mentioned by e.g.

[Mossin (1973)] as a main reason for the lack of popularity of the Growth

Optimum model in the seventies. Due to the increase in computational

power over the past thirty years, time considerations have become unim-

portant. Leaving the calculations aside for a moment, I turn to the distin-

guishing properties of the GOP, which have made it quite popular among
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academics and investors searching for a utility independent criteria for port-

folio selection. A discussion of the role of the GOP in asset allocation and

investment decisions is postponed to Section 1.3.

Theorem 1.3. The portfolio process S(δ)(t) has the following properties

(1) If assets are infinitely divisible, the ruin probability, P(S(δ)(t) =

0 for some t ≤ T ), of the GOP is zero.

(2) If, additionally, there is at least one asset with non-negative expected

growth rate, then the long-term ruin probability (defined below) of the

GOP is zero.

(3) For any strategy δ it holds that lim sup 1
t log

(
S(δ)(t)
S(δ)(t)

)
≤ 0 almost surely.

(4) Asymptotically, the GOP maximizes median wealth.

The no-ruin property critically depends on infinite divisibility of invest-

ments. This means that an arbitrary small amount of a given asset can be

bought or sold. As wealth becomes low, the GOP will require a constant

fraction to be invested and hence such a low absolute amount must be fea-

sible. If not, ruin is a possibility. In general, any strategy which invests a

fixed relative amount of capital will never cause the ruin of the investor in

finite time as long as arbitrarily small amounts of capital can be invested.

In the case, where the investor is guaranteed not to be ruined at some fixed

time, the long term ruin probability of an investor following the strategy δ

is defined as

P(lim inf
t→∞

S(δ)(t) = 0).

Only if the optimal growth rate is greater than zero can ruin in this sense

be avoided. Note that seemingly rational strategies such as “bet such that

E[Xt] is maximized” can be shown to ensure certain ruin, even in fair or

favorable games. A simple example would be head or tail using a false

coin, where chances of head are 90%. If a player bets all his money on

head, then the chance that he will be ruined in n games will be 1− 0.9n →
1. Interestingly, certain portfolios selected by maximizing utility can have

a long-term ruin probability of one, even if there exist portfolios with a

strictly positive growth rate. This means that some utility maximizing

investors are likely to end up with, on average, very little wealth. The

third property is the distinguishing feature of the GOP. It implies that

with probability one, the GOP will overtake the value of any other portfolio

and stay ahead indefinitely. In other words, for every path taken, if the

strategy δ is different from the GOP, there is an instant s such that S(δ)(t) >
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S(δ)(t) for every t > s. Hence, although the GOP is defined so as to

maximize the expected growth rate, it also maximizes the long term growth

rate in an almost sure sense. The proof in a simple case is due to [Kelly

(1956)], more sources are cited in the notes. This property has led to

some confusion: if the GOP outperforms any other portfolio at some point

in time, it may be tempting to argue that long term investors should all

invest in the GOP. This is, however, not literally true and I will discuss this

in Section 1.3.1. The last part of the theorem has received less attention.

Since the median of a distribution is unimportant to an investor maximizing

expected utility, the fact that the GOP maximizes the median of wealth

in the long run is of little theoretical importance, at least in the field of

economics. Yet, for practical purposes it may be interesting, since for highly

skewed distributions the median is quite useful as a measure of the most

likely outcome. The property was recently shown by [Ethier (2004)].

Another performance criterion often discussed is the expected time to

reach a certain level of wealth. In other words, if the investor wants to

get rich fast, what strategy should he use? It is not generally true that

the GOP is the strategy which minimizes this time, due to the problem

of overshooting. If one uses the GOP, chances are that the target level is

exceeded significantly. Hence a more conservative strategy might be better,

if one wishes to attain a goal and there is no “bonus” for exceeding the

target. To give a mathematical formulation define

τ δ(x) , inf{t | S(δ)(t) ≥ x}

and let gδ(t) denote the growth rate of the strategy δ, at time t ∈ {1, . . . , }.
Note that due to myopia, the GOP strategy does not depend on the final

time, so it makes sense to define it even if T = ∞. Hence, gδ(t) denotes

the expected growth rate using the GOP strategy. If returns are i.i.d., then

gδ(t) is a constant, gδ. Defining the stopping time τ (δ)(x) to be the first

time the portfolio S(δ) exceeds the level x, the following asymptotic result

holds true.

Lemma 1.1 (Breiman, 1961). Assume returns to be i.i.d. Then for any

strategy δ

lim
x→∞

(
E[τ (δ)(x)]− E[τ (δ)(x)]

)
=
∑

i∈N

(
1− gδ(i)

gδ

)
.

In fact, a technical assumption needed is that the variables log(g(δ)(t))

be non-lattice. A random variable X is lattice if there is some a ∈
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R and some b > 0 such that P(X ∈ a + bZ) = 1, where Z =

{. . . ,−2,−1, 0, 1, 2, . . .}. As gδ is larger than gδ, the right-hand side is

non-negative, implying that the expected time to reach a goal is asymp-

totically minimized when using the GOP, as the desired level is increased

indefinitely. In other words, for “high” wealth targets, the GOP will min-

imize the expected time to reach this target. Note that the assumption

of i.i.d. returns implies that the expected growth rate is identical for all

periods. For finite hitting levels, the problem of overshooting can be dealt

with by introducing a “time rebate” when the target is exceeded. In this

case, the GOP strategy remains optimal for finite levels. The problem of

overshooting is eliminated in the continuous time diffusion case, because

the diffusion can be controlled instantaneously and in this case the GOP

will minimize the time to reach any goal, see [Pestien and Sudderth (1985)].

This ends the discussion of the properties that are important when con-

sidering the GOP as an investment strategy. Readers whose main interest

is in this direction may skip the remainder of this section. Apart from

the growth property, there is another property, of the GOP, the numéraire

property , which I will explain below, and which is important in order to

understand the role of the GOP in the fields of derivative/asset pricing.

Consider equation (1.5) and assume there is a solution satisfying these first

order conditions. It follows immediately that the resulting GOP will have

the property that expected returns of any asset measured against the return

of the GOP will be zero. In other words, if GOP denominated returns of

any portfolio are zero, then GOP denominated prices become martingales,

since

Et

[
1 +Rδ(t+ 1)

1 +Rδ(t+ 1)

]
= Et

[
S(δ)(t+ 1)

S(δ)(t+ 1)

S(δ)(t)

S(δ)(t)

]
= 1

which implies that

Et

[
S(δ)(t+ 1)

S(δ)(t+ 1)

]
=

S(δ)(t)

S(δ)(t)
.

If asset prices in GOP denominated units are martingales, then the em-

pirical probability measure P is an equivalent martingale measure (EMM).

This suggests a way of pricing a given pay-off. Measure it in units of the

GOP and take the ordinary average. In fact this methodology was sug-

gested recently and will be discussed in Section 1.4. Generally there is no

guarantee that (1.5) has a solution. Even if Theorem 1.1 ensures the ex-

istence of a GOP, it may be that the resulting strategy does not satisfy

(1.5). Mathematically, this is just the statement that an optimum need
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not be attained in an inner point, but can be attained at the boundary.

Even in this case something may be said about GOP denominated returns

- they become strictly negative - and the GOP denominated price processes

become strict supermartingales.

Theorem 1.4. The process Ŝ(δ)(t) , S(δ)(t)
S(δ)(t)

is a supermartingale. If πδ(t)

belongs to the interior of the set

{x ∈ R
d|Investing the fractions x at time t is admissible},

then Ŝ(δ)(t) is a true martingale.

Note that Ŝ(δ)(t) can be a martingale even if the fractions are not in

the interior of the set of admissible strategies. This happens in the (rare)

cases where the first order conditions are satisfied on the boundary of this

set. The fact that the GOP has the numéraire property follows by applying

the bound log(x) ≤ x − 1 and the last part of the statement is obtained

by considering the first order conditions for optimality, see Equation (1.5).

The fact that the numéraire property of the portfolio S(δ) implies that S(δ)

is the GOP is shown by considering the portfolio

S(ε)(t) , εS(δ)(t) + (1− ε)S(δ)(t),

using the numéraire property and letting ε turn to zero.

The martingale condition has been used to establish a theory for pricing

financial assets, see Section 1.4, and to test whether a given portfolio is the

GOP, see Section 1.5. Note that the martingale condition is equivalent

to the statement that returns denominated in units of the GOP become

zero. A portfolio with this property was called a numéraire portfolio by

[Long (1990)]. If one restricts the definition such that a numéraire portfolio

only covers the case where such returns are exactly zero, then a numéraire

portfolio need not exist. In the case where (1.5) has no solution, there is

no numéraire portfolio, but under the assumption of no arbitrage there is a

GOP and hence the existence of a numéraire portfolio is not a consequence

of no arbitrage. This motivated the generalized definition of a numéraire

portfolio, made by [Becherer (2001)], who defined a numéraire portfolio as

a portfolio, S(δ), such that for all other strategies, δ, the process S(δ)(t)
S(δ)(t)

would be a supermartingale. By Theorem 1.4 this portfolio is the GOP.

It is important to check that the numéraire property is valid, since

otherwise the empirical tests of the martingale restriction implied by (1.5)

become invalid. Moreover, using the GOP and the change of numéraire
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technique for pricing derivatives becomes unclear as will be discussed in

Section 1.4.

A simple example illustrates the situation that GOP denominated asset

prices may be supermartingales.

Example 1.3 (Becherer, 2001, Bühlmann and Platen, 2003).

Consider a simple one period model and let the market (S(0), S(1)) be such

that the first asset is risk free, S(0)(t) = 1, t ∈ {0, T}. The second asset has

a log-normal distribution log(S(1)(T )) ∼ N (µ, σ2) and S(1)(0) = 1. Con-

sider an admissible strategy δ = (δ(0), δ(1)) and assume the investor has one

unit of wealth. Since

S(δ)(T ) = δ(0) + δ(1)S(1)(T ) ≥ 0

and S(1)(T ) is log-normal, it follows that δ(i) ∈ [0, 1] in order for the wealth

process to be non-negative. Now

E

[
log
(
S(δ)(T )

)]
= E

[
log
(
1 + δ(1)(S(1)(T )− S(0)(T ))

)]
.

First order conditions imply that

E

[
S(1)(T )

1 + δ(1)(S(1)(T )− S(0)(T ))

]
= E

[
S(0)(T )

1 + δ(1)(S(1)(T )− S(0)(T ))

]
= 1.

It can be verified that there is a solution to this equation if and only if

|µ| ≤ σ2

2 . If µ − σ2

2 ≤ 0 then it is optimal to invest everything in S(0).

The intuition is, that compared to the risk-less asset the risky asset has a

negative growth rate. Since the two are independent it is optimal not to

invest in the risky asset at all. In this case

Ŝ(0)(T ) = 1, Ŝ(1)(T ) = S(1)(T ).

it follows that Ŝ(0) is a martingale, whereas Ŝ(1)(T ) = S(1)(T ) is a strict

supermartingale, since E[S(1)(T )|F0] ≤ S(1)(0) = 1. Conversely, if µ ≥ σ2

2

then it is optimal to invest everything in asset 1, because the growth rate of

the risk-free asset relative to the growth rate of the risky asset is negative.

The word relative is important because the growth rate in absolute terms is

zero. In this case

Ŝ(0)(T ) =
1

S(1)(T )
, Ŝ(1)(T ) = 1

and hence, Ŝ(0) is a supermartingale, whereas Ŝ(1) is a martingale.
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The simple example shows that there is economic intuition behind the

case when GOP denominated asset prices become true martingales. It

happens in two cases. Firstly, it may happen if the growth rate of the

risky asset is low. In other words, the market price of risk is very low and

investors cannot create short positions due to limited liability to short the

risky asset. Secondly, it may happen if the risky asset has a high growth

rate, corresponding to the situation where the market price of risk is high.

In the example this corresponds to µ ≥ σ2

2 . Investors cannot have arbitrary

long positions in the risky assets, because of the risk of bankruptcy. The

fact that investors avoid bankruptcy is not a consequence of Definition 1.1,

it will persist even without this restriction. Instead, it derives from the fact

that the logarithmic utility function turns to minus infinity as wealth turns

to zero. Consequently, any strategy that may result in zero wealth with

positive probability will be avoided. One may expect to see the phenomenon

in more general continuous-time models, in cases where investors are facing

portfolio constraints or if there are jumps which may suddenly reduce the

value of the portfolio. I will return to this issue in the next section.

Notes

The assumption of independent returns can be loosened, see [Hakansson

and Liu (1970)] and [Algoet and Cover (1988)]. Although strategies in such

set-ups should be based on previous information, not just the information

of the current realizations of stock prices, it can be shown that the growth

and numéraire property remains intact in this set-up.

That no arbitrage is necessary seems to have been noted quite early by

[Hakansson (1971a)], who formulated this as a “no easy money” condition,

where “easy money” is defined as the ability to form a portfolio whose

return dominates the risk free interest rate almost surely. The one-to-

one relation to arbitrage appears in [Maier et al. (1977b)][Theorem 1 and

1’] and although they do not mention arbitrage and state price densities

(SPD) explicitly, their results could be phrased as the equivalence between

the existence of a solution to problem 1.2 and the existence of an SPD

[Theorem 1] and the absence of arbitrage [Theorem 1’]. The first time the

relation is mentioned explicitly is in [Long (1990)]. Long’s Theorem 1, as

stated, is not literally true, although it would be if numéraire portfolio was

replaced by GOP. Uniqueness of the value process, S(δ)(t), was remarked

in [Breiman (1961)][Proposition 1].

The properties of the GOP strategy, in particular the myopia was ana-

lyzed in [Mossin (1968)]. Papers addressing the problem of obtaining a solu-
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tion to the problem include [Bellman and Kalaba (1957)], [Ziemba (1972)],

[Elton and Gruber (1974)], [Maier et al. (1977b)] and [Cover (1984)]. The

methods are either approximations or based on non-linear optimization

models.

The proof of the second property of Theorem 1.3 dates back to [Kelly

(1956)] for a very special case of Bernoulli trials but was noted indepen-

dently by [Latané (1959)]. The results where refined in [Breiman (1960,

1961)] and extended to general distributions in [Algoet and Cover (1988)].

The expected time to reach a certain goal was considered in [Breiman

(1961)] and the inclusion of a rebate in [Aucamp (1977)] implies that the

GOP will minimize this time for finite levels of wealth.

The numéraire property can be derived from the proof of [Breiman

(1961)][Theorem 3]. The term numéraire portfolio is from [Long (1990)].

The issue of supermartingality was apparently overlooked until explicitly

pointed out in [Kramkov and Schachermayer (1999)][Example 5.1]. A gen-

eral treatment which takes this into account is found in [Becherer (2001)],

see also [Korn and Schäl (1999, 2009)] and [Bühlmann and Platen (2003)]

for more in a discrete time setting.

1.2.2. Continuous Time

In this section some of the results are extended to a general continuous time

framework. The main conclusions of the previous section stand, although

with some important modifications, and the mathematical exposition is

more challenging. For this reason, the results are supported by examples.

Most conclusions from the continuous case are important for the treatment

in Section 1.4 and the remainder of this chapter which is held in continuous

time.

The mathematical object used to model the financial market given by

(1.1), is now a d + 1-dimensional semimartingale, S, living on a filtered

probability space (Ω,F ,F ,P), satisfying the usual conditions, see [Protter

(2004)]. Being a semimartingale, S can be decomposed as

S(t) = A(t) +M(t)

where A is a finite variation process and M is a local martingale. The

reader is encouraged to think of these as drift and volatility respectively,

but should beware that the decomposition above is not always unique. If

A can be chosen to be predictable, then the decomposition is unique. This

is exactly the case when S is a special semimartingale, see [Protter (2004)].
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Following standard conventions, the first security is assumed to be the

numéraire, and hence it is assumed that S(0)(t) = 1 almost surely for all

t ∈ [0, T ]. The investor needs to choose a strategy, represented by the d+1

dimensional process

δ = {δ(t) = (δ(0)(t), . . . , δ(d)(t)), t ∈ [0, T ]}.
The following definition of admissibility is the natural counterpart to Defi-

nition 1.1

Definition 1.4. An admissible trading strategy, δ, satisfies the three con-

ditions:

(1) δ is an S-integrable, predictable process.

(2) The resulting portfolio value S(δ)(t) ,
∑d

i=0 δ
(i)(t)S(i)(t) is non-

negative.

(3) The portfolio is self-financing, that is S(δ)(t) =
∫ t

0
δ(s)dS(s).

Here, predictability can be loosely interpreted as left-continuity, but

more precisely, it means that the strategy is adapted to the filtration gen-

erated by all left-continuous F-adapted processes. In economic terms, it

means that the investor cannot change his portfolio to guard against jumps

that occur randomly. For more on this and a definition of integrability with

respect to a semimartingale, see [Protter (2004)]. The second requirement

is important in order to rule out simple, but unrealistic, strategies lead-

ing to arbitrage, as for instance doubling strategies. The last requirement

states that the investor does not withdraw or add any funds. Recall that

Θ(S) denotes the set of non-negative portfolios, which can be formed using

the elements of S. It is often convenient to consider portfolio fractions, i.e.

πδ = {πδ(t) = (π0
δ (t), . . . , π

d
δ (t))

>, t ∈ [0,∞)}
with coordinates defined by:

πi
δ(t) ,

δ(i)(t)S(i)(t)

S(δ)(t)
. (1.6)

One may define the GOP, S(δ), as in Definition 1.2, namely as the

solution to the problem

S(δ) , arg sup
S(δ)∈Θ(S)

E[log(S(δ)(T ))]. (1.7)

This of course only makes sense if the expectation is uniformly bounded on

Θ(S) although alternative and economically meaningful definitions exist
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which circumvent the problem of having

sup
S(δ)∈Θ(S)

E[log(S(δ)(T ))] = ∞.

For simplicity, I use the following definition.

Definition 1.5. A portfolio is called a GOP if it satisfies (1.7).

In discrete time, there was a one-to-one correspondence between no ar-

bitrage and the existence of a GOP. Unfortunately, this breaks down in con-

tinuous time. Here several definitions of arbitrage are possible. A key ex-

istence result is based on the article [Kramkov and Schachermayer (1999)],

who used the notion of No Free Lunch with Vanishing Risk (NFLVR).

The essential feature of NFLVR is the fact that it implies the existence of

an equivalent martingale measure, see [Delbaen and Schachermayer (1994,

1998)]. More precisely, if asset prices are locally bounded, the measure is an

equivalent local martingale measure and if they are unbounded, the measure

becomes an equivalent sigma martingale measure. Here, these measures will

all be referred to collectively as equivalent martingale measures (EMM).

Theorem 1.5. Assume that

sup
S(δ)∈Θ(S)

E[log(S(δ)(T ))] < ∞

and that NFLVR holds. Then there is a GOP.

Unfortunately, there is no clear one-to-one correspondence between the

existence of a GOP and no arbitrage in the sense of NFLVR. In fact, the

GOP may easily exist, even when NFLVR is not satisfied, and NFLVR

does not guarantee that the expected growth rates are bounded. Moreover,

the choice of numéraire influences whether or not NFLVR holds. A less

stringent and numéraire invariant condition is the requirement that the

market should have a martingale density . A martingale density is a strictly

positive process Z, such that
∫
SdZ is a local martingale. In other words,

a Radon-Nikodym derivative of some EMM is a martingale density, but a

martingale density is only the Radon-Nikodym derivative of an EMM if it

is a true martingale. Modifying the definition of the GOP slightly, one may

show that:

Corollary 1.1. There is a GOP if and only if there is a martingale density.
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The reason why this addition to the previous existence result may be

important is discussed in Section 1.4.

To find the growth optimal strategy in the current setting can be a non-

trivial task. Before presenting the general result an important, yet simple,

example is presented.

Example 1.4. Let the market consist of two assets, a stock and a bond.

Specifically the SDEs describing these assets are given by

dS(0)(t) = S(0)(t)rdt

dS(1)(t) = S(1)(t) (adt+ σdW (t))

where W is a Wiener process and r, a, σ are constants. Using fractions, any

admissible strategy can be written

dS(δ)(t) = S(δ)(t) ((r + π(t)(a− r))dt+ π(t)σdW (t)) .

Applying Itô’s lemma to Y (t) = log(S(δ)(t)) provides

dY (t) =

(
(r + π(t)(a− r)− 1

2
π(t)2σ2)dt+ π(t)σdW (t)

)
.

Hence, assuming the local martingale with differential π(t)σdW (t) to be a

true martingale, it follows that

E[log(S(δ)(T )] = E

[∫ T

0

(r + π(t)(a− r)− 1

2
π(t)2σ2)dt

]
,

so by maximizing the expression for each (t, ω) the optimal fraction is ob-

tained as

πδ(t) =
a− r

σ2
.

Hence, inserting the optimal fractions into the wealth process, the GOP is

described by the SDE

dS(δ)(t) = S(δ)(t)

(
(r + (

a− r

σ
)2)dt+

a− r

σ
dW (t)

)

, S(δ)(t)
(
(r + θ2)dt+ θdW (t)

)
.

The parameter θ = a−r
σ is the market price of risk process.

The example illustrates how the myopic properties of the GOP makes

it relatively easy to derive the portfolio fractions. Although the method

seems heuristic, it will work in very general cases and when asset prices

are continuous, an explicit solution is always possible. This however, is
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not true in the general case. A very general result was provided in [Goll

and Kallsen (2000, 2003)], who showed how to obtain the GOP in a setting

with intermediate consumption and consumption takes place according to

a (possibly random) consumption clock. Here the focus will be on the GOP

strategy and its corresponding wealth process, whereas the implications for

optimal consumption will not be discussed. In order to state the result, the

reader is reminded of the semimartingale characteristic triplet, see [Jacod

and Shiryaev (1987)]. Fix a truncation function, h, i.e. a bounded function

with compact support, h : Rd → R
d, such that h(x) = x in a neighborhood

around zero. For instance, a common choice would be h(x) = x1(|x|≤1).

For such truncation function, there is a triplet (A,B, ν), describing the

behavior of the semimartingale. One may choose a “good version” that

is, there exists a locally integrable, increasing, predictable process, Â, such

that (A,B, ν) can be written as

A =

∫
adÂ, B =

∫
bdÂ, and ν(dt, dv) = dÂtF (t, dv).

The process A is related to the finite variation part of the semimartingale,

and it can be thought of as a generalized drift. The process B is similarly

interpreted as the quadratic variation of the continuous part of S, or in other

words it is the square volatility where volatility is measured in absolute

terms. The process ν is the compensated jump measure, interpreted as the

expected number of jumps with a given size over a small interval and F

essentially characterizes the jump size. Note that A depends on the choice

of truncation function.

Example 1.5. Let S(1) be as in Example 1.4, i.e. geometric Brownian

Motion. Then Â = t and

dA(t) = S(1)(t)adt dB(t) = (S(1)(t)σ)2dt.

Theorem 1.6 (Goll and Kallsen, 2000). Let S have a characteristic

triplet (A,B, ν) as described above. Suppose there is an admissible strategy

δ with corresponding fractions πδ, such that

aj(t)−
d∑

i=1

πi
δ(t)

S(i)(t)
(t)bi,j(t)+

∫

Rd


 xj

1 +
∑d

i=1

πi
δ(t)

S(i)(t)
xi

− h(x)


F (t, dx) = 0

(1.8)

for P⊗dÂ almost all (ω, t) ∈ Ω× [0, T ], where j ∈ {0, . . . , d} and ⊗ denotes

the standard product measure. Then δ is the GOP strategy.
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Essentially, equation (1.8) represent the first order conditions for opti-

mality and they would be obtained easily if one tried to solve the problem

in a pathwise sense, as done in Example 1.4. From Example 1.3 in the pre-

vious section it is clear, that such a solution need not exist, because there

may be a “corner solution”.

The following examples show how to apply Theorem 1.6.

Example 1.6. Assume that discounted asset prices are driven by an m-

dimensional Wiener process. The locally risk free asset is used as numéraire,

whereas the remaining risky assets evolve according to

dS(i)(t) = S(i)(t)ai(t)dt+
m∑

j=1

S(i)(t)bi,j(t)dW j(t)

for i ∈ {1, . . . , d}. Here ai(t) is the excess return above the risk free rate.

From this equation, the decomposition of the semimartingale S follows di-

rectly. Choosing Â = t, a good version of the characteristic triplet becomes

(A,B, ν) =

(∫
a(t)S(t)dt,

∫
S(t)b(t)(S(t)b(t))>dt, 0

)
.

Consequently, in vector form and after division by S(i)(t) equation (1.8)

yields that

a(t)− (b(t)b(t)>)πδ(t) = 0.

In the particular case where m = d and the matrix b is invertible, I get the

well-known result that

π(t) = b−1(t)θ(t),

where θ(t) = b−1(t)a(t) is the market price of risk.

Generally, whenever the asset prices can be represented by a continuous

semimartingale, a closed form solution to the GOP strategy may be found.

The cases where jumps are included are less trivial as shown in the following

example.

Example 1.7 (Poissonian Jumps). Assume that discounted asset prices

are driven by an m-dimensional Wiener process, W , and an n−m dimen-

sional Poisson jump process, N , with intensity λ ∈ R
n−m. Define the

compensated Poisson process q(t) , N(t) −
∫ t

0
λ(s)ds. Then asset prices

evolve as

dS(i)(t) = S(i)(t)ai(t)dt+

m∑

j=1

S(i)(t)bi,j(t)dW j(t)+

n∑

j=m+1

S(i)(t)bi,j(t)dqj(t)
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for i ∈ {1, . . . , d}. If it is assumed that n = d, then an explicit so-

lution to the first order conditions may be found. Assume that b(t) =

{bi,j(t)}i,j∈{1,...,d} is invertible. This follows if it is assumed that no ar-

bitrage exists. Define

θ(t) , b−1(t)(a1(t), . . . , ad(t))>.

If θj(t) ≥ λj(t) for j ∈ {m+ 1, . . . , d}, then there is an arbitrage, so it can

be assumed that θj(t) < λj(t). In this case, the GOP fractions satisfy the

equation

(π1(t), . . . , πd(t))>

= (b>)−1(t)

(
θ1(t), . . . , θm(t),

θm+1(t)

λm+1(t)− θm+1(t)
, . . . ,

θd(t)

λd(t)− θd(t)

)>
.

It can be seen that the optimal fractions are no longer linear in the market

price of risk. This is because when jumps are present, investments cannot be

scaled arbitrarily, since a sudden jump may imply that the portfolio becomes

non-negative. Note that the market price of jump risk needs to be less than

the intensity for the expression to be well-defined. If the market is complete,

then this restriction follows by the assumption of no arbitrage.

In general when jumps are present, there is no explicit solution in an

incomplete market. In such cases, it is necessary to use numerical methods

to solve equation (1.8). As in the discrete case, the assumption of complete

markets will enable the derivation of a fully explicit solution of the problem.

In the case of more general jump distributions, where the jump measure

does not have a countable support set, the market cannot be completed

by any finite number of assets. The jump uncertainty which appears in

this case can then be interpreted as driven by a Poisson process of an

infinite dimension. In this case, one may still find an explicit solution if the

definition of a solution is generalized slightly as in [Christensen and Larsen

(2007)].

As in discrete time the GOP can be characterized in terms of its growth

properties.

Theorem 1.7. The GOP has the following properties:

(1) The GOP maximizes the instantaneous growth rate of investments.

(2) In the long term, the GOP will have a higher realized growth rate than

any other strategy, i.e.

lim sup
T→∞

1

T
log(S(δ)(T )) ≤ lim sup

T→∞

1

T
log(S(δ)(T ))
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for any other admissible strategy S(δ).

The instantaneous growth rate is the drift of log(S(δ)(t)).

Example 1.8. In the context of Example 1.4 the instantaneous growth

rate, gδ(t), of a portfolio S(δ) was found by applying the Itô formula to get

dY (t) =

(
(r + π(t)(a− r)− 1

2
π(t)2σ2)dt+ π(t)σdW (t)

)
.

Hence, the instantaneous growth rate is

gδ(t) = r + π(t)(a− r)− 1

2
π(t)2σ2.

In example 1.4 I derived the GOP, exactly by maximizing this expression

and so the GOP maximized the instantaneous growth rate by construction.

As mentioned, the procedure of maximizing the instantaneous growth

rate may be applied in a straightforward fashion in more general settings.

In the case of a Wiener driven diffusion with deterministic parameters, the

second claim can be obtained directly by using the law of large numbers

for Brownian motion. The second claim does not rest on the assumption of

continuous asset prices although this was the setting in which it was proved.

The important thing is that other portfolios measured in units of the GOP

become supermartingales. Since this is shown below for the general case

of semimartingales, the proof in [Karatzas (1989)] will also apply here as

shown in [Platen (2004a)].

As in the discrete setting, the GOP enjoys the numéraire property. How-

ever, there are some subtle differences.

Theorem 1.8. Let S(δ) denote any admissible portfolio process and define

Ŝ(δ)(t) , S(δ)(t)
S(δ)(t)

. Then

(1) Ŝ(δ)(t) is a supermartingale if and only if S(δ)(t) is the GOP.

(2) The process 1
Ŝ(δ)(t)

is a submartingale.

(3) If asset prices are continuous, then Ŝ(δ)(t) is a local martingale.

In the discrete case, it was shown that prices denominated in units of the

GOP could become strict supermartingales. In the case of (unpredictable)

jumps, this may also happen, practically for the same reasons as before. If

there is a large expected return on some asset and a very slim chance of

reaching values close to zero, the log-investor is implicitly restricted from

taking large positions in this asset, because by doing so he would risk ruin
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at some point. This is related to the structure of the GOP in a complete

market as explained in Example 1.7.

There is a small but important difference to the discrete time setting.

It may be that GOP denominated prices become strict local martingales,

which is a local martingale that is not a martingale. This is a special case

of being a strict supermartingale since, due to the Fatou lemma, a non-

negative local martingale may become a supermartingale. This case does

not arise because of any implicit restraints on the choice of portfolios and

the threat of being illiquid. Instead, it has to do with the fact that not

all portfolios “gets the biggest bang for the buck” as will be explained in

Section 1.4.

Example 1.9 (Example 1.4 continued). Assume a market as in Ex-

ample 1.4 and define the processes Ŝ(0) and Ŝ(1) as in Theorem 1.8 above.

An application of the Itô formula implies that

dŜ(0)(t) = −Ŝ(0)(t)θdW (t)

and

dŜ(1)(t) = Ŝ(1)(t)(b(t)− θ)dW (t).

The processes above are local martingales since they are Itô integrals with

respect to a Wiener process. A sufficient condition for a local martingale

to be a true martingale is given by the so-called Novikov condition, see

[Novikov (1973)] requiring

E

[
exp

(
1

2

∫ T

0

θ(t)2dt

)]
< ∞,

which is satisfied in this case since θ is a constant. However, in more

general models θ can be a stochastic process. Several examples exist where

the Novikov condition is not satisfied and hence the processes Ŝ(0) and Ŝ(1)

become true supermartingales. A simple example is the situation where S(1)

is a Bessel process of dimension three. The inverse of this process is the

standard example of a local martingale which is not a martingale.

The fact that local martingales need not be martingales is important in

the theory of arbitrage free pricing and will be discussed in Section 1.4. In

these cases, the numéraire may be outperformed by trading the GOP.

The growth properties indicating that in the long run the GOP will

outperform all other portfolios have made it very interesting in the literature

on asset allocation and it has been argued that the GOP is a universally
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“best” investment strategy in the long run. This application and the debate

it has raised in the academic community is reviewed in the next section. A

second and more recent application is the numéraire property, particularly

interesting in the literature on arbitrage pricing, is reviewed subsequently.

Notes

The literature on the properties of the GOP is huge and only a few

have been discussed here. The properties of this section have been selected

because they have attracted the most interest in the literature. Using the

logarithm as utility function often provides very tractable results, so the

GOP arises implicitly in a large number of papers which, for simplicity, use

this function as part of the theory. To manage the literature on the sub-

ject, I have focused on papers which deal explicitly with the GOP. Theorem

1.5 appears in [Becherer (2001)][Theorem 4.5] and is a straightforward ap-

plication of [Kramkov and Schachermayer (1999)][Theorem 2.2]. In some

papers the GOP is defined in a pathwise sense, see [Platen (2002, 2004b)]

and [Christensen and Platen (2005)], which circumvents the problem of infi-

nite expected growth rates. An alternative solution is to define the GOP in

terms of relative growth rates, see [Algoet and Cover (1988)]. An alternative

existence proof, which is more direct, but does not relate explicitly to the

notion of arbitrage, can be found in [Aase (1988)] and [Aase and Oksendal

(1988)]. [Long (1990)][Appendix B, page 58] claims that the existence of

the GOP follows from no arbitrage alone, but this is in general incorrect.

The proof that the existence of a GOP is equivalent to the existence of a

martingale density is found in [Christensen and Larsen (2007)].

Theorem 1.6 was proved by [Goll and Kallsen (2000)] and expanded to

stochastic consumption clocks in [Goll and Kallsen (2003)]. The solution

in a complete Wiener driven set-up with constant parameters dates back

to [Merton (1969)], extended in [Merton (1971, 1973)]. [Aase (1988)] intro-

duced the problem in a jump-diffusion setting and derived a similar formula

in the context of a model with Wiener and Poisson noise using the Bellman

principle. This has been extended in [Aase (1984, 1986, 1988)], [Browne

(1999)], [Korn et al. (2003)]. [Yan et al. (2000)] and [Hurd (2004)] study

exponential Levy processes and [Platen (2004b)] obtains a fully explicit so-

lution in the case of a complete Poisson/Wiener market, similar to Example

1.7. It was noted by [Aase (1984)] that equation (1.8) would follow from

a pathwise optimization problem. [Christensen and Platen (2005)] follows

this procedure in a general marked point process setting and express the

solution in terms of the market price of risk. I show that a generalized
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version of the GOP can be characterized explicitly and approximated by a

sequence of portfolios in approximately complete markets. In an abstract

framework, relying on the duality result of [Kramkov and Schachermayer

(1999)] and the decomposition of [Schweizer (1995)], a general solution was

obtained in [Christensen and Larsen (2007)].

The problem of determining the GOP can be extended to the case of

portfolio constraints, see, for instance, [Cvitanić and Karatzas (1992)] and

in particular [Goll and Kallsen (2003)]. The case of transaction costs is

considered in [Serva (1999)], [Cover and Iyengar (2000)] and [Aurell and

Muratore-Ginanneschi (2004)]. Cases where the growth optimizer has ac-

cess to a larger filtration are treated by, for instance, [Ammendinger et al.

(1998)], who show how expanding the set of available information increases

the maximal growth rate. In the setting of continuous asset prices, [Larsen

and Zitković (2008)] show that the existence of a GOP when the filtration is

enlarged, guarantees the price process will remain a semimartingale, which

is convenient since arbitrage may arise in models, where this property is

not guaranteed. A model free approach to the maximization of portfolio

growth rate is derived in [Cover (1991)], and the literature on “universal

portfolios”.

Theorem 1.7(1) has often been used as the definition of the GOP. (2)

was proved in [Karatzas (1989)] in the setting of continuous diffusions. For

further results on the theoretical long-term behavior of the GOP in contin-

uous time, the reader is referred to [Pestien and Sudderth (1985)], [Heath

et al. (1987)] and [Browne (1999)]. Analysis of the long term behavior and

ruin probability is conducted in [Aase (1986)].

The numéraire property in continuous time was shown initially by [Long

(1990)]. The issue of whether GOP denominated prices become super-

martingales is discussed in [Becherer (2001)], [Korn et al. (2003)], [Hurd

(2004)] and [Christensen and Larsen (2007)]. The fact that the GOP is a

submartingale in any other denomination is shown by for instance [Aase

(1988)]. For examples of models, where the inverse GOP is not a true lo-

cal martingale, see [Delbaen and Schachermayer (1995a)] for a very simple

example and [Heath and Platen (2002a)] for a more elaborate one. The

standard (mathematical) textbook reference for such processes is [Revuz

and Yor (1991)].
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1.3. The GOP as an Investment Strategy

When the GOP was introduced to the finance community, it was not as

the result of applying a logarithmic utility function, but in the context

of maximizing growth. Investment theory based on growth is an alterna-

tive to utility theory and is directly applicable because the specification of

the goal is quite simple. The popularity of the mean-variance approach

is probably not to be found in its theoretical foundation, but rather the

fact that it suggested a simple trade-off between return and uncertainty.

Mean-variance based portfolio choice left one free parameter, the amount

of variance acceptable to the individual investor. The theory of growth op-

timal investment suggests the GOP as an investment tool for long horizon

investors because of the properties stated in the previous section, in partic-

ular because it will almost surely dominate other investment strategies in

terms of wealth as the time horizon increases. Hence, in the literature of

portfolio management, the GOP has often been, and is still, advocated as

a useful investment strategy, because utility maximization is a somewhat

abstract investment goal. For example, [Roy (1952)][Page 433] states that

“In calling in a utility function to our aid, an appearance of generality is
achieved at the cost of a loss of practical significance, and applicability
in our results. A man who seeks advice about his actions will not be
grateful for the suggestion that he maximize expected utility.”

In these words lies the potential strength of the growth optimal approach

to investment. However, utility theory being a very influential if not the

dominating paradigm, is a challenge to alternative, normative, theories of

portfolio selection. If investors are correctly modelled as individuals who

maximize some (non-logarithmic) utility function, then the growth rate per

se is of no importance and it makes no sense to recommend the GOP to

such individuals.

In this section three issues will be discussed. Firstly, the lively debate

on how widely the GOP can be applied as an investment strategy is re-

viewed in detail. This debate contains several points which may be useful

to keep in mind, since new papers in this line of literature often express

the point of view that the GOP deserves a special place in the universe of

investment strategies. In Section 1.3.1, the discussion of whether the GOP

can replace or proxy other investment strategies when the time horizon of

the investor is long is presented. The section is aimed to be a chronolog-

ical review of the pros and cons of the GOP as seen by different authors.
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Secondly, because the strategy of maximizing growth appeared as a chal-

lenge to the well-established mean-variance dogma, and because a large

part of the literature has compared the two, Section 1.3.2 will deal with the

relation between growth optimal investments and mean-variance efficient

investments. Finally, because the main argument for the GOP has been its

growth properties, some theoretical insight into the ability of the GOP to

dominate other strategies over time will be provided in Section 1.3.3.

Before commencing, let me mention that the GOP has found wide ap-

plications in gambling and to some extent horse racing. In these disciplines

a main issue is how to “gain an edge”, i.e. to create a favorable game with

non-negative expected growth rate of wealth. Obviously, if the game cannot

be made favorable, i.e. there is no strategy, such that the expected pay-off is

larger than the bet, the growth optimal strategy is of course simply to walk

away. If, on the other hand, it is possible to turn the game into a favorable

game, then applying the growth optimal strategy is possible. This can be

done in e.g. Black Jack since simple card counting strategies can be applied

to shift the odds slightly. Similarly, this may be done in horse-racing by

playing different bookmakers, see [Hausch and Ziemba (1990)]. There are

literally hundreds of papers on this topic. Growth maximizing strategies are

in this stream of literature predominantly denoted “Kelly strategies”. It ap-

pears that Kelly strategies or fractional Kelly strategies are quite common

in the theory of gambling and despite the striking similarity with invest-

ment decisions, the gambling literature appears to pay limited attention to

the expected utility paradigm in general. Perhaps because gamblers by na-

ture are much less risk averse than “common investors”. A general finding

which may be interesting in the context of asset allocation is that model

uncertainty generally leads to over-betting. Hence, if one wishes to max-

imize the growth rate of investment one might wish to apply a fractional

Kelly strategy, because the model indicated strategy could be “too risky”.

Notes

Some further references for applying the GOP in gambling can be found

in [Blazenko et al. (1992)], and in particular the survey [Hakansson and

Ziemba (1995)] and the paper [Thorp (1998)]. See also the papers [Ziemba

(2003, 2004)] for some easy-to-read accounts. A standard reference in gam-

bling is the book [Thorp (1966)], while the book [Poundstone (2005)] and

the edited volume [Maclean et al. (2010)] contain popular treatment of the

application of Kelly-strategies in gambling and investment.
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1.3.1. Is the GOP Better? - The Samuelson Controversy

The discussion in this section is concerned with whether the different at-

tributes of the growth optimal investment constitute a reasonable criteria

for selecting portfolios. More specifically, I discuss whether the GOP can be

said to be “better” in any strict mathematical sense and whether the GOP

is an (approximately) optimal decision rule for investors with a long time

horizon. Due to the chronological form of this section and the extensive

use of quotes, most references are given in the text, but further references

may be found in the notes.

It is a fact that the GOP attracted interest primarily due to the proper-

ties stated in Theorem 1.3. A strategy, which in the long run will beat any

other strategy in terms of wealth sounds intuitively attractive, in particular

to the investor who is not concerned with short term fluctuations, but has a

long horizon. Such an investor can lean back and watch his portfolio grow

and eventually dominate all others. From this point of view it may sound

as if any investor would prefer the GOP, if only his investment horizon is

sufficiently long.

Unfortunately, things are not this easy as was initially pointed out by

[Samuelson (1963)]. Samuelson argues in his 1963 paper, that if one is not

willing to accept one bet, then one will never rationally accept a sequence of

that bet, no matter the probability of winning. In other words, if one does

not follow the growth optimal strategy over one period, then it will not be

rational to follow the rule when there are many periods. His article is not

addressed directly to anyone in particular, rather it is written to “dispel a

fallacy of wide currency”, see [Samuelson (1963)][p. 50]. However, whether

it was intended or not, Samuelson’s paper serves as a counterargument to

the proposed strategy in [Latané (1959)]. Latané had suggested as the

criteria for portfolio choice, see [Latané (1959)][p. 146], that one chooses

“...the portfolio that has a greater probability (P’) of being as valuable
or more valuable than any other significantly different portfolio at the
end of n years, n being large.”

Latané had argued that this was logical long-term goal, but that it

“would not apply to one-in-a-lifetime choices” [p. 145]. This view is re-

peated in [Latané and Tuttle (1967)]. It would be reasonable to assume

that this is the target of Samuelsons critique. Indeed, Samuelson argues

that to use this goal is counter logical, first of all because it does not pro-

vide a transitive ordering and secondly as indicated above it is not rational
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to change objective just because the investment decision is repeated in a

number of periods. This criticism is valid to a certain extent, but it is based

on the explicit assumption that “acting rationally” means maximizing an

expected utility of a certain class. Samuelson’s statement is meant as a

normative statement. Experimental evidence shows that investors may act

inconsistently, see for instance [Benartzi and Thaler (1999)]. Note that one

may construct utility functions, such that two games are accepted, but one

is not. An example is in fact given by Samuelson himself (sic) in the later

paper [Samuelson (1984)]. Further references to this discussion are cited in

the notes. However, Latané never claimed his decision rule to be consistent

with utility theory. In fact, he seems to be aware of this, as he states

“For certain utility functions and for certain repeated gambles, no
amount of repetition justifies the rule that the gamble which is almost
sure to bring the greatest wealth is the preferable one.”

See [Latané (1959)][p. 145, footnote 3]. [Thorp (1971)] clarifies the ar-

gument made by Samuelson that making choices based on the probability

that some portfolio will do better or worse than others is non-transitive.

However, in the limit, the property characterizing the GOP is that it dom-

inates all other portfolios almost surely. This property, being equal almost

surely, clearly is transitive. Moreover, Thorp argues that even in the case

where transitivity does not hold, a related form of “approximate transi-

tivity” does, see [Thorp (1971)][p. 217]. Consequently he does not argue

against Samuelson (at least not directly), but merely points out that the

objections made by Samuelson do not pose a problem for his theory. One

may wish to emphasize that to compare the outcomes as the number of

repetitions turn to infinity, requires the limit S(δ)(t) to be well-defined,

something which is usually not the case whenever the expected growth rate

is non-negative. However, from Theorem 1.7, the limit

lim
t→∞

Ŝ(δ)(t)

is well-defined and less than one almost surely. Hence the question of tran-

sitivity depends on whether “n-large” means in the limit, in which case it

holds or it means for certain finite but large n, in which case it does not

hold. Second, as pointed out above “acting rationally” is in the language

of Samuelson to have preferences that are consistent with a single Von-

Neumann, Morgenstern utility function. Whether investors who act consis-

tently according to the same utility function ever existed is a questionable
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and this is not assumed by the proponents of the GOP, who intended the

GOP as a normative investment rule.

A second question is whether due to the growth properties there may

be some way to say that “in the long run, everyone should use the GOP”.

In this discussion Samuelson points directly to [Williams (1936)], [Kelly

(1956)] and [Latané (1959)]. The main point is that just because the GOP

in the long run will end up dominating the value of any other portfolio, it

will not be true, over any horizon however long, that the GOP is better for

all investors. In Samuelson’s own words, see [Samuelson (1971)][p. 2494]:

“...it is tempting to believe in the truth of the following false corollary:
False Corollary. If maximizing the geometric mean almost certainly
leads to a better outcome, then the expected utility of its outcome ex-
ceeds that of any other rule, provided that T is sufficiently large.”

Such an interpretation of the arguments given by for instance Latané

may be possible, see [Latané (1959)][footnote on page 151]. Later it becomes

absolutely clear that Samuelson did indeed interpret Latané in this way,

but otherwise it is difficult to find any statement in the literature which

explicitly expresses the point of view which is inherent in the false corollary

of [Samuelson (1971)]. Possibly the view point expressed in [Markowitz

(1959)] could be interpreted along these lines. Markowitz finds it irrational

that long-term investors would not choose the GOP - he does not argue that

investors with other utility functions would not do it, but rather he argues

that one should not have other utility functions in the very long run. This

is criticized by [Thorp (1971)], who points out that the position taken by

[Markowitz (1959)] cannot be supported mathematically. Nevertheless, this

point of view is somewhat different to that expressed by the false corollary.

Whether believers in the false corollary ever existed is questioned by [Thorp

(1971)][p. 602]. The point is that one cannot exchange the limits in the

following way: if

lim
t→∞

S(δ)(t)

S(δ)(t)
≤ 1,

then it does not hold that

lim
t→∞

E[U(S(δ)(t))] ≤ lim
t→∞

E[U(S(δ)(t))],

given some utility function U . This would require, for instance, the exis-

tence of the pointwise limit S(δ)(∞) and uniform integrability of the random

variables U(S(δ)(t)). Even if the limit and the expectation operator can be

exchanged, one might have E[U(S(δ)(t))] > E[U(S(δ)(t))] for all finite t



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

On the History of the Growth Optimal Portfolio 35

and equality in the limit. The intuitive reason is that even if the GOP

dominates another portfolio with a very high probability, i.e.

P(S(δ)(t) < S(δ)(t)) = 1− ε,

then the probability of the outcomes where the GOP performs poorly may

still be unacceptable to an investor who is more risk averse than a log-

utility investor. In other words, the left tail distribution of the GOP may

be too “thick” for an investor who is more risk averse than the log-utility

investor. It seems that a large part of the dispute is caused by claims

which argue that the aversion towards such losses is “irrational” because

the probability becomes arbitrarily small, whereas the probability of doing

better than everyone else becomes large. Whether or not such an attitude is

“irrational” is certainly a debatable subject and is probably more a matter

of opinion than a matter of mathematics.

When it became clear that the GOP would not dominate other strate-

gies in any crystal clear sense, several approximation results where sug-

gested. The philosophy was that as the time horizon increased, the GOP

would approximate the maximum expected utility of other utility functions.

However, even this project failed. [Merton and Samuelson (1974a)] pointed

out a flaw in an argument in [Hakansson (1971b)] and [Samuelson (1971)],

that a log-normal approximation to the distribution of returns over a long

period can be made. [Hakansson (1974)] admits to this error, but points

out that this has no consequences for the general statements of his pa-

per. Moreover, [Merton and Samuelson (1974a)] remarks that a conjecture

made by [Samuelson (1971)] and [Markowitz (1972)], that over a long hori-

zon the GOP will equal or be a good approximation to the optimal policy

when investors have bounded utility, is incorrect. Presumably, this unpub-

lished working paper, referred to by [Merton and Samuelson (1974a)] is an

older version of [Markowitz (1976)]. Firstly, they remark that [Markowitz

(1972)] did not define precisely what a “good approximation” was. Sec-

ondly, [Goldman (1974)] gives a counter example showing that following

the GOP strategy can lead to a large loss in terms of certainty equivalents,

even when investors have a bounded utility function. If U is a bounded

utility function, then certainly U(S(δ)(t)) is a family of uniformly inte-

grable variables and consequently, any converging sequence also converges

in mean. This means that it is true that

lim
T→∞

E[U(S(δ)(T )] = lim
T→∞

E[U(S(δ)(T )],

but the argument in, for instance, [Goldman (1974)] is that E[U(S(δ)(t))]
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converges much slower as t → ∞ than for the optimal policy. In other

words, if δU is the optimal policy for an investor with utility function U ,

then [Goldman (1974)] provides an example such that

lim
t→∞

E[U(S(δ)(t))]

E[U(S(δu)(t))]
= 0.

So even though the absolute difference in utility levels when applying the

GOP instead of the optimal strategy is shrinking, the GOP does infinitely

worse than the optimal strategy in terms of relative utility. Similarly, one

may investigate the certainty equivalent for an investor who is forced to

invest in the GOP. The certainty equivalent measures the amount of extra

wealth needed to obtain the same level of utility when using a suboptimal

strategy. The certainty equivalent when using the GOP in place of the op-

timal strategy is usually not decreasing as time goes by. [Markowitz (1976)]

argues that the criterion for asymptotic optimality adopted by [Merton and

Samuelson (1974a)] and [Goldman (1974)] is unacceptable, because it vio-

lates the notion that only the normalized form of the game is necessary for

comparing strategies. The “bribe”, which is described as a concept similar

to certainty equivalent, cannot be inferred by the normalized form of the

game. Markowitz moves on to define utility on a sequence of games and

concludes that if the investor is facing two sequences X and X ′ and prefers

X to X ′ if Xn ≥ X ′
n from a certain n with probability one, then such

an investor should choose the GOP. A very similar support of the max-

expected-growth-rate point of view is given by [Miller (1975)], who shows

that if the utility function depends only on the tail of the wealth sequence of

investments, then the GOP is optimal. In technical terms, if (Xn)n∈N is a

sequence such that Xn represents wealth after n periods, then U : R∞ → R

is such that, U(x1, . . . , xn, . . .) ≥ U(x′
1, . . . , x

′
n, . . .) whenever xn+j ≥ x′

n+j

for some n ∈ N and all j ≥ n. This abstract notion implies that the in-

vestor will only care about wealth effects, that are “far out in the future”.

It is unclear whether such a criterion can be given an axiomatic foundation,

although it does have some resemblance to the Ramsey-Weizsäcker overtak-

ing criterion used in growth theory, see [Brock (1970)] for the construction

of an axiomatic basis.

It seems that the debate on this subject was somewhat obstructed

because there was some disagreement about the correct way to measure

whether something is “a good approximation”. The concept of “the long

run” is by nature not an absolute quantity and depends on the context.

Hence, the issue of how long the long run is will be discussed later on.
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In the late seventies the discussion became an almost polemic repetition

of the earlier debate. [Ophir (1978)] repeats the arguments of Samuleson

and provides examples where the GOP strategy as well as the objective

suggested by Latané will provide unreasonable outcomes. In particular, he

notes the lack of transitivity when choosing the investment with the highest

probability of providing the best outcome. [Latané (1978)] counter-argues

that nothing said so far invalidates the usefulness of the GOP and that he

never committed to the fallacies mentioned in Samuelsons paper. As for his

choice of objective Latané refers to the discussion in [Thorp (1971)] regard-

ing the lack of transitivity. Moreover, Latané points out that a goal which

he advocates for use when making a long sequence of investment decisions,

is being challenged by an example involving only one unique decision. In

[Latané (1959)], Latané puts particular emphasis on the point that goals

can be different in the short and long run. As mentioned, this was ex-

actly the reasoning which Samuelson attacks in [Samuelson (1963)]. [Ophir

(1979)] refuses to acknowledge that goals should depend on circumstances

and once again establishes that Latanés objective is inconsistent with the

expected utility paradigm. [Samuelson (1979)] gets the last word in his,

rather amusing, article which is held in words of only one syllabus (apart

from the word syllabus itself!). In two pages he disputes that the GOP has

any special merits, backed by his older papers. The polemic nature of these

papers emphasizes that parts of the discussion for and against maximizing

growth rates depend on a point of view and is not necessarily supported by

mathematical necessities.

To sum up this discussion, there seems to be complete agreement that

the GOP can neither proxy for nor dominate other strategies in terms of

expected utility, and no matter how long (finite) horizon the investor has,

utility based preferences can make other portfolios more attractive because

they have a more appropriate risk profile. However, it should be under-

stood that the GOP was recommended as an alternative to expected utility

and as a normative rather than descriptive theory. In other words, authors

that argued pro the GOP did so because they believed growth optimality to

be a reasonable investment goal, with attractive properties that would be

relevant to long horizon investors. They recommended the GOP because

it seems to manifest the desire of getting as much wealth as fast as pos-

sible. On the other hand, authors who disagreed did so because they did

not believe that every investor could be described as log-utility maximizing

investors. Their point is that if an investor can be described as utility max-

imizing, it is pointless to recommend a portfolio which provides less utility
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than would be the case, should he choose optimally. Hence, the disagree-

ment has its roots in two very fundamental issues, namely whether or not

utility theory is a reasonable way of approaching investment decisions in

practice and whether utility functions, different from the logarithm, is a re-

alistic description of individual long-term investors. The concept of utility

based portfolio selection, although widely used, may be criticized by the ob-

servation that investors may be unaware of their own utility functions. Even

the three axioms required in the construction of utility functions, see [Kreps

(1988)] have been criticized, because there is some evidence that choices are

not made in the coherent fashion suggested by these axioms. Moreover, to

say that one strategy provides higher utility than another strategy may be

“business as usual” to the economist. Nevertheless it is a very abstract

statement, whose content is based on deep assumptions about the workings

of the minds of investors. Consequently, although utility theory is a con-

venient and consistent theoretical approach it is not a fundamental law of

nature. Neither is it strongly supported by empirical data and experimen-

tal evidence. (See for instance the monograph [Bossaerts (2002)] for some

of the problems that asset pricing theory that builds on CAPM and other

equilibrium models are facing and how some may be explained by experi-

mental evidence on selection.) After the choice of portfolio has been made

it is important to note that only one path is ever realized. It is practically

impossible to verify ex post whether some given portfolio was “the right

choice”. In contrast, the philosophy of maximizing growth and the long-

run growth property are formulated in dollars, not in terms of utility, and

so when one evaluates the portfolio performance ex post, there is a greater

likelihood that the GOP will come out as a “good idea”, because the GOP

has a high probability of being more valuable than any other portfolio. It

seems plausible that individuals, who observe their final wealth will not

care that their wealth process is the result of an ex-ante correct portfolio

choice, when it turns out that the performance is only mediocre compared

to other portfolios.

Every once in a while articles continue the debate about the GOP as a

very special strategy. These can be separated into two categories. The first,

can be represented by [McEnally (1986)] who agrees that the criticism raised

by Samuelson is valid. However, he argues that for practical purposes, in

particular when investing for pension, the probability that one will realize

a gain is important to investors. Consequently, Latané’s subgoal is not

without merit in McEnally’s point of view. Hence this category consists of

those who simply believe the GOP to be a tool of practical importance and
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this view reflects the conclusions I have drawn above.

The second category does not acknowledge the criticism to the same

extent and is characterized by statements such as

“... Kelly has shown that repetition of the investment many times gives
an objective meaning to the statement that the Growth-optimal strat-
egy is the best, regardless to the subjective attitude to risk or other
psychological considerations.“

see [Aurell et al. (2000b)][Page 4]. The contributions of this specific paper

lie within the theory of derivative pricing and will be considered in Section

1.4. Here I simply note that they argue in contrary to the conclusions of my

previous analysis. In particular, they seem to insist on an interpretation of

Kelly, which has been disproved. Their interpretation is even more clear in

[Aurell et al. (2000a)][Page 5], stating:

“Suppose some agents want to maximize non-logarithmic utility... and
we compare them using the growth optimal strategy, they would almost
surely end up with less utility according to their own criterion.”,

which appears to be a misconception and in general the statement will not

hold literally as explained previously. Hence some authors still argue that

every rational long term investor should choose the GOP. They seem to

believe that either other preferences will yield the same result, which is

incorrect, or that other preferences are irrational, which is a viewpoint that

is difficult to defend on purely theoretical grounds. A related idea which is

sometimes expressed is that it does not make sense to be more risk-seeking

than the logarithmic investor. This viewpoint was expressed and criticized

very early in the literature. Nevertheless, it seems to have stuck and is found

in many papers discussing the GOP as an investment strategy. Whether

it is true depends on the context. Although unsupported by utility theory,

the viewpoint finds support within the context of growth-based investment.

Investors who invest more in risky securities than the fraction warranted

by the GOP will, by definition, obtain a lower growth rate over time and at

the same time they will face more risk. Since the added risk does not imply

a higher growth rate of wealth it constitutes a choice which is “irrational”,

but only in the same way as choosing a non-efficient portfolio within the

mean-variance framework. It is similar to the discussion of whether, in

the long run, stocks are better than bonds. In many models, stocks will

outperform bonds almost surely as time goes to infinity. Whether long-

horizon investors should invest more in stocks depends: from utility based

portfolio selection the answer may be no. If the pathwise properties of the



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

40 M. M. Christensen

wealth distribution is emphasized, then the answer may be yes. As was

the case in this section, arguments supporting the last view will often be

incompatible with the utility based theories for portfolio selection. Similar

is the argument that “relative risk goes to zero as time goes to infinity”

because portfolio values will often converge to infinity as the time horizon

increases. Hence, risk measures such as VaR will converge to zero as time

turns to infinity, which is somewhat counterintuitive, see [Treussard (2005)].

In conclusion, many other unclarities in the finance relate to the fact

that a pathwise property may not always be reflected when using expected

utility to derive the true portfolio choice. It is a trivial exercise to con-

struct a sequence of random variables that converge to zero, and yet the

mean value converges to infinity. In other words, a portfolio may converge

to zero almost surely and still be preferred to a risk-free asset by a utility

maximizing agent. Intuition dictates that one should never apply such a

portfolio over the long term, whereas the utility maximization paradigm

says differently. Similarly, if one portfolio beats others almost surely over a

long horizon, then intuition suggests that this may be a good investment.

Still utility maximization refuses this intuition. It is those highly counterin-

tuitive results which have caused the debate among economists and which

continue to cast doubt on the issue of choosing a long term investment

strategy.

As a way of investigating the importance of the growth property of the

GOP, Section 1.3.3 sheds light on how long it will take before the GOP gets

ahead of other portfolios. I will document that choosing the GOP because it

outperforms other portfolios may not be a strong argument because it may

take hundreds of years before the probability of outperformance becomes

high.

Notes

The criticism by Samuelson and others can be found in the pa-

pers, [Samuelson (1963, 1969, 1971, 1979, 1991)], [Merton and Samuelson

(1974a,b)] and [Ophir (1978, 1979)]. The sequence of papers provides a very

interesting criticism. Although they do point out certain factual flaws, some

of the viewpoints may be characterized as (qualified) opinions rather than

truth in any objective sense.

Some particularly interesting references which explicitly take a different

stand in this debate is [Latané (1959, 1978)], [Hakansson (1971a,b)] and

[Thorp (1971, 1998)], which are all classics. Some recent support is found

in [McEnally (1986)], [Aurell et al. (2000b)], [Michaud (2003)] and [Platen
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(2005b)]. The view that investment of more than 100% in the GOP is

irrational is common in the gambling literature - referred to as “overbet-

ting” and is found for instance in [Ziemba (2003, 2004, 2005)]. In a finance

context the argument is voiced in [Platen (2005c)]. Game theoretic argu-

ments in favor of using the GOP is found in [Bell and Cover (1980, 1988)].

[Rubinstein (1976)] argues that using generalized logarithmic utility has

practical advantages to other utility functions, but does not claim supe-

riority of investment strategies based on such assumptions. The “fallacy

of large numbers” problem is considered in numerous papers, for instance

[Samuelson (1984)], [Ross (1999)], [Brouwer and den Spiegel (2001)] and

[Vivian (2003)]. It is shown in [Ross (1999)] that if utility functions have

a bounded first order derivative near zero, then they may indeed accept a

long sequence of bets, while rejecting a single one.

A recent working paper, [Rotar (2004)], considers investors with dis-

torted beliefs, that is, investors who maximize expected utility not with

respect to the real world measure, but with respect to some transforma-

tion. Conditions such that selected portfolios will approximate the GOP as

the time horizon increases to infinity are given.

1.3.2. Capital Growth and the Mean-Variance Approach

In the early seventies, the mean-variance approach developed in [Markowitz

(1952)] was the dominating theory for portfolio selection. Selecting port-

folios by maximizing growth was much less used, but attracted significant

attention from academics and several comparisons of the two approaches

can be found in the literature from that period. Of particular interest was

the question of whether or not the two approaches could be united or if they

were fundamentally different. I will review the conclusion from this investi-

gation along with a comparison of the two approaches. In general, growth

maximization and mean-variance based portfolio choice are two different

things. This is unsurprising, since it is well-known that mean-variance

based portfolio selection is not consistent with maximizing a given utility

function except for special cases. Given the theoretically more solid foun-

dation of the growth optimum theory compared to mean-variance based

portfolios selection, I will try to explain why the growth optimum theory

became much less widespread. Most parts of the discussion are presented

in discrete time, but in the second part of this section, the continuous time

parallel will be considered since the conclusions here are very different.
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Discrete time

Consider the discrete time framework of Section 1.2.1. Recall that a

mean-variance efficient portfolio, is a portfolio, such that any other portfolio

having the same mean return will have equal or higher variance. These

portfolios are obtained as the solution to a quadratic optimization program.

It is well-known that the theoretical justification of this approach requires

either a quadratic utility function or some fairly restrictive assumption on

the class of return distribution, the most common being the assumption of

normally distributed returns. The reader is assumed to be familiar with

the method, but sources are cited in the notes. Comparing this method for

portfolio selection to the GOP yields the following general conclusion.

• The GOP is in general not mean-variance efficient. [Hakansson (1971a)]

construct examples such that the GOP lies very far from the efficient

frontier. These examples are quite simple and involve only a few assets

with two point distributions but illustrate the fact that the GOP may

be far from the mean-variance efficient frontier. This is perhaps not

surprising given the fact that mean-variance selection can be related to

quadratic utility, whereas growth optimality is related to logarithmic

utility. Only for specific distributions will the GOP be efficient. Note

that if the distribution has support on the entire real axis, then the

GOP is trivially efficient, since all money will be put in the risk-free

asset. This is the case for normally distributed returns.

• Mean-variance efficient portfolios risk ruin. From Theorem 1.3 and the

subsequent discussion, it is known that if the growth rate of some as-

set is positive and the investment opportunities are infinitely divisible,

then the GOP will have no probability of ruin, neither in the short

or the long run sense. This is not the case for mean-variance efficient

portfolios, since there are efficient portfolios which can become negative

and some which have a negative expected growth rate. Although port-

folios with a negative expected growth rate need not become negative,

such portfolios will converge to zero as the number of periods turn to

infinity.

• Mean-variance efficient portfolio choice is inconsistent with first order

stochastic dominance. Since the quadratic utility function is decreasing

from a certain point onwards, a strategy which provides more wealth

almost surely may not be preferred to one that brings less wealth. Since

the logarithmic function is increasing, the GOP will not be dominated

by any portfolio.
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The general conclusions above leave the impression that the growth

based investment strategies and the mean-variance efficient portfolios are

very different. This view is challenged by authors who show that approxi-

mations of the geometric mean by the first and second moment can be quite

accurate. Given the difficulties of calculating the GOP, such approxima-

tions were sometimes used to simplify the optimization problem of finding

the portfolio with the highest geometric mean, see for instance [Latané and

Tuttle (1967)]. Moreover, the empirical results of Section 1.5 indicate that

it can be difficult to tell whether the GOP is in fact mean-variance efficient

or not.

In the literature, it has been suggested to construct different trade-offs

between growth and security in order for investors with varying degrees

of risk aversion to invest more conservatively. These ideas have the same

intuitive content as the mean-variance efficient portfolios. One chooses a

portfolio which has a desired risk level and which maximizes the growth

rate given this restriction. Versions of this trade-off include the compound

return mean-variance model, which is in a sense a multi-period version of

the original one-period mean-variance model. In this model, the GOP is

the only efficient portfolio in the long run. More direct trade-offs between

growth and security include models where security is measured as the prob-

ability of falling short of a certain level, the probability of falling below a

certain path, the probability of losing before winning etc.

Interpreted in the context of general equilibrium, the mean-variance ap-

proach has been further developed into the well-known CAPM, postulating

that the market portfolio is mean-variance efficient. A similar theory was

developed for the capital growth criteria by [Budd and Litzenberger (1971)]

and [Kraus and Litzenberger (1975)]. If all agents are assumed to maximize

the expected logarithm of wealth, then the GOP becomes the market port-

folio and from this an equilibrium asset pricing model appears. This is not

different from what could be done with any other utility function, but the

conclusions of the analysis provide empirically testable predictions and are

therefore of some interest. At the heart of the equilibrium model appearing

from assuming log-utility is the martingale or numéraire condition. Recall

that Ri(t) denotes the return on asset i between time t− 1 and time t and

Rδ is the return process for the GOP. Then the equilibrium condition is

1 = Et−1

[
1 +Ri(t)

1 +Rδ(t)

]
, (1.9)

which is simply the first order conditions for a logarithmic investor. Assume
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a setting with a finite number of states, that is, Ω = {ω1, . . . , ωn}, and define

pi = P({ωi}). Then, if S(i)(t) is an Arrow-Debreu security, paying off one

unit of wealth at time t+ 1, substituting into equation (1.9) provides

S(i)(t) = Et

[
1(ω=ωi)

1 +Rδ(t+ 1)

]
(1.10)

and consequently summing over all states provides an equilibrium condition

for the risk free interest rate

1 + r(t, t+ 1) = Et

[
1

1 +Rδ(t+ 1)

]
. (1.11)

Combining equations (1.9) and (1.11), defining R̄i , Ri−r and performing

some basic, but lengthy manipulations, yield

Et[R̄
i(t+ 1)] = βi

tEt[R̄
(δ)(t+ 1)], (1.12)

where

βi
t =

cov
(
R̄i(t+ 1), R̄δ(t+1)

Rδ(t+1)

)

cov
(
R̄δ(t+ 1), R̄δ(t+1)

Rδ(t+1)

) .

This is similar to the CAPM, apart from the β which in the CAPM has the

form

βCAPM =
cov(Ri, R∗)

var(R∗)
.

In some cases, the CAPM and the CAPM based on the GOP will be

very similar. For instance, when the characteristic lines are linear or trading

intervals the two approaches are indistinguishable and should be perceived

as equivalent theories. Later in this section, I will show the continuous

time version and here the GOP is always instantaneously mean-variance

efficient.

Since the growth based approach to portfolio choice has some the-

oretically nice features compared to the mean-variance theory and the

“standard” CAPM, one may wonder why this approach did not find more

widespread use. The main reason is presumably the strength of simplicity.

Mean-variance based portfolio choice has an intuitive appeal as it provides

a simple trade-off between expected return and variance. This trade-off

can be parameterized in a closed form, requiring only the estimation of a

variance-covariance matrix of returns and the ability to invert this matrix.

Although choosing a portfolio which is either a fractional Kelly strategy or
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logarithmic mean-variance efficient provides the same trade-off, it is com-

putationally much more involved. In Section 1.2.1 I pointed out the fact

that determining the GOP in a discrete time setting is potentially difficult

and no closed form solution is available. Although this may be viewed as

a rather trivial matter today, it certainly was a challenge to the compu-

tational power available 35 years ago. Second, the theory was attacked

immediately for the lack of economic justification. Finally, the empirical

data presented in Section 1.5 show that it is very hard to separate the

CAPM tangency portfolio and the GOP in practice.

Continuous time

The assumption that trading takes place continuously is the foundation

of the Intertemporal CAPM of [Merton (1973)]. Here, the price process of

the risky asset S(i), i ∈ {1, . . . , d}, is modelled as continuous time diffusions

of the form

dS(i)(t) = S(i)


ai(t)dt+

m∑

j=1

bi,j(t)dW j(t)




where W is an m-dimensional standard Wiener process. The process ai(t)

can be interpreted as the instantaneous mean return and
∑m

j=1(b
i,j(t))2

is the instantaneous variance. One may define the instantaneous mean-

variance efficient portfolios as solutions to the problem

supδ∈Θ(S) a
δ(t)

s.t. bδ(t) ≤ k(t),

where k(t) is some non-negative adapted process. To characterize such

portfolios, define the minimal market price of risk vector,

θp = {θp(t) = ((θp)1(t), . . . , (θp)m(t))>, t ∈ [0, T ]},
by

θp(t) , b(t)(b(t)b(t)>)−1(t)(a(t)− r(t)1). (1.13)

Denote the Euclidean norm by,

||θp(t)|| =




m∑

j=1

(θp)j(t)2




1
2

.

Then, instantaneously mean-variance efficient portfolios have fractions

which are solutions to the equation

(π1(t), . . . , πN (t))>b(t) = α(t)θ(t) (1.14)
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for some non-negative process α, and the corresponding SDE for such port-

folios is given by

dS(δ(α))(t) = S(δ(α))(t)


(r(t) + α(t)||θ(t)||2)dt+ α(t)

m∑

j=1

θj(t)dW j(t)


 .

(1.15)

From Example 1.6 it can be verified that in this case, the GOP is in fact

instantaneously mean-variance efficient, corresponding to the choice of α =

1. In other words, the GOP belongs to the class of instantaneous Sharpe

ratio maximizing strategies, where the Sharpe ratio, s(δ), of some strategy

δ is defined as

s(δ)(t) =
aδ(t)− r(t)∑m
j=1(b

δ,j(t))2
.

Here aδ(t) = δ(0)(t)r(t) +
∑n

i=1 δ
(i)(t)ai(t) and similarly bδ,j(t) =∑n

i=1 δ
(i)(t)bi,j(t).

Note that the instantaneously mean-variance efficient portfolios consist

of a position in the GOP and the rest in the risk-free asset, in other words

a fractional Kelly strategy. Under certain conditions, for instance if the

market price of risk and the interest rate are deterministic processes, it can

be shown that any utility maximizing investor will choose a Sharpe ratio

maximizing strategy and in such cases, fractional Kelly strategies will be

optimal for any investor. This result can be generalized to the case where

the short rate and the total market price of risk, ||θp(t)||, are adapted to the

filtration generated by the noise source that drives the GOP. It is, however,

well-known that if the short rate or the total market price of risk is driven

by factors which can be hedged in the market, some investors will choose to

do so and consequently not choose a fractional Kelly strategy. When jumps

are added to asset prices, the GOP will again become instantaneously mean-

variance inefficient, except for very special cases. The conclusion is shown

to depend strongly on the pricing of event risk and completeness of markets.

If the representative investor has logarithmic utility, then in equilibrium

the GOP will become the market portfolio. Otherwise this will not be

the case. Since the conditions under which the GOP becomes exactly the

market portfolio are thus fairly restrictive, some authors have suggested

that the GOP may be very similar to the market portfolio under a set

of more general assumptions. For instance, it has been shown in [Platen

(2003, 2005a)] that sufficiently diversified portfolios will approximate the

GOP under certain regularity conditions. (In Chapter 2 of this volume a
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special mean-variance approach, called semi-log-optimal portfolio, is a good

approximation of the GOP.) It should be noted that the circumstances

under which the GOP approximates the market portfolio do not rely on

the preferences of individual investors. The regularity conditions consist

of a limit to the amount of volatility not mirroring that of the GOP. This

condition may be difficult to verify empirically.

In the end, whether the GOP is close to the market portfolio and

whether the theory based on this assumption holds true remains an em-

pirical question, which will be considered later on. Foreshadowing these

conclusions, the general agreement from the empirical analysis is that if

anything, the GOP is more risky than the market portfolio, but rejecting

the hypothesis that the GOP is a proxy for the market portfolio is on the

other hand very difficult.

Notes

The mean-variance portfolio technique is found in most finance text-

books. For proofs and a reasonably rigorous introduction, see [Huang and

Litzenberger (1988)]. The main results of the comparison, between mean-

variance and growth optimality is found in [Hakansson (1971b,a)], see also

[Hakansson (1974)]. The compound return mean-variance trade-off was

introduced in [Hakansson (1971b)]. A critique of this model is found in

[Merton and Samuelson (1974a,b)], but some justification is given by [Lu-

enberger (1993)]. Papers discussing the growth-security trade-off include

[Blazenko et al. (1992)], [Li (1993)], [Li et al. (2005)], [Michaud (2003)]

and [MacLean et al. (2004)]. In the gambling literature, the use of frac-

tional Kelly strategies is widespread. For more references, the reader is

referred to [Hakansson and Ziemba (1995)]. An earlier comparison between

mean-variance and the GOP is found in [Bickel (1969)]. [Thorp (1969)]

recommends that the Kelly-criterion replaces the mean-variance criterion

for portfolio selection, due to the sometimes improper choices made by

the latter. For approximations of geometric means see [Trent and Young

(1969)] and [Elton and Gruber (1974)]. They conclude that the first two

moments can provide reasonable approximations, in particular if the distri-

bution does not have very fat tails. In continuous time a recent discussion

of a growth security trade-off and the CAPM formula which appears, can be

found in [Bajeux-Besnaino and Portait (1997a)] and [Platen (2002, 2006b,

2005c)]. An application of the GOP for asset pricing purposes can be found

in [Ishijima (1999)] and [Ishima et al. (2004)].

Versions of the result that in continuous time a two-fund separation
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result will imply that investors choose fractional Kelly strategies have been

shown at different levels of generality in for instance [Merton (1971, 1973)],

[Khanna and Kulldorff (1999)], [Nielsen and Vassalou (2002, 2004)], [Platen

(2002)], [Zhao and Ziemba (2003)] and [Christensen and Platen (2005)].

Some general arguments that the GOP will approximate or be identical to

the market portfolio is provided in [Platen (2004c, 2005a)]. [Christensen

(2005)] shows that when the risky asset can be dominated, investors must

stay “reasonably close to the GOP” when the market conditions become

favorable. However, this is a relatively weak approximation result as I will

make clear. Further results in the case where asset prices are of a more

general class are treated in [Platen (2006b)].

In an entirely different literature, the so-called evolutionary finance lit-

erature, [Blume and Easley (1992)] show that using the GOP will result in

market dominance. The conclusion is, however, not stable to more general

set-ups as shown in [Amir et al. (2004)], where market prices are determined

endogenously and the market is incomplete.

1.3.3. How Long Does it Take for the GOP to Outperform

other Portfolios?

As the GOP was advocated, not as a particular utility function, but as

an alternative to utility theory relying on its ability to outperform other

portfolios over time, it is important to document this ability over horizons

relevant to actual investors. In this section, I will assume that investors

are interested in the GOP because they hope it will outperform other com-

peting strategies. This goal may not be a “rational” investment goal from

the point of view of expected utility, but it is investigated because it is

the predominant reason why the GOP was recommended as an investment

strategy, as explained previously.

To get a feeling for the time it takes for the GOP to dominate other

assets, consider the following illustrative example.

Example 1.10. Assume a set-up similar to Example 1.4. This is a two-

asset Black-Scholes model with constant parameters. By solving the dif-

ferential equation, the savings account with a risk-free interest rate of r is

given by

S(0)(t) = exp(rt)
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and solving the SDE, the stock price is given as

S(1)(t) = exp((a− 1

2
σ2)t+ σW (t)).

By Example 1.4, the GOP is given by the process

S(δ)(t) = exp((r +
1

2
θ2)t+ θW (t))

where θ = a−r
σ . Some simple calculations imply that the probability

P0(t) , P(S(δ)(t) ≥ S(0)(t))

of the GOP outperforming the savings account over a period of length t

and the probability

P1(t) , P(S(δ)(t) ≥ S(1)(t))

of the GOP outperforming the stock over a period of length t are given by

P0(t) = N

(
1

2
θ
√
t

)
,

and

P1(t) = N

(
1

2
|θ − σ|

√
t

)
.

Here N(·) denotes the cumulative distribution function of the standard

Gaussian distribution. Clearly, these probabilities are independent of the

short rate. This would remain true even if the short rate was stochastic,

as long as the short rate does not influence the market price of risk and

volatility of the stock. Moreover, they are increasing in the market price of

risk and time horizon. The probabilities converge to one as the time horizon

increases to infinity, which is a manifestation of the growth properties of

the GOP. Table 1.1 shows the time horizon needed for outperforming the

savings account at certain confidence levels. If θ is interpreted as |θ − σ|,
then the results can be interpreted as the time horizon needed to outperform

the stock.

Table 1.1. Time horizon needed for outperforming the
risk free asset at certain confidence levels.

Conf. level θ = 0.05 θ = 0.1 θ = 0.25 θ = 0.5

99% 8659 2165 346 87
95% 4329 1082 173 43
90% 2628 657 105 26
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Table 1.1 shows that if the market price of risk is 0.25 then over a 105

year period the GOP will provide a better return than the risk free asset

with a 90% level of confidence. This probability is equal to the probability

of outperforming a moderately risky stock with a volatility of 50% per year.

Figure 1.1 below show how the outperformance probability depends on the

time horizon.
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Fig. 1.1. Outperformance Likelihood.

The preliminary conclusion based on these simple results is that the long

run may be very long indeed. A Sharpe ratio of 0.5 is a reasonably high

one, for instance this would be the result of a strategy, with an expected

excess rate of return above the risk free rate of 20% and a volatility of

40%. Even with such a strategy, it would take almost 30 years to beat the

risk-free bond with a 90% probability.

Similar experiments have been conducted in the literature. For instance,

[Aucamp (1993)] considers an application of the GOP strategy to the St.
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Petersburg game and calculates the probability of outperforming a compet-

ing strategy. It is analyzed how many games are necessary for the GOP to

outperform other strategies at a 95% confidence level. It is shown that this

takes quite a number of games. For instance, if the alternative is “do noth-

ing”, then it takes the growth optimal betting strategy 87 games. Making

the alternative strategy more competitive (i.e. comparing to a conservative

betting strategy) makes the number of games required grow very fast. If it

takes a long time before the GOP dominates alternative investment strate-

gies, then the argument that one should choose the GOP to maximize the

probability of doing better than other portfolios is somewhat weakened.

Apart from the discussion of whether this property is interesting or not,

it requires an unrealistically long time horizon to obtain any high level of

confidence. In order to be really useful would require the GOP, when cali-

brated to market data, to outperform, say, an index over a (relatively) short

horizon - 10 or 20 years. In this case, given the absence of a clearly specified

utility function it might be useful to consider the GOP strategy. Hence, in

order to see how long it will take the GOP to outperform a given alternative

strategy one needs to conduct a further systematic analysis. The analysis

needs to be conducted in a more realistic model calibrated to actual mar-

ket data. There appears to be no available results in this direction in the

literature.

Notes

Some papers that include studies of the wealth distribution when apply-

ing the GOP includes [Hakansson (1971a)], [Gressis et al. (1974)], [Michaud

(1981)] and [Thorp (1998)]. Somewhat related to this is the study by [Jean

(1980)], which relates the GOP to n-th order stochastic dominance. He

shows that if a portfolio X exhibits n-th order stochastic dominance against

a portfolio Y for any given n, thenX needs to have a higher geometric mean

than Y .

Example 1.10 is similar to [Rubinstein (1991)], who shows that to be

95% sure of beating an all-cash strategy will require 208 years; to be 95%

sure of beating an all-stock strategy will require 4,700 years.

Note that the empirical evidence is mixed, see for instance the results

in [Thorp (1971)], [Hunt (2005)] and the references in Section 1.5. The

existing attempts to apply the GOP seem to have been very successful, but

this has the character of “anecdotal evidence” and does not constitute a

formal proof that the period required to outperform competing strategies

is relatively short.
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1.4. The GOP and the Pricing of Financial Assets and

Derivatives

The numéraire property of the GOP and Theorem 1.4 has made several

authors suggest that it could be used as a convenient pricing tool for deriva-

tives in complete and incomplete markets. Although different motivations

and different economic interpretations are possible for this methodology,

the essence is very simple. This section is fairly important since it mo-

tivates a large part of the analysis in later sections. The set-up in this

section is similar to the general set-up described in Section 1.2.2. A set of

d + 1 assets is given as semimartingales and it is assumed that the GOP,

S(δ), exists as a well-defined, non-explosive portfolio process on the interval

[0, T ]. I make the following assumption:

Assumption 1.1. For i ∈ {0, . . . , d} the process

Ŝ(i)(t) ,
S(i)(t)

S(δ)(t)

is a local martingale.

Hence, I rule out the cases where the process is a supermartingale but

not a local martingale, see Example 1.3. The reason why this is done will

become clear shortly. Assumption 1.1 implies that the GOP gives rise to a

martingale density , in the sense that for any S(δ) ∈ Θ(S) it holds that

Ŝ(δ)(t) ,
S(δ)(t)

S(δ)(t)
=

∫
S(δ)(t)

S(0)(t)
dZ(t)

is a local martingale, where

Z(t) =
S(0)(t)

S(δ)(t)
= Ŝ(0)(t) .

So the process Z(t) can under regularity conditions be interpreted as

the Radon-Nikodym derivative of the usual risk neutral measure. However,

some of these processes may be strict local martingales, not true martin-

gales. In particular, if the GOP denominated savings account is a true local

martingale, then the classical risk-neutral martingale measure will not exist

as will be discussed below.

Definition 1.6. Let H be any FT -measurable random variable. This ran-

dom variable is interpreted as the pay-off of some financial asset at time T .
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Assume that

E

[ |H|
S(δ)(T )

]
< ∞.

The fair price process of the pay-off H is then defined as

H(t) = S(δ)(t)E

[
H

S(δ)(T )
|Ft

]
. (1.16)

The idea is to define the fair price in such a way that the numéraire

property of the GOP is undisturbed. In other words, the GOP remains

a GOP after the pay-off H is introduced in the market. There are two

primary motivations for this methodology. Firstly, the market may not be

complete, in which case there may not be a replicating portfolio for the

pay-off H. Second, the market may be complete, but there need not exist

an equivalent risk neutral measure, which is usually used for pricing. In the

case of complete markets which have an equivalent risk neutral measure the

fair pricing concept is equivalent to pricing using the standard method.

Lemma 1.2. Suppose the market has an equivalent martingale measure,

that is, a probability measure Q such that P ∼ Q and discounted asset

prices are Q-local martingales. Then the risk-neutral price given by

H̃(t) = S(0)(t)EQ

[
H

S(0)(T )
|Ft

]

is identical to the fair price, i.e. H(t) = H̃(t) almost surely, for all t ∈
[0, T ].

The following example illustrates why fair pricing is restricted as sug-

gested by Assumption 1.1.

Example 1.11 (Example 1.3 continued). Recall that the market is

given such that the first asset is risk free, S(0)(t) = 1, t ∈ {0, T} and

the second asset has a log-normal distribution log(S(1)(T )) ∼ N (µ, σ2) and

S(1)(0) = 1.

Suppose that Ŝ(0)(t) is a strict supermartingale. What happens if the

fair pricing concept is applied to a zero-coupon bond? The price of the zero

coupon bond in the market is simply S(0)(0) = 1. The fair price on the

other hand is

S(1)(0)E

[
1

S(1)(T )

]
< 1.
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Hence, introducing a fairly priced zero coupon bond in this market produces

an arbitrage opportunity. More generally this problem will occur in all

cases, where some primary assets denoted in units of the GOP are strict

supermartingales, and not local martingales.

Below I consider the remaining cases in turn. In the incomplete market

case, I show how the fair price defined above is related to other pricing

methodologies in an incomplete market. Then I consider markets without

a risk-neutral measure and discuss how and why the GOP can be used in

this case.

1.4.1. Incomplete Markets

Fair pricing as defined above was initially suggested as method for pric-

ing derivatives in incomplete markets, see [Bajeux-Besnaino and Portait

(1997a)] and the sources cited in the notes. In this subsection, markets are

assumed to be incomplete, but to keep things separate, it is assumed that

the set of martingale measures is non-empty. In particular, the process

Ŝ(0) is assumed to be a true martingale. When markets are incomplete

and there is no portfolio which replicates the pay-off, H, arbitrage theory

is silent on how to price this pay-off. From the seminal work of [Harrison

and Pliska (1981)] it is well-known that this corresponds to the case of an

infinite number of candidate martingale measures. Any of these measures

will price financial assets in accordance with no-arbitrage and there is no

a priori reason for choosing one over the other. In particular, no arbitrage

considerations does not suggest that one might use the martingale measure

Q defined by dQ
dP = Ŝ(0)(T ), which is the measure induced by applying

the GOP. One might assume that investors maximized the growth rate of

their investments. Then it could be argued that a “reasonable” price of the

pay-off, H, should be such that the maximum growth rate obtainable from

trading the derivative and the existing assets should not be higher than

trading the existing assets alone. Otherwise, the derivative would be in

positive net-demand, as investors applied it to obtain a higher growth rate.

It can be shown that the only pricing rule which satisfies this property is

the fair pricing rule. Of course, whether or not growth rates are interesting

to investors has been a controversial issue. Indeed, as outlined in the previ-

ous sections, the growth rate is only in directly relevant to an investor with

logarithmic utility and the argument that the maximal growth rate should

not increase after the introduction of the derivative is generally not backed
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by an equilibrium argument, except for the case where the representative

investor is assumed to have logarithmic utility. Although there may be no

strong theoretical argument behind the selection of the GOP as the pricing

operator in an incomplete market, its application is fully consistent with

arbitrage free pricing. Consequently, it is useful to compare this method to

a few of the pricing alternatives presented in the literature.

Utility Based Pricing: This approach to pricing assumes agents to be

endowed with some utility function U . The utility indifference price at time

t of k units of the pay-off H, is then defined as the price pH(k, t) such that

sup
S(δ)(T ),S(δ)(t)=x−pH(k,t)

E

[
U(S(δ)(T ) + kH)

]
= sup

S(δ)(T ),S(δ)(t)=x

E

[
U(S(δ)(T ))

]
.

This price generally depends on k, i.e. on the number of units of the pay-

off, in a non-linear fashion, due to the concavity of U . Supposing that the

function pH(k, t) is smooth, one may define the marginal price as the limit

pH(t) = lim
k→0

pH(k, t)

k
,

which is the utility indifference price for obtaining a marginal unit of the

pay-off, when the investor has none to begin with. If one uses logarithmic

utility, then the marginal indifference price is equal to the fair price, i.e.

pH(t) = H(t). Of course, any reasonable utility function could be used to

define a marginal price, the logarithm is only a special case.

The Minimal Martingale Measure: This is a particular choice of mea-

sure, which is often selected because it “disturbs” the model as little as

possible. This is to be understood in the sense that a process which is inde-

pendent of traded assets will have the same distribution under the minimal

martingale measure as under the original measure. Assume the semimartin-

gale, S, is special such that it has locally integrable jumps and consequently

has the unique decomposition

S(t) = S(0) +A(t) +M(t) ,

where A(0) = M(0) = 0, A is predictable and of finite variation, and M is

a local martingale. In this case, one may write

dS(t) = λ(t)d〈M〉t + dM(t) ,

where λ is the market price of risk process and 〈M〉 is the predictable pro-

jection of the quadratic variation of M . The minimal martingale measure,
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if it exists, is defined by the density

Z(T ) = E(−λ ·M)T ,

where E(·) is the stochastic exponential. In other words, Z is the solution

to the SDE

dZ(t) = −λ(t)Z(t)dM(t).

In financial terms, the minimal martingale measure puts the market price of

any unspanned risk, that is, risk factors that cannot be hedged by trading

in the market, equal to zero. In the general case Z may not be a martin-

gale, and it may become negative. In such cases the minimal martingale

measure is not a true probability measure. If S is continuous, then using

the minimal martingale measure provides the same prices as the fair pricing

concept. In the general case, when asset prices may exhibit jumps, the two

methods for pricing assets are generally different.

Good Deal Bounds: Some authors have proposed to price claims by

defining a bound on the market prices of risk that can exist in the mar-

ket. Choosing a martingale measure in an incomplete market amounts to

the choice of a specific market price of risk. As mentioned, the minimal

martingale measure is obtained by putting the market price of risk of non-

traded risk factors equal to zero. For this reason, the price derived from

the minimal martingale measure always lies within the good-deal bounds.

Of course, given the assumption that the set of prices within the good deal

bound is non-empty. It follows that the fair price lies within the good deal

bound in the case of continuous asset prices. In the general case the fair

price need not lie within a particular good deal bound.

Another application of fair pricing is found in the Benchmark approach.

However, here the motivation was somewhat different as I will describe

below.

Notes

The idea of using the GOP for pricing purposes is stated explicitly for

the first time in the papers [Bajeux-Besnaino and Portait (1997a,b)] and

further argued in [Aurell et al. (2000a,b)]. In the latter case, the arguments

for using the GOP seem to be subject to the criticism raised by Samuelson,

but the method as such is not inconsistent with no arbitrage. Utility based

pricing is reviewed in [Davis (1997)] and [Henderson and Hobson (2008)].

The minimal martingale measure is discussed in, for instance, [Schweizer

(1995)], and the relationship with the GOP is discussed in [Becherer (2001)]
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and [Christensen and Larsen (2007)]. Good deal bounds were introduced

by [Cochrane and Saá-Requejo (2000)] and extended to a general setting in

[Björk and Slinko (2006)]. The later has a discussion of the relationship to

the minimal martingale measure.

1.4.2. A World Without a Risk-neutral Measure

In this section I consider a complete market. To keep matters as simple as

possible, assume there is a risk-free savings account where the short rate,

r, is assumed to be constant. Hence,

dS(0)(t) = rS(0)(t)dt.

There is only one risky asset given by the stochastic differential equation

dS(1)(t) = S(1)(t) (a(t)dt+ b(t)dW (t)) ,

where W is a standard one-dimensional Wiener process. It is assumed that

a and b are strictly positive processes such that the solution S(1) is unique

and well-defined, but no other assumptions are made. The parameter pro-

cesses a and b can be general stochastic processes. The market price of risk

θ is then well-defined as θ(t) = a(t)−r(t)
b(t) and consequently this may also be

a stochastic process. The usual approach when pricing options and other

derivatives is to define the stochastic exponential

Λ(t) = exp

(
−1

2

∫ t

0

θ2(s)ds−
∫ t

0

θ(s)dW (s)

)
.

If Λ(t) is a martingale, then the Girsanov theorem implies the existence of

a measure Q such that

W̃ (t) , W (t)−
∫ t

0

θ(s)ds

is a standard Wiener process under the measure Q.

However, it is well-known that Λ need not be a martingale. This is

remarked in most text-books, see for instance [Karatzas and Shreve (1988)]

or [Revuz and Yor (1991)]. The latter contains examples from the class of

Bessel processes.

By the Itô formula, Λ satisfies the stochastic differential equation

dΛ(t) = −θ(t)Λ(t)dW (t)

and so is a local martingale, see [Karatzas and Shreve (1988)]. As mentioned

in Example 1.9 some additional conditions are required to ensure Λ to be
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a martingale. The question here is, what happens if the process Λ(t) is not

a martingale? The answer is given in the theorem below:

Theorem 1.9. Suppose the process Λ(t) is not a true martingale. Then

(1) If there is a stopping time τ ≤ T , such that P(
∫ τ

0
θ2(s)ds = ∞) > 0,

then there is no equivalent martingale measure for the market under

any numéraire and the GOP explodes. An attempt to apply risk-neutral

pricing or fair pricing will result in Arrow-Debreu prices that are zero

for events with positive probability.

(2) If
∫ T

0
θ2(s)ds < ∞ almost surely, then the GOP is well-defined and the

original measure P is an equivalent martingale measure when using the

GOP as numéraire.

(3) If
∫ T

0
θ2(s)ds < ∞ almost surely, then Λ(t) is a strict supermartingale

and there is no risk-neutral measure when using the risk free asset as

a numéraire. Moreover, the risk-free asset can be outperformed over

some interval [0, τ ] ⊆ [0, T ].

(4) The fair price is the price of the cheapest portfolio that replicates the

given pay-off.

The theorem shows that fair pricing is well-defined in cases where risk-

neutral pricing is not. Although presented here in a very special case the

result is in fact true in a very general setting. The result may look puzzling

at first because usually the existence of a risk-neutral measure is associ-

ated with the absence of arbitrage. However, continuous time models may

contain certain types of “arbitrage” arising from the ability to conduct an

infinite number of trade. A prime example is the so-called doubling strat-

egy, which involves doubling the investment until the time when a favorable

event happens and the investor realizes a profit. Such “arbitrage” strategies

are easily ruled out as being inadmissible by Definition 1.4 because they

generally require an infinite debt capacity. Hence they are not arbitrage

strategies in the sense of Definition 1.3. But imagine a not-so-smart in-

vestor, who tries to do the opposite thing. He may end up losing money

with certainty by applying a so-called “suicide strategy”, which is a strat-

egy that costs money but results in zero terminal wealth. A suicide strategy

could, for instance, be a short position in the doubling strategy (if it where

admissible). Suicide strategies exist whenever asset prices are unbounded

and they need not be inadmissible. Hence, they exist in for instance the

Black-Scholes model and other popular models of finance. If a primary

asset has a built-in suicide strategy, then the asset can be outperformed,
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by a replicating portfolio without the suicide strategy. This suggests the

existence of an arbitrage opportunity, but that is not the case. If an in-

vestor attempts to sell the asset and buy a (cheaper) replicating portfolio,

the resulting strategy is not necessarily admissible. Indeed, this strategy

may suffer large, temporary losses before maturity, at which point of course

it becomes strictly positive. It is important to note that whether or not

the temporary losses of the portfolio are bounded is strictly dependent on

the numéraire. This insight was developed by [Delbaen and Schachermayer

(1995b)], who showed that the arbitrage strategy under consideration is

lower bounded under some numéraire, if and only if that numéraire can

be outperformed. Given the existence of a market price of risk, the “ar-

bitrage” strategy is never strictly positive at all times before maturity. If

this was the case, then any investor could take an unlimited position in

this arbitrage and the GOP would no longer be a well-defined object. The

important difference between having a lower bounded and an unbounded

arbitrage strategy is exactly that if the strategy is lower bounded, then

by the fundamental theorem of asset pricing there can be no equivalent

martingale measure. In particular, if the risk-free asset contains a built-in

suicide strategy, then there cannot be an EMM when the risk-free asset is

applied as numéraire. On the other hand, a different numéraire may still

work allowing for consistent pricing of derivatives.

Hence if one chooses a numéraire which happens to contain a built-in

suicide strategy, then one cannot have an equivalent martingale measure.

This suggests that one needs only take care that the right numéraire is

chosen, in order to have a consistent theory for pricing and hedging. In-

deed, the GOP is such a numéraire, and it works even when the standard

numéraire - the risk free savings account - can be outperformed. Moreover,

the existence of a GOP is completely numéraire independent. In other

words, the existence of a GOP is the acid test of any model that is to be

useful when pricing derivatives.

Obviously, the usefulness of the described approach relies on two things.

Firstly, there is only a theoretical advantage in the cases where risk-neutral

pricing fails, otherwise the two approaches are completely equivalent, and

fair pricing is merely a special case of the change of numéraire technique.

Remark 1.1. In principle, many other numéraires could be used instead

of the GOP, as long as they do not contain suicide strategies. For instance,

the portfolio choice of a utility maximizing investor with increasing utility

function will never contain a suicide strategy. However, for theoretical rea-
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sons the GOP is more convenient. Establishing the existence of a portfolio

which maximizes the utility of a given investor is non-trivial. Moreover,

the existence of a solution may depend on the numéraire selected, whereas

the existence of the GOP does not.

In practice, usefulness requires documentation that the risk-free asset

can be outperformed, or equivalently that the risk-free asset denominated

in units of the GOP is a strict local martingale. This is quite a hard

task. The question of whether the risk-free asset can be outperformed

is subject to the so-called peso problem: only one sample path is ever

observed, so it is quite hard to argue that a portfolio exists which can

outperform the savings account almost surely. At the end of the day, almost

surely means with probability one, not probability 99.999%. From the

earlier discussion, it is known that the GOP will outperform the risk-less

asset sooner or later, so over very long horizon, the probability that the

risk-free asset is outperformed is rather high and it is more than likely that

even if one were to have (or construct) a number of observations, they would

all suggest that the risk-free asset could be outperformed. A better, and

certainly more feasible, approach if one were to document the usefulness

of the fair pricing approach is to show that the predictions of models, in

which the savings account can be outperformed, are in line with empirical

observations. Some arguments have started to appear, for instance in the

literature on continuous time “bubbles”, cited in the notes.

Notes

In a longer sequence of papers the fair pricing concept was explored as

part of the so-called benchmark approach, advocated by Eckhard Platen

and a number of co-authors, see for instance [Heath and Platen (2002a,b,c,

2003)], [Miller and Platen (2005)], [Platen (2001, 2002, 2004a,b,c,d, 2005a)],

[Christensen and Platen (2005)] and [Platen and West (2005)].

The proof of Theorem 1.9 is found in this literature, see in particular

[Christensen and Larsen (2007)]. Some calibrations which indicate that

models without an EMM could be realistic are presented in [Platen (2004c)]

and [Fergusson and Platen (2006)].

Related to this approach is the recent literature on continuous asset

price bubbles. Bubbles are said to exist whenever an asset contains a built-

in suicide strategy, because in this case, the current price of the asset is

higher than the price of a replicating portfolio. References are [Loewenstein

and Willard (2000a,b)], [Cassesse (2005)] and [Cox and Hobson (2005)]. In
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this literature, it is shown that bubbles can be compatible with equilibrium,

and that they are in line with observed empirical observations. To some

extent they lend further support to the relevance of fair pricing.

1.5. Empirical Studies of the GOP

Empirical studies of the GOP are relatively limited in numbers. Many

date back to the seventies and deal with comparisons to the mean-variance

model. Here, the empirical studies will be separated into two major groups,

answering to broad questions.

• How is the GOP composed? Issues that belong to this group include

what mix of assets constitute the GOP and, in particular, whether the

GOP equals the market portfolio or any other diversified portfolio.

• How does the GOP perform? Given an estimate of the GOP it is

of some practical importance to document its value as an investment

strategy.

The conclusions within those areas are reasonably consistent across the

literature and the main ones are

• It is statistically difficult to separate the GOP from other portfolios -

this conclusion appears in all studies known to the author. It appears

that the GOP is riskier than the mean-variance tangency portfolio and

the market portfolio, but the hypothesis that the GOP is the market

portfolio cannot be formally rejected. It may be well-approximated

by a levered position in the market. This is consistent with different

estimates of the risk aversion coefficient, γ, of a power utility investor

which different authors have estimated to be much higher than one

(corresponding to a log-investor). A problem in most studies is the

lack of statistical significance and it is hard to find significant proof of

the composition. Often, running some optimization program will imply

a GOP that only invests in a smaller subset of available assets.

• The studies that use the GOP for investment purposes generally con-

clude that although it may be subject to large short-term fluctuations,

growth maximization performs rather well even on time horizons which

are not excessively long. Hence, although the GOP does not max-

imize expected utility for a non-logarithmic investors, history shows

that portfolio managers using the GOP strategy can become rather

successful. However, the cases where the GOP is applied for invest-
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ment purposes are of a somewhat anecdotal nature. Consequently, the

focus of this section will be the first question.

Notes

For some interesting reading on the actual performance of growth op-

timal portfolios in various connections, see [Thorp (1971, 1998)], [Grauer

and Hakansson (1985)], [Hunt (2004, 2005)] and [Ziemba (2005)]. Edward

Thorp constructed a hedge-fund, PNP, which successfully applied the GOP

strategy to exploit prices in the market out of line with mathematical mod-

els, see in particular [Poundstone (2005)]. The reader is referred to the

quoted papers in the following subsection, since most of these have results

on the performance of the GOP as well. There seems to be very few formal

studies, which consider the performance of growth optimal strategies.

1.5.1. Composition of the GOP

Discrete Time Models: The method used for empirical testing is repli-

cated, at least in principle, by several authors and so is explained briefly.

Assume a discrete time set-up, as described in Section 1.2.1. Hence the

market is given as S = (S(0)(t), S(1)(t), . . . , S(d)(t)) with the return be-

tween time t and t + 1 for asset i denoted by Ri(t) as usual. Recall from

the myopic properties of the GOP, that the GOP strategy can be found by

maximizing the expected growth rate between t and t+ 1

sup
δ

Et

[
log

(
S(δ)(t+ 1)

S(δ)(t)

)]
,

for each t ∈ {0, . . . T − 1}. From Equation (1.5), the first order conditions

for this problem are

Et−1

[
1 +Ri(t)

1 +Rδ(t)

]
= 1 (1.17)

for all i ∈ {0, . . . , d}. The first order conditions provide a testable impli-

cation. A test that some given portfolio is the GOP can be carried out by

forming samples of the quantity

Zi(t) ,
1 +Ri(t)

1 +Rδ(t)
,



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

On the History of the Growth Optimal Portfolio 63

where 1+Rδ(t) is the return of candidate GOP portfolio. The test consists

of checking whether

Z̄ ,
1

T

T∑

t=1

Zi
t

is statistically different across assets. However, note that this requires the

first order conditions to be satisfied. In theory, GOP deflated assets are

supermartingales - in particular they may in discrete time be supermartin-

gales that are not martingales, see Example 1.3. The assumption implicit in

the first order condition above is that optimal GOP fractions are assumed

in an inner point. A theoretically more correct approach then, would be to

test whether these quantities on average are below one. As the variance of

returns may differ across assets and independence is unrealistic, an applied

approach is to use the Hotelling T 2 statistic to test this hypothesis. This

is a generalization of the student-t distribution. To be a valid test, this

actually requires normality from the underlying variables, which is clearly

unreasonable, since if returns would have support on the entire real axis,

a growth optimizer would seek the risk-free asset. The general conclusion

from this approach is that it cannot reject the hypothesis that the GOP

equals the market portfolio.

Because this approach is somewhat dubious, alternatives have been sug-

gested. An entirely different way of solving the problem is to find the GOP

in the market by making more specific distributional assumptions, and cal-

culating the GOP ex ante and study its properties. This allows a compar-

ison between the theoretically calculated GOP and the market portfolio.

The evidence is somewhat mixed. [Fama and Macbeth (1974)] compares

the mean-variance efficient tangent portfolio to the GOP. Perhaps the most

important conclusion of this exercise is that although the β of the histor-

ical GOP is large and deviates from one, the growth rate of this portfolio

cannot be statistically separated from that of the market portfolio. This is

possibly related to the fact that [Fama and Macbeth (1974)] construct the

time series of growth rates from relatively short periods and hence the size

of growth rates is reasonably small compared to the sample variance which

in turn implies small t-stats. Still, it suggests that the GOP could be more

highly levered than the tangency portfolio. This does not imply, of course,

that the GOP is different from the market. This would be postulating a

beta of one to be the beta of the market portfolio and it requires one to

believe that the CAPM holds.

Although the cited study finds it difficult to reject the proposition that
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the market portfolio is a proxy for the GOP, it suggests that the GOP can be

more risky than this portfolio. Note that the market portfolio itself has to

be proxied. Usually this is done by taking a large index such as S&P 500 as

a proxy for the market portfolio. Whether this approximation is reasonable

is debatable. Indeed, this result is verified in most available studies. An

exception is [Long (1990)], who examines different proxies for the GOP. The

suggested proxies are examined using the first order conditions as described

above. Although the results of formal statistic tests are absent, the intuition

is in line with earlier empirical research. In the article, three proxies are

examined

(1) A market portfolio proxy

(2) A levered position in the market portfolio

(3) A Quasi-Maximum-Likelihood estimate

The study concludes, that using a quasi maximum likelihood estimate of

the GOP exhibits superior performance. However, using a market portfolio

proxy as numéraire will yield a time series of numéraire adjusted returns

which have a mean close to zero. A levered position in the market portfolio,

on the other hand, will increase the variance of the numéraire adjusted

returns and seems to be the worst option.

A general conclusion, when calibrating the market data to a CAPM

type model is that the implied relative risk aversion for a representative

agent is (much) higher than one, one being the relative risk aversion of an

agent with logarithmic utility. This somehow supports the conclusion that

the GOP is more risky than the market portfolio.

A few other studies indicate that the GOP could be a rather narrow

portfolio selecting only a few stocks. A study which deals more specifically

with the question of what assets to include in the GOP was conducted

by [Grauer (1981)]. Assuming that returns on assets follow a (discrete)

approximate normal distribution, he compares the mix of assets in a mean-

variance efficient portfolio and a GOP, with limits on short sales. Out of

twenty stock, the GOP and the mean-variance tangency portfolio both ap-

peared to be very undiversified - the typical number of stocks picked by

the GOP strategy was three. (Similar experimental results can be found

in Chapters 2 and 4 of this volume.) Furthermore, there appeared to be a

significant difference between the composition of a mean-variance efficient

portfolio and the GOP. In a footnote, Grauer suggests that this may be due

to the small number of states (which makes hedging simpler) in the distri-

bution of returns. This does not explain the phenomena for the tangency
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portfolio, which, if CAPM holds, should have the same composition as the

market portfolio. It suggested that the lack of diversification is caused by

the imposed short sale constraint. Although the reason for this explanation

is unclear, it is shown that if the short sale constraint is lifted, then the

GOP model takes a position in all 20 stocks. In [Grauer and Hakansson

(1985)] a simple model for returns is assumed and the investor’s problem

is then solved using non-linear programming. It appears that the growth

optimal strategy is well approximated by this method and it yields a sig-

nificantly higher mean geometric return than other strategies investigated

in the sample. Analyzing the composition of the GOP provides a some-

what mixed picture of diversification: before 1940, the GOP consists of a

highly levered position in Government and Corporate bonds, but only few

stocks. Then a switch occurs towards a highly levered position in stocks

until the late sixties at which point the GOP almost leaves the stock mar-

ket and turns to the risk-free asset to become a quite conservative strategy

in the last period of the sample which ends in 1982. This last period of

conservatism may be due to estimation problems and it is remarked by the

authors that by analyzing the ex-post returns it appears that the GOP is

too conservative. Still, the article is not able to support the claim that the

GOP, in general, is a well-diversified portfolio.

Continuous Time Models: Only very few studies have been made in

continuous time. With the exception of [Hunt (2004)], who uses a geometric

Brownian motion with one driving factor as the model for stock prices. This

implies that shocks are perfectly correlated across assets and log returns

are normally distributed. Despite the fact that such a model is rejected

by the data, a GOP is constructed, and its properties are investigated.

The formed GOP strategy in this setting also consists of only a few stocks,

but imposing a short sale constraint increases the level of diversification

in GOP strategy, contrary to the result mentioned above. The study is

subject to high parameter uncertainty, and the assumption of one driving

factor implies that the GOP strategy is far from unique; in theory it can be

formed from any two distinct assets. For this reason, the conclusions about

the composition of the GOP might be heavily influenced by the choice of

model.

It appears that to answer the question of what mix of assets are re-

quired to form the GOP, new studies will have to be made. In particular

obtaining closer approximation of real stock dynamics is warranted. This

could potentially include jumps and should at least have several underlying

uncertainty factors driving returns. The overall problem so far seem to have
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been a lack of statistical power, but certainly having a realistic underlying

model seem to be a natural first step. Furthermore, the standard test in

equation (1.5) may be insufficient if the dynamics of GOP deflated assets

will be that of a true supermartingale. The test may lead to an acceptance

of the hypothesis that a given portfolio is growth-optimal, when the true

portfolio is in fact more complex. Hence, tests based on the first order

condition should in principle be one-sided.

Notes

Possibly the first study to contain an extensive empirical study of the

GOP was [Roll (1973)]. Both [Roll (1973)] and [Fama and Macbeth (1974)]

suggest that the market portfolio should approximate the GOP and both

use an index as a GOP candidate and both are unable to reject the con-

clusion that the GOP is well approximated by the market portfolio. [Roll

(1973)] use the S&P 500, whereas [Fama and Macbeth (1974)] uses a simple

average of returns on common stocks listed on NYSE. Using the first order

condition as a test of growth optimality is also done by [Long (1990)] and

[Hentschel and Long (2004)]. [Bicksler and Thorp (1973)] assume two dif-

ferent distributions, calculate the implied GOP based on different amounts

of leverage and find it to be highly levered. Second, many growth subop-

timal portfolios are impossible to separate from the true GOP in practice.

[Rotando and Thorp (1992)] calibrate S&P 500 data to a (truncated) nor-

mal distribution and calculate the GOP formed by the index and risk-less

borrowing. This results in a levered position in the index of about 117

percent. [Pulley (1983)] also reaches the conclusion that the GOP is not

a very diversified portfolio. However, in Pulley’s study, the composition

of the GOP and mean-variance based approximations are very similar, see

[Pulley (1983)][Table 2]. For general results suggesting the market portfo-

lio to be the result of a representative agent with high risk aversion see for

instance the econometric literature related to the equity premium puzzle of

[Mehra and Prescott (1985)]. Some experimental evidence is presented in

[Gordon et al. (1972)], showing that as individuals become more wealthy,

their investment strategy would approximate that of the GOP. [Maier et al.

(1977a)] conduct simulation studies to investigate the composition of the

GOP and the performance of various proxies.
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1.6. Conclusion

The GOP has fascinated academics and practitioners for decades. Despite

the arguments made by respected economists that the growth properties

of the GOP are irrelevant as a theoretical foundation for portfolio choice,

it appears that it is still viewed as a practically applicable criterion for

investment decisions. In this debate it was emphasized that the utility

paradigm in comparison suffers from being somewhat more abstract. The

arguments that support the choice of the GOP is based on very specific

growth properties, and even though the GOP is the choice of a logarithmic

investor, this interpretation is often just viewed as coincidental. The fact

that over time the GOP will outperform other strategies is an intuitively

appealing property, since when the time comes to liquidate the portfolio it

only matters how much money it is worth. Still, some misunderstandings

seem to persist in this area, and the fallacy pointed out by Samuelson

probably should be studied more carefully by would-be applicants of this

strategy, before they make their decision. Moreover, the dominance of the

GOP may require some patience. Studies show that it will take many years

before probability that the GOP will do better than even the risk-free asset

becomes high.

In recent years, it is in particular the numéraire property of the GOP

which is being researched. This property relates the GOP to pricing kernels

and hence makes it applicable for pricing derivatives. Hence, it appears

that the GOP may have a role to play as a tool for asset and derivative

pricing. The practical applicability and usefulness still needs to be validated

empirically, in particular the problem of finding a well-working GOP proxy

needs attention. This appears to be an area for further research in the years

to come.
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Larsen, K. and Zitković, G. (2008). On the semimartingale property via bounded
logarithmic utility, Annals of Finance 4, pp. 255–268.
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This chapter provides a survey of discrete time, multi-period, sequen-
tial investment strategies for financial markets. Under memoryless as-
sumption on the underlying process generating the asset prices the best
rebalancing is the log-optimal portfolio, which achieves the maximal
asymptotic average growth rate. We show some examples (Kelly game,
horse racing, St. Petersburg game) illustrating the surprising possi-
bilities for rebalancing. Semi-log-optimal portfolio selection as a small
computational complexity alternative of the log-optimal portfolio selec-
tion is studied both theoretically and empirically. For generalized dy-
namic portfolio selection, when asset prices are generated by a station-
ary and ergodic process, universally consistent empirical methods are
shown. The empirical performance of the methods are illustrated for
NYSE data.

2.1. Introduction

This chapter gives an overview on the investment strategies in financial

stock markets inspired by the results of information theory, non-parametric

statistics and machine learning. Investment strategies are allowed to use

information collected from the past of the market and determine, at the

beginning of a trading period, a portfolio, that is, a way to distribute their

current capital among the available assets. The goal of the investor is to

maximize his wealth in the long run without knowing the underlying distri-

bution generating the stock prices. Under this assumption the asymptotic

rate of growth has a well-defined maximum which can be achieved in full

knowledge of the underlying distribution generated by the stock prices.
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Both static (buy and hold) and dynamic (daily rebalancing) portfolio

selections are considered under various assumptions on the behavior of the

market process. In case of static portfolio selection, it was shown that ev-

ery static portfolio asymptotically approximates the growth rate of the best

asset in the study. One can achieve larger growth rate with daily rebalanc-

ing. Under memoryless assumption on the underlying process generating

the asset prices, the log-optimal portfolio achieves the maximal asymptotic

average growth rate, that is the expected value of the logarithm of the

return for the best constant portfolio vector. Semi-log optimal portfolio se-

lection as a small computational complexity alternative of the log-optimal

portfolio selection is investigated both theoretically and empirically. Apply-

ing recent developments in nonparametric estimation and machine learning

algorithms, for generalized dynamic portfolio selection, when asset prices

are generated by a stationary and ergodic process, universal consistent (em-

pirical) methods that achieve the maximal possible growth rate are shown.

The spectacular empirical performance of the methods are illustrated for

NYSE data.

Consider a market consisting of d assets. The evolution of the market

in time is represented by a sequence of price vectors s1, s2, . . . ∈ R
d
+, where

sn = (s(1)n , . . . , s(d)n )

such that the j-th component s
(j)
n of sn denotes the price of the j-th asset

on the n-th trading period. In order to normalize, put s
(j)
0 = 1. {sn} has

exponential trend:

s(j)n = enW
(j)
n ≈ enW

(j)

,

with average growth rate (average yield)

W (j)
n :=

1

n
ln s(j)n

and with asymptotic average growth rate

W (j) := lim
n→∞

1

n
ln s(j)n .

The static portfolio selection is a single period investment strategy. A

portfolio vector is denoted by b = (b(1), . . . b(d)). (In Chapter 1 of this

volume the components b(j) of this portfolio vector are called fractions

and they are denoted by πj .) The j-th component b(j) of b denotes the

proportion of the investor’s capital invested in asset j. We assume that the

portfolio vector b has nonnegative components sum up to 1, that means
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that short selling is not permitted. The set of portfolio vectors is denoted

by

∆d =



b = (b(1), . . . , b(d)); b(j) ≥ 0,

d∑

j=1

b(j) = 1



 .

The aim of static portfolio selection is to achieve max1≤j≤d W
(j). The

static portfolio is an index, for example, the S&P 500 such that at time

n = 0 we distribute the initial capital S0 according to a fix portfolio vector

b, i.e., if Sn denotes the wealth at the trading period n, then

Sn = S0

d∑

j=1

b(j)s(j)n .

Apply the following simple bounds

S0 max
j

b(j)s(j)n ≤ Sn ≤ dS0 max
j

b(j)s(j)n .

If b(j) > 0 for all j = 1, . . . , d then these bounds imply that

W := lim
n→∞

1

n
lnSn = lim

n→∞
max

j

1

n
ln s(j)n = max

j
W (j).

Thus, any static portfolio selection achieves the growth rate of the best

asset in the study, maxj W
(j), and so the limit does not depend on the

portfolio b. In case of uniform portfolio (uniform index) b(j) = 1/d and the

convergence above is from below:

S0 max
j

s(j)n /d ≤ Sn ≤ S0 max
j

s(j)n .

The rest of the chapter is organized as follows. In Section 2.2 the con-

stantly rebalanced portfolio is introduced, and the properties of log-optimal

portfolio selection is analyzed in case of memoryless market. Next, a small

computational complexity alternative of the log-optimal portfolio selection,

the semi-log optimal portfolio is introduced. In Section 2.3 the general

model of the dynamic portfolio selection is introduced and the basic fea-

tures of the conditionally log-optimal portfolio selection in case of stationary

and ergodic market are summarized. Using the principles of nonparametric

statistics and machine learning, universal consistent, empirical investment

strategies that are able to achieve the maximal asymptotic growth rate are

introduced. Experiments on the NYSE data are given in Section 2.3.7.
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2.2. Constantly rebalanced portfolio selection

In order to apply the usual prediction techniques for time series analysis

one has to transform the sequence price vectors {sn} into a more or less

stationary sequence of return vectors (price relatives) {xn} as follows:

xn = (x(1)
n , . . . , x(d)

n )

such that

x(j)
n =

s
(j)
n+1

s
(j)
n

.

Thus, the j-th component x
(j)
n of the return vector xn denotes the amount

obtained after investing a unit capital in the j-th asset on the n-th trading

period.

With respect to the static portfolio, one can achieve even higher growth

rate for long run investments, if we make rebalancing, i.e., if the tuning

of the portfolio is allowed dynamically after each trading period. The dy-

namic portfolio selection is a multi-period investment strategy, where at the

beginning of each trading period we can rearrange the wealth among the

assets. A representative example of the dynamic portfolio selection is the

constantly rebalanced portfolio (CRP), which was introduced and studied

by [Kelly (1956)], [Latané (1959)], [Breiman (1961)], [Markowitz (1976)],

[Finkelstein and Whitley (1981)], [Móri (1982b)], [Móri and Székely (1982)]

and [Barron and Cover (1988)]. For a comprehensive survey see also Chap-

ter 1 of this volume, and Chapters 6 and 15 in [Cover and Thomas (1991)],

and Chapter 15 in [Luenberger (1998)].
[Luenberger (1998)] summarizes the main conclusions as follows:

“Conclusions about multi-period investment situations are not mere vari-
ations of single-period conclusions – rather they offer reverse those earlier
conclusions. This makes the subject exciting, both intellectually and in
practice. Once the subtleties of multi-period investment are understood,
the reward in terms of enhanced investment performance can be sub-
stantial.”

“Fortunately the concepts and the methods of analysis for multi-period
situation build on those of earlier chapters. Internal rate of return,
present value, the comparison principle, portfolio design, and lattice and
tree valuation all have natural extensions to general situations. But con-
clusions such as volatility is “bad” or diversification is “good” are no
longer universal truths. The story is much more interesting.”
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In case of CRP we fix a portfolio vector b ∈ ∆d, i.e., we are concerned

with a hypothetical investor who neither consumes nor deposits new cash

into his portfolio, but reinvests his portfolio each trading period. In fact,

neither short selling, nor leverage is allowed. (Concerning short selling and

leverage see Chapter 4 of this volume.) Note that in this case the investor

has to rebalance his portfolio after each trading day to “corrigate” the daily

price shifts of the invested stocks.

Let S0 denote the investor’s initial capital. Then at the beginning of the

first trading period S0b
(j) is invested into asset j, and it results in return

S0b
(j)x

(j)
1 , therefore at the end of the first trading period the investor’s

wealth becomes

S1 = S0

d∑

j=1

b(j)x
(j)
1 = S0 〈b , x1〉 ,

where 〈· , ·〉 denotes inner product. For the second trading period, S1 is the

new initial capital

S2 = S1 · 〈b , x2〉 = S0 · 〈b , x1〉 · 〈b , x2〉 .
By induction, for the trading period n the initial capital is Sn−1, therefore

Sn = Sn−1 〈b , xn〉 = S0

n∏

i=1

〈b , xi〉 .

The asymptotic average growth rate of this portfolio selection is

lim
n→∞

1

n
lnSn = lim

n→∞

(
1

n
lnS0 +

1

n

n∑

i=1

ln 〈b , xi〉
)

= lim
n→∞

1

n

n∑

i=1

ln 〈b , xi〉 ,

therefore without loss of generality one can assume in the sequel that the

initial capital S0 = 1.

2.2.1. Log-optimal portfolio for memoryless market process

If the market process {Xi} is memoryless, i.e., it is a sequence of indepen-

dent and identically distributed (i.i.d.) random return vectors then we show

that the best constantly rebalanced portfolio (BCRP) is the log-optimal

portfolio:

b∗ := argmax
b∈∆d

E{ln 〈b , X1〉}.
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This optimality means that if S∗
n = Sn(b

∗) denotes the capital after day

n achieved by a log-optimal portfolio strategy b∗, then for any portfolio

strategy b with finite E{(ln 〈b , X1〉)2} and with capital Sn = Sn(b) and

for any memoryless market process {Xn}∞−∞,

lim
n→∞

1

n
lnSn ≤ lim

n→∞
1

n
lnS∗

n almost surely

and maximal asymptotic average growth rate is

lim
n→∞

1

n
lnS∗

n = W ∗ := E{ln 〈b∗ , X1〉} almost surely.

The proof of the optimality is a simple consequence of the strong law of

large numbers. Introduce the notation

W (b) = E{ln 〈b , X1〉}.
Then

1

n
lnSn =

1

n

n∑

i=1

ln 〈b , Xi〉

=
1

n

n∑

i=1

E{ln 〈b , Xi〉}+
1

n

n∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉})

= W (b) +
1

n

n∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉}) .

The strong law of large numbers implies that

1

n

n∑

i=1

(ln 〈b , Xi〉 − E{ln 〈b , Xi〉}) → 0 almost surely,

therefore

lim
n→∞

1

n
lnSn = W (b) = E{ln 〈b , X1〉} almost surely.

Similarly,

lim
n→∞

1

n
lnS∗

n = W (b∗) = max
b

W (b) almost surely.

We have to emphasize the basic conditions of the model: assume that

(i) the assets are arbitrarily divisible, and they are available for buying

and for selling in unbounded quantities at the current price at any

given trading period,

(ii) there are no transaction costs,
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(iii) the behavior of the market is not affected by the actions of the investor

using the strategy under investigation.

Avoiding (ii), see Chapter 3 of this volume. For memoryless or Marko-

vian market process, optimal strategies have been introduced if the dis-

tributions of the market process are known. For the time being, there

is no asymptotically optimal, empirical algorithm taking into account the

proportional transaction cost. Condition (iii) means that the market is

inefficient.

The principle of log-optimality has the important consequence that

Sn(b) is not close to E{Sn(b)}.
We prove a bit more. The optimality property proved above means that,

for any δ > 0, the event
{
−δ <

1

n
lnSn(b)− E{ln 〈b , X1〉} < δ

}

has probability close to 1 if n is large enough. On the one hand, we have

that {
−δ <

1

n
lnSn(b)− E{ln 〈b , X1〉} < δ

}

=

{
−δ + E{ln 〈b , X1〉} <

1

n
lnSn(b) < δ + E{ln 〈b , X1〉}

}

=
{
en(−δ+E{ln〈b ,X1〉}) < Sn(b) < en(δ+E{ln〈b ,X1〉})

}
,

therefore

Sn(b) is close to enE{ln〈b ,X1〉}.

On the other hand,

E{Sn(b)} = E

{
n∏

i=1

〈b , Xi〉
}

=

n∏

i=1

〈b , E{Xi}〉 = en ln〈b ,E{X1}〉.

By Jensen inequality,

ln 〈b , E{X1}〉 > E{ln 〈b , X1〉},
therefore

Sn(b) is much less than E{Sn(b)}.
Not knowing this fact, one can apply a naive approach

argmax
b

E{Sn(b)}.
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Because of

E{Sn(b)} = 〈b , E{X1}〉n ,

this naive approach has the equivalent form

argmax
b

E{Sn(b)} = argmax
b

〈b , E{X1}〉 ,

which is called the mean approach. It is easy to see that

argmaxb 〈b , E{X1}〉 is a portfolio vector having 1 at the position, where

the vector E{X1} has the largest component.

In his seminal paper [Markowitz (1952)] realized that the mean approach

is inadequate, i.e., it is a dangerous portfolio. In order to avoid this difficulty

he suggested a diversification, which is called mean-variance portfolio such

that

b̃ = argmax
b:Var(〈b ,X1〉)≤λ

〈b , E{X1}〉 ,

where λ > 0 is the investor’s risk aversion parameter.

For appropriate choice of λ, the performance (average growth rate) of

b̃ can be close to the performance of the optimal b∗, however, the good

choice of λ depends on the (unknown) distribution of the return vector X.

The calculation of b̃ is a quadratic programming (QP) problem, where

a linear function is maximized under quadratic constraints.

In order to calculate the log-optimal portfolio b∗, one has to know the

distribution of X1. If this distribution is unknown then the empirical log-

optimal portfolio can be defined by

b∗
n = argmax

b

1

n

n∑

i=1

ln 〈b , Xi〉

with linear constraints

d∑

j=1

b(j) = 1 and 0 ≤ b(j) ≤ 1 j = 1, . . . , d .

The behavior of the empirical portfolio b∗
n and its modifications was studied

by [Móri (1984, 1986)] and by [Morvai (1991, 1992)].

The calculation of b∗
n is a nonlinear programming (NLP) problem.

[Cover (1984)] introduced an algorithm for calculating b∗
n. An alterna-

tive possibility is the software routine donlp2 of [Spellucci (1999)]. The
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routine is based on sequential quadratic programming method, which com-

putes sequentially a local solution of NLP by solving a quadratic program-

ming problem and it estimates the global maximum according to these local

maximums.

2.2.2. Examples for constantly rebalanced portfolio

Next we show some examples of portfolio games.

Example 2.1. (Kelly game [Kelly (1956)])

Consider the example of d = 2 and X = (X(1), X(2)) such that the first

component X(1) of the return vector X is the payoff of the Kelly game:

X(1) =

{
2 with probability 1/2,

1/2 with probability 1/2,
(2.1)

and the second component X(2) of the return vector X is the cash:

X(2) = 1.

Obviously, the cash has zero growth rate. Using the expectation of the first

component

E{X(1)} = 1/2 · (2 + 1/2) = 5/4 > 1,

Assume that we are given an i.i.d. sequence of Kelly payoffs {X(1)
i }∞i=1.

One can introduce the sequential Kelly game S
(1)
n such that there is a

reinvestment:

S(1)
n =

n∏

i=1

X
(1)
i .

The i.i.d. property of the payoffs {X(1)
i }∞i=1 implies that

E{S(1)
n } = E

{
n∏

i=1

X
(1)
i

}
= (5/4)n, (2.2)

therefore E{S(1)
n } grows exponentially. However, it does not imply that the

random variable S
(1)
n grows exponentially, too. Let’s calculate the growth

rate W (1):

W (1) := lim
n→∞

1

n
lnS(1)

n = lim
n→∞

1

n

n∑

i=1

lnX
(1)
i = E{lnX(1)}

= 1/2 ln 2 + 1/2 ln(1/2) = 0,
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a.s., which means that the first component X(1) of the return vector X has

zero growth rate, too.

The following viewpoint may help explain this at first sight surprising

property. First, we write the evolution of the wealth of the sequential Kelly

game as follows: let S
(1)
n = 22B(n,1/2)−n, where B(n, 1/2) is a binomial

random variable with parameters (n, 1/2) (it is easy to check if we choose

n = 1 then we return back to the one-step performance of the game). Now

we write according to the Moivre-Laplace theorem (a special case of the

central limit theorem for binomial distribution):

P

(
2B(n, 1/2)− n√
Var(2B(n, 1/2))

≤ x

)
' φ(x),

where φ(x) is cumulative distribution function of the standard normal dis-

tribution. Rearranging the left-hand side we have

P

(
2B(n, 1/2)− n√
Var(2B(n, 1/2))

≤ x

)
= P

(
2B(n, 1/2)− n ≤ x

√
n
)

= P

(
22B(n,1/2)−n ≤ 2x

√
n
)

= P

(
S(1)
n ≤ 2x

√
n
)

that is

P

(
S(1)
n ≤ 2x

√
n
)
' φ(x) .

Now let xε choose so that φ(xε) = 1− ε then

P

(
S(1)
n ≤ 2xε

√
n
)
' 1− ε

and for a fixed ε > 0 let n0 be so that

2xε
√
n < ES(1)

n =

(
5

4

)n

for all n > n0 then we have

P

(
S(1)
n ≥ ES(1)

n

)
≤ P

(
S(1)
n ≥ 2xε

√
n
)
' ε.

It means that most of the values of S
(1)
n are far smaller than its expected

value ES
(1)
n (see in Figure 2.1).

Now let’s turn back to the original problem and calculate the log-optimal

portfolio for this return vector, where both components have zero growth

rate. The portfolio vector has the form

b = (b, 1− b).
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Fig. 2.1. The distribution of S
(1)
n in case of n = 5

Then

W (b) = E{ln 〈b , X〉}
= 1/2 (ln(2b+ (1− b)) + ln(b/2 + (1− b)))

= 1/2 ln[(1 + b)(1− b/2)].

One can check that W (b) has the maximum for b = 1/2, so the log-optimal

portfolio is

b∗ = (1/2, 1/2),

and the asymptotic average growth rate is

W ∗ = E{ln 〈b∗ , X〉} = 1/2 ln(9/8) = 0.059,

which is a positive growth rate.

Example 2.2. Consider the example of d = 3 and X = (X(1), X(2), X(3))

such that the first and the second components of the return vector X are

Kelly payoffs of form (2.1), while the third component is the cash. One can

show that the log-optimal portfolio is

b∗ = (0.46, 0.46, 0.08),

and the maximal asymptotic average growth rate is

W ∗ = E{ln 〈b∗ , X〉} = 0.112.
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Example 2.3. Consider the example of d > 3 and X =

(X(1), X(2), . . . , X(d)) such that the first d − 1 components of the return

vector X are Kelly payoffs of form (2.1), while the last component is the

cash. One can show that the log-optimal portfolio is

b∗ = (1/(d− 1), . . . , 1/(d− 1), 0),

which means that, for d > 3, according to the log-optimal portfolio the cash

has zero weight. Let N denote the number of components of X equal to 2,

then N is binomially distributed with parameters (d− 1, 1/2), and

ln 〈b∗ , X〉 = ln

(
2N + (d− 1−N)/2

d− 1

)
= ln

(
3N

2(d− 1)
+

1

2

)
,

therefore

W ∗ = E{ln 〈b∗ , X〉} = E

{
ln

(
3N

2(d− 1)
+

1

2

)}
.

For d = 4, the formula implies that the maximal asymptotic average growth

rate is

W ∗ = E{ln 〈b∗ , X〉} = 0.152,

while for d → ∞,

W ∗ = E{ln 〈b∗ , X〉} → ln(5/4) = 0.223,

which means that

Sn ≈ enW
∗
= (5/4)n,

so with many such Kelly components

Sn ≈ E{Sn}

(cf. (2.2)).

Example 2.4. (Horse racing [Cover and Thomas (1991)])

Consider the example of horse racing with d horses in a race. Assume that

horse j wins with probability pj . The payoff is denoted by oj , which means

that investing $1 on horse j results in oj if it wins, otherwise $0. Then the

return vector is of form

X = (0, . . . , 0, oj , 0, . . . , 0)
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if horse j wins. For repeated races, it is a constantly rebalanced portfolio

problem. Let’s calculate the expected log-return:

W (b) = E{ln 〈b , X〉} =

d∑

j=1

pj ln(b
(j)oj) =

d∑

j=1

pj ln b
(j) +

d∑

j=1

pj ln oj ,

therefore

argmax
b

E{ln 〈b , X〉} = argmax
b

d∑

j=1

pj ln b
(j).

In order to solve the optimization problem

argmax
b

d∑

j=1

pj ln b
(j),

we introduce the Kullback-Leibler divergence of the distributions p and b:

KL(p,b) =
d∑

j=1

pj ln
pj
b(j)

.

The basic property of the Kullback-Leibler divergence is that

KL(p,b) ≥ 0,

and is equal to zero if and only if the two distributions are equal. The proof

of this property is simple:

KL(p,b) = −
d∑

j=1

pj ln
b(j)

pj
≥ −

d∑

j=1

pj

(
b(j)

pj
− 1

)
= −

d∑

j=1

b(j) +
d∑

j=1

pj = 0.

This inequality implies that

argmax
b

d∑

j=1

pj ln b
(j) = p.

Surprisingly, the log-optimal portfolio is independent of the payoffs, and

W ∗ =

d∑

j=1

pj ln(pjoj).

Knowing the distribution p, the usual choice of payoffs is

oj =
1

pj
,
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and then

W ∗ = 0.

It means that, for this choice of payoffs, any gambling strategy has negative

growth rate.

Example 2.5. (Sequential St. Petersburg games.)

Consider the simple St. Petersburg game, where the player invests 1 dollar

and a fair coin is tossed until a tail first appears, ending the game. If the

first tail appears in step k then the the payoff X is 2k and the probability

of this event is 2−k:

P{X = 2k} = 2−k.

Since E{X} = ∞, this game has delicate properties (cf. [Aumann (1977)],

[Bernoulli (1954)], [Durand (1957)], [Haigh (1999)], [Martin (2004)],

[Menger (1934)], [Rieger and Wang (2006)] and [Samuelson (1960)].) In

the literature, usually the repeated St. Petersburg game (called iterated St.

Petersburg game, too) means multi-period game such that it is a sequence

of simple St. Petersburg games, where in each round the player invest 1

dollar. Let Xn denote the payoff for the n-th simple game. Assume that

the sequence {Xn}∞n=1 is independent and identically distributed. After n

rounds the player’s wealth in the repeated game is

S̃n =

n∑

i=1

Xi,

then

lim
n→∞

S̃n

n log2 n
= 1

in probability, where log2 denotes the logarithm with base 2 (cf. [Feller

(1945)]). Moreover,

lim inf
n→∞

S̃n

n log2 n
= 1 a.s.

and

lim sup
n→∞

S̃n

n log2 n
= ∞ a.s.

(cf. [Chow and Robbins (1961)]). Introducing the notation for the largest

payoff

X∗
n = max

1≤i≤n
Xi
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and for the sum with the largest payoff withheld

S∗
n = S̃n −X∗

n,

one has that

lim
n→∞

S∗
n

n log2 n
= 1

a.s. (cf. [Csörgő and Simons (1996)]). According to the previous results

S̃n ≈ n log2 n. Next we introduce a multi-period game, called sequential St.

Petersburg game, having exponential growth. The sequential St. Peters-

burg game means that the player starts with initial capital S0 = 1 dollar,

and there is an independent sequence of simple St. Petersburg games, and

for each simple game the player reinvest his capital. If S
(c)
n−1 is the capital

after the (n − 1)-th simple game then the invested capital is S
(c)
n−1(1 − c),

while S
(c)
n−1c is the proportional cost of the simple game with commission

factor 0 < c < 1. It means that after the n-th round the capital is

S(c)
n = S

(c)
n−1(1− c)Xn = S0(1− c)n

n∏

i=1

Xi = (1− c)n
n∏

i=1

Xi.

Because of its multiplicative definition, S
(c)
n has exponential trend:

S(c)
n = enW

(c)
n ≈ enW

(c)

,

with average growth rate

W (c)
n :=

1

n
lnS(c)

n

and with asymptotic average growth rate

W (c) := lim
n→∞

1

n
lnS(c)

n .

Let’s calculate the the asymptotic average growth rate. Because of

W (c)
n =

1

n
lnS(c)

n =
1

n

(
n ln(1− c) +

n∑

i=1

lnXi

)
,

the strong law of large numbers implies that

W (c) = ln(1− c) + lim
n→∞

1

n

n∑

i=1

lnXi = ln(1− c) + E{lnX1}

a.s., so W (c) can be calculated via expected log-utility (cf. [Kenneth

(1974)]). A commission factor c is called fair if

W (c) = 0,
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so the growth rate of the sequential game is 0. Let’s calculate the fair c:

ln(1− c) = −E{lnX1} = −
∞∑

k=1

k ln 2 · 2−k = −2 ln 2,

i.e.,

c = 3/4.

[Györfi and Kevei (2009)] studied the portfolio game, where a fraction of

the capital is invested in the simple fair St. Petersburg game and the rest

is kept in cash. This is the model of the constantly rebalanced portfolio

(CRP). Fix a portfolio vector b = (b, 1 − b), with 0 ≤ b ≤ 1. Let S0 = 1

denote the player’s initial capital. Then at the beginning of the portfolio

game S0b = b is invested into the fair game, and it results in return bX1/4,

while S0(1 − b) = 1 − b remains in cash, therefore after the first round of

the portfolio game the player’s wealth becomes

S1 = S0(bX1/4 + (1− b)) = b(X1/4− 1) + 1.

For the second portfolio game, S1 is the new initial capital

S2 = S1(b(X2/4− 1) + 1) = (b(X1/4− 1) + 1)(b(X2/4− 1) + 1).

By induction, for n-th portfolio game the initial capital is Sn−1, therefore

Sn = Sn−1(b(Xn/4− 1) + 1) =

n∏

i=1

(b(Xi/4− 1) + 1).

The asymptotic average growth rate of this portfolio game is

W (b) := lim
n→∞

1

n
log2 Sn

= lim
n→∞

1

n

n∑

i=1

log2(b(Xi/4− 1) + 1)

→ E{log2(b(X1/4− 1) + 1)} a.s.

The function ln is concave, therefore W (b) is concave, too, so W (0) = 0

(keep everything in cash) and W (1) = 0 (the simple St. Petersburg game

is fair) imply that for all 0 < b < 1, W (b) > 0. Let’s calculate

max
b

W (b).
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We have that

W (b) =
∞∑

k=1

log2(b(2
k/4− 1) + 1) · 2−k

= log2(1− b/2) · 2−1 +
∞∑

k=3

log2(b(2
k−2 − 1) + 1) · 2−k.

One can show that b∗ = (0.385, 0.615) and W ∗ = 0.149.

Example 2.6. We can extend Example 2.5 such that in each round there

are d St. Petersburg components, i.e., the return vector has the form

X = (X(1), . . . , X(d), X(d+1)) = (X1/4, . . . , Xd/4, 1)

(d ≥ 1), where the first d i.i.d. components of X are fair St. Pe-

tersburg payoffs, while the last component is the cash. For d = 2,

b∗ = (0.364, 0.364, 0.272). For d ≥ 3, the best portfolio is the uniform

portfolio such that the cash has zero weight:

b∗ = (1/d, . . . , 1/d, 0)

and the asymptotic average growth rate is

W ∗
d = E

{
log2

(
1

4d

d∑

i=1

Xi

)}
.

Here are the first few values:

Table 2.1. Numerical results

d 1 2 3 4 5 6 7 8

W ∗
d

0.149 0.289 0.421 0.526 0.606 0.669 0.721 0.765

[Györfi and Kevei (2011)] proved that

W ∗
d ≈ log2 log2 d− 2 +

log2 log2 d

ln 2 log2 d
,

which results in some figures for large d:

Table 2.2. Simulation results

d 8 16 32 64

W ∗
d

0.76 0.97 1.17 1.35
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2.2.3. Semi-log-optimal portfolio

[Roll (1973)], [Pulley (1994)] and [Vajda (2006)] suggested an approxima-

tion of b∗ and b∗
n using

h(z) := z − 1− 1

2
(z − 1)2,

which is the second order Taylor expansion of the function ln z at z = 1.

Then, the semi-log-optimal portfolio selection is

b̄ = argmax
b

E{h(〈b , X1〉)},

and the empirical semi-log-optimal portfolio is

b̄n = argmax
b

1

n

n∑

i=1

h(〈b , xi〉).

In order to compute b∗
n, one has to make an optimization over b. In each

optimization step the computational complexity is proportional to n. For

b̄n, this complexity can be reduced. We have that

1

n

n∑

i=1

h(〈b , xi〉) =
1

n

n∑

i=1

(〈b , xi〉 − 1)− 1

2

1

n

n∑

i=1

(〈b , xi〉 − 1)2.

If 1 denotes the all 1 vector, then

1

n

n∑

i=1

h(〈b , xi〉) = 〈b , m〉 − 〈b , Cb〉 ,

where

m =
1

n

n∑

i=1

(xi − 1)

and

C =
1

2

1

n

n∑

i=1

(xi − 1)(xi − 1)T .

If we calculate the vector m and the matrix C beforehand then in each

optimization step the complexity does not depend on n, so the running

time for calculating b̄n is much smaller than for b∗
n. The other advantage

of the semi-log-optimal portfolio is that it can be calculated via quadratic

programming, which is doable, e.g., using the routine QuadProg++ of

[Gaspero (2006)]. This program uses Goldfarb-Idnani dual method for solv-

ing quadratic programming problems [Goldfarb and Idnani (1983)].
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2.3. Time varying portfolio selection

For a general dynamic portfolio selection, the portfolio vector may depend

on the past data. As before, xi = (x
(1)
i , . . . x

(d)
i ) denotes the return vector

on trading period i. Let b = b1 be the portfolio vector for the first trading

period. For initial capital S0, we get that

S1 = S0 · 〈b1 , x1〉 .

For the second trading period, S1 is new initial capital, the portfolio vector

is b2 = b(x1), and

S2 = S0 · 〈b1 , x1〉 · 〈b(x1) , x2〉 .

For the nth trading period, a portfolio vector is bn = b(x1, . . . ,xn−1) =

b(xn−1
1 ) and

Sn = S0

n∏

i=1

〈
b(xi−1

1 ) , xi

〉
= S0e

nWn(B)

with the average growth rate

Wn(B) =
1

n

n∑

i=1

ln
〈
b(xi−1

1 ) , xi

〉
.

2.3.1. Log-optimal portfolio for stationary market process

The fundamental limits, determined in [Móri (1982a)], in [Algoet and Cover

(1988)], and in [Algoet (1992, 1994)], reveal that the so-called (condition-

ally) log-optimal portfolio B∗ = {b∗(·)} is the best possible choice. More

precisely, on trading period n let b∗(·) be such that

E
{
ln
〈
b∗(Xn−1

1 ) , Xn

〉∣∣Xn−1
1

}
= max

b(·)
E
{
ln
〈
b(Xn−1

1 ) , Xn

〉∣∣Xn−1
1

}
.

If S∗
n = Sn(B

∗) denotes the capital achieved by a log-optimal portfolio

strategy B∗, after n trading periods, then for any other investment strategy

B with capital Sn = Sn(B) and with

sup
n

E
{
(ln
〈
bn(X

n−1
1 ) , Xn

〉
)2
}
< ∞,

and for any stationary and ergodic process {Xn}∞−∞,

lim sup
n→∞

(
1

n
lnSn − 1

n
lnS∗

n

)
≤ 0 almost surely (2.3)
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and

lim
n→∞

1

n
lnS∗

n = W ∗ almost surely,

where

W ∗ := E

{
max
b(·)

E
{
ln
〈
b(X−1

−∞) , X0

〉∣∣X−1
−∞
}}

is the maximal possible growth rate of any investment strategy. (Note that

for memoryless markets W ∗ = maxb E {ln 〈b , X0〉} which shows that in

this case the log-optimal portfolio is the best constantly rebalanced portfo-

lio.)

For the proof of this optimality we use the concept of martingale differ-

ences:

Definition 2.1. There are two sequences of random variables {Zn} and

{Xn} such that

• Zn is a function of X1, . . . , Xn,

• E{Zn | X1, . . . , Xn−1} = 0 almost surely.

Then {Zn} is called martingale difference sequence with respect to {Xn}.

For martingale difference sequences, there is a strong law of large num-

bers: If {Zn} is a martingale difference sequence with respect to {Xn}
and

∞∑

n=1

E{Z2
n}

n2
< ∞

then

lim
n→∞

1

n

n∑

i=1

Zi = 0 a.s.

(cf. [Chow (1965)], see also Theorem 3.3.1 in [Stout (1974)]).

In order to be self-contained, for martingale differences, we prove a

weak law of large numbers. We show that if {Zn} is a martingale difference

sequence with respect to {Xn} then {Zn} are uncorrelated. Put i < j, then

E{ZiZj} = E{E{ZiZj | X1, . . . , Xj−1}}
= E{ZiE{Zj | X1, . . . , Xj−1}} = E{Zi · 0} = 0.
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It implies that

E





(
1

n

n∑

i=1

Zi

)2


 =

1

n2

n∑

i=1

n∑

j=1

E{ZiZj} =
1

n2

n∑

i=1

E{Z2
i } → 0

if, for example, E{Z2
i } is a bounded sequence.

One can construct martingale difference sequence as follows: let {Yn}
be an arbitrary sequence such that Yn is a function of X1, . . . , Xn. Put

Zn = Yn − E{Yn | X1, . . . , Xn−1}.

Then {Zn} is a martingale difference sequence:

• Zn is a function of X1, . . . , Xn,

• E{Zn|X1, . . . , Xn−1} = E{Yn − E{Yn|X1, . . . , Xn−1}|X1, . . . , Xn−1} =

0 almost surely.

Now we can prove of optimality of the log-optimal portfolio: introduce

the decomposition

1

n
lnSn =

1

n

n∑

i=1

ln
〈
b(Xi−1

1 ) , Xi

〉

=
1

n

n∑

i=1

E{ln
〈
b(Xi−1

1 ) , Xi

〉
| Xi−1

1 }

+
1

n

n∑

i=1

(
ln
〈
b(Xi−1

1 ) , Xi

〉
− E{ln

〈
b(Xi−1

1 ) , Xi

〉
| Xi−1

1 }
)
.

The last average is an average of martingale differences, so it tends to zero

a.s. Similarly,

1

n
lnS∗

n =
1

n

n∑

i=1

E{ln
〈
b∗(Xi−1

1 ) , Xi

〉
| Xi−1

1 }

+
1

n

n∑

i=1

(
ln
〈
b∗(Xi−1

1 ) , Xi

〉
− E{ln

〈
b∗(Xi−1

1 ) , Xi

〉
| Xi−1

1 }
)
.

Because of the definition of the log-optimal portfolio we have that

E{ln
〈
b(Xi−1

1 ) , Xi

〉
| Xi−1

1 } ≤ E{ln
〈
b∗(Xi−1

1 ) , Xi

〉
| Xi−1

1 },

and the proof is finished.
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2.3.2. Empirical portfolio selection

The optimality relations proved above give rise to the following definition:

Definition 2.2. An empirical (data driven) portfolio strategy B is called

universally consistent with respect to a class C of stationary and

ergodic processes {Xn}∞−∞, if for each process in the class,

lim
n→∞

1

n
lnSn(B) = W ∗ almost surely.

It is not at all obvious that such universally consistent portfolio strat-

egy exists. The surprising fact that there exists a strategy, universal with

respect to a class of stationary and ergodic processes was proved by [Algoet

(1992)].

Most of the papers dealing with portfolio selections assume that the

distributions of the market process are known. If the distributions are

unknown then one can apply a two stage splitting scheme.

1: In the first time period the investor collects data, and estimates the

corresponding distributions. In this period there is no any investment.

2: In the second time period the investor derives strategies from the dis-

tribution estimates and performs the investments.

In the sequel we show that there is no need to make any splitting, one

can construct sequential algorithms such that the investor can make trading

during the whole time period, i.e., the estimation and the portfolio selection

is made on the whole time period.

Let’s recapitulate the definition of log-optimal portfolio:

E{ln
〈
b∗(Xn−1

1 ) , Xn

〉
| Xn−1

1 } = max
b(·)

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 } .

For a fixed integer k > 0 large enough, we expect that

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 } ≈ E{ln
〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k}

and

b∗(Xn−1
1 ) ≈ bk(X

n−1
n−k) = argmax

b(·)
E{ln

〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k}.
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Because of stationarity

bk(x
k
1) = argmax

b(·)
E{ln

〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k = xk
1}

= argmax
b(·)

E{ln
〈
b(xk

1) , Xk+1

〉
| Xk

1 = xk
1}

= argmax
b

E{ln 〈b , Xk+1〉 | Xk
1 = xk

1} ,

which is the maximization of the regression function

mb(x
k
1) = E{ln 〈b , Xk+1〉 | Xk

1 = xk
1}.

Thus, a possible way for asymptotically optimal empirical portfolio selection

is that, based on the past data, sequentially estimate the regression function

mb(x
k
1), and choose the portfolio vector, which maximizes the regression

function estimate.

2.3.3. Regression function estimation

Briefly summarize the basics of nonparametric regression function estima-

tion. Concerning the details we refer to the book of [Györfi et al. (2002)]

and to Chapter 5 of this volume. Let Y be a real valued random variable,

and let X denote an observation vector taking values in R
d. The regression

function is the conditional expectation of Y given X:

m(x) = E{Y | X = x}.

If the distribution of (X,Y ) is unknown then one has to estimate the re-

gression function from data. The data is a sequence of i.i.d. copies of

(X,Y ):

Dn = {(X1, Y1), . . . , (Xn, Yn)}.

The regression function estimate is of form

mn(x) = mn(x,Dn).

An important class of estimates is the local averaging estimates

mn(x) =

n∑

i=1

Wn,i(x;X1, . . . , Xn)Yi,

where usually the weights Wn,i(x;X1, . . . , Xn) are non-negative and sum

up to 1. Moreover, Wn,i(x;X1, . . . , Xn) is relatively large if x is close to

Xi, otherwise it is zero.
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An example of such an estimate is the partitioning estimate. Here one

chooses a finite or countably infinite partition Pn = {An,1, An,2, . . . } of Rd

consisting of cells An,j ⊆ R
d and defines, for x ∈ An,j , the estimate by

averaging Yi’s with the corresponding Xi’s in An,j , i.e.,

mn(x) =

∑n
i=1 I{Xi∈An,j}Yi∑n
i=1 I{Xi∈An,j}

for x ∈ An,j , (2.4)

where IA denotes the indicator function of set A. Here and in the following

we use the convention 0
0 = 0. In order to have consistency, on the one

hand we need that the cells An,j should be “small”, and on the other

hand the number of non-zero terms in the denominator of (2.4) should be

“large”. These requirements can be satisfied if the sequences of partition

Pn is asymptotically fine, i.e., if

diam(A) = sup
x,y∈A

‖x− y‖

denotes the diameter of a set such that || · || is the Euclidean norm, then

for each sphere S centered at the origin

lim
n→∞

max
j:An,j∩S 6=∅

diam(An,j) = 0

and

lim
n→∞

|{j : An,j ∩ S 6= ∅}|
n

= 0.

For the partition Pn, the most important example is when the cells An,j are

cubes of volume hd
n. For cubic partition, the consistency conditions above

mean that

lim
n→∞

hn = 0 and lim
n→∞

nhd
n = ∞. (2.5)

The second example of a local averaging estimate is the Nadaraya–

Watson kernel estimate. Let K : Rd → R+ be a function called the kernel

function, and let h > 0 be a bandwidth. The kernel estimate is defined by

mn(x) =

∑n
i=1 K

(
x−Xi

h

)
Yi∑n

i=1 K
(
x−Xi

h

)

The kernel estimate is a weighted average of the Yi, where the weight of Yi

(i.e., the influence of Yi on the value of the estimate at x) depends on the

distance between Xi and x. For the bandwidth h = hn, the consistency

conditions are (2.5). If one uses the so-called näıve kernel (or window

kernel) K(x) = I{‖x‖≤1}, where I{·} denotes the indicator function of the
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events in the brackets, that is, it equals 1 if the event is true and 0 otherwise.

Then

mn(x) =

∑n
i=1 I{‖x−Xi‖≤h}Yi∑n
i=1 I{‖x−Xi‖≤h}

,

i.e., one estimates m(x) by averaging Yi’s such that the distance between

Xi and x is not greater than h.

Our final example of local averaging estimates is the k-nearest neighbor

(k-NN) estimatel. Here one determines the k nearest Xi’s to x in terms of

distance ‖x−Xi‖ and estimates m(x) by the average of the corresponding

Yi’s. More precisely, for x ∈ R
d, let

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x))

be a permutation of

(X1, Y1), . . . , (Xn, Yn)

such that

‖x−X(1)(x)‖ ≤ · · · ≤ ‖x−X(n)(x)‖.
The k-NN estimate is defined by

mn(x) =
1

k

k∑

i=1

Y(i)(x).

If k = kn → ∞ such that kn/n → 0 then the k-nearest-neighbor regression

estimate is consistent.

We use the following correspondence between the general regression

estimation and portfolio selection:

X ∼ Xk
1 ,

Y ∼ ln 〈b , Xk+1〉 ,
m(x) = E{Y | X = x} ∼ mb(x

k
1) = E{ln 〈b , Xk+1〉 | Xk

1 = xk
1}.

2.3.4. Histogram based strategy

Next we describe histogram based strategy due to [Györfi and Schäfer

(2003)] and denote it by BH . We first define an infinite array of elemen-

tary strategies (the so-called experts) B(k,`) = {b(k,`)(·)}, indexed by the

positive integers k, ` = 1, 2, . . .. Each expert B(k,`) is determined by a pe-

riod length k and by a partition P` = {A`,j}, j = 1, 2, . . . ,m` of Rd
+ into
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m` disjoint cells. To determine its portfolio on the nth trading period,

expert B(k,`) looks at the return vectors xn−k, . . . ,xn−1 of the last k pe-

riods, discretizes this kd-dimensional vector by means of the partition P`,

and determines the portfolio vector which is optimal for those past trading

periods whose preceding k trading periods have identical discretized return

vectors to the present one. Formally, let G` be the discretization function

corresponding to the partition P`, that is,

G`(x) = j, if x ∈ A`,j .

With some abuse of notation, for any n and xn
1 ∈ R

dn, we write G`(x
n
1 )

for the sequence G`(x1), . . . , G`(xn). Then define the expert B(k,`) =

{b(k,`)(·)} by writing, for each n > k + 1,

b(k,`)(xn−1
1 ) = argmax

b∈∆d

∏

i∈Jk,l,n

〈b , xi〉 , (2.6)

where Jk,l,n =
{
k < i < n : G`(x

i−1
i−k) = G`(x

n−1
n−k)

}
,

if Jk,l,n 6= ∅, and uniform b0 = (1/d, . . . , 1/d) otherwise. That is, b
(k,`)
n

discretizes the sequence xn−1
1 according to the partition P`, and browses

through all past appearances of the last seen discretized string G`(x
n−1
n−k)

of length k. Then it designs a fixed portfolio vector optimizing the return

for the trading periods following each occurrence of this string.

The problem left is how to choose k, `. There are two extreme cases:

• small k or small ` implies that the corresponding regression estimate

has large bias,

• large k and large ` implies that usually there are few matching, which

results in large variance.

The good, data-driven choice of k and ` is doable borrowing recent

techniques from machine learning. In online sequential machine learning

setup k and ` are considered as parameters of the estimates, called experts.

The basic idea of online sequential machine learning is the combination of

the experts. The combination is an aggregated estimate, where an expert

has large weight if its past performance is good (cf. [Cesa-Bianchi and

Lugosi (2006)]).

The most appealing combination-type of the experts is exponential

weighting due to its nice theoretical and practical properties. Combine

the elementary portfolio strategies B(k,`) = {b(k,`)
n } as follows: let {qk,`}

be a probability distribution on the set of all pairs (k, `) such that for all

k, `, qk,` > 0.
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For a learning parameter η > 0, introduce the exponential weights

wn,k,` = qk,`e
η lnSn−1(B

(k,`)).

For η = 1, it means that

wn,k,` = qk,`e
lnSn−1(B

(k,`)) = qk,`Sn−1(B
(k,`))

and

vn,k,` =
wn,k,`∑
i,j wn,i,j

.

The combined portfolio b is defined by

bn(x
n−1
1 ) =

∞∑

k=1

∞∑

`=1

vn,k,`b
(k,`)
n (xn−1

1 ).

This combination has a simple interpretation:

Sn(B
H) =

n∏

i=1

〈
bi(x

i−1
1 ) , xi

〉

=

n∏

i=1

∑
k,` wi,k,`

〈
b
(k,`)
i (xi−1

1 ) , xi

〉

∑
k,` wi,k,`

=

n∏

i=1

∑
k,` qk,`Si−1(B

(k,`))
〈
b
(k,`)
i (xi−1

1 ) , xi

〉

∑
k,` qk,`Si−1(B(k,`))

=
n∏

i=1

∑
k,` qk,`Si(B

(k,`))
∑

k,` qk,`Si−1(B(k,`))

=
∑

k,`

qk,`Sn(B
(k,`)).

The strategyBH then arises from weighting the elementary portfolio strate-

gies B(k,`) = {b(k,`)
n } such that the investor’s capital becomes

Sn(B
H) =

∑

k,`

qk,`Sn(B
(k,`)). (2.7)

It is shown in [Györfi and Schäfer (2003)] that the strategy BH is uni-

versally consistent with respect to the class of all ergodic processes such

that E{| logX(j)|} < ∞, for all j = 1, 2, . . . , d under the following two

conditions on the partitions used in the discretization:

(a) the sequence of partitions is nested, that is, any cell of P`+1 is a subset

of a cell of P`, ` = 1, 2, . . .;
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(b) if diam(A) = supx,y∈A ‖x− y‖ denotes the diameter of a set, then for

any sphere S ⊂ R
d centered at the origin,

lim
`→∞

max
j:A`,j∩S 6=∅

diam(A`,j) = 0 .

2.3.5. Kernel based strategy

[Györfi et al. (2006)] introduced kernel-based portfolio selection strategies.

Define an infinite array of experts B(k,`) = {b(k,`)(·)}, where k, ` are pos-

itive integers. For fixed positive integers k, `, choose the radius rk,` > 0

such that for any fixed k,

lim
`→∞

rk,` = 0.

Then, for n > k + 1, define the expert b(k,`) by

b(k,`)(xn−1
1 ) = argmax

b∈∆d

∏

{k<i<n:‖xi−1
i−k−x

n−1
n−k‖≤rk,`}

〈b , xi〉 ,

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise. These experts

are mixed as in (2.7).

[Györfi et al. (2006)] proved that the portfolio scheme BK = B is uni-

versally consistent with respect to the class of all ergodic processes such

that E{| lnX(j)|} < ∞, for j = 1, 2, . . . d.

Sketch of the proof: Because of the fundamental limit (2.3), we have to

prove that

lim inf
n→∞

Wn(B) = lim inf
n→∞

1

n
lnSn(B) ≥ W ∗ a.s.

We have that

Wn(B) =
1

n
lnSn(B)

=
1

n
ln


∑

k,`

qk,`Sn(B
(k,`))




≥ 1

n
ln

(
sup
k,`

qk,`Sn(B
(k,`))

)

=
1

n
sup
k,`

(
ln qk,` + lnSn(B

(k,`))
)

= sup
k,`

(
Wn(B

(k,`)) +
ln qk,`
n

)
.
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Thus

lim inf
n→∞

Wn(B) ≥ lim inf
n→∞

sup
k,`

(
Wn(B

(k,`)) +
ln qk,`
n

)

≥ sup
k,`

lim inf
n→∞

(
Wn(B

(k,`)) +
ln qk,`
n

)

= sup
k,`

lim inf
n→∞

Wn(B
(k,`))

= sup
k,`

εk,`.

Because of lim`→∞ rk,` = 0, we can show that

sup
k,`

εk,` = lim
k→∞

lim
l→∞

εk,` = W ∗.

2.3.6. Nearest neighbor based strategy

Define an infinite array of experts B(k,`) = {b(k,`)(·)}, where 0 < k, ` are

integers. Just like before, k is the window length of the near past, and for

each ` choose p` ∈ (0, 1) such that

lim
`→∞

p` = 0. (2.8)

Put

ˆ̀= bp`nc.
At a given time instant n, the expert searches for the ˆ̀ nearest neighbor

(NN) matches in the past. For fixed positive integers k, ` (n > k + ˆ̀+ 1),

introduce the set of the ˆ̀ nearest neighbor matches:

Ĵ (k,`)
n = {i; k + 1 ≤ i ≤ n such that xi−1

i−k is among the ˆ̀ NNs of xn−1
n−k

in xk
1 , . . . ,x

n−2
n−k−1}.

Define the expert by

b(k,`)(xn−1
1 ) = argmax

b∈∆d

∏

i∈Ĵ
(k,`)
n

〈b , xi〉 .

That is, b
(k,`)
n is a fixed portfolio vector according to the returns following

these nearest neighbors. These experts are mixed in the same way as in

(2.7).

We say that a tie occurs with probability zero if for any vector s = sk1
the random variable

‖Xk
1 − s‖
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has continuous distribution function.

[Györfi et al. (2008)] proved the following theorem: assume (2.8) and

that a tie occurs with probability zero, then the portfolio scheme BNN is

universally consistent with respect to the class of all stationary and ergodic

processes such that E{| logX(j)|} < ∞, for j = 1, 2, . . . d.

2.3.7. Numerical results on empirical portfolio selection

The theoretical results above hold under the condition of stationarity. Obvi-

ously, the real data of returns (relative prices) are not stationary, therefore

we performed some experiments for New-York Stock Exchange (NYSE)

data . This section gives numerical results on empirical portfolio selection.

At the web page [Gelencsér and Ottucsák (2006)] there are two benchmark

data set from NYSE:

• The first data set consists of daily data of 36 stocks with length 22

years (5651 trading days ending in 1985). More precisely, the data set

contains the daily price relatives, that was calculated from the nominal

values of the closing prices corrected by the dividends and the splits

for all trading day. This data set has been used for testing portfolio

selection in [Cover (1991)], in [Singer (1997)], in [Györfi et al. (2006)],

in [Györfi et al. (2008)] and in [Györfi et al. (2007)].

• The second data set contains 19 stocks and has length 44 years (11178

trading days ending in 2006) and it was generated same way as the

previous data set (it was augmented by the last 22 years).

Our experiment is on the second data set. To make the analysis feasible,

some simplifying assumptions are used that need to be taken into account.

Remind the reader that we assume that

• the assets are arbitrarily divisible,

• the assets are available for buying or for selling in unbounded quantities

at the current price at any given trading period,

• there are no transaction costs (in Chapter 3 of this volume we offer

solutions to overcome this problem),

• the behavior of the market is not affected by the actions of the investor

using the strategy under investigation.

For the 19 assets in the second data set, the average annual yield (AAY)

of the static uniform portfolio (uniform index) is 14%, while the best asset

was MORRIS (Philip Morris International Inc.) with AAY 20%. These
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yields match with theoretical consideration derived in Chapter 1 of this

volume (Table 1.1), that is, that 44 years period is too “short” in the sense

in order to show that the limit of the growth rate of the static portfolio

coincides with that of the best asset.

Table 2.3. Comparison of the two algorithms
for CRPs.

Stock’s name AAY BCRP
log Semi-log

AHP 13% 0 0
ALCOA 9% 0 0
AMERB 14% 0 0
COKE 14% 0 0
DOW 12% 0 0

DUPONT 9% 0 0
FORD 9% 0 0
GE 13% 0 0
GM 7% 0 0
HP 15% 0.177 0.178
IBM 10% 0 0

INGER 11% 0 0
JNJ 16% 0 0

KIMBC 13% 0 0
MERCK 15% 0 0
MMM 11% 0 0

MORRIS 20% 0.747 0.746
PANDG 13% 0 0
SCHLUM 15% 0.076 0.076

AAY 20% 20%

Table 2.3 summarizes the numerical results for these 19 assets and for

BCRP. The first column of Table 2.3 lists the stock’s name, the second

column shows the AAY. The third and the fourth columns present the

weights of the stocks (the components of the best constant portfolio vector)

using the log-optimal and semi-log-optimal algorithms. Surprisingly, the

two portfolio vectors are almost the same, according to next-to-the-last

row the growth rates are the same: 20%. Again, the 44 years period is “too

small” in order to get that the growth rate of BCRP is much larger than the

growth rate of the best asset. Here one can make the same observation as

at the end of Chapter 1 of this volume, i.e., the BCRP is very undiversified,
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only three assets have positive weight.

For the calculation of the optimal portfolio we use a recursive greedy

gradient algorithm. Introduce the projection P of a vector b =

(b(1), . . . b(d)) to ∆d:

P (b) =
b

∑d
j=1 b

(j)
.

Put

Wn(b) =
1

n

n∑

i=1

log 〈b , xi〉 ,

and let ej be the j-th unit vector, i.e., its j-th component is 1, the other

components are 0.

Gradient Algorithm

Parameters: number d of assets, initial portfolio b0 =

(1/d, . . . , 1/d), V0 = Wn(b0) and step size δ > 0 .

At iteration steps k = 1, 2, 3, . . . ,

(1) Calculate

Wn(P (bk−1 + δ · ej)) j = 1, . . . , d ;

(2) If

Vk−1 ≥ max
j

Wn(P (bk−1 + δ · ej))

then stop, and the result of the algorithm is bk−1.

Otherwise, put

Vk = max
j

Wn(P (bk−1 + δ · ej))

and

bk = P (bk−1 + δ · ej∗),
where

j∗ = argmax
j

Wn(P (bk−1 + δ · ej)).

Go to (1);
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Table 2.4. The average annual yields
of the individual experts for the kernel
strategy.

k 1 2 3 4 5
`

1 31% 30% 24% 21% 26%

2 34% 31% 27% 25% 22%

3 35% 29% 26% 24% 23%

4 35% 30% 30% 32% 27%

5 34% 29% 33% 24% 24%
6 35% 29% 28% 24% 27%
7 33% 29% 32% 23% 23%
8 34% 33% 30% 21% 24%
9 37% 33% 28% 19% 21%
10 34% 29% 26% 20% 24%

Next we show experiments for time-varying portfolio selection. One can

combine the kernel based portfolio selection and the principle of semi-log-

optimal algorithm in Section 2.2.3, called kernel based semi-log-optimal

portfolio (cf. [Györfi et al. (2007)]). We present some numerical results

obtained by applying the kernel based semi-log-optimal algorithm to the

second NYSE data set.

The proposed universally consistent empirical portfolio selection algo-

rithms use an infinite array of experts. In practice we take a finite array

of size K × L. In our experiment we selected K = 5 and L = 10. Choose

the uniform distribution {qk,`} = 1/(KL) over the experts in use, and the

radius

r2k,l = 0.0002 · d · k(1 + `/10),

(k = 1, . . . ,K and ` = 1, . . . , L).

Table 2.4 summarizes the average annual yield achieved by each expert

at the last period when investing one unit for the kernel-based semi-log-

optimal portfolio. Experts are indexed by k = 1 . . . 5 in columns and ` =

1 . . . 10 in rows. The average annual yield of kernel based semi-log-optimal

portfolio is 31%. According to Table 2.3, MORRIS had the best average

annual yield, 20%, while the BCRP had average annual yield 20%, so with

kernel based semi-log-optimal portfolio we have a spectacular improvement.

Another interesting feature of Table 2.4 is that for any fixed `, the best

k is equal to 1, so as far as empirical portfolio is concerned the Markovian

modelling is appropriate. If the time horizon in the experiment were infinity,
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then the numbers in each fixed row would be monotonically increasing.

Here we observe just the contrary, the reasoning of which is that in the k-

th position of a row the dimension of the optimization problem is 19 · k, so
for larger k the dimension is too large with respect to the length of the data,

i.e., for larger k there are not enough data to “learn” the best portfolio.

Again, the time varying portfolio is very undiversified such that the subset

of assets with non-zero weight is changing from time to time, which makes

the problem of transaction cost challenging.

Table 2.5. The average annual yields of
the individual experts for the nearest
neighbor strategy.

k 1 2 3 4 5

`

50 31% 33% 28% 24% 35%
100 33% 32% 25% 29% 28%
150 38% 33% 26% 32% 27%
200 38% 28% 32% 32% 24%
250 37% 31% 37% 28% 26%
300 41% 35% 35% 30% 29%
350 39% 36% 31% 34% 32%
400 39% 35% 33% 32% 35%
450 39% 34% 34% 35% 37%
500 42% 36% 33% 38% 35%

We performed some experiments using nearest neighbor strategy.

Again, we take a finite array of size K × L such that K = 5 and L = 10.

Choose the uniform distribution {qk,`} = 1/(KL) over the experts in

use. Table 2.5 summarizes the average annual yield achieved by each ex-

pert at the last period when investing one unit for the nearest neighbor

portfolio strategy. Experts are indexed by k = 1 . . . 5 in columns and

` = 50, 100, . . . , 500 in rows, where ` is the number of nearest neighbors.

The average annual yield of nearest neighbor portfolio is 35% . Comparing

Tables 2.4 and 2.5, one can conclude that the nearest neighbor strategy is

more robust.
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Discrete time growth optimal investment in stock markets with propor-
tional transactions costs is considered. The market process is a sequence
of daily relative prices (called returns), and it is modelled by a first order
Markov process. Assuming that the distribution of the market process
is known, we show sequential investment strategies such that, in the
long run, the growth rate on trajectories achieves the maximum with
probability 1. Investment with consumption and with fixed transaction
cost where the cost depends on the number of the shares involved in the
transaction is also analyzed.

3.1. Introduction

The purpose of this chapter is to investigate sequential investment strategies

for financial markets such that the strategies are allowed to use information

collected from the past of the market and determine, at the beginning of a

trading period, a portfolio, that is, a way to distribute their current capi-

tal among the available assets. The goal of the investor is to maximize his

wealth on the long run. If there is no transaction cost then the only assump-

tion used in the mathematical analysis is that the daily price relatives form

a stationary and ergodic process. Under this assumption the best strategy

117
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(called log-optimum strategy) can be constructed in full knowledge of the

distribution of the entire process, see [Algoet and Cover (1988)]. Moreover,

[Györfi and Schäfer (2003)], [Györfi et al. (2006)] and [Györfi et al. (2008)]

constructed empirical (data driven) growth optimum strategies in case of

unknown distributions. The empirical results show that the performance of

these empirical investment strategies measured on past nyse data is solid,

and sometimes even spectacular.

The problem of optimal investment with proportional transaction cost

has been essentially formulated and studied in continuous time only (cf.

[Akien et al. (2001)], [Davis and Norman (1990)], [Eastham and Hastings

(1988)], [Korn (1998)], [Morton and Pliska (1995)], [Palczewski and Stettner

(2006)], [Pliska and Suzuki (2004)], [Shreve et al. (1991)], [Shreve and Soner

(1994)], [Taksar et al. (1988)]).

Papers dealing with growth optimal investment with transaction costs

in discrete time setting are seldom. [Iyengar and Cover (2000)] formulated

the problem of horse race markets, where in every market period one of

the assets has positive pay off and all the others pay nothing. Their model

included proportional transaction costs and they used a long run expected

average reward criterion. There are results for more general markets as well.

[Sass and Schäl (2010)] investigated the numeraire portfolio in context of

bond and stock as assets. [Iyengar (2002, 2005)] investigated growth op-

timal investment with several assets assuming independent and identically

distributed (i.i.d.) sequence of asset returns. [Bobryk and Stettner (1999)]

considered the case of portfolio selection with consumption, when there are

two assets, a bond and a stock. Furthermore, long run expected discounted

reward and i.i.d asset returns were assumed. In the case of discrete time

and non i.i.d. market process, [Schäfer (2002)] considered the maximiza-

tion of the long run expected average growth rate with several assets and

proportional transaction costs, when the asset returns follow a stationary

Markov process. [Györfi and Vajda (2008)] extended the expected growth

optimality mentioned above to the almost sure (a.s.) growth optimality.

In this chapter we study the problem of discrete time growth optimal

investment in stock markets with proportional, fixed transactions costs and

consumption. In Section 3.2 the mathematical setup is introduced. Section

3.3 shows the empirical simulated results of two heuristic algorithms using

NYSE data. If the market process is first order Markov process and the

distribution of the market process is known, then we show simple sequential

investment strategies such that, in the long run, the growth rate on trajec-

tories achieves the maximum with probability 1 in Section 3.4 and Section
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3.6 (Proofs). Finally Section 3.5 studies the portfolio selection strategies

with consumption and fixed transaction cost.

3.2. Mathematical setup: investment with proportional

transaction cost

Consider a market consisting of d assets. The evolution of the market in

time is represented by a sequence of market vectors s1, s2, . . . ∈ R
d
+, where

si = (s
(1)
i , . . . , s

(d)
i )

such that the j-th component s
(j)
i of si denotes the price of the j-th asset

at the end of the i-th trading period. (s
(j)
0 = 1.)

In order to apply the usual prediction techniques for time series analysis

one has to transform the sequence {si} into a sequence of return vectors

{xi} as follows:

xi = (x
(1)
i , . . . , x

(d)
i )

such that

x
(j)
i =

s
(j)
i

s
(j)
i−1

.

Thus, the j-th component x
(j)
i of the return vector xi denotes the amount

obtained at the end of the i-th trading period after investing a unit capital

in the j-th asset.

The investor is allowed to diversify his capital at the beginning of each

trading period according to a portfolio vector b = (b(1), . . . b(d))T . The

j-th component b(j) of b denotes the proportion of the investor’s capital

invested in asset j. Throughout the chapter we assume that the portfolio

vector b has nonnegative components with
∑d

j=1 b
(j) = 1. The fact that

∑d
j=1 b

(j) = 1 means that the investment strategy is self financing and con-

sumption of capital is excluded (besides Section 3.5). The non-negativity of

the components of b means that short selling and buying stocks on margin

are not permitted. To make the analysis feasible, some simplifying assump-

tions are used that need to be taken into account. We assume that assets

are arbitrarily divisible and all assets are available in unbounded quantities

at the current price at any given trading period. We also assume that the

behavior of the market is not affected by the actions of the investor using

the strategies under investigation.
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For j ≤ i we abbreviate by xi
j the array of return vectors (xj , . . . ,xi).

Denote by ∆d the simplex of all vectors b ∈ R
d
+ with nonnegative com-

ponents summing up to one. An investment strategy is a sequence B of

functions

bi :
(
R

d
+

)i−1 → ∆d , i = 1, 2, . . .

so that bi(x
i−1
1 ) denotes the portfolio vector chosen by the investor on the

i-th trading period, upon observing the past behavior of the market. We

write b(xi−1
1 ) = bi(x

i−1
1 ) to ease the notation.

In this section our presentation of the transaction cost problem utilized

the formulation in [Kalai and Blum (1997)] and [Schäfer (2002)] and [Györfi

and Vajda (2008)]. Let Sn denote the gross wealth at the end of trading

period n, n = 0, 1, 2, · · · , where without loss of generality let the investor’s

initial capital S0 be 1 dollar, while Nn stands for the net wealth at the end

of trading period n. Using the above notations, for the trading period n,

the net wealth Nn−1 can be invested according to the portfolio bn, therefore

the gross wealth Sn at the end of trading period n is

Sn = Nn−1

d∑

j=1

b(j)n x(j)
n = Nn−1 〈bn , xn〉 ,

where 〈· , ·〉 denotes inner product.
At the beginning of a new market day n + 1, the investor sets up his

new portfolio, i.e. buys/sells stocks according to the actual portfolio vector

bn+1. During this rearrangement, he has to pay transaction cost, therefore

at the beginning of a new market day n + 1 the net wealth Nn in the

portfolio bn+1 is less than Sn.

The rate of proportional transaction costs (commission factors) levied

on one asset are denoted by 0 < cs < 1 and 0 < cp < 1, i.e., the sale of 1

dollar worth of asset i nets only 1 − cs dollars, and similarly we take into

account the purchase of an asset such that the purchase of 1 dollar’s worth

of asset i costs an extra cp dollars. We consider the special case when the

rate of costs are constant over the assets.

Let’s calculate the transaction cost to be paid when select the port-

folio bn+1. Before rearranging the capitals, at the j-th asset there are

b
(j)
n x

(j)
n Nn−1 dollars, while after rearranging we need b

(j)
n+1Nn dollars. If

b
(j)
n x

(j)
n Nn−1 ≥ b

(j)
n+1Nn then we have to sell and the transaction cost at the

j-th asset is

cs

(
b(j)n x(j)

n Nn−1 − b
(j)
n+1Nn

)
,
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otherwise we have to buy and the transaction cost at the j-th asset is

cp

(
b
(j)
n+1Nn − b(j)n x(j)

n Nn−1

)
.

Let x+ denote the positive part of x. Thus, the gross wealth Sn decom-

poses to the sum of the net wealth and cost in the following - self-financing

- way

Nn = Sn −
d∑

j=1

cs

(
b(j)n x(j)

n Nn−1 − b
(j)
n+1Nn

)+

−
d∑

j=1

cp

(
b
(j)
n+1Nn − b(j)n x(j)

n Nn−1

)+
,

or equivalently

Sn = Nn + cs

d∑

j=1

(
b(j)n x(j)

n Nn−1 − b
(j)
n+1Nn

)+

+ cp

d∑

j=1

(
b
(j)
n+1Nn − b(j)n x(j)

n Nn−1

)+
.

Dividing both sides by Sn and introducing ratio

wn =
Nn

Sn
,

0 < wn < 1, we get

1 = wn + cs

d∑

j=1

(
b
(j)
n x

(j)
n

〈bn , xn〉
− b

(j)
n+1wn

)+

+ cp

d∑

j=1

(
b
(j)
n+1wn − b

(j)
n x

(j)
n

〈bn , xn〉

)+

. (3.1)

For given previous return vector xn and portfolio vector bn, there is a

portfolio vector b̃n+1 = b̃n+1(bn,xn) for which there is no trading:

b̃
(j)
n+1 =

b
(j)
n x

(j)
n

〈bn , xn〉
(3.2)

such that there is no transaction cost, i.e., wn = 1.

For arbitrary portfolio vectors bn, bn+1, and return vector xn there

exist unique cost factors wn ∈ [0, 1), i.e., the portfolio is self financing. The
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value of cost factor wn at day n is determined by portfolio vectors bn and

bn+1 as well as by return vector xn, i.e.

wn = w(bn,bn+1,xn),

for some function w. If we want to rearrange our portfolio substantially,

then our net wealth decreases more considerably, however, it remains pos-

itive. Note also, that the cost does not restrict the set of new portfolio

vectors, i.e., the optimization algorithm searches for optimal vector bn+1

within the whole simplex ∆d. The value of the cost factor ranges between

1− cs
1 + cp

≤ wn ≤ 1.

Without loss of generality we consider the special case of cs = cp =: c.

Then

cs

(
b(j)n x(j)

n Nn−1 − b
(j)
n+1Nn

)+
+ cp

(
b
(j)
n+1Nn − b(j)n x(j)

n Nn−1

)+

= c
∣∣∣b(j)n x(j)

n Nn−1 − b
(j)
n+1Nn

∣∣∣ .

Starting with an initial wealth S0 = 1 and w0 = 1, wealth Sn at the

closing time of the n-th market day becomes

Sn = Nn−1〈bn , xn〉
= wn−1Sn−1〈bn , xn〉

=
n∏

i=1

[w(bi−1,bi,xi−1) 〈bi , xi〉].

Introduce the notation

g(bi−1,bi,xi−1,xi) = log(w(bi−1,bi,xi−1) 〈bi , xi〉),
then the average growth rate becomes

1

n
logSn =

1

n

n∑

i=1

log(w(bi−1,bi,xi−1) 〈bi , xi〉)

=
1

n

n∑

i=1

g(bi−1,bi,xi−1,xi). (3.3)

Our aim is to maximize this average growth rate.

In the sequel xi will be random variable and is denoted by Xi, and we

assume the following

Conditions:
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(i) {Xi} is a homogeneous and first order Markov process,

(ii) the Markov kernel is continuous, which means that for µ(B|x) being

the Markov kernel defined by

µ(B|x) := P{X2 ∈ B | X1 = x}

we assume that the Markov kernel is continuous in total variation, i.e.,

V (x,x′) := sup
B∈B

|µ(B|x)− µ(B|x′)| → 0

if x′ → x such that B denotes the family of Borel σ-algebra, further

V (x,x′) < 1 for all x,x′,

(iii) and there exist 0 < a1 < 1 < a2 < ∞ such that a1 ≤ X(j) ≤ a2 for all

j = 1, . . . , d.

We note that Conditions (ii) and (iii) imply uniform continuity of V

and thus

max
x,x′

V (x,x′) < 1. (3.4)

For the usual stock market daily data, Condition (iii) is satisfied with

a1 = 0.7 and with a2 = 1.2 (cf. [Fernholz (2000)]).

In the realistic case that the state space of the Markov process (Xn) is

a finite set D of rational vectors (components being quotients of integer-

valued $-amounts ) containing e = (1, . . . , 1), the second part of (ii) is

fulfilled under the plausible assumption µ({e}|x) > 0 for all x ∈ D. An-

other example for finite state Markov process is when one rounds down the

components of x to a grid applying, for example, a grid size 0.00001.

Let’s use the decomposition

1

n
logSn = In + Jn, (3.5)

where In is

1

n

n∑

i=1

(g(bi−1,bi,Xi−1,Xi)− E{g(bi−1,bi,Xi−1,Xi)|Xi−1
1 })

and

Jn =
1

n

n∑

i=1

E{g(bi−1,bi,Xi−1,Xi)|Xi−1
1 }.
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In is an average of martingale differences. Under the condition (iii), the

random variable g(bi−1,bi,Xi−1,Xi) is bounded, therefore In is an average

of bounded martingale differences, which converges to 0 almost surely, since

according to the Chow Theorem (cf. Theorem 3.3.1 in [Stout (1974)])

∞∑

i=1

E{g(bi−1,bi,Xi−1,Xi)
2}

i2
< ∞

implies that

In → 0

almost surely. Thus, the asymptotic maximization of the average growth

rate 1
n logSn is equivalent to the maximization of Jn.

Under the condition (i), we have that

E{g(bi−1,bi,Xi−1,Xi)|Xi−1
1 }

= E{log(w(bi−1,bi,Xi−1) 〈bi , Xi〉)|Xi−1
1 }

= logw(bi−1,bi,Xi−1) + E{log 〈bi , Xi〉 |Xi−1
1 }

= logw(bi−1,bi,Xi−1) + E{log 〈bi , Xi〉 |bi,Xi−1}
def
= v(bi−1,bi,Xi−1),

therefore the maximization of the average growth rate 1
n logSn is asymp-

totically equivalent to the maximization of

Jn =
1

n

n∑

i=1

v(bi−1,bi,Xi−1). (3.6)

The terms in the average Jn have a memory, which transforms the problem

into a dynamic programming setup (cf. [Merhav et al. (2002)]).

3.3. Experiments on heuristic algorithms

In this section we experimentally study two heuristic algorithms, which

performed well without transaction cost (cf. Chapter 2 of this volume).

Algorithm 1. For transaction cost, one may apply the log-optimal port-

folio

b∗
n(Xn−1) = argmax

b(·)
E{ln 〈b(Xn−1) , Xn〉 | Xn−1}

or its empirical approximation. For example, we may apply the kernel

based log-optimal portfolio selection introduced by [Györfi et al. (2006)] as

follows: Define an infinite array of experts B(`) = {b(`)(·)}, where ` is a
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positive integer. For fixed positive integer `, choose the radius r` > 0 such

that

lim
`→∞

r` = 0.

Then, for n > 1, define the expert b(`) as follows. Put

b(`)
n = argmax

b∈∆d

∑

{i<n:‖xi−1−xn−1‖≤r`}
ln 〈b , xi〉 , (3.7)

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise, where ‖·‖ denotes
the Euclidean norm.

Similarly to Chapter 2 of this volume, these experts are aggregated

(mixed) as follows: let {q`} be a probability distribution over the set of

all positive integers ` such that for all `, q` > 0. Consider two types of

aggregations:

• Here the initial capital S0 = 1 is distributed among the expert ac-

cording to the distribution {q`}, and the expert makes the portfolio

selection and pays for transaction cost individually. If Sn(B
(`)) is the

capital accumulated by the elementary strategy B(`) after n periods

when starting with an initial capital S0 = 1, then, after period n, the

investor’s aggregated wealth after period n is

Sn =
∑

`

q`Sn(B
(`)). (3.8)

• Here Sn(B
(`)) is again the capital accumulated by the elementary strat-

egy B(`) after n periods when starting with an initial capital S0 = 1,

but it is virtual figure, i.e., the experts make no trading, its wealth

is just the base of aggregation. Then, after period n, the investor’s

aggregated portfolio becomes

bn =

∑
` q`Sn−1(B

(`))b
(`)
n∑

` q`Sn−1(B(`))
. (3.9)

Moreover, the investor’s capital is

Sn = Sn−1〈bn , xn〉w(bn−1,bn,xn−1),

so only the aggregated portfolio pays for the transaction cost.

In Chapter 2 of this volume we proved that without transaction cost

the two aggregations are equivalent. However, in case of transaction cost

the aggregation (3.9) is much better.
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Algorithm 2. We may introduce a suboptimal algorithm, called naive

portfolio, by a one-step optimization as follows: put b1 = {1/d, . . . , 1/d}
and for n ≥ 1,

b(`)
n = argmax

b∈∆d

∑

{i<n:‖xi−1−xn−1‖≤r`}
(ln 〈b , xi〉+ lnw(bn−1,b,xn−1)) ,

(3.10)

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise. These elementary

portfolios are mixed as in (3.8) or (3.9). Obviously, this portfolio has no

global optimality property.

Next we present some numerical results for transaction cost obtained

by applying the kernel based semi-log-optimal algorithm to the 19 assets of

the second NYSE data set as in Chapter 2 of this volume. We take a finite

set of of experts of size L. In the experiment we selected L = 10. Choose

the uniform distribution q` = 1/L over the experts in use, and the radius

r2` = 0.0002 · d(1 + `/10), for ` = 1, . . . , L .

Table 3.1 summarizes the average annual yield achieved by each expert

at the last period when investing one unit for the kernel-based log-optimal

portfolio. Experts are indexed by ` = 1 . . . 10 in rows. The second column

contains the average annual yields of experts for kernel based log-optimal

portfolio if there is no transaction cost, and in this case the results of the two

aggregations are the same: 35%. Mention that, out of the 19 assets, MOR-

RIS had the best average annual yield, 20%, so, for no transaction cost, with

Table 3.1. The average annual yields of the individual

experts for kernel strategy and of the aggregations with

c = 0.0015.
` c = 0 Algorithm 1 Algorithm 2

1 31% -22% 18%
2 34% -22% 10%
3 35% -24% 9 %
4 35% -23% 14%
5 34% -21% 13%
6 35% -19% 13%
7 33% -20% 12%
8 34% -18% 8 %
9 37% -17% 6 %

10 34% -18% 11%

Wealth Agg. (3.8) 35% -19% 13%

Portfolio Agg. (3.9) 35% -15% 17%
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kernel based log-optimal portfolio we have a spectacular improvement. The

third and fourth columns contain the average annual yields of experts for

kernel based log-optimal portfolio if the commission factor is c = 0.0015.

Notice that the growth rate of the Algorithm 1 is negative, and the growth

rate of the Algorithm 2 is poor, too, it is less than the growth rate of the

best asset, and the results of aggregations are different.

In Table 3.2 we have got similar results for nearest neighbor strategy,

where ` is the number of nearest neighbors. As we mentioned in Chapter

2 of this volume, the time varying portfolio is very undiversified such that

the subset of assets with non-zero weight is changing from time to time,

which makes the problem of transaction cost challenging. Moreover, the

better the nearest neighbor strategy is without transaction cost, the worse

it is with transaction cost, and the main reasoning of this fact is that for

the good time varying portfolio, the portfolio vector component is very

fluctuating, and so the proper handling of the transaction cost is still an

open question and an important direction of the further research.

3.4. Growth optimal portfolio selection algorithms

An essential tool in the definition and investigation of portfolio selection

algorithms under transaction costs are optimality equations of Bellman

type. First we present an informal and heuristic way to them in our context

of portfolio selection. Later on a rigorous treatment will be given.

Table 3.2. The average annual yields of the individual ex-

perts for nearest neighbor strategy and of the aggregations

with c = 0.0015.
` c = 0 Algorithm 1 Algorithm 2

50 31% -35% -14%
100 33% -33% 3%

150 38% -29% 3%

200 38% -28% 9%

250 37% -28% 9%

300 41% -26% 7%

350 39% -26% 9%

400 39% -26% 10%
450 39% -25% 14%

500 42% -23% 14%

Wealth Agg. (3.8) 39% -25% 11%

Portfolio Agg. (3.9) 39% -23% 11%
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Let us start with a finite-horizon problem concerning JN defined by

(3.6): For fixed integer N > 0, maximize

E{N · JN | b0 = b,X0 = x} = E

{
N∑

i=1

v(bi−1,bi,Xi−1) | b0 = b,X0 = x

}

by suitable choice of b1, . . . ,bN . For general problems of dynamic pro-

gramming (dynamic optimization), on page 89 [Bellman (1957)] formulates

his famous principle of optimality as follows: “An optimality policy has

the property that whatever the initial state and initial decisions are, the

remaining decisions must constitute an optimal policy with regard to the

state resulting from the first decision.”

By this principle, which for stochastic models is not so obvious as it

seems (cf. pp. 14, 15 in [Hinderer (1970)]), one can show the following. Let

the functions G0, G1, . . . , GN on ∆d × [a1, a2]
d be defined by the so-called

dynamic programming equations (optimality equations, Bellman equations)

GN (b,x) := 0,

Gn(b,x) := max
b′

[v(b,b′,x) + E{Gn+1(b
′,X2) | X1 = x}]

(n = N − 1, N − 2, . . . , 0) with maximizer b′
n = gn(b,x). Setting

Fn := GN−n

(n = 0, 1, . . . , N), one can write these backward equations in the forward

form

F 0(b,x) := 0,

Fn(b,x) := max
b′

[
v(b,b′,x) + E{Fn−1(b′,X2) | X1 = x}

]
(3.11)

(n = 1, 2, . . . , N) with maximizer fn(b,x) = gN−n(b,x). Then the choices

bn = fn(bn−1,Xn−1) are optimal.

For the situations, which are favorite for the investor, one has

Fn(b,x) → ∞ as n → ∞, which does not allow distinguishing between

the qualities of competing choice sequences in the infinite-horizon case. If

one considers (3.11) as a Value Iteration formula, then the underlying Bell-

man type equation

F∞(b,x) = max
b′

{v(b,b′,x) + E{F∞(b′,X2) | X1 = x}}

has, roughly speaking, the degenerate solution F∞ = ∞. Therefore one

uses a discount factor 0 < δ < 1 and arrives at the discounted Bellman
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equation

Fδ(b,x) = max
b′

{v(b,b′,x) + (1− δ)E{Fδ(b
′,X2) | X1 = x}} . (3.12)

Its solution allows to solve the discounted problem maximizing

E

{ ∞∑

i=1

(1− δ)iv(bi−1,bi,Xi−1) | b0 = b,X0 = x

}

=

∞∑

i=1

(1− δ)iE {v(bi−1,bi,Xi−1) | b0 = b,X0 = x} .

The classic Hardy-Littlewood theorem (see, e.g., Theorem 95, together with

Theorem 55 in [Hardy (1949)]) states that for a real valued bounded se-

quence an, n = 1, 2, . . . ,

lim
δ↓0

δ

∞∑

i=0

(1− δ)iai

exists if and only if

lim
n→∞

1

n

n−1∑

i=0

ai

exists and that then the limits are equal. Therefore, for maximizing

lim
n→∞

1

n

n∑

i=1

E {v(bi−1,bi,Xi−1) | b0 = b,X0 = x} ,

(if it exists), it is important to solve the equation (3.12) for small δ. This

principle results in Rule 1 below. Letting δ ↓ 0, (3.12) with solution F ∗
δ

leads to the non-discounted Bellman equation

λ+ F (b,x) = max
b′

{v(b,b′,x) + E{F (b′,X2) | X1 = x}} . (3.13)

The interpretation of (3.11) as Value Iteration motivates solving (3.12) and

(3.13) also by Value Iterations Fδ,n (see below) and F ′
n with discount factors

δn ↓ 0 (see Rule 4). As to the corresponding problems in Markov control

theory we refer to [Hernández-Lerma and Lassere (1996)].

[Györfi and Vajda (2008)] studied the following two optimal portfolio

selection rules. Let 0 < δ < 1 denote a discount factor. Let the discounted

Bellman equation (3.12). One can show that this discounted Bellman equa-

tion (3.12) and also the more general Bellman equation (3.19) below, have

a unique solution (cf. [Schäfer (2002)] and the proof of Proposition 3.1
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below). Concerning the discounted Bellman equation (3.12), the so-called

Value Iteration may result in the solution: for fixed 0 < δ < 1, put

Fδ,0 = 0

and

Fδ,k+1(b,x)

= max
b′

{v(b,b′,x) + (1− δ)E{Fδ,k(b
′,X2) | X1 = x}} ,

k = 0, 1, . . . . Then Banach’s fixed point theorem implies that the value

iteration converges uniformly to the unique solution.

Rule 1. [Schäfer (2002)] introduced the following non-stationary rule. Put

b̄1 = {1/d, . . . , 1/d}

and

b̄i+1 = argmax
b′

{
v(b̄i,b

′,Xi) + (1− δi)E{Fδi(b
′
,Xi+1)|Xi}},

for 1 ≤ i, where 0 < δi < 1 is a discount factor such that δi ↓ 0. [Schäfer

(2002)] proved that for the conditions (i), (ii) (in a weakened form) and

(iii) and under some mild conditions on δi’s for Rule 1, the portfolio {b̄i}
with capital S̄n is optimal in the sense that for any portfolio strategy {bi}
with capital Sn,

lim inf
n→∞

(
1

n
E{log S̄n} −

1

n
E{logSn}

)
≥ 0.

[Györfi and Vajda (2008)] extended this optimality in expectation to path-

wise optimality such that under the same conditions

lim inf
n→∞

(
1

n
log S̄n − 1

n
logSn

)
≥ 0

a.s.

Rule 2. [Györfi and Vajda (2008)] introduced a portfolio with stationary

(time invariant) recursion. For any integer 1 ≤ k, put

b
(k)
1 = {1/d, . . . , 1/d}

and

b
(k)
i+1 = argmax

b′

{
v(b

(k)
i ,b′,Xi) + (1− δk)E{Fδk(b

′
,Xi+1)|Xi}},
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for 1 ≤ i, where 0 < δk < 1. The portfolio B(k) = {b(k)
i } is called the

portfolio of expert k with capital Sn(B
(k)). Choose an arbitrary probability

distribution qk > 0, and introduce the combined portfolio with its capital

S̃n =
∞∑

k=1

qkSn(B
(k)).

[Györfi and Vajda (2008)] proved that under the above mentioned condi-

tions, for Rule 2,

lim
n→∞

(
1

n
log S̄n − 1

n
log S̃n

)
= 0

a.s. Notice that maybe non of the averaged growth rates 1
n log S̄n and

1
n log S̃n are convergent to a constant, since we didn’t assume the ergodicity

of {Xi}.

Next we introduce further portfolio selection rules. According to Propo-

sition 3.1 below a solution (λ = W ∗
c , F ) of the (non-discounted) Bellman

equation (3.13) exists, where W ∗
c ∈ R is unique according to Proposition

3.2 below. W ∗
c is the maximum growth rate (see Theorem 3.1 below).

Rule 3. Introduce a stationary rule such that put

b∗
1 = {1/d, . . . , 1/d}

and

b∗
i+1 = argmax

b′

{
v(b∗

i ,b
′,Xi) + E{F (b

′
,Xi+1)|Xi}}. (3.14)

Theorem 3.1. Under the Conditions (i), (ii) and (iii), if S∗
n denotes the

wealth at period n using the portfolio {b∗
n} then

lim
n→∞

1

n
logS∗

n = W ∗
c

a.s., while if Sn denotes the wealth at period n using any other portfolio

{bn} then

lim sup
n→∞

1

n
logSn ≤ W ∗

c

a.s.
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Remark 3.1. There is an obvious question, how to ensure that W ∗
c > 0?

Next we show a simple sufficient condition for W ∗
c > 0. We prove that if

the best asset has positive growth rate then W ∗
c > 0, for any c. Consider

the uniform static portfolio (uniform index), i.e., at time n = 0 we apply

the uniform portfolio and later on there is no trading. It means that the

wealth at time n is defined by

Sn = S0
1

d

d∑

j=1

s(j)n .

Apply the following simple bounds

S0
1

d
max

j
s(j)n ≤ Sn ≤ S0 max

j
s(j)n .

These bounds imply that

lim sup
n→∞

1

n
lnSn = lim sup

n→∞
max

j

1

n
ln s(j)n

≥ max
j

lim sup
n→∞

1

n
ln s(j)n

=: max
j

W (j) > 0.

Thus,

W ∗
c ≥ max

j
W (j) > 0.

Remark 3.2. For i.i.d. (independent identically distributed) market pro-

cess, [Iyengar (2002, 2005)] observed that even in discrete time setup there

is no trading with positive probability, i.e.,

P{b̃n+1(b
∗
n,Xn) = b∗

n+1} > 0,

where the no-trading portfolio b̃n+1 has been defined by (3.2). Moreover,

one may get an approximately optimal selection rule, if b∗
n+1 is restricted

on an appropriate neighborhood of b̃n+1(b
∗
n,Xn).

Remark 3.3. The problem is more simple if the market process is i.i.d.

Then, on the one hand v has the form

v(b,b′,x) = logw(b,b′,x) + E{log 〈b′ , X2〉 |X1 = x}
= logw(b,b′,x) + E{log 〈b′ , X2〉},
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while the Bellman equation (3.13) looks like as follows:

W ∗
c + F (b,x) = max

b′
{v(b,b′,x) + E{F (b′,X2) | X1 = x}}

= max
b′

{v(b,b′,x) + E{F (b′,X2)}} .

This problem was studied by [Iyengar (2002, 2005)]. As to Theorem 3.1,

also conditional expectation in context of F in (3.14) simplifies to expecta-

tion, and its proof shows that the last assumption in Condition (ii) can be

omitted. For Theorem 3.2 the analogue holds.

Remark 3.4. Use of portfolio b∗
n in Theorem 3.1 needs a solution of the

non-discounted Bellman equation (3.13). For this, an iteration procedure

is given in Lemma 3.2 below.

Remark 3.5. In practice, the conditional expectations are unknown and

they can be replaced by estimates. It’s an open problem what is the loss

in growth rate if we apply estimates in the Bellman equation

W ∗
c + F (b,x) = max

b′
{logw(b,b′,x) + E{log 〈b′ , X2〉 |X1 = x}

+E{F (b′,X2) | X1 = x}}.

Rule 4. Choose a sequence 0 < δn < 1, n = 1, 2, . . . such that

δn ↓ 0,
∑

n

δn = ∞,
δn+1

δn
→ 1 (n → ∞),

e.g., δn = 1
n+1 . Set

F ′
1 := 0,

and iterate

F ′
n+1 := MδnF

′
n −max

b,x
(MδnF

′
n)(b,x) (n = 1, 2, . . . )

with

(MδnF )(b,x) := max
b̃

{
v(b, b̃,x) + (1− δn)E{F (b̃,X2) | X1 = x}

}
, F ∈ C.

Put

b′
1 = {1/d, . . . , 1/d}

and

b′
i+1 = argmax

b̃

{
v(b′

i, b̃,Xi) + (1− δi)E{F ′
i (b̃,Xi+1)|Xi}},
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for 1 ≤ i. This non-stationary rule can be interpreted as a combination of

the value iteration and Rule 1.

Theorem 3.2. Under the Conditions (i), (ii) and (iii), if S′
n denotes the

wealth at period n using the portfolio {b′
n} then

lim
n→∞

1

n
logS′

n = W ∗
c

a.s.

Note that according to Theorem 3.1, if Sn denotes the wealth at period

n using any portfolio {bn} then

lim sup
n→∞

1

n
logSn ≤ W ∗

c

a.s.

3.5. Portfolio selection with consumption

For a real number x, let x+ be the positive part of x. Assume that at the

end of trading period n there is a consumption cn ≥ 0. For the trading

period n the initial capital is Sn−1, therefore

Sn = (Sn−1 〈bn , xn〉 − cn)
+
.

If Sj > 0 for all j = 1, . . . , n then we show by induction that

Sn = S0

n∏

i=1

〈bi , xi〉 −
n∑

k=1

ck

n∏

i=k+1

〈bi , xi〉 , (3.15)

where the empty product is 1, by definition. For n = 1, (3.15) holds.

Assume (3.15) for n− 1:

Sn−1 = S0

n−1∏

i=1

〈bi , xi〉 −
n−1∑

k=1

ck

n−1∏

i=k+1

〈bi , xi〉 .

Then

Sn = Sn−1 〈bn , xn〉 − cn

=

(
S0

n−1∏

i=1

〈bi , xi〉 −
n−1∑

k=1

ck

n−1∏

i=k+1

〈bi , xi〉
)
〈bn , xn〉 − cn

= S0

n∏

i=1

〈bi , xi〉 −
n∑

k=1

ck

n∏

i=k+1

〈bi , xi〉 .
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One has to emphasize that (3.15) holds for all n iff Sn > 0 for all n,

otherwise there is a ruin. In the sequel, we study the average growth rate

under no ruin and the probability of ruin.

By definition,

P{ ruin } = P

{ ∞⋃

n=1

{Sn = 0}
}

= P

{ ∞⋃

n=1

{
S0

n∏

i=1

〈bi , xi〉 −
n∑

k=1

ck

n∏

i=k+1

〈bi , xi〉 ≤ 0

}}
,

therefore

P{ ruin } = P

{ ∞⋃

n=1

{
n∏

i=1

〈bi , xi〉
(
S0 −

n∑

k=1

ck∏k
i=1 〈bi , xi〉

)
≤ 0

}}

≤ P

{ ∞⋃

n=1

{
n∏

i=1

〈bi , xi〉
(
S0 −

∞∑

k=1

ck∏k
i=1 〈bi , xi〉

)
≤ 0

}}

≤ P

{
S0 ≤

∞∑

k=1

ck∏k
i=1 〈bi , xi〉

}
(3.16)

and

P{ ruin } = P

{ ∞⋃

n=1

{
n∏

i=1

〈bi , xi〉
(
S0 −

n∑

k=1

ck∏k
i=1 〈bi , xi〉

)
≤ 0

}}

≥ max
n

P

{
n∏

i=1

〈bi , xi〉
(
S0 −

n∑

k=1

ck∏k
i=1 〈bi , xi〉

)
≤ 0

}

= P

{
S0 ≤

∞∑

k=1

ck∏k
i=1 〈bi , xi〉

}
. (3.17)

(3.16) and (3.17) imply that

P{ ruin } = P

{
S0 ≤

∞∑

k=1

ck∏k
i=1 〈bi , xi〉

}
.

Under no ruin, on the one hand we get the upper bound on the average
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growth rate

Wn =
1

n
lnSn

=
1

n
ln

(
S0

n∏

i=1

〈bi , xi〉 −
n∑

k=1

ck

n∏

i=k+1

〈bi , xi〉
)

≤ 1

n
lnS0

n∏

i=1

〈bi , xi〉

=
1

n

n∑

i=1

ln 〈bi , xi〉+
1

n
lnS0.

On the other hand we have the lower bound

Wn =
1

n
lnSn

=
1

n
ln

(
S0

n∏

i=1

〈bi , xi〉 −
n∑

k=1

ck

n∏

i=k+1

〈bi , xi〉
)

=
1

n
ln

n∏

i=1

〈bi , xi〉
(
S0 −

n∑

k=1

ck∏k
i=1 〈bi , xi〉

)

≥ 1

n
ln

n∏

i=1

〈bi , xi〉
(
S0 −

∞∑

k=1

ck∏k
i=1 〈bi , xi〉

)

=
1

n

n∑

i=1

ln 〈bi , xi〉+
1

n
ln

(
S0 −

∞∑

k=1

ck∏k
i=1 〈bi , xi〉

)
,

therefore under no ruin the asymptotic average growth rate with consump-

tion is the same as without consumption:

Wn =
1

n
lnSn ≈ 1

n

n∑

i=1

ln 〈bi , xi〉 .

Consider the case of constant consumption, i.e., cn = c > 0. Then there

is no ruin if

S0 > c
∞∑

k=1

1
∏k

i=1 〈bi , xi〉
.

Because of the definition of the average growth rate we have that

Wk ≈ 1

k
ln

k∏

i=1

〈bi , xi〉 ,
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which implies that

∞∑

k=1

1
∏k

i=1 〈bi , xi〉
≈

∞∑

k=1

e−kWk .

Assume that our portfolio selection is asymptotically optimal, which means

that

lim
n→∞

Wn = W ∗.

Then
∞∑

k=1

1
∏k

i=1 〈bi , xi〉
≈

∞∑

k=1

e−kW∗
=

e−W∗

1− e−W∗ .

This approximation implies that the ruin probability can be small only if

S0 > c
e−W∗

1− e−W∗ .

A special case of this model is when there is only one risk-free asset:

Sn = (Sn−1(1 + r)− c)
+

with some r > 0. Obviously, there is no ruin if S0r > c. It is easy to verify

that this assumption can be derived from the general condition if

eW
∗
= 1 + r.

The ruin probability can be decreased if the consumptions happen in

blocks of size N trading periods. Let Sn denote the wealth at the end of

n-th block. Then

Sn =


Sn−1

nN∏

j=(n−1)N+1

〈bj , xj〉 −Nc




+

.

Similarly to the previous calculations, we can check that under no ruin the

average growth rates with and without consumption are the same. More-

over

P{ ruin } = P

{
S0 ≤ cN

∞∑

k=1

1
∏kN

i=1 〈bi , xi〉

}
.

This ruin probability is a monotonically decreasing function of N , and for

large N the exact condition of no ruin is the same as the approximation

mentioned above.
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This model can be applied for the analysis of portfolio selection strate-

gies with fixed transaction cost such that cn is the transaction cost to be

paid when change the portfolio bn to bn+1. In this case the transaction

cost cn depends on the number of shares involved in the transaction.

Let’s calculate cn. At the end of the n-th trading period and before

paying for transaction cost the wealth at asset j is Sn−1b
(j)
n x

(j)
n , which

means that the number of shares j is

m(j)
n =

Sn−1b
(j)
n x

(j)
n

S
(j)
n

.

In the model of fixed transaction cost, we assume that m
(j)
n is integer. If

one changes the portfolio bn to bn+1 then the wealth at asset j should be

Sn−1 〈bn , xn〉 b(j)n+1, so the number of shares j should be

m
(j)
n+1 =

Sn−1 〈bn , xn〉 b(j)n+1

S
(j)
n

.

If m
(j)
n+1 < m

(j)
n then we have to sell, and the wealth what we got is

d∑

j=1

(
m(j)

n −m
(j)
n+1

)+
S(j)
n =

d∑

j=1

(
Sn−1b

(j)
n x(j)

n − Sn−1 〈bn , xn〉 b(j)n+1

)+
.

If m
(j)
n+1 > m

(j)
n then we have to buy, and the wealth what we pay is

d∑

j=1

(
m

(j)
n+1 −m(j)

n

)+
S(j)
n =

d∑

j=1

(
Sn−1 〈bn , xn〉 b(j)n+1 − Sn−1b

(j)
n x(j)

n

)+
.

Let C > 0 be the fixed transaction cost, then the transaction fee is

cn = cn(bn+1) = C

d∑

j=1

∣∣∣m(j)
n −m

(j)
n+1

∣∣∣ .

The portfolio selection bn+1 is self-financing if

d∑

j=1

(
Sn−1b

(j)
n x(j)

n − Sn−1 〈bn , xn〉 b(j)n+1

)+

≥
d∑

j=1

(
Sn−1 〈bn , xn〉 b(j)n+1 − Sn−1b

(j)
n x(j)

n

)+
+ cn.

bn+1 is an admissible portfolio if m
(j)
n+1 is integer for all j and it satisfies

the self-financing condition. The set of admissible portfolios is denoted by

∆n,d.
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Taking into account the fixed transaction cost, a kernel based portfolio

selection can be defined as follows: choose the radius rk,` > 0 such that for

any fixed k,

lim
`→∞

rk,` = 0.

For n > k + 1, introduce the expert b(k,`) by

b
(k,`)
n+1 = argmax

b∈∆n,d

∑

i∈J

ln
{
(S

(k,`)
n−1

〈
b(k,`)
n , xn

〉
− cn(b)) 〈b , xi〉

}
,

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise, where

J =
{
k < i ≤ n : ‖xi−1

i−k − xn
n−k+1‖ ≤ rk,`

}
.

Combine the elementary portfolio strategies B(k,`) = {b(k,`)
n } as in (3.9).

3.6. Proofs

We split the statement of Theorem 3.1 into two propositions.

Proposition 3.1. Under the Conditions (i), (ii) and (iii) the Bellman

equation (3.13) has a solution (W ∗
c , F ) such that the function F is bounded

and continuous, where

max
b,x

F (b,x) = 0.

Proof. Let C be the Banach space of continuous functions F defined on

the compact set ∆d× [a1, a2]
d with the sup norm ‖ · ‖∞. For 0 ≤ δ < 1 and

for f ∈ C, define the operator

(Mδf)(b,x) := max
b′

{v(b,b′,x) + (1− δ)E{f(b′,X2) | X1 = x}} .
(3.18)

By continuity assumption (ii) this leads to an operator

Mδ : C → C.

(See [Schäfer (2002)] p.114.)

The operatorMδ is continuous, even Lipschitz continuous with Lipschitz

constant 1− δ. Indeed, for f, f ′ ∈ C from the representation

(Mδf)(b,x) = v(b,b∗
f (b,x),x) + (1− δ)E{f(b∗

f (b,x),X2) | X1 = x}
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and from the corresponding representation of (Mδf
′)(b,x) one obtains

(Mδf
′)(b,x) ≥ v(b,b∗

f (b,x),x) + (1− δ)E{f ′(b∗
f (b,x),X2) | X1 = x}

≥ v(b,b∗
f (b,x),x) + (1− δ)E{f(b∗

f (b,x),X2) | X1 = x}
−(1− δ)‖f − f ′‖∞

= (Mδf)(b,x)− (1− δ)‖f − f ′‖∞
for all (b,x) ∈ ∆d × [a1, a2]

d, therefore

‖Mδf −Mδf
′‖∞ ≤ (1− δ)‖f − f ′‖∞.

Thus, by Banach’s fixed point theorem, the Bellman equation

λ+ F (b,x) = max
b′

{v(b,b′,x) + (1− δ)E{F (b′,X2) | X1 = x}} , (3.19)

i.e.,

λ+ F = MδF

with λ ∈ R, has a unique solution if 0 < δ < 1. (3.19) corresponds to (3.12)

for λ = 0, 0 < δ < 1 with the unique solution denoted by Fδ, and to (3.13)

for λ = W ∗
c and δ = 0.

We notice

sup
0<δ<1

δ‖Fδ‖∞ ≤ max
b,b′,x

|v(b,b′,x)| < ∞,

(cf. [Schäfer (2002)], Lemma 4.2.3). Similarly to [Iyengar (2002)], put

mδ := max
(b,x)

Fδ(b,x), (3.20)

where we get that

sup
0<δ<1

δmδ < ∞.

Put

W ∗
c := lim sup

δ↓0
δmδ

and

F̃δ(b,x) := Fδ(b,x)−mδ. (3.21)

Thus,

max
(b,x)

F̃δ(b,x) = 0. (3.22)
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F̃δ satisfies the Bellman equation (3.19) with λ = δmδ, therefore

δmδ + F̃δ = MδF̃δ = M0F̃δ + (MδF̃δ −M0F̃δ) (3.23)

It is easy to check that

‖MδF̃δ −M0F̃δ‖∞ ≤ δ‖F̃δ‖∞. (3.24)

By Lemma 3.1 below

sup
0<δ<1

‖F̃δ‖∞ < ∞. (3.25)

Now we choose a sequence δn with δn ↓ 0 such that

δnmδn → W ∗
c . (3.26)

Lemma 3.1 further states that

sup
0<δ<1

|F̃δ(b̄, x̄)− F̃δ(b,x)| → 0

(even uniformly with respect to (b,x), because of compactness of ∆d ×
[a1, a2]

d) when (b̄, x̄) → (b,x), i.e., there is equicontinuity for {F̃δ}, which
together with (3.25) implies that there exist a subsequence δnl

and a func-

tion F̃ ∈ C such that F̃δnl
converges in C to F̃ (cf. Ascoli-Arzelá theorem,

[Yosida (1968)]). Thus, by continuity of M0, we get the convergence of

M0F̃δnl
in C to M0F̃ . Therefore

W ∗
c + F̃ = M0F̃ ,

i.e., F̃ ∈ C solves the Bellman equation (3.13). F̃ is continuous on a

compact set, therefore it is bounded, where

max
b,x

F̃ (b,x) = 0.

�

Lemma 3.1. If Fδ denotes the solution of the discounted Bellman equation

(3.12) then (3.25) holds and it implies that

sup
0<δ<1

|Fδ(b̄, x̄)− Fδ(b,x)| → 0 (3.27)

when (b̄, x̄) → (b,x).
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Proof. We use the decomposition

Fδ(b̄, x̄)− Fδ(b,x) = Fδ(b̄, x̄)− Fδ(b, x̄) + Fδ(b, x̄)− Fδ(b,x).

Concerning the first term in this decomposition we assumed that Fδ the

solution of the discounted Bellman equation (3.12), therefore

Fδ(b̄, x̄)− Fδ(b, x̄)

= max
b′

{
v(b̄,b′, x̄) + (1− δ)E{Fδ(b

′,X2) | X1 = x̄}
}

−max
b′′

{v(b,b′′, x̄) + (1− δ)E{Fδ(b
′′,X2) | X1 = x̄}}

≤ max
b′

{v(b̄,b′, x̄) + (1− δ)E{Fδ(b
′,X2) | X1 = x̄}

−(v(b,b′, x̄) + (1− δ)E{Fδ(b
′,X2) | X1 = x̄})}

= max
b′

{v(b̄,b′, x̄)− v(b,b′, x̄)},

therefore

sup
0<δ<1

|Fδ(b̄, x̄)− Fδ(b, x̄)| ≤ max
b′

|v(b̄,b′, x̄)− v(b,b′, x̄)| → 0 (3.28)

when (b̄, x̄) → (b,x). Concerning the second term in this decomposition,

we analogously get that

Fδ(b, x̄)− Fδ(b,x) ≤ max
b′

{v(b,b′, x̄) + (1− δ)E{Fδ(b
′,X2) | X1 = x̄}

−(v(b,b′,x) + (1− δ)E{Fδ(b
′,X2) | X1 = x})}

≤ max
b′

{v(b,b′, x̄)− v(b,b′,x)}

+(1− δ)max
b′

{E{Fδ(b
′,X2) | X1 = x̄}

−E{Fδ(b
′,X2) | X1 = x}}.

Moreover

E{Fδ(b
′,X2) | X1 = x̄} − E{Fδ(b

′,X2) | X1 = x}}
= E{F̃δ(b

′,X2) | X1 = x̄} − E{F̃δ(b
′,X2) | X1 = x}}

≤ ‖F̃δ‖∞V (x, x̄),

where the function V has been defined for Condition (ii). Thus,

sup
0<δ<1

|Fδ(b, x̄)− Fδ(b,x)|

≤ max
b′

|v(b,b′, x̄)− v(b,b′,x)|+ sup
0<δ<1

‖F̃δ‖∞V (x, x̄).

(3.29)
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The inequalities in (3.28) and (3.29) and boundedness of g and also of v

(by Condition (iii)) yield

sup
0<δ<1

|Fδ(b̄, x̄)− Fδ(b,x)| ≤ const+ sup
0<δ<1

‖F̃δ‖∞V (x, x̄)

for some const < ∞. Noticing

sup
(b,x),(b̄,x̄)

|Fδ(b̄, x̄)− Fδ(b,x)| = sup
(b,x),(b̄,x̄)

|F̃δ(b̄, x̄)− F̃δ(b,x)| = ‖F̃δ‖∞

(by (3.21) and (3.22)), we then obtain

sup
0<δ<1

‖F̃δ‖∞ ≤ const+ sup
0<δ<1

‖F̃δ‖∞ max
x,x̄

V (x, x̄)

and thus (3.25) by (3.4). Condition (ii) and (3.25) yield that the right hand

side of (3.29) converges to 0 when (b̄, x̄) → (b,x). Then (3.28) and (3.29)

imply (3.27). �

Proposition 3.2. Assume that the Bellman equation (3.13) has a solution

(W ∗
c , F ) such that the function F is bounded. If S∗

n denotes the wealth at

period n using the portfolio {b∗
n} then

lim
n→∞

1

n
logS∗

n = W ∗
c

a.s., while if Sn denotes the wealth at period n using any other portfolio

{bn} then

lim sup
n→∞

1

n
logSn ≤ W ∗

c

a.s. These statements imply that W ∗
c in the Bellman equation (3.13) is

unique.

Proof. We have to show that

lim
n→∞

1

n

n∑

i=1

g(b∗
i ,b

∗
i+1,Xi,Xi+1) = W ∗

c

a.s. and

lim sup
n→∞

1

n

n∑

i=1

g(bi,bi+1,Xi,Xi+1) ≤ W ∗
c

a.s. Because of the martingale difference argument in Section 3.2, these

two limit relations are equivalent to

lim
n→∞

1

n

n∑

i=1

v(b∗
i ,b

∗
i+1,Xi) = W ∗

c
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a.s. and

lim sup
n→∞

1

n

n∑

i=1

v(bi,bi+1,Xi) ≤ W ∗
c

a.s. (3.13) and (3.14) imply that

W ∗
c + F (b∗

i ,Xi) = v(b∗
i ,b

∗
i+1,Xi) + E{F (b∗

i+1,Xi+1) | b∗
i+1,Xi},

(3.30)

while for any portfolio {bi},
W ∗

c + F (bi,Xi) ≥ v(bi,bi+1,Xi) + E{F (bi+1,Xi+1) | bi+1,Xi}. (3.31)

Because of (3.30), we get that

1

n

n∑

i=1

v(b∗
i ,b

∗
i+1,Xi)

= W ∗
c +

1

n

n∑

i=1

(
F (b∗

i ,Xi)− E{F (b∗
i+1,Xi+1) | b∗

i+1,Xi}
)

= W ∗
c +

1

n

n∑

i=1

F (b∗
i ,Xi)−

1

n

n∑

i=1

E{F (b∗
i+1,Xi+1) | Xi

1}

= W ∗
c +

1

n

n∑

i=2

(
F (b∗

i ,Xi)− E{F (b∗
i ,Xi) | Xi−1

1 }
)

+
1

n

(
F (b∗

1,X1)− E{F (b∗
n+1,Xn+1) | Xn

1}
)
.

By the condition of Theorem 3.1, the function F is bounded, therefore the

Chow theorem can be applied for martingale differences, and so

1

n

n∑

i=1

v(b∗
i ,b

∗
i+1,Xi) → W ∗

c

a.s. Similarly, because of (3.31), we get that

1

n

n∑

i=1

v(bi,bi+1,Xi)

≤ W ∗
c +

1

n

n∑

i=1

(F (bi,Xi)− E{F (bi+1,Xi+1)|bi+1,Xi})

= W ∗
c +

1

n

n∑

i=1

F (bi,Xi)−
1

n

n∑

i=1

E{F (bi+1,Xi+1)|Xi
1}

→ W ∗
c
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a.s. �

Corollary 3.1. Assume the conditions of Proposition 3.1 and let mδ de-

fined by (3.20). Then

δmδ → W ∗
c as δ ↓ 0.

For each sequence 0 < δn < 1 with δn ↓ 0, the sequence F̃δn ∈ C defined by

(3.21) converges to a set of solutions F of the Bellman equation (3.13).

Proof. Since in the proof of Proposition 3.1 lim supδ↓0 δmδ can be replaced

by lim infδ↓0 δmδ, uniqueness of W ∗
c yields existence of limδ↓0 δmδ = W ∗

c .

For each sequence δn ↓ 0 a subsequence δn`
exists such that F̃δn`

converges

in C to some solution F of (3.13). This proves the second assertion. �

For the proof of Theorem 3.2 we need the following lemma:

Lemma 3.2. Assume Conditions (i), (ii) and (iii). Let δn and F ′
n be as

in Rule 4. Then F ′
n converges in C to a set of solutions F of the Bellman

equation (3.13), further

wn := max
b,x

(MδnF
′
n)(b,x) → W ∗

c as n → ∞.

Proof. We can write

F ′
n+1 = MδnF

′
n − wn (3.32)

with the continuous operator Mδn : C → C according to (3.18). It holds

|F ′
n+1(b̄, x̄)− F ′

n+1(b,x)| = |(MδnF
′
n)(b̄, x̄)− (MδnF

′
n)(b,x)|

≤ |(MδnF
′
n)(b̄, x̄)− (MδnF

′
n)(b, x̄)|

+|(MδnF
′
n)(b, x̄)− (MδnF

′
n)(b,x)|

≤ max
b′

|v(b̄,b′, x̄)− v(b,b′, x̄)|

+max
b′

|v(b,b′, x̄)− v(b,b′,x)|

+max
x,x̄

V (x, x̄)‖F ′
n‖∞, (3.33)

where the inequalities are obtained as in the proof of Lemma 3.1. Noticing

max
b,x

F ′
n(b,x) = 0

and thus

max
(b,x),(b̄,x̄)

|F ′
n(b,x)− F ′

n(b̄, x̄)| = ‖F ′
n‖∞,
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moreover, the boundedness of v implies that

‖F ′
n+1‖∞ ≤ const+max

x,x̄
V (x, x̄)‖F ′

n‖∞

with const < ∞. Then, by induction,

‖F ′
n‖∞ ≤ const

1−maxx,x̄ V (x, x̄)
=: K < ∞. (3.34)

It can be easily checked that

‖Mδn+1
F ′
n+1 −MδnF

′
n+1‖∞ ≤ (δn − δn+1)‖F ′

n+1‖∞. (3.35)

According to the proof of Proposition 3.1, the operator Mδn is Lipschitz

continuous with Lipschitz constant 1− δn. Then

‖F ′
n+2 − F ′

n+1‖∞
= ‖Mδn+1

F ′
n+1 −MδnF

′
n‖∞

≤ ‖MδnF
′
n+1 −MδnF

′
n‖∞ + ‖Mδn+1

F ′
n+1 −MδnF

′
n+1‖∞

≤ (1− δn)‖F ′
n+1 − F ′

n‖∞ +

(
1− δn+1

δn

)
δnK.

By the condition on δn, we then obtain

‖F ′
n+1 − F ′

n‖∞ → 0 as n → ∞, (3.36)

(cf. Lemma 1(c) in [Walk and Zsidó (1989)]). Now let (δnk
) be an arbitrary

subsequence of (δn). From (3.33) and (3.34) and Condition (ii) we obtain

sup
i

|F ′
i (b̄, x̄)− F ′

i (b,x)| → 0

when (b̄, x̄) → (b,x), even uniformly with respect to (b,x). This together

with (3.34) yields existence of a subsequence (δnk`
) and of a function F̄ ∈ C

(bounded, where maxb,x F̄ (b,x) = 0) such that

‖F ′
nk`

− F̄‖∞ → 0 as ` → ∞. (3.37)

Thus, by continuity of M0,

‖M0F
′
nk`

−M0F̄‖∞ → 0 as ` → ∞. (3.38)

By (3.32),

F ′
nk`

+ (F ′
nk`

+1 − F ′
nk`

) = M0F
′
nk`

+ (Mδnk`
F ′
nk`

−M0F
′
nk`

)− wnk`
.

(3.36) implies that

‖F ′
nk`

+1 − F ′
nk`

‖∞ → 0.
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By (3.24) and (3.34),

‖Mδnk`
F ′
nk`

−M0F
′
nk`

‖∞ ≤ δnk`
K → 0.

This together with (3.37) and (3.38) yields convergence of (wnk`
) and

lim
`

wnk`
+ F̄ = M0F̄ .

This means that F̄ solves the Bellman equation (3.13) such that lim` wnk`
=

W ∗
c (unique by Proposition 3.2). These convergence results yield the asser-

tion. �

Proof of Theorem 3.2. According to Proposition 3.2 and its proof it is

enough to show

lim
n→∞

1

n

n∑

i=1

v(b′
i,b

′
i+1,Xi) = W ∗

c (3.39)

a.s. Rule 4 yields

wn + F ′
n+1(b

′
n,Xn)

= v(b′
n,b

′
n+1,Xn) + (1− δn)E{F ′

n(b
′
n+1,Xn+1) | b′

n+1,Xn},
where

wn = max
b,x

(MδnF
′
n)(b,x).

Then

1

n

n∑

i=1

v(b′
i,b

′
i+1,Xi) =

1

n

n∑

i=1

wi +
1

n

n∑

i=1

(
F ′
i+1(b

′
i,Xi)

−(1− δi)E{F ′
i (b

′
i+1,Xi+1) | b′

i+1,Xi}
)

=
1

n

n∑

i=1

wi

+
1

n

n∑

i=1

(
F ′
i (b

′
i+1,Xi+1)− E{F ′

i (b
′
i+1,Xi+1) | Xi

1}
)

+
[ 1
n

n∑

i=1

(
F ′
i+1(b

′
i,Xi)− F ′

i (b
′
i+1,Xi+1)

)

+
1

n

n∑

i=1

δiE{F ′
i (b

′
i+1,Xi+1) | Xi

1}
]

=: An +Bn + Cn.
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By Lemma 3.2, An → W ∗
c . By (3.34) and Chow’s theorem Bn → 0 a.s.

Further

|Cn| ≤
1

n

∣∣∣∣∣

n−1∑

i=1

(
F ′
i+2(b

′
i+1,Xi+1)− F ′

i (b
′
i+1,Xi+1)

)
∣∣∣∣∣

+
1

n
|F ′

2(b
′
1,X1)|+

1

n
|F ′

n(b
′
n+1,Xn+1)|+

1

n

n∑

i=1

δiK

→ 0

by (3.34) and (3.36) and δn → 0. Thus (3.39) is obtained. �
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Chapter 4
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The growth optimal strategy on non-leveraged, long only memoryless
markets is the best constantly rebalanced portfolio (BCRP), also called
log-optimal strategy. Optimality conditions are derived to frameworks
on leverage and short selling, and generalizing BCRP by establishing no-
ruin conditions. Moreover the strategy and its asymptotic growth rate
are investigated under memoryless assumption, both from theoretical
and empirical points of view. The empirical performance of the methods
was tested forNYSE data, demonstrating spectacular gains for leveraged
portfolios and showing unimportance of short selling in the growth-rate
sense both in case of BCRP and dynamic portfolios.

4.1. Introduction

Earlier results in the non-parametric statistics, information theory and eco-

nomics literature (such as [Kelly (1956)], [Latané (1959)], [Breiman (1961)],

[Markowitz (1952)], [Markowitz (1976)], [Finkelstein and Whitley (1981)])

established optimality criterion for long-only, non-leveraged investment.

These results have shown that the market is inefficient, i.e. substantial

gain is achievable by rebalancing and predicting market returns based on

market’s history. Our aim is to show that using leverage through mar-

gin buying (the act of borrowing money and increasing market exposure)

yields substantially higher growth rate in the case of memoryless (inde-

pendent identically distributed, i.i.d.) assumption on returns. Besides a

framework for leveraged investment, we also establish mathematical basis

for short selling, i.e. creating negative exposure to asset prices. Short sell-

151
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ing means the process of borrowing assets and selling them immediately,

with the obligation to rebuy them later.

It can be shown that the optimal asymptotic growth rate on a memory-

less market coincides with that of the best constantly rebalanced portfolio

(BCRP). The idea is that on a frictionless market the investor can rebalance

his portfolio for free at each trading period. Hence asymptotic optimiza-

tion on a memoryless market means that the growth optimal strategy will

pick the same portfolio vector at each trading period. Strategies based on

this observation are called constantly rebalanced portfolios (CRP), while

the one with the highest asymptotic average growth rate is referred to as

BCRP. Our results include the generalization of BCRP for margin buying

and short selling frameworks.

To allow short and leverage our formulation weakens the constraints on

feasible set of possible portfolio vectors, thus they are expected to improve

performance. Leverage is anticipated to have substantial merit in terms

of growth rate, while short selling is not expected to yield much better

results. We do not expect increased profits on short CRP strategy, since

companies worth to short in our test period should have already defaulted

by now. Nonetheless short selling might yield increased profits in case of

markets with memory, since earlier results have shown that the market

was inefficient (cf. [Györfi et al. (2006)]). In case of i.i.d. returns with

known distribution, [Cover (1984)] has introduced a gradient based method

for optimization of long-only log-optimal portfolios, and gave necessary

and sufficient conditions on growth optimal investment in [Bell and Cover

(1980)]. We extend these results to short selling and leverage.

Contrary to non-leveraged long only investment in earlier literature,

in case of margin buying and short selling it is easy to default on total

initial investment. In this case asymptotic growth rate is minus infinity.

By bounding possible market returns, we establish circumstances such that

default is impossible. We do this in such a way that debt and positions

are limited and the investor is always able to satisfy his liabilities selling

assets. Restriction of market exposure and amount of debt is in line with

the practice of brokerages and regulators.

Our notation for asset prices and returns are as follows. Consider a mar-

ket consisting of d assets. Evolution of prices is represented by a sequence

of price vectors s1, s2, . . . ∈ R
d
+, where

sn = (s(1)n , . . . , s(d)n ). (4.1)

s
(j)
n denotes the price of the j-th asset at the end of the n-th trading period.
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In order to apply the usual techniques for time series analysis, we transform

the sequence of price vectors {sn} into return vectors:

xn = (x(1)
n , . . . , x(d)

n ),

where

x(j)
n =

s
(j)
n+1

s
(j)
n

.

Here the j-th component x
(j)
n of the return vector xn denotes the amount

obtained by investing unit capital in the j-th asset during the n-th trading

period.

4.2. Non-leveraged, long only investment

A representative example of the dynamic portfolio selection in the long only

case is the constantly rebalanced portfolio (CRP), introduced and studied

by [Kelly (1956)], [Latané (1959)], [Breiman (1961)], [Markowitz (1976)],

[Finkelstein and Whitley (1981)], [Móri (1982)], [Móri and Székely (1982)]

and [Cover (1984)]. For a comprehensive survey, see also Chapters 6 and

15 in [Cover and Thomas (1991)], and Chapter 15 in [Luenberger (1998)].

CRP is a self-financing portfolio strategy, rebalancing to the same pro-

portional portfolio in each investment period. This means that the investor

neither consumes from, nor deposits new cash into his account, but rein-

vests his capital in each trading period. Using this strategy the investor

chooses a proportional portfolio vector b = (b(1), . . . , b(d)), and rebalances

his portfolio after each period to correct the price shifts in the market. This

way the proportion of his wealth invested in each asset at the beginning of

trading periods is constant.

The j-th component b(j) of b denotes the proportion of the investor’s

capital invested in asset j. Thus the portfolio vector has nonnegative com-

ponents that sum up to 1. The set of portfolio vectors is denoted by

∆d =



b = (b(1), . . . , b(d)); b(j) ≥ 0,

d∑

j=1

b(j) = 1



 . (4.2)

Let S0 denote the investor’s initial capital. At the beginning of the first

trading period S0b
(j) is invested into asset j, and it results in position size

S0b
(j)x

(j)
1 after changes in market prices. Therefore, at the end of the first
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trading period the investor’s wealth becomes

S1 = S0

d∑

j=1

b(j)x
(j)
1 = S0 〈b , x1〉 ,

where 〈· , ·〉 denotes inner product. For the second trading period S1 is the

new initial capital, hence

S2 = S1 〈b , x2〉 = S0 〈b , x1〉 〈b , x2〉 .

By induction for trading period n,

Sn = Sn−1 〈b , xn〉 = S0

n∏

i=1

〈b , xi〉 . (4.3)

Including cash account into the framework is straight forward by as-

suming

x(j)
n = 1

for some j and for all n. The asymptotic average growth rate of this port-

folio selection is

W (b) = lim
n→∞

ln n
√

Sn = lim
n→∞

1

n
lnSn

= lim
n→∞

(
1

n
lnS0 +

1

n

n∑

i=1

ln 〈b , xi〉
)

= lim
n→∞

1

n

n∑

i=1

ln 〈b , xi〉 ,

if the limit exists. This also means that without loss of generality we can

assume that the initial capital S0 = 1.

If the market process {Xi} is memoryless, i.e., is a sequence of inde-

pendent and identically distributed (i.i.d.) random return vectors, then the

asymptotic rate of growth exists almost surely (a.s.), where, with random

vector X being distributed as Xi,

W (b) = lim
n→∞

1

n

n∑

i=1

ln 〈b , Xi〉 = E ln 〈b , X〉 a.s., (4.4)

given that E ln 〈b , X〉 is finite, due to strong law of large numbers. We can

ensure this property by assuming finiteness of E lnX(j), i.e., E| lnX(j)| < ∞
for each j ∈ {1, . . . , d} .
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In fact, because of b(i) > 0 for some i, we have

E ln 〈b , X〉 ≥ E ln
(
b(i)X(j)

)

= ln b(i) + E lnX(i) > −∞ ,

and because of b(j) ≤ 1 for all j, we have

E ln 〈b , X〉 ≤ E ln

(
dmax

j
X(j)

)

= ln d+ Emax
j

lnX(j)

≤ ln d+ Emax
j

ln |X(j)|

≤ ln d+
∑

j

E ln |X(j)| < ∞ .

From (4.4) it follows that rebalancing according to the best log-optimal

strategy

b∗ ∈ arg max
b∈∆d

E ln 〈b , X〉 ,

is also an asymptotically optimal trading strategy, i.e., a strategy with a.s.

optimum asymptotic growth

W (b∗) ≥ W (b),

for any b ∈∆d. The strategy of rebalancing according to b∗ at the begin-

ning of each trading period, is called best constantly rebalanced portfolio

(BCRP).

In the following we repeat calculations of [Bell and Cover (1980)]. Our

aim is to maximize asymptotic average rate of growth. W (b) being concave,

we minimize the convex objective function

fX(b) = −W (b) = −E ln 〈b,X〉 . (4.5)

To use Kuhn-Tucker theorem we establish linear, inequality type con-

straints over the search space ∆d in (4.2):

−b(i) ≤ 0,

for i = 1, . . . , d, i.e.

〈b, ai〉 ≤ 0, (4.6)

where ai ∈ R
d denotes the i-th unit vector, having −1 at position i.
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Our only equality type constraint is

d∑

j=1

b(j) − 1 = 0,

i.e.

〈b, e〉 − 1 = 0, (4.7)

where e ∈ R
d, e = (1, 1, . . . , 1).

The partial derivatives of the objective function are

∂fX(b)

∂b(i)
= −E

X(i)

〈b,X〉 ,

for i = 1, . . . , d.

According to Kuhn-Tucker theorem ([Kuhn and Tucker (1951)]), the

portfolio vector b∗ is optimal if and only if, there are constants µi ≥ 0 (i =

1, . . . , d) and ϑ ∈ R, such that

f ′
X(b∗) +

d∑

i=1

µiai + ϑe = 0

and

µj 〈b∗, aj〉 = 0,

for j = 1, . . . , d.

This means that

−E
X(j)

〈b∗,X〉 − µj + ϑ = 0 (4.8)

and

µjb
∗(j) = 0,

for j = 1, . . . , d. Summing up (4.8) weighted by b∗(j), we obtain:

−E
〈b∗,X〉
〈b∗,X〉 −

d∑

j=1

µjb
∗(j) +

d∑

j=1

ϑb∗(j) = 0,

hence

ϑ = 1.

We can state the following necessary condition for optimality of b∗. If

b∗ ∈ arg max
b∈∆d

W (b),
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then

b∗(j) > 0 =⇒ µj = 0 =⇒ E
X(j)

〈b∗,X〉 = 1, (4.9)

and

b∗(j) = 0 =⇒ µj ≥ 0 =⇒ E
X(j)

〈b∗,X〉 ≤ 1. (4.10)

Because of convexity of fX(b) the former conditions are sufficient, too.

Assume b∗∈∆d. If for any fixed j = 1, . . . , d either

E
X(j)

〈b∗,X〉 = 1 and b∗(j) > 0,

or

E
X(j)

〈b∗,X〉 ≤ 1 and b∗(j) = 0,

then b∗ is optimal. The latter two conditions pose a necessary and sufficient

condition on optimality of b∗.

Remark 4.1. In case of an independent asset, i.e. for some j ∈ 1, . . . , d,

X(j) being independent from the rest of the assets,

b∗(j) = 0 =⇒ E
X(j)

〈b∗,X〉 ≤ 1

implies by b∗(j) = 0 that X(j) is independent of 〈b∗,X〉. This means that

b∗(j) = 0 =⇒ EX(j)
E

1

〈b∗,X〉 ≤ 1,

therefore

b∗(j) = 0 =⇒ EX(j) ≤ 1

E
1

〈b∗,X〉
.

According to Kuhn-Tucker theorem, for any fixed j = 1, . . . , d either

E
X(j)

〈b∗,X〉 = 1 and b∗(j) > 0,

or

EX(j) ≤ 1

E
1

〈b∗,X〉
and b∗(j) = 0,

if and only if b∗ is optimal, i.e.,

b∗ ∈ arg max
b∈∆d

W (b). (4.11)
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Remark 4.2. Assume optimal portfolio b∗ for d assets

X = (X(1), X(2), . . . , X(d))

is already established. Given a new asset – being independent of our pre-

vious d assets – we can formulate a condition on its inclusion in the new

optimal portfolio b∗∗. If

EX(d+1) <
1

E
1

〈b∗,X〉

then

b∗∗(d+1) = 0.

This means that, for a new independent asset like the cash, we do not have

to do the optimization for each asset in the portfolio, and we can reach

substantial reduction in dimension of the search for an optimal portfolio.

Remark 4.3. The same trick can be applied in case of dependent returns

as well. If

E
X(d+1)

〈b∗,X〉 < 1 then b∗∗(d+1) = 0,

which is much simpler to verify then performing optimization of asymptotic

average growth. This condition can be formulated as

EX(d+1)
E

1

〈b∗,X〉 +Cov

(
X(d+1),

1

〈b∗,X〉

)
≤ 1,

which poses a condition on covariance and expected value of the new asset.

Remark 4.4. [Roll (1973)], [Pulley (1994)] and [Vajda (2006)] suggested

an approximation of b∗ using

ln z ≈ h(z) = z − 1− 1

2
(z − 1)2,

which is the second order Taylor approximation of the function ln z at z = 1.

Then the semi-log-optimal portfolio selection is

b ∈ arg max
b∈∆d

E{h 〈b , X〉}.
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Our new objective function is convex:

fX(b) = −E{h 〈b,X〉}

= −E{ 〈b,X〉 − 1− 1

2
(〈b,X〉 − 1)2}

= E{− 〈b,X〉+ 1 +
1

2
(〈b,X〉 − 1)2}

= E{− 〈b,X〉+ 1 +
1

2
〈b,X〉2 − 〈b,X〉+ 1

2
}

= E{1
2
〈b,X〉2 − 2 〈b,X〉+ 3

2
}

=
1

2
〈b,E(XXT )b〉 − 〈b, 2EX〉+ 3

2

= E

{( 1√
2
〈b,X〉 −

√
2
)2

− 1

2

}
,

where X is column vector, XXT denotes outer product. This is equivalent

to minimizing

fX(b) = E( 〈b,X〉 − 2)
2
.

Thus b can be simply calculated to minimize the squared distance from 2.

In case of data driven algorithms, the solution is using linear regression,

under the constraint b∗∈∆d.

fX(b) = Var 〈b,X〉+ (2− E 〈b,X〉)2

= Var 〈b,X〉+ (2− 〈b,EX〉)2.

This means we minimize variance of returns while maximizing expected re-

turn. This is in close resemblance with Markowitz type portfolio selection.

For a discussion of the relationship between Markowitz type portfolio selec-

tion and the semi-log-optimal strategy (see [Ottucsák and Vajda (2007)] and

Chapter 2 of this volume). The problem can be formulated as a quadratic

optimization problem as well,

fX(b) = 〈b,Rb〉+ 4− 4 〈b,m〉

where

R =E(XX
T
),

and

m =E(X).
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Note that R is symmetric, and positive semidefinite, since for any z ∈Rd

zTRz = zTE(XX
T
)z =E(zTX)

2≥ 0.

This means we face a convex programming problem again.

4.3. Short selling

4.3.1. No-ruin constraints

Short selling an asset is usually done by borrowing the asset under consid-

eration and selling it. As collateral the investor has to provide securities

of the same value to the lender of the shorted asset. This ensures that if

anything goes wrong, the lender still has high recovery rate.

While the investor has to provide collateral, after selling the assets hav-

ing been borrowed, he obtains the price of the shorted asset again. This

means that short selling is virtually for free.

S′ = S − C + P,

where S′ is wealth after opening the short position, S is wealth before, C

is collateral for borrowing and P is price income of selling the asset being

shorted. For simplicity we assume

C = P,

hence

S′ = S,

and short selling is free. In practice the act of short selling is more compli-

cated. For institutional investors the size of collateral depends on supply

and demand on the short market, and the receiver of the more liquid asset

usually pays interest. For simplicity we ignore these problems.

Let us elaborate this process on a real life example. Assume the investor

wants to short sell 10 shares of IBM at $100, and he has $1000 in cash. First

he has to find a lender – the short provider – who is willing to lend the

shares. After exchanging the shares and the $1000 collateral, the investor

sells the borrowed shares. After selling the investor has $1000 in cash again,

and the obligation to cover the shorted assets later.

In contrast with our modelling approach where short selling is free, it is

also modelled in literature such that selling an asset short yields immediate

cash – this is called naked short transaction. This is the case in the Chapter
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on Mean-Variance Portfolio Theory of [Luenberger (1998)] and in [Cover

and Ordentlich (1998)].

Assume our only investment is in asset j and our initial wealth is S0.

We invest a proportion of b ∈ (−1, 1) of our wealth. If the position is long

(b > 0) it results in wealth

S0(1− b) + S0bx
(j)
1 = S0 + S0b(x

(j)
1 − 1),

while if the position is short (b < 0), we win as much money, as price drop

of the asset:

S0 + S0|b|(1− x
(j)
1 ) = S0 + S0b(x

(j)
1 − 1).

In line with the previous example, assume that our investor has shorted

10 shares of IBM, at $100. If the price drops $10, he has to cover the short

position at $90, thus he gains 10 x $10. If the price rises $10, he has to

cover at $110, loosing 10 x $10.

Let b = (b(0), b(1), . . . , b(d)) be the portfolio vector such that the 0-th

component corresponds to cash. At the end of the first trading period the

investor’s wealth becomes

S1 = S0


b(0)+

d∑

j=1

[
b(j)

+
x
(j)
1 + b(j)

−
(x

(j)
1 − 1)

]



+

, (4.12)

where (.)− denotes the negative part operation. In case of the investor’s net

wealth falling to zero or below he defaults. Negative wealth is not allowed

in our framework, thus the outer positive part operation. Since only long

positions cost money in this setup, we will constrain to portfolios such that∑d
j=0 b

(j)+ = 1. Considering this it is also true that

S1 = S0




d∑

j=0

b(j)
+
+

d∑

j=1

[
b(j)

+
(x

(j)
1 − 1) + b(j)

−
(x

(j)
1 − 1)

]



+

(4.13)

= S0


1+

d∑

j=1

[
b(j)(x

(j)
1 − 1)

]



+

. (4.14)

This shows that we gain as much as long positions raise and short positions

fall.

We can see that short selling is a risky investment, because it is possible

to default on total initial wealth without the default of any of the assets in
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the portfolio. The possibility of this would lead to a growth rate of minus

infinity, thus we restrict our market according to

1−B + δ < x(j)
n < 1 +B − δ, j = 1, . . . , d. (4.15)

Besides aiming at no-ruin, the role of δ > 0 is ensuring that rate of growth

is finite for any portfolio vector (i.e. > −∞).

For the usual stock market daily data, there exist 0 < a1 < 1 < a2 < ∞
such that

a1 ≤ x(j)
n ≤ a2

for all j = 1, . . . , d, for example, a1 = 0.7 and with a2 = 1.2 (cf. [Fernholz

(2000)]). Thus, we can choose B = 0.3.

Given (4.14) and (4.15) it is easy to see that maximal loss that we could

suffer is B
∑d

j=1 |b(j)|. This value has to be constrained to ensure no-ruin.

We denote the set of possible portfolio vectors by

∆
(−B)
d =



b = (b(0), b(1), . . . , b(d)); b(0) ≥ 0,

d∑

j=0

b(j)
+
= 1, B

d∑

j=1

|b(j)| ≤ 1



 .

(4.16)∑d
j=0 b

(j)+ = 1 means that we invest all of our initial wealth into some

assets – buying long – or cash. By B
∑d

j=1 |b(j)| ≤ 1, maximal exposure

is limited such that ruin is not possible, and rate of growth it is finite.

b(0) is not included in the latter inequality, since possessing cash does not

pose risk. Notice that if B ≤ 1 then ∆d+1 ⊂ ∆
(−B)
d , and so the achievable

growth rate with short selling can not be smaller than in long only case.

According to (4.14) and (4.15) with B ≤ 1 we show that ruin is impos-

sible:

1 +

d∑

j=1

[
b(j)(x

(j)
1 − 1)

]

> 1+

d∑

j=1

[
b(j)

+
(1−B + δ − 1) + b(j)

−
(1 +B − δ − 1)

]

= 1− (B − δ)
d∑

j=1

|b(j)|

≥ δ

d∑

j=1

|b(j)|.
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If
∑d

j=1 |b(j)| = 0 then b(0) = 1, hence no-ruin. In any other case,

δ
∑d

j=1 |b(j)| > 0, hence we have not only ensured no-ruin, but also

E ln


1+

d∑

j=1

[
b(j)(X

(j)
1 − 1)

]



+

> −∞.

4.3.2. Optimality condition for short selling with cash ac-

count

A problem with ∆
(−B)
d is its non-convexity. To see this consider

b1 = (0, 1) ∈ ∆
(−1)
1 ,

b2 = (1,−1/2) ∈ ∆
(−1)
1 ,

with

b1 + b2

2
= (1/2, 1/4) /∈ ∆

(−1)
1 .

This means we can not simply apply Kuhn-Tucker theorem on ∆
(−B)
d .

Given cash balance, we can transform our non-convex ∆
(−B)
d to a con-

vex region ∆̃
(−B)
d , where application of our tools established in long only

investment becomes feasible. The new set of possible portfolio vectors is a

convex region:

∆̃
(−B)
d =

{
b̃ = (̃b(0+), b̃(1+), b̃(1−), . . . , b̃(d+), b̃(d−)) ∈ R

+
0

2d+1
;

d∑

j=0

b̃(j+) = 1, B

d∑

j=1

(̃b(j+)+b̃(j−)) ≤ 1
}

.

Mapping from ∆
(−B)
d to ∆̃

(−B)
d happens by

b̃ = (b(0), (b(1))+, |(b(1))−|, . . . , (b(d))+, |(b(d))−|). (4.17)

(4.12) implies that

S1 = S0


b̃(0+)+

d∑

j=1

[
b̃(j+)x

(j)
1 + b̃(j−)(1− x

(j)
1 )
]



+

,

thus in line with the portfolio vector being transformed we transform the

market vector too

X̃ = (1, X(1), 1−X(1), . . . , X(d), 1−X(d)),
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so that

S1 = S0

〈
b̃, X̃

〉
.

To use the Kuhn-Tucker theorem we enumerate linear, inequality type

constraints over the search space

B

d∑

j=1

(̃b(j+)+b̃(j−)) ≤ 1,

and

b̃(0+) ≥ 0, b̃(i+) ≥ 0, b̃(i−) ≥ 0,

for i = 1, . . . , d. Our only equality type constraint is

d∑

j=0

b̃(j+) = 1.

The partial derivatives of the convex objective function fX(b̃) =

−E ln
〈
b̃ , X̃

〉
are

∂fX(b̃)

∂b̃(0+)
= −E

1〈
b̃, X̃

〉 ,

∂fX(b̃)

∂b̃(i+)
= −E

X(i)

〈
b̃, X̃

〉 ,

∂fX(b̃)

∂b̃(i−)
= −E

1−X(i)

〈
b̃, X̃

〉 ,

for i = 1, . . . , d.

According to Kuhn-Tucker theorem (KT), the portfolio vector b̃∗ is

optimal if and only if, there are KT multipliers assigned to each of the

former 2d + 3 constraints µ0+ ≥ 0, µi+ ≥ 0, µi− ≥ 0, νB ≥ 0 (i = 1, . . . , d)

and ϑ ∈ R, such that

−E
1〈

b̃∗,X
〉 + ϑ− µ0+ = 0, (4.18)

−E
X(i)

〈
b̃∗,X

〉 + ϑ− µi+ + νBB = 0,

−E
1−X(i)

〈
b̃∗,X

〉 − µi− + νBB = 0,
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and

µ0+ b̃
∗(0+) = 0,

µi+ b̃
∗(i+) = 0,

µi− b̃
∗(i−) = 0,

for i = 1, . . . , d, while

νB [B

d∑

j=1

(̃b(j+)+b̃(j−))− 1] = 0, (4.19)

νBB

d∑

j=1

(̃b(j+)+b̃(j−)) = νB .

Summing up equations in (4.18) weighted by b̃∗(0), b̃∗(i+), b̃∗(i−), we ob-

tain:

−E

〈
b̃∗, X̃

〉

〈
b̃∗, X̃

〉 + ϑ

d∑

j=0

b̃∗(j+) + νBB

d∑

j=1

(̃b(j+)+b̃(j−)) = 0,

−1 + ϑ+ νB = 0,

ϑ = 1− νB , (4.20)

ϑ ≤ 1.

In case of B
∑d

j=1(̃b
(j+)+b̃(j−)) < 1, because of (4.19) and (4.20) we

have that

νB = 0, hence ϑ = 1.

This implies

−E
1〈

b̃∗, X̃
〉 + 1− µ0+ = 0,

−E
X(i)

〈
b̃∗, X̃

〉 + 1− µi+ = 0,

−E
1−X(i)

〈
b̃∗, X̃

〉 − µi− = 0.
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These equations result in the following additional properties

b̃∗(0+) > 0 =⇒ µ0+ = 0 =⇒ E
1〈

b̃∗, X̃
〉 = 1,

b̃∗(0+) = 0 =⇒ µ0+ ≥ 0 =⇒ E
1〈

b̃∗, X̃
〉 ≤ 1,

and

b̃∗(i+) > 0 =⇒ µi+ = 0 =⇒ E
X(i)

〈
b̃∗, X̃

〉 = 1,

b̃∗(i+) = 0 =⇒ µi+ ≥ 0 =⇒ E
X(i)

〈
b̃∗, X̃

〉 ≤ 1,

and

b̃∗(i−) > 0 =⇒ µi− = 0 =⇒ E
1−X(i)

〈
b̃∗, X̃

〉 = 0,

b̃∗(i−) = 0 =⇒ µi− ≥ 0 =⇒ E
1−X(i)

〈
b̃∗, X̃

〉 ≤ 0 ,

for i = 1, . . . , d.

We transform the vector b̃∗ to the vector b∗ such that

b∗(i) = b̃∗(i+) − b̃∗(i−)

(i = 1, . . . , d), while

b∗(0) = b̃∗(0) +
d∑

i=1

min{b̃∗(i+), b̃∗(i−)}.

This way

d∑

j=1

|b∗(j)| = 1,

and we have the same market exposure with b∗ as with b̃.
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Due to the simple mapping (4.17), with regard to the original portfolio

vector b∗ this means

b∗(0) > 0 =⇒ E
1〈

b̃∗, X̃
〉 = 1, (4.21)

b∗(0) = 0 =⇒ E
1〈

b̃∗, X̃
〉 ≤ 1.

Also

b∗(i) > 0 =⇒ E
X(i)

〈
b̃∗, X̃

〉 = 1 and E
1−X(i)

〈
b̃∗, X̃

〉 ≤ 0,

which is equivalent to

E
1〈

b̃∗, X̃
〉 ≤ E

X(i)

〈
b̃∗, X̃

〉 = 1,

and

b∗(i) = 0 =⇒ E
X(i)

〈
b̃∗, X̃

〉 ≤ 1 and E
1−X(i)

〈
b̃∗, X̃

〉 ≤ 0,

which is equivalent to

E
1〈

b̃∗, X̃
〉 ≤ E

X(i)

〈
b̃∗, X̃

〉 ≤ 1,

and

b∗(i) < 0 =⇒ E
X(i)

〈
b̃∗, X̃

〉 ≤ 1 and E
1−X(i)

〈
b̃∗, X̃

〉 = 0,

which is equivalent to

E
1〈

b̃∗, X̃
〉 ≤ E

X(i)

〈
b̃∗, X̃

〉 ≤ 1,

for i = 1, . . . , d.
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4.4. Long only leveraged investment

4.4.1. No-ruin condition

In the leveraged frameworks we assume (4.15), thus market exposure can

be increased over one without the possibility of ruin. Again, we denote the

portfolio vector by

b = (b(0), b(1), . . . , b(d)),

where b(0) ≥ 0 stands for the cash balance, and since no short selling

b(i) ≥ 0, i = 1, . . . , d.

Assume the investor can borrow money and invest it on the same rate

r. Assume also that the maximal investable amount of cash LB,r (relative

to initial wealth S0), is always available for the investor. In the sequel we

refer to LB,r as buying power. LB,r is chosen to be the maximal amount,

investing of which ruin is not possible given 4.15. Because our investor

decides over the distribution of his buying power

d∑

j=0

b(j) = LB,r.

Unspent cash earns the same interest r, as the rate of lending. The

market vector is defined as

Xr = (X(0), X(1), . . . , X(d)) = (1 + r,X(1), . . . , X(d)),

so X(0) = 1 + r. The feasible set of portfolio vectors is

r∆+B
d =



b = (b(0), b(1), . . . , b(d)) ∈ R

+
0

d+1
,

d∑

j=0

b(j) = LB,r



 ,

where b(0) denotes unspent buying power. Market evolves according to

S1 = S0(〈b,Xr〉 − (LB,r − 1)(1 + r))+,

where S0r(LB,r − 1) is interest on borrowing LB,r − 1 times initial wealth

S0.

To ensure no-ruin and finiteness of growth rate choose

LB,r =
1 + r

B + r
. (4.22)
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This ensures that ruin is not possible:

〈b,Xr〉 − (LB,r − 1)(1 + r)

=

d∑

j=0

b(j)X(j) − (LB,r − 1)(1 + r)

= b(0)(1 + r) +

d∑

j=1

b(j)X(j) − (LB,r − 1)(1 + r)

> b(0)(1 + r) +
d∑

j=1

b(j)(1−B + δ)− (LB,r − 1)(1 + r)

= b(0)(1 + r) + (LB,r − b(0))(1−B + δ)− (LB,r − 1)(1 + r)

= b(0)(r +B − δ)− LB,r(B − δ + r) + 1 + r

≥ − 1 + r

B + r
(B − δ + r) + 1 + r

= δ
1 + r

B + r
.

4.4.2. Kuhn-Tucker characterization

Our convex objective function, the negative of asymptotic rate of growth is

f+B
Xr

(b) = −E ln(〈b,Xr〉 − (LB,r − 1)(1 + r)).

The linear inequality type constraints are as follows:

−b(i) ≤ 0,

for i = 0, . . . , d, while our only equality type constraint is

d∑

j=0

b(j) − LB,r = 0.

The partial derivatives of the optimized function are

∂f+B
Xr

(b)

∂b(i)
= −E

X(i)

〈b,Xr〉 − (LB,r − 1)(1 + r)
.

According to the Kuhn-Tucker necessary and sufficient theorem, a

portfolio vector b∗, is optimal if and only if there are KT multipliers

µj ≥ 0 (j = 0, . . . , d) and ϑ ∈ R, such that

−E
X(j)

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
− µj + ϑ = 0 (4.23)
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and

µjb
∗(j) = 0,

for j = 0, . . . , d. Summing up (4.23) weighted by b∗(j) we obtain:

−E
〈b∗,Xr〉

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
−

d∑

j=0

µjb
∗(j) +

d∑

j=0

b∗(j)ϑ = 0,

1 + E
(LB,r − 1)(1 + r)

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
= LB,rϑ,

1

LB,r
+

(LB,r − 1)(1 + r)

LB,r
E

1

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
= ϑ. (4.24)

This means that

b∗(j) > 0 =⇒ µj = 0 =⇒ E
X(j)

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
= ϑ, (4.25)

and

b∗(j) = 0 =⇒ E
X(j)

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
≤ ϑ.

For the cash account this means

b∗(0) > 0 =⇒ µj = 0 =⇒ E
1 + r

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
= ϑ, (4.26)

and

b∗(0) = 0 =⇒ E
1 + r

〈b∗,Xr〉 − (LB,r − 1)(1 + r)
≤ ϑ.

4.5. Short selling and leverage

For this case we need to use both tricks of the previous sections. The

market evolves according to

S1 = S0

(
b(0)(1 + r)

+

d∑

j=1

[
b(j)

+
x
(j)
1 + b(j)

−
(x

(j)
1 − 1− r)

]
− (LB,r − 1)(1 + r)

)+
,

over the non-convex region

r∆±B
d =



b = (b(0), b(1), b(2), . . . , b(d));

d∑

j=0

|b(j)| = LB,r



 ,
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where LB,r is the buying power defined in (4.22), and b(0) denotes unspent

buying power. Again, one can check that the choice of LB,r ensures no-ruin

and finiteness of growth rate.

With the help of our technique developed in the short selling framework,

we convert to the following convex region:

r∆̃±B
d =

{
b̃ = (̃b(0+), b̃(1+), b̃(1−), . . . , b̃(d+), b̃(d−)) ∈ R

+
0

2d+1
;

b̃(0+) +

d∑

j=1

(̃b(j+) + b̃(j−)) = LB,r

}

such that

b̃ = (̃b(0), b̃(1+), b̃(1−) . . . , b̃(d+), b̃(d−)) = (b(0), b(1)
+
, |b(1)−|, . . . , b(d)+, |b(d)−|).

Similarly to the short selling case we introduce the transformed return

vector. Given

X = (X(1), . . . , X(d)),

we introduce

X±r = (1 + r,X(1), 2−X(1) + r, . . . , X(d), 2−X(d) + r).

We introduce r in 2−X(i)+r terms, since short selling is free, hence buying

power spent on short positions still earns interest. We use 2−X(i)+r instead

of 1 − X(i) + r, since while short selling is actually free, it still limits our

buying power, which is the basis of the convex formulation.

Because of r∆̃±B
d = r∆+B

2d , we can easily apply (4.25) and (4.26), hence

b∗(0) > 0 =⇒ E
1 + r〈

b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

= ϑ,

b∗(0) = 0 =⇒ E
1 + r〈

b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

≤ ϑ,

where ϑ is defined by (4.24) with Xr = X±r in place, and

b∗(i) > 0 =⇒

E
X(i)

〈
b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

= ϑ,

E
2−X(i) + r〈

b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

≤ ϑ
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and

b∗(i) = 0 =⇒

E
X(i)

〈
b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

≤ ϑ,

E
2−X(i) + r〈

b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

≤ ϑ

and

b∗(i) < 0 =⇒

E
X(i)

〈
b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

≤ ϑ,

E
2−X(i) + r〈

b̃∗,X±r

〉
− (LB,r − 1)(1 + r)

= ϑ.

Note, that in the special case of LB,r = 1, we have ϑ = 1 because of

(4.24).

4.6. Experiments

Our empirical investigation consider three setups, each of which is consid-

ered in long only, short, leveraged and leveraged short cases. We examine

the BCRP strategy, which chooses the best constant portfolio vector with

hindsight, and its empirical causal counterpart, the causal i.i.d. strategy.

The latter strategy uses the best portfolio based on past data, and it is

asymptotically optimal for i.i.d. returns. The third algorithm is asymp-

totically optimal in case of Markovian time series. Using nearest-neighbor-

based portfolio selection (cf. Chapter 2 of this volume) with 100 neighbors,

we investigate whether shorting yields extra growth in case of dependent

market returns.

The New York Stock Exchange (NYSE) data set [Gelencsér and Ot-

tucsák (2006)] includes daily closing prices of 19 assets along a 44-year

period ending in 2006. The same data is used in Chapter 2 of this volume,

which facilitates comparison of algorithms.

Interest rate is constant in our experiments. We calculated effective

daily yield over the 44 years based on Federal Reserve Fund Rate from the

FRED database. The annual rate in this period is 6.3%, which is equivalent

to r = 0.000245 daily interest.
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Table 4.1. Average Annual Yields and optimal portfolios on NYSE data.

Asset AAY b∗ b∗
−B

b∗
+B

b∗
±B

Cash/Debt – 0 0 -1.4991 -1.4991
AHP 13% 0 0 0 0
ALCOA 9% 0 0 0 0
AMERB 14% 0 0 0.01 0.01
COKE 14% 0 0 0 0
DOW 12% 0 0 0 0

DUPONT 9% 0 0 0 0

FORD 9% 0 0 0 0

GE 13% 0 0 0 0

GM 7% 0 0 0 0

HP 15% 0.17 0.17 0.32 0.32

IBM 10% 0 0 0 0

INGER 11% 0 0 0 0

JNJ 16% 0 0 0.48 0.48

KIMBC 13% 0 0 0.03 0.03

MERCK 15% 0 0 0.14 0.14

MMM 11% 0 0 0 0

MORRIS 20% 0.75 0.75 1.15 1.15

PANDG 13% 0 0 0 0

SCHLUM 15% 0.08 0.08 0.36 0.36

AAY 20% 20% 34% 34%

Table 4.2. Average Annual Yields.

Strategy Annual Average Yield

BCRP
Long only 20%
Short 20%
Leverage 34%
Short & Leverage 34%

IID
Long only 13%
Short 11%
Leverage 16%
Short & Leverage 14%

Nearest Neighbor
Long only 32%

Short 30%

Leverage 66%

Short & Leverage 83%



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE
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Regarding (4.15), we chose the conservative bound B = 0.4, as the

largest one day change in asset value over the 44 years has been 0.3029.

This bound implies that in the case of r = 0 the maximal leverage is

LB,r = 2.5 fold, while in case of r = 0.000245, LB,r = 2.4991. Performance

of BCRP algorithms improve further by decreasing B until B = 0.2, but

this limit would not guarantee no-ruin. This property also implies that

optimal leverage factor on our dataset is less than 5.

Given our convex formalism for the space of portfolio vector and con-

vexity of log utility, we use Lagrange multipliers and active-set algorithms

for the optimization.

Table 4.1 shows the results of the BCRP experiments. Shorting does

not have any effect in this case, while leverage results in significant gain.

Behavior of shorting strategies is in line with intuition, since taking perma-

nently short position of an asset is not beneficial. The leveraged strategies

use maximal leverage, and they do not only increase market exposure, but

invest into more assets in order to reduce variation of the portfolio. This is

in contrast with behavior of leveraged mean-variance optimal portfolios.
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Fig. 4.1. Cumulative wealth of the nearest neighbor strategy starting from 1962.
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Table 4.2 presents growth rates of the three setups we consider. BCRP

being an optimistically anticipating estimate of possible growth, our i.i.d.

strategies do significantly underperform, while the Average Annual Yields

(AAYs) of the nearest neighbor strategies including leverage are spectac-

ular. Figure 4.1 presents evolution of wealth in the latter case. While

allowing short positions results in large drawdowns in the beginning, these

algorithms catch up later. Figure 4.2 shows the result of the algorithms

starting from 1980; it reveals that short selling does not offer any significant

plus gain in this period benchmarking against the long-only approaches.
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Fig. 4.2. Cumulative wealth of the nearest neighbor strategy starting from 1980.
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We present simple procedures for the prediction of a real valued time se-
ries with side information. For squared loss (regression problem), survey
the basic principles of universally consistent estimates. The prediction
algorithms are based on a combination of several simple predictors. We
show that if the sequence is a realization of a stationary and ergodic ran-
dom process then the average of squared errors converges, almost surely,
to that of the optimum, given by the Bayes predictor. We offer an analog
result for the prediction of stationary gaussian processes. These predic-
tion strategies have some consequences for 0−1 loss (pattern recognition
problem).

5.1. Introduction

We study the problem of sequential prediction of a real valued sequence.

At each time instant t = 1, 2, . . ., the predictor is asked to guess the value of

the next outcome yt of a sequence of real numbers y1, y2, . . . with knowledge

of the pasts yt−1
1 = (y1, . . . , yt−1) (where y01 denotes the empty string) and

the side information vectors xt
1 = (x1, . . . , xt), where xt ∈ R

d . Thus, the

predictor’s estimate, at time t, is based on the value of xt
1 and yt−1

1 . A

prediction strategy is a sequence g = {gt}∞t=1 of functions

gt :
(
R

d
)t × R

t−1 → R

so that the prediction formed at time t is gt(x
t
1, y

t−1
1 ).

In this study we assume that (x1, y1), (x2, y2), . . . are realizations of the

random variables (X1, Y1), (X2, Y2), . . . such that {(Xn, Yn)}∞−∞ is a jointly

stationary and ergodic process.

177
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After n time instants, the normalized cumulative prediction error is

Ln(g) =
1

n

n∑

t=1

(gt(X
t
1, Y

t−1
1 )− Yt)

2.

Our aim to achieve small Ln(g) when n is large.

For this prediction problem, an example can be the forecasting daily rel-

ative prices yt of an asset, while the side information vector xt may contain

some information on other assets in the past days or the trading volume

in the previous day or some news related to the actual assets, etc. This

is a widely investigated research problem. However, in the vast majority

of the corresponding literature the side information is not included in the

model, moreover, a parametric model (AR, MA, ARMA, ARIMA, ARCH,

GARCH, etc.) is fitted to the stochastic process {Yt}, its parameters are

estimated, and a prediction is derived from the parameter estimates. (cf.

[Tsay (2002)]). Formally, this approach means that there is a parameter θ

such that the best predictor has the form

E{Yt | Y t−1
1 } = gt(θ, Y

t−1
1 ),

for a function gt. The parameter θ is estimated from the past data Y t−1
1 ,

and the estimate is denoted by θ̂. Then the data-driven predictor is

gt(θ̂, Y
t−1
1 ).

Here we don’t assume any parametric model, so our results are fully non-

parametric. This modelling is important for financial data when the process

is only approximately governed by stochastic differential equations, so the

parametric modelling can be weak, moreover the error criterion of the pa-

rameter estimate (usually the maximum likelihood estimate) has no relation

to the mean square error of the prediction derived. The main aim of this

research is to construct predictors, called universally consistent predictors,

which are consistent for all stationary time series. Such universal feature

can be proven using the recent principles of nonparametric statistics and

machine learning algorithms.

The results below are given in an autoregressive framework, that is, the

value Yt is predicted based on Xt
1 and Y t−1

1 . The fundamental limit for the

predictability of the sequence can be determined based on a result of [Al-

goet (1994)], who showed that for any prediction strategy g and stationary

ergodic process {(Xn, Yn)}∞−∞,

lim inf
n→∞

Ln(g) ≥ L∗ almost surely, (5.1)
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where

L∗ = E

{(
Y0 − E{Y0

∣∣X0
−∞, Y −1

−∞}
)2}

is the minimal mean squared error of any prediction for the value of Y0

based on the infinite past X0
−∞, Y −1

−∞. Note that it follows by stationarity

and the martingale convergence theorem (see, e.g., [Stout (1974)]) that

L∗ = lim
n→∞

E

{(
Yn − E{Yn

∣∣Xn
1 , Y

n−1
1 }

)2}
.

This lower bound gives sense to the following definition:

Definition 5.1. A prediction strategy g is called universally consistent

with respect to a class C of stationary and ergodic processes {(Xn, Yn)}∞−∞,

if for each process in the class,

lim
n→∞

Ln(g) = L∗ almost surely.

Universally consistent strategies asymptotically achieve the best possi-

ble squared loss for all ergodic processes in the class. [Algoet (1992)] and

[Morvai et al. (1996)] proved that there exists a prediction strategy uni-

versal with respect to the class of all bounded ergodic processes. However,

the prediction strategies exhibited in these papers are either very complex

or have an unreasonably slow rate of convergence even for well-behaved

processes.

Next we introduce several simple prediction strategies which, apart from

having the above mentioned universal property of [Algoet (1992)] and [Mor-

vai et al. (1996)], promise much improved performance for “nice” processes.

The algorithms build on a methodology worked out in recent years for pre-

diction of individual sequences, see [Vovk (1990)], [Feder et al. (1992)], [Lit-

tlestone and Warmuth (1994)], [Cesa-Bianchi et al. (1997)], [Kivinen and

Warmuth (1999)], [Singer and Feder (1999)], [Merhav and Feder (1998)],

[Cesa-Bianchi and Lugosi (2006)] for a survey.

An approach similar to the one of this paper was adopted by [Györfi

et al. (1999)], where prediction of stationary binary sequences was ad-

dressed. There they introduced a simple randomized predictor which pre-

dicts asymptotically as well as the optimal predictor for all binary ergodic

processes. The present setup and results differ in several important points

from those of [Györfi et al. (1999)]. On the one hand, special properties of

the squared loss function considered here allow us to avoid randomization

of the predictor, and to define a significantly simpler prediction scheme. On
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the other hand, possible unboundedness of a real-valued process requires

special care, which we demonstrate on the example of gaussian processes.

We refer to [Nobel (2003)], [Singer and Feder (1999, 2000)], [Yang (2000)]

to recent closely related work.

In Section 5.2 we survey the basic principles of nonparametric regression

estimates. In Section 5.3 introduce universally consistent strategies for

bounded ergodic processes which are based on a combination of partitioning

or kernel or nearest neighbor or generalized linear estimates. In Section

5.4 consider the prediction of unbounded sequences including the ergodic

gaussian process. In Section 5.5 study the classification problem of time

series.

5.2. Nonparametric regression estimation

5.2.1. The regression problem

For the prediction of time series, an important source of the basic princi-

ples is the nonparametric regression. In regression analysis one considers a

random vector (X,Y ), where X is R
d-valued and Y is R-valued, and one

is interested how the value of the so-called response variable Y depends on

the value of the observation vector X. This means that one wants to find

a function f : Rd → R, such that f(X) is a “good approximation of Y ,”

that is, f(X) should be close to Y in some sense, which is equivalent to

making |f(X)−Y | “small.” Since X and Y are random vectors, |f(X)−Y |
is random as well, therefore it is not clear what “small |f(X)− Y |” means.

We can resolve this problem by introducing the so-called L2 risk or mean

squared error of f ,

E|f(X)− Y |2,

and requiring it to be as small as possible.

So we are interested in a function m∗ : Rd → R such that

E|m∗(X)− Y |2 = min
f :Rd→R

E|f(X)− Y |2.

Such a function can be obtained explicitly as follows. Let

m(x) = E{Y |X = x}

be the regression function. We will show that the regression function min-

imizes the L2 risk. Indeed, for an arbitrary f : Rd → R, a version of the
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Steiner theorem implies that

E|f(X)− Y |2 = E|f(X)−m(X) +m(X)− Y |2

= E|f(X)−m(X)|2 + E|m(X)− Y |2,
where we have used

E {(f(X)−m(X))(m(X)− Y )}
= E

{
E
{
(f(X)−m(X))(m(X)− Y )

∣∣X
}}

= E {(f(X)−m(X))E{m(X)− Y |X}}
= E {(f(X)−m(X))(m(X)−m(X))}
= 0.

Hence,

E|f(X)− Y |2 =

∫

Rd

|f(x)−m(x)|2µ(dx) + E|m(X)− Y |2, (5.2)

where µ denotes the distribution of X. The first term is called the L2

error of f . It is always nonnegative and is zero if f(x) = m(x). Therefore,

m∗(x) = m(x), i.e., the optimal approximation (with respect to the L2 risk)

of Y by a function of X is given by m(X).

5.2.2. Regression function estimation and L2 error

In applications the distribution of (X,Y ) (and hence also the regression

function) is usually unknown. Therefore it is impossible to predict Y using

m(X). But it is often possible to observe data according to the distribution

of (X,Y ) and to estimate the regression function from these data.

To be more precise, denote by (X,Y ), (X1, Y1), (X2, Y2), . . . indepen-

dent and identically distributed (i.i.d.) random variables with EY 2 < ∞.

Let Dn be the set of data defined by

Dn = {(X1, Y1), . . . , (Xn, Yn)} .
In the regression function estimation problem one wants to use the data Dn

in order to construct an estimate mn : Rd → R of the regression function

m. Here mn(x) = mn(x,Dn) is a measurable function of x and the data.

For simplicity, we will suppress Dn in the notation and write mn(x) instead

of mn(x,Dn).

In general, estimates will not be equal to the regression function. To

compare different estimates, we need an error criterion which measures

the difference between the regression function and an arbitrary estimate
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mn. One of the key points we would like to make is that the motivation

for introducing the regression function leads naturally to an L2 error cri-

terion for measuring the performance of the regression function estimate.

Recall that the main goal was to find a function f such that the L2 risk

E|f(X)− Y |2 is small. The minimal value of this L2 risk is E|m(X)− Y |2,
and it is achieved by the regression function m. Similarly to (5.2), one can

show that the L2 risk E{|mn(X)− Y |2|Dn} of an estimate mn satisfies

E
{
|mn(X)− Y |2|Dn

}
=

∫

Rd

|mn(x)−m(x)|2µ(dx)+E|m(X)−Y |2. (5.3)

Thus the L2 risk of an estimate mn is close to the optimal value if and only

if the L2 error

∫

Rd

|mn(x)−m(x)|2µ(dx) (5.4)

is close to zero. Therefore we will use the L2 error (5.4) in order to measure

the quality of an estimate and we will study estimates for which this L2

error is small.

In this section we describe the basic principles of nonparametric regres-

sion estimation: local averaging, local modelling, global modelling (or least

squares estimation), and penalized modelling. (Concerning the details see

[Györfi et al. (2002)].)

Recall that the data can be written as

Yi = m(Xi) + εi,

where εi = Yi − m(Xi) satisfies E(εi|Xi) = 0. Thus Yi can be considered

as the sum of the value of the regression function at Xi and some error

εi, where the expected value of the error is zero. This motivates the con-

struction of the estimates by local averaging, i.e., estimation of m(x) by

the average of those Yi where Xi is “close” to x. Such an estimate can be

written as

mn(x) =

n∑

i=1

Wn,i(x) · Yi,

where the weights Wn,i(x) = Wn,i(x,X1, . . . , Xn) ∈ R depend on

X1, . . . , Xn. Usually the weights are nonnegative and Wn,i(x) is “small” if

Xi is “far” from x.
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5.2.3. Partitioning estimate

An example of such an estimate is the partitioning estimate. Here one

chooses a finite or countably infinite partition Pn = {An,1, An,2, . . . } of Rd

consisting of cells An,j ⊆ R
d and defines, for x ∈ An,j , the estimate by

averaging Yi’s with the corresponding Xi’s in An,j , i.e.,

mn(x) =

∑n
i=1 I{Xi∈An,j}Yi∑n
i=1 I{Xi∈An,j}

for x ∈ An,j , (5.5)

where IA denotes the indicator function of set A, so

Wn,i(x) =
I{Xi∈An,j}∑n
l=1 I{Xl∈An,j}

for x ∈ An,j .

Here and in the following we use the convention 0
0 = 0. In order to have

consistency, on the one hand we need that the cells An,j should be ”small”,

and on the other hand the number of non-zero terms in the denominator of

(5.5) should be “large”. These requirements can be satisfied if the sequences

of partition Pn is asymptotically fine, i.e., if

diam(A) = sup
x,y∈A

‖x− y‖

denotes the diameter of a set, then for each sphere S centered at the origin

lim
n→∞

max
j:An,j∩S 6=∅

diam(An,j) = 0

and

lim
n→∞

|{j : An,j ∩ S 6= ∅}|
n

= 0.

For the partition Pn, the most important example is when the cells An,j are

cubes of volume hd
n. For cubic partition, the consistency conditions above

mean that

lim
n→∞

hn = 0 and lim
n→∞

nhd
n = ∞. (5.6)

Next we bound the rate of convergence of E‖mn −m‖2 for cubic parti-

tions and regression functions which are Lipschitz continuous.

Proposition 5.1. For a cubic partition with side length hn assume that

Var(Y |X = x) ≤ σ2, x ∈ R
d,

|m(x)−m(z)| ≤ C‖x− z‖, x, z ∈ R
d, (5.7)
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and that X has a compact support S. Then

E‖mn −m‖2 ≤ c1
n · hd

n

+ d · C2 · h2
n,

thus for

hn = c2n
− 1

d+2

we get

E‖mn −m‖2 ≤ c3n
−2/(d+2).

In order to prove Proposition 5.1 we need the following technical lemma.

An integer-valued random variable B(n, p) is said to be binomially dis-

tributed with parameters n and 0 ≤ p ≤ 1 if

P{B(n, p) = k} =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Lemma 5.1. Let the random variable B(n, p) be binomially distributed with

parameters n and p. Then:

(i)

E

{
1

1 +B(n, p)

}
≤ 1

(n+ 1)p
,

(ii)

E

{
1

B(n, p)
I{B(n,p)>0}

}
≤ 2

(n+ 1)p
.

Proof. Part (i) follows from the following simple calculation:

E

{
1

1 +B(n, p)

}
=

n∑

k=0

1

k + 1

(
n

k

)
pk(1− p)n−k

=
1

(n+ 1)p

n∑

k=0

(
n+ 1

k + 1

)
pk+1(1− p)n−k

≤ 1

(n+ 1)p

n+1∑

k=0

(
n+ 1

k

)
pk(1− p)n−k+1

=
1

(n+ 1)p
(p+ (1− p))

n+1

=
1

(n+ 1)p
.
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For (ii) we have

E

{
1

B(n, p)
I{B(n,p)>0}

}
≤ E

{
2

1 +B(n, p)

}
≤ 2

(n+ 1)p

by (i). �

Proof of Proposition 5.1. Set

m̂n(x) = E{mn(x)|X1, . . . , Xn} =

∑n
i=1 m(Xi)I{Xi∈An(x)}

nµn(An(x))
,

where µn denotes the empirical distribution for X1, . . . , Xn. Then

E{(mn(x)−m(x))2|X1, . . . , Xn}
= E{(mn(x)− m̂n(x))

2|X1, . . . , Xn}+ (m̂n(x)−m(x))2. (5.8)

We have

E{(mn(x)− m̂n(x))
2|X1, . . . , Xn}

= E

{(∑n
i=1(Yi −m(Xi))I{Xi∈An(x)}

nµn(An(x))

)2 ∣∣∣X1, . . . , Xn

}

=

∑n
i=1 Var(Yi|Xi)I{Xi∈An(x)}

(nµn(An(x)))2

≤ σ2

nµn(An(x))
I{nµn(An(x))>0}.

By Jensen’s inequality

(m̂n(x)−m(x))2 =

(∑n
i=1(m(Xi)−m(x))I{Xi∈An(x)}

nµn(An(x))

)2

I{nµn(An(x))>0}

+m(x)2I{nµn(An(x))=0}

≤
∑n

i=1(m(Xi)−m(x))2I{Xi∈An(x)}
nµn(An(x))

I{nµn(An(x))>0}

+m(x)2I{nµn(An(x))=0}

≤ d · C2h2
nI{nµn(An(x))>0} +m(x)2I{nµn(An(x))=0}

(by (5.7) and max
z∈An(x)

‖x− z‖ ≤ d · h2
n)

≤ d · C2h2
n +m(x)2I{nµn(An(x))=0}.

Without loss of generality assume that S is a cube and the union of

An,1, . . . , An,ln is S. Then

ln ≤ c̃

hd
n
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for some constant c̃ proportional to the volume of S and, by Lemma 5.1

and (5.8),

E

{∫
(mn(x)−m(x))2µ(dx)

}

= E

{∫
(mn(x)− m̂n(x))

2µ(dx)

}
+ E

{∫
(m̂n(x)−m(x))2µ(dx)

}

=

ln∑

j=1

E

{∫

An,j

(mn(x)− m̂n(x))
2µ(dx)

}

+

ln∑

j=1

E

{∫

An,j

(m̂n(x)−m(x))2µ(dx)

}

≤
ln∑

j=1

E

{
σ2µ(An,j)

nµn(An,j)
I{µn(An,j)>0}

}
+ dC2h2

n

+

ln∑

j=1

E

{∫

An,j

m(x)2µ(dx)I{µn(An,j)=0}

}

≤
ln∑

j=1

2σ2µ(An,j)

nµ(An,j)
+ dC2h2

n +

ln∑

j=1

∫

An,j

m(x)2µ(dx)P{µn(An,j) = 0}

≤ ln
2σ2

n
+ dC2h2

n + sup
z∈S

{
m(z)2

} ln∑

j=1

µ(An,j)(1− µ(An,j))
n

≤ ln
2σ2

n
+ dC2h2

n + ln
supz∈S m(z)2

n
sup
j

nµ(An,j)e
−nµ(An,j)

≤ ln
2σ2

n
+ dC2h2

n + ln
supz∈S m(z)2e−1

n
(since supz ze

−z = e−1)

≤ (2σ2 + supz∈S m(z)2e−1)c̃

nhd
n

+ dC2h2
n.

�

5.2.4. Kernel estimate

The second example of a local averaging estimate is the Nadaraya–Watson

kernel estimate. Let K : Rd → R+ be a function called the kernel function,
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and let h > 0 be a bandwidth. The kernel estimate is defined by

mn(x) =

∑n
i=1 K

(
x−Xi

h

)
Yi∑n

i=1 K
(
x−Xi

h

) , (5.9)

so

Wn,i(x) =
K
(
x−Xi

h

)
∑n

j=1 K
(

x−Xj

h

) .

Here the estimate is a weighted average of the Yi, where the weight of Yi

(i.e., the influence of Yi on the value of the estimate at x) depends on the

distance between Xi and x. For the bandwidth h = hn, the consistency

conditions are (5.6). If one uses the so-called näıve kernel (or window

kernel) K(x) = I{‖x‖≤1}, then

mn(x) =

∑n
i=1 I{‖x−Xi‖≤h}Yi∑n
i=1 I{‖x−Xi‖≤h}

,

i.e., one estimates m(x) by averaging Yi’s such that the distance between

Xi and x is not greater than h.

In the sequel we bound the rate of convergence of E‖mn − m‖2 for a

näıve kernel and a Lipschitz continuous regression function.

Proposition 5.2. For a kernel estimate with a näıve kernel assume that

Var(Y |X = x) ≤ σ2, x ∈ R
d,

and

|m(x)−m(z)| ≤ C‖x− z‖, x, z ∈ R
d,

and X has a compact support S∗. Then

E‖mn −m‖2 ≤ c1
n · hd

n

+ C2h2
n,

thus for

hn = c2n
− 1

d+2

we have

E‖mn −m‖2 ≤ c3n
−2/(d+2).

Proof. We proceed similarly to Proposition 5.1. Put

m̂n(x) =

∑n
i=1 m(Xi)I{Xi∈Sx,hn}

nµn(Sx,hn
)

,
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then we have the decomposition (5.8). If Bn(x) = {nµn(Sx,hn
) > 0}, then

E{(mn(x)− m̂n(x))
2|X1, . . . , Xn}

= E

{(∑n
i=1(Yi −m(Xi))I{Xi∈Sx,hn}

nµn(Sx,hn
)

)2

|X1, . . . , Xn

}

=

∑n
i=1 Var(Yi|Xi)I{Xi∈Sx,hn}

(nµn(Sx,hn
))2

≤ σ2

nµn(Sx,hn
)
IBn(x).

By Jensen’s inequality and the Lipschitz property of m,

(m̂n(x)−m(x))2

=

(∑n
i=1(m(Xi)−m(x))I{Xi∈Sx,hn}

nµn(Sx,hn
)

)2

IBn(x) +m(x)2IBn(x)c

≤
∑n

i=1(m(Xi)−m(x))2I{Xi∈Sx,hn}
nµn(Sx,hn

)
IBn(x) +m(x)2IBn(x)c

≤ C2h2
nIBn(x) +m(x)2IBn(x)c

≤ C2h2
n +m(x)2IBn(x)c .

Using this, together with Lemma 5.1,

E

{∫
(mn(x)−m(x))2µ(dx)

}

= E

{∫
(mn(x)− m̂n(x))

2µ(dx)

}
+ E

{∫
(m̂n(x)−m(x))2µ(dx)

}

≤
∫

S∗
E

{
σ2

nµn(Sx,hn
)
I{µn(Sx,hn )>0}

}
µ(dx) + C2h2

n

+

∫

S∗
E
{
m(x)2I{µn(Sx,hn )=0}

}
µ(dx)

≤
∫

S∗

2σ2

nµ(Sx,hn
)
µ(dx) + C2h2

n +

∫

S∗
m(x)2(1− µ(Sx,hn

))nµ(dx)

≤
∫

S∗

2σ2

nµ(Sx,hn
)
µ(dx) + C2h2

n + sup
z∈S∗

m(z)2
∫

S∗
e−nµ(Sx,hn )µ(dx)

≤ 2σ2

∫

S∗

1

nµ(Sx,hn
)
µ(dx) + C2h2

n

+ sup
z∈S∗

m(z)2 max
u

ue−u

∫

S∗

1

nµ(Sx,hn
)
µ(dx).
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We can find z1, . . . , zMn
such that the union of Sz1,rhn/2, . . . , SzMn ,rhn/2

covers S∗, and

Mn ≤ c̃

hd
n

.

Then

∫

S∗

1

nµ(Sx,rhn
)
µ(dx) ≤

Mn∑

j=1

∫ I{x∈Szj,rhn/2}

nµ(Sx,rhn
)

µ(dx)

≤
Mn∑

j=1

∫ I{x∈Szj,rhn/2}

nµ(Szj ,rhn/2)
µ(dx)

≤ Mn

n

≤ c̃

nhd
n

.

Combining these inequalities the proof is complete. �

5.2.5. Nearest neighbor estimate

Our final example of local averaging estimates is the k-nearest neighbor

(k-NN) estimate. Here one determines the k nearest Xi’s to x in terms of

distance ‖x−Xi‖ and estimates m(x) by the average of the corresponding

Yi’s. More precisely, for x ∈ R
d, let

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x))

be a permutation of

(X1, Y1), . . . , (Xn, Yn)

such that

‖x−X(1)(x)‖ ≤ · · · ≤ ‖x−X(n)(x)‖.

The k-NN estimate is defined by

mn(x) =
1

k

k∑

i=1

Y(i)(x). (5.10)

Here the weight Wni(x) equals 1/k if Xi is among the k nearest neighbors

of x, and equals 0 otherwise. If k = kn → ∞ such that kn/n → 0 then the

k-nearest-neighbor regression estimate is consistent.
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Next we bound the rate of convergence of E‖mn −m‖2 for a kn-nearest

neighbor estimate.

Proposition 5.3. Assume that X is bounded,

σ2(x) = Var(Y |X = x) ≤ σ2 (x ∈ R
d)

and

|m(x)−m(z)| ≤ C‖x− z‖ (x, z ∈ R
d).

Assume that d ≥ 3. Let mn be the kn-NN estimate. Then

E‖mn −m‖2 ≤ σ2

kn
+ c1

(
kn
n

)2/d

,

thus for kn = c2n
2

d+2 ,

E‖mn −m‖2 ≤ c3n
− 2

d+2 .

For the proof of Proposition 5.3 we need the rate of convergence of

nearest neighbor distances.

Lemma 5.2. Assume that X is bounded. If d ≥ 3, then

E{‖X(1,n)(X)−X‖2} ≤ c̃

n2/d
.

Proof. For fixed ε > 0,

P{‖X(1,n)(X)−X‖ > ε} = E{(1− µ(SX,ε))
n}.

Let A1, . . . , AN(ε) be a cubic partition of the bounded support of µ such

that the Aj ’s have diameter ε and

N(ε) ≤ c

εd
.

If x ∈ Aj , then Aj ⊂ Sx,ε, therefore

E{(1− µ(SX,ε))
n} =

N(ε)∑

j=1

∫

Aj

(1− µ(Sx,ε))
nµ(dx)

≤
N(ε)∑

j=1

∫

Aj

(1− µ(Aj))
nµ(dx)

=

N(ε)∑

j=1

µ(Aj)(1− µ(Aj))
n.
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Obviously,

N(ε)∑

j=1

µ(Aj)(1− µ(Aj))
n ≤

N(ε)∑

j=1

max
z

z(1− z)n

≤
N(ε)∑

j=1

max
z

ze−nz

=
e−1N(ε)

n
.

If L stands for the diameter of the support of µ, then

E{‖X(1,n)(X)−X‖2} =

∫ ∞

0

P{‖X(1,n)(X)−X‖2 > ε} dε

=

∫ L2

0

P{‖X(1,n)(X)−X‖ >
√
ε} dε

≤
∫ L2

0

min

{
1,

e−1N(
√
ε)

n

}
dε

≤
∫ L2

0

min
{
1,

c

en
ε−d/2

}
dε

=

∫ (c/(en))2/d

0

1 dε+
c

en

∫ L2

(c/(en))2/d
ε−d/2dε

≤ c̃

n2/d

for d ≥ 3. �

Proof of Proposition 5.3. We have the decomposition

E{(mn(x)−m(x))2} = E{(mn(x)− E{mn(x)|X1, . . . , Xn})2}
+E{(E{mn(x)|X1, . . . , Xn} −m(x))2}

= I1(x) + I2(x).

The first term is easier:

I1(x) = E





(
1

kn

kn∑

i=1

(
Y(i,n)(x)−m(X(i,n)(x))

)
)2




= E

{
1

k2n

kn∑

i=1

σ2(X(i,n)(x))

}

≤ σ2

kn
.
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For the second term

I2(x) = E





(
1

kn

kn∑

i=1

(m(X(i,n)(x))−m(x))

)2




≤ E





(
1

kn

kn∑

i=1

|m(X(i,n)(x))−m(x)|
)2




≤ E





(
1

kn

kn∑

i=1

C‖X(i,n)(x)− x‖
)2


 .

Put N = knb n
kn

c. Split the data X1, . . . , Xn into kn + 1 segments such

that the first kn segments have length b n
kn

c, and let X̃x
j be the first nearest

neighbor of x from the jth segment. Then X̃x
1 , . . . , X̃

x
kn

are kn different

elements of {X1, . . . , Xn}, which implies

kn∑

i=1

‖X(i,n)(x)− x‖ ≤
kn∑

j=1

‖X̃x
j − x‖,

therefore, by Jensen’s inequality,

I2(x) ≤ C2
E






 1

kn

kn∑

j=1

‖X̃x
j − x‖




2




≤ C2 1

kn

kn∑

j=1

E

{
‖X̃x

j − x‖2
}

= C2
E

{
‖X̃x

1 − x‖2
}

= C2
E

{
‖X(1,b n

kn
c)(x)− x‖2

}
.

Thus, by Lemma 5.2,

1

C2

⌊ n

kn

⌋2/d ∫
I2(x)µ(dx) ≤

⌊ n

kn

⌋2/d
E

{
‖X(1,b n

kn
c)(X)−X‖2

}

≤ const.

�

5.2.6. Empirical error minimization

A generalization of the partitioning estimate leads to global modelling or

least squares estimates. Let Pn = {An,1, An,2, . . . } be a partition of Rd and
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let Fn be the set of all piecewise constant functions with respect to that

partition, i.e.,

Fn =




∑

j

ajIAn,j
: aj ∈ R



 . (5.11)

Then it is easy to see that the partitioning estimate (5.5) satisfies

mn(·) = argmin
f∈Fn

{
1

n

n∑

i=1

|f(Xi)− Yi|2
}
. (5.12)

Hence it minimizes the empirical L2 risk

1

n

n∑

i=1

|f(Xi)− Yi|2 (5.13)

over Fn. Least squares estimates are defined by minimizing the empirical

L2 risk over a general set of functions Fn (instead of (5.11)). Observe

that it doesn’t make sense to minimize (5.13) over all functions f , because

this may lead to a function which interpolates the data and hence is not

a reasonable estimate. Thus one has to restrict the set of functions over

which one minimizes the empirical L2 risk. Examples of possible choices of

the set Fn are sets of piecewise polynomials with respect to a partition Pn,

or sets of smooth piecewise polynomials (splines). The use of spline spaces

ensures that the estimate is a smooth function. An important member of

least squares estimates is the generalized linear estimates. Let {φj}∞j=1 be

real-valued functions defined on R
d and let Fn be defined by

Fn =



f ; f =

`n∑

j=1

cjφj



 .

Then the generalized linear estimate is defined by

mn(·) = argmin
f∈Fn

{
1

n

n∑

i=1

(f(Xi)− Yi)
2

}

= argmin
c1,...,c`n





1

n

n∑

i=1




`n∑

j=1

cjφj(Xi)− Yi




2




.

If the set 


∑̀

j=1

cjφj ; (c1, . . . , c`), ` = 1, 2, . . .
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is dense in the set of continuous functions of d variables, `n → ∞ and

`n/n → 0 then the generalized linear regression estimate defined above is

consistent. For least squares estimates, other example can be the neural

networks or radial basis functions or orthogonal series estimates.

Next we bound the rate of convergence of empirical error minimization

estimates.

Condition (sG). The error ε := Y −m(X) is subGaussian random vari-

able, that is, there exist constants λ > 0 and Λ < ∞ with

E
{
exp(λε2)

∣∣X
}
< Λ

a.s. Furthermore, define σ2 := E{ε2} and set λ0 = 4Λ/λ.

Condition (C). The class Fn is totally bounded with respect to the supre-

mum norm. For each δ > 0, let M(δ) denote the δ-covering number of

F . This means that for every δ > 0, there is a δ-cover f1, . . . , fM with

M = M(δ) such that

min
1≤i≤M

sup
x

|fi(x)− f(x)| ≤ δ

for all f ∈ Fn. In addition, assume that Fn is uniformly bounded by L,

that is,

|f(x)| ≤ L < ∞

for all x ∈ R and f ∈ Fn.

Proposition 5.4. Assume that conditions (C) and (sG) hold and

|m(x)| ≤ L < ∞.

Then, for the estimate mn defined by (5.5) and for all δn > 0, n ≥ 1,

E
{
(mn(X)−m(X))2

}

≤ 2 inf
f∈Fn

E{(f(X)−m(X))2}

+(16L+ 4σ)δn +
(
16L2 + 4max

{
L
√

2λ0, 8λ0

}) logM(δn)

n
.

In the proof of this proposition we use the following lemma:

Lemma 5.3 (Wegkamp, 1999). Let Z be a random variable with

E{Z} = 0 and E
{
exp(λZ2)

}
≤ A
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for some constants λ > 0 and A ≥ 1. Then

E {exp(βZ)} ≤ exp

(
2Aβ2

λ

)

holds for every β ∈ R.

Proof. Since for all t > 0, P{|Z| > t} ≤ A exp(−λt2) holds, we have for

all integers m ≥ 2,

E {|Z|m} =

∫ ∞

0

P
{
|Z|m > t

}
dt ≤ A

∫ ∞

0

exp
(
−λt2/m

)
dt = Aλ−m/2Γ

(m
2

+ 1
)
.

Note that Γ2(m2 + 1) ≤ Γ(m + 1) by Cauchy-Schwarz. The following in-

equalities are now self-evident.

E {exp (βZ)} = 1 +

∞∑

m=2

1

m!
E(βZ)m

≤ 1 +

∞∑

m=2

1

m!
|β|mE|Z|m

≤ 1 +A

∞∑

m=2

λ−m/2|β|mΓ
(
m
2 + 1

)

Γ (m+ 1)

≤ 1 +A
∞∑

m=2

λ−m/2|β|m 1

Γ
(
m
2 + 1

)

= 1 +A
∞∑

m=1

(
β2

λ

)m
1

Γ (m+ 1)

+A

∞∑

m=1

(
β2

λ

)m+ 1
2 1

Γ
(
m+ 3

2

)

≤ 1 +A

∞∑

m=1

(
β2

λ

)m
(
1 +

(
β2

λ

) 1
2

)
1

Γ (m+ 1)
.

Finally, invoke the inequality 1+(1+
√
x)(exp(x)−1) ≤ exp(2x) for x > 0,

to obtain the result. �

Lemma 5.4 (Antos et al., 2005). Let Xij, i = 1, . . . , n, j = 1, . . .M be

random variables such that for each fixed j, X1j , . . . , Xnj are independent

and identically distributed such that for each s0 ≥ s > 0

E{esXij} ≤ es
2σ2

j .
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For δj > 0, put

ϑ = min
j≤M

δj
σ2
j

.

Then

E

{
max
j≤M

(
1

n

n∑

i=1

Xij − δj

)}
≤ logM

min{ϑ, s0}n
. (5.14)

If

E{Xij} = 0

and

|Xij | ≤ K,

then

E

{
max
j≤M

(
1

n

n∑

i=1

Xij − δj

)}
≤ max{1/ϑ∗,K} logM

n
, (5.15)

where

ϑ∗ = min
j≤M

δj
Var(Xij)

.

Proof. For the notation

Yj =
1

n

n∑

i=1

Xij − δj

we have that for any s0 ≥ s > 0

E{esnYj} = E{esn( 1
n

∑n
i=1 Xij−δj)}

= e−snδj
(
E{esX1j}

)n

≤ e−snδjens
2σ2

j

≤ e−snασ2
j+s2nσ2

j .

Thus

esnE{maxj≤M Yj} ≤ E{esnmaxj≤M Yj}
= E{max

j≤M
esnYj}

≤
∑

j≤M

E{esnYj}

≤
∑

j≤M

e−snσ2
j (α−s).
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For s = min{α, s0} it implies that

E{max
j≤M

Yj} ≤ 1

sn
log


∑

j≤M

e−snσ2
j (α−s)


 ≤ logM

min{α, s0}n
.

In order to prove the second half of the lemma, notice that, for any L > 0

and |x| ≤ L we have the inequality

ex = 1 + x+ x2
∞∑

i=2

xi−2

i!

≤ 1 + x+ x2
∞∑

i=2

Li−2

i!

= 1 + x+ x2 e
L − 1− L

L2
,

therefore 0 < s ≤ s0 = L/K implies that s|Xij | ≤ L, so

esXij ≤ 1 + sXij + (sXij)
2 e

L − 1− L

L2
.

Thus,

E{esXij} ≤ 1 + s2Var(Xij)
eL − 1− L

L2
≤ es

2Var(Xij)
eL−1−L

L2 ,

so (5.15) follows from (5.14). �

Proof of Proposition 5.4. This proof is due to [Györfi and Wegkamp

(2008)]. Set

D(f) = E{(f(X)− Y )2}
and

D̂(f) =

n∑

i=1

(f(Xi)− Yi)
2

and

∆f (x) = (m(x)− f(x))2

and define

R(Fn) := sup
f∈Fn

[
D(f)− 2D̂(f)

]
≤ R1(Fn) +R2(Fn),

where

R1(Fn) := sup
f∈Fn

[ 2
n

n∑

i=1

{E∆f (Xi)−∆f (Xi)} −
1

2
E{∆f (X)}

]
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and

R2(Fn) := sup
f∈Fn

[ 4
n

n∑

i=1

εi(f(Xi)−m(Xi))−
1

2
E{∆f (X)}

]
,

with εi := Yi −m(Xi). By the definition of R(Fn) and mn, we have for all

f ∈ Fn

E
{
(mn(X)−m(X))2 | Dn

}
= E {D(mn) | Dn} −D(m)

≤ 2{D̂(mn)− D̂(m)}+R(Fn)

≤ 2{D̂(f)− D̂(m)}+R(Fn) .

After taking expectations on both sides, we obtain

E
{
(mn(X)−m(X))2

}
≤ 2E

{
(f(X)−m(X))2

}
+ E{R(Fn)}.

Let F ′
n be a finite δn-covering net (with respect to the sup-norm) of Fn

with M(δn) = |F ′
n|. It means that for any f ∈ Fn there is an f ′ ∈ F ′

n such

that

sup
x

|f(x)− f ′(x)| ≤ δn,

which implies that

| (m(Xi)− f(Xi))
2 − (m(Xi)− f ′(Xi))

2 |
≤ |f(Xi)− f ′(Xi)| ·

(
|m(Xi)− f(Xi)|+ |m(Xi)− f ′(Xi)|

)

≤ 4L|f(Xi)− f ′(Xi)|
≤ 4Lδn,

and, by Cauchy-Schwarz inequality,

E{|εi(m(Xi)− f(Xi))− εi(m(Xi)− f ′(Xi))|}

≤
√

E{ε2i }
√

E{(f(Xi)− f ′(Xi))2}
≤ σδn.

Thus,

E{R(Fn)} ≤ 2δn(4L+ σ) + E{R(F ′
n)},

and therefore

E
{
(mn(X)−m(X))2

}

≤ 2E
{
(f(X)−m(X))2

}
+ E{R(Fn)}

≤ 2E
{
(f(X)−m(X))2

}
+ (16L+ 4σ)δn + E {R(F ′

n)}
≤ 2E

{
(f(X)−m(X))2

}
+ (16L+ 4σ)δn + E {R1(F ′

n)}+ E {R2(F ′
n)} .
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Define, for all f ∈ Fn with D(f) > D(m),

ρ̃(f) :=
E
{
(m(X)− f(X))4

}

E {(m(X)− f(X))2} .

Since |m(x)| ≤ 1 and |f(x)| ≤ 1, we have that

ρ̃(f) ≤ 4L2 .

Invoke the second part of Lemma 5.4 below to obtain

E {R1(F ′
n)} ≤ max

(
8L2, 4L2 sup

f∈F ′
n

ρ̃(f)

)
logM(δn)

n

≤ max
(
8L2, 16L2

) logM(δn)

n

= 16L2 logM(δn)

n
.

By Condition (sG) and Lemma 5.3, we have for all s > 0,

E {exp (sε(f(X)−m(X)))|X} ≤ exp(λ0s
2(m(X)− f(X))2/2).

For |z| ≤ 1, apply the inequality ez ≤ 1 + 2z. Choose

s0 =
1

L
√
2λ0

,

then

1

2
λ0s

2(f(X)−m(X))2 ≤ 1,

therefore, for 0 < s ≤ s0,

E {exp (sε(f(X)−m(X)))} ≤ E

{
exp

(
1

2
λ0s

2(f(X)−m(X))2
)}

≤ 1 + λ0s
2
E
{
(f(X)−m(X))2

}

≤ exp
(
λ0s

2
E
{
(f(X)−m(X))2

})
.

Next we invoke the first part of Lemma 5.4. We find that the value ϑ in

Lemma 5.4 becomes

1/ϑ = 8 sup
f∈F ′

n

λ0E{(f(X)−m(X))2}
E{∆f (X)} ≤ 8λ0,

and we get

E {R2(F ′
n)} ≤ 4

logM(δn)

n
max

(
L
√

2λ0, 8λ0

)
,
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and this completes the proof of Proposition 5.4. �

Instead of restricting the set of functions over which one minimizes,

one can also add a penalty term to the functional to be minimized. Let

Jn(f) ≥ 0 be a penalty term penalizing the “roughness” of a function f .

The penalized modelling or penalized least squares estimate mn is defined

by

mn = argmin
f

{
1

n

n∑

i=1

|f(Xi)− Yi|2 + Jn(f)

}
, (5.16)

where one minimizes over all measurable functions f . Again we do not

require that the minimum in (5.16) be unique. In the case it is not unique,

we randomly select one function which achieves the minimum.

A popular choice for Jn(f) in the case d = 1 is

Jn(f) = λn

∫
|f ′′(t)|2dt, (5.17)

where f ′′ denotes the second derivative of f and λn is some positive con-

stant. One can show that for this penalty term the minimum in (5.16) is

achieved by a cubic spline with knots at the Xi’s, i.e., by a twice differen-

tiable function which is equal to a polynomial of degree 3 (or less) between

adjacent values of the Xi’s (a so-called smoothing spline).

5.3. Universally consistent predictions: bounded Y

5.3.1. Partition-based prediction strategies

In this section we introduce our first prediction strategy for bounded ergodic

processes. We assume throughout the section that |Y0| is bounded by a

constant B > 0, with probability one, and the bound B is known.

The prediction strategy is defined, at each time instant, as a convex

combination of elementary predictors, where the weighting coefficients de-

pend on the past performance of each elementary predictor.

We define an infinite array of elementary predictors h(k,`), k, ` = 1, 2, . . .

as follows. Let P` = {A`,j , j = 1, 2, . . . ,m`} be a sequence of finite par-

titions of R, and let Q` = {B`,j , j = 1, 2, . . . ,m′
`} be a sequence of finite

partitions of Rd. Introduce the corresponding quantizers:

F`(y) = j, if y ∈ A`,j
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and

G`(x) = j, if x ∈ B`,j .

With some abuse of notation, for any n and yn1 ∈ R
n, we write F`(y

n
1 )

for the sequence F`(y1), . . . , F`(yn), and similarly, for xn
1 ∈ (Rd)n, we write

G`(x
n
1 ) for the sequence G`(x1), . . . , G`(xn).

Fix positive integers k, `, and for each k+1-long string z of positive inte-

gers, and for each k-long string s of positive integers, define the partitioning

regression function estimate

Ê(k,`)
n (xn

1 , y
n−1
1 , z, s) =

∑
{k<t<n:G`(xt

t−k)=z, F`(y
t−1
t−k)=s} yt∣∣{k < t < n : G`(xt

t−k) = z, F`(y
t−1
t−k) = s}

∣∣ ,

for all n > k + 1 where 0/0 is defined to be 0.

Define the elementary predictor h(k,`) by

h(k,`)
n (xn

1 , y
n−1
1 ) = Ê(k,`)

n (xn
1 , y

n−1
1 , G`(x

n
n−k), F`(y

n−1
n−k)),

for n = 1, 2, . . . . That is, h
(k,`)
n quantizes the sequence xn

1 , y
n−1
1 according

to the partitions Q` and P`, and looks for all appearances of the last seen

quantized strings G`(x
n
n−k) of length k+1 and F`(y

n−1
n−k) of length k in the

past. Then it predicts according to the average of the yt’s following the

string.

In contrast to the nonparametric regression estimation problem from

i.i.d. data, for ergodic observations, it is impossible to choose k = kn and

` = `n such that the corresponding predictor is universally consistent for the

class of bounded ergodic processes. The very important new principle is the

combination or aggregation of elementary predictors (cf. [Cesa-Bianchi and

Lugosi (2006)]). The proposed prediction algorithm proceeds as follows: let

{qk,`} be a probability distribution on the set of all pairs (k, `) of positive

integers such that for all k, `, qk,` > 0. Put c = 8B2, and define the weights

wt,k,` = qk,`e
−(t−1)Lt−1(h

(k,`))/c (5.18)

and their normalized values

pt,k,` =
wt,k,`

Wt
, (5.19)

where

Wt =

∞∑

i,j=1

wt,i,j . (5.20)
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The prediction strategy g is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑

k,`=1

pt,k,`h
(k,`)(xt

1, y
t−1
1 ) , t = 1, 2, . . . (5.21)

i.e., the prediction gt is the convex linear combination of the elementary

predictors such that an elementary predictor has non-negligible weight in

the combination if it has good performance until time t− 1.

Theorem 5.1 (Györfi and Lugosi, 2001). Assume that

(a) the sequences of partition P` is nested, that is, any cell of P`+1 is a

subset of a cell of P`, ` = 1, 2, . . .;

(b) the sequences of partition Q` is nested;

(c) the sequences of partition P` is asymptotically fine;

(d) the sequences of partition Q` is asymptotically fine;

Then the prediction scheme g defined above is universal with respect to the

class of all jointly stationary and ergodic processes {(Xn, Yn)}∞−∞ such that

|Y0| ≤ B.

One of the main ingredients of the proof is the following lemma, whose

proof is a straightforward extension of standard arguments in the prediction

theory of individual sequences, see, for example, [Kivinen and Warmuth

(1999)], [Singer and Feder (2000)].

Lemma 5.5. Let h̃1, h̃2, . . . be a sequence of prediction strategies (experts),

and let {qk} be a probability distribution on the set of positive integers.

Assume that h̃i(x
n
1 , y

n−1
1 ) ∈ [−B,B] and yn1 ∈ [−B,B]n. Define

wt,k = qke
−(t−1)Lt−1(h̃k)/c

with c ≥ 8B2, and

vt,k =
wt,k∑∞
i=1 wt,i

.

If the prediction strategy g̃ is defined by

g̃t(x
n
1 , y

t−1
1 ) =

∞∑

k=1

vt,kh̃k(x
n
1 , y

t−1
1 ) t = 1, 2, . . .

then for every n ≥ 1,

Ln(g̃) ≤ inf
k

(
Ln(h̃k)−

c ln qk
n

)
.

Here − ln 0 is treated as ∞.
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Proof. Introduce W1 = 1 and Wt =
∑∞

k=1 wt,k for t > 1. First we show

that for each t > 1,
[ ∞∑

k=1

vt,k

(
yt − h̃k(x

n
1 , y

t−1
1 )

)]2
≤ −c ln

Wt+1

Wt
. (5.22)

Note that

Wt+1 =

∞∑

k=1

wt,ke
−(yt−h̃k(x

n
1 ,y

t−1
1 ))

2
/c = Wt

∞∑

k=1

vt,ke
−(yt−h̃k(x

n
1 ,y

t−1
1 ))

2
/c,

so that

−c ln
Wt+1

Wt
= −c ln

( ∞∑

k=1

vt,ke
−(yt−h̃k(x

n
1 ,y

t−1
1 ))

2
/c

)
.

Therefore, (5.22) becomes

exp


−1

c

[ ∞∑

k=1

vt,k

(
yt − h̃k(x

n
1 , y

t−1
1 )

)]2

 ≥

∞∑

k=1

vt,ke
−(yt−h̃k(x

n
1 ,y

t−1
1 ))

2
/c,

which is implied by Jensen’s inequality and the concavity of the function

Ft(z) = e−(yt−z)2/c for c ≥ 8B2. Thus, (5.22) implies that

nLn(g̃) =
n∑

t=1

(
yt − g̃(xn

1 , y
t−1
1 )

)2

=
n∑

t=1

[ ∞∑

k=1

vt,k

(
yt − h̃k(x

n
1 , y

t−1
1 )

)]2

≤ −c
n∑

t=1

ln
Wt+1

Wt

= −c lnWn+1

and therefore

nLn(g̃) ≤ −c ln

( ∞∑

k=1

wn+1,k

)

= −c ln

( ∞∑

k=1

qke
−nLn(h̃k)/c

)

≤ −c ln

(
sup
k

qke
−nLn(h̃k)/c

)

= inf
k

(
−c ln qk + nLn(h̃k)

)
,
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which concludes the proof. �

Another main ingredient of the proof of Theorem 5.1 is known as

Breiman’s generalized ergodic theorem [Breiman (1957)], see also [Algoet

(1994)] and [Györfi et al. (2002)].

Lemma 5.6 (Breiman, 1957). Let Z = {Zi}∞−∞ be a stationary and er-

godic process. Let T denote the left shift operator. Let fi be a sequence of

real-valued functions such that for some function f , fi(Z) → f(Z) almost

surely. Assume that E{supi |fi(Z)|} < ∞. Then

lim
t→∞

1

n

n∑

i=1

fi(T
iZ) = E{f(Z)} almost surely.

Proof of Theorem 5.1. Because of (5.1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

By a double application of the ergodic theorem, as n → ∞, almost surely,

Ê(k,`)
n (Xn

1 , Y
n−1
1 , z, s) =

1
n

∑
{k<i<n:G`(Xt

t−k)=z, F`(Y
t−1
t−k )=s} Yi

1
n

∣∣{k < i < n : G`(Xt
t−k) = z, F`(Y

t−1
t−k ) = s}

∣∣

→
E{Y0I{G`(X0

−k)=z, F`(Y
−1
−k )=s}}

P{G`(X0
−k) = z, F`(Y

−1
−k ) = s}

= E{Y0|G`(X
0
−k) = z, F`(Y

−1
−k ) = s},

and therefore

lim
n→∞

sup
z

sup
s

|Ê(k,`)
n (Xn

1 , Y
n−1
1 , z, s)−E{Y0|G`(X

0
−k) = z, F`(Y

−1
−k ) = s}| = 0

almost surely. Thus, by Lemma 5.6, as n → ∞, almost surely,

Ln(h
(k,`)) =

1

n

n∑

i=1

(h(k,`)(Xi
1, Y

i−1
1 )− Yi)

2

=
1

n

n∑

i=1

(Ê(k,`)
n (Xi

1, Y
i−1
1 , G`(X

i
i−k), F`(Y

i−1
i−k ))− Yi)

2

→ E{(Y0 − E{Y0|G`(X
0
−k), F`(Y

−1
−k )})2}

def
= εk,`.

Since the partitions P` and Q` are nested, E
{
Y0|G`(X

0
−k), F`(Y

−1
−k )

}
is a

martingale indexed by the pair (k, `). Thus, the martingale convergence
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theorem (see, e.g., [Stout (1974)]) and assumption (c) and (d) for the se-

quence of partitions implies that

inf εk,` = lim
k,`→∞

εk,` = E

{(
Y0 − E{Y0|X0

−∞, Y −1
−∞}

)2}
= L∗.

Now by Lemma 5.5,

Ln(g) ≤ inf
k,`

(
Ln(h

(k,`))− c ln qk,`
n

)
, (5.23)

and therefore, almost surely,

lim sup
n→∞

Ln(g) ≤ lim sup
n→∞

inf
k,`

(
Ln(h

(k,`))− c ln qk,`
n

)

≤ inf
k,`

lim sup
n→∞

(
Ln(h

(k,`))− c ln qk,`
n

)

≤ inf
k,`

lim sup
n→∞

Ln(h
(k,`))

= inf
k,`

εk,`

= lim
k,`→∞

εk,`

= L∗

and the proof of the theorem is finished. �

Theorem 5.1 shows that asymptotically, the predictor gt defined by

(5.21) predicts as well as the optimal predictor given by the regression

function E{Yt|Y t−1
−∞ }. In fact, gt gives a good estimate of the regression

function in the following (Cesáro) sense:

Corollary 5.1. Under the conditions of Theorem 5.1

lim
n→∞

1

n

n∑

i=1

(
E{Yi|Xi

−∞, Y i−1
−∞ } − gi(X

i
1, Y

i−1
1 )

)2
= 0 almost surely.

Proof. By Theorem 5.1,

lim
n→∞

1

n

n∑

i=1

(
Yi − gi(X

i
1, Y

i−1
1 )

)2
= L∗ almost surely.

Consider the following decomposition:
(
Yi − gi(X

i
1, Y

i−1
1 )

)2

=
(
Yi − E{Yi|Xi

−∞, Y i−1
−∞ }

)2

+2
(
Yi − E{Yi|Xi

−∞, Y i−1
−∞ }

) (
E{Yi|Xi

−∞, Y i−1
−∞ } − gi(X

i
1, Y

i−1
1 )

)

+
(
E{Yi|Xi

−∞, Y i−1
−∞ } − gi(X

i
1, Y

i−1
1 )

)2
.
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Then the ergodic theorem implies that

lim
n→∞

1

n

n∑

i=1

(
Yi − E{Yi|Xi

−∞, Y i−1
−∞ }

)2
= L∗ almost surely.

It remains to show that

lim
n→∞

1

n

n∑

i=1

(
Yi − E{Yi|Xi

−∞, Y i−1
−∞ }

) (
E{Yi|Y i−1

−∞ } − gi(X
i
1, Y

i−1
1 )

)
= 0.

(5.24)

almost surely. But this is a straightforward consequence of Kolmogorov’s

classical strong law of large numbers for martingale differences due to [Chow

(1965)] (see also Theorem 3.3.1 in [Stout (1974)]). It states that if {Zi} is

a martingale difference sequence with

∞∑

n=1

EZ2
n

n2
< ∞, (5.25)

then

lim
n→∞

1

n

n∑

i=1

Zi = 0 almost surely.

Thus, (5.24) is implied by Chow’s theorem since the martingale dif-

ferences Zi =
(
Yi − E{Yi|Xi

−∞, Y i−1
−∞ }

) (
E{Yi|Xi

−∞, Y i−1
−∞ } − gi(X

i
1, Y

i−1
1 )

)

are bounded by 4B2. (To see that the Zi’s indeed form a martingale dif-

ference sequence just note that E{Zi|Xi
−∞, Y i−1

−∞ } = 0 for all i.) �

Remark 5.1 (Choice of qk,`). . Theorem 5.1 is true independently of

the choice of the qk,`’s as long as these values are strictly positive for all k

and `. In practice, however, the choice of qk,` may have an impact on the

performance of the predictor. For example, if the distribution {qk,`} has a

very rapidly decreasing tail, then the term − ln qk,`/n will be large for mod-

erately large values of k and `, and the performance of g will be determined

by the best of just a few of the elementary predictors h(k,`). Thus, it may be

advantageous to choose {qk,`} to be a large-tailed distribution. For example,

qk,` = c0k
−2`−2 is a safe choice, where c0 is an appropriate normalizing

constant.
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5.3.2. Kernel-based prediction strategies

We introduce in this section a class of kernel-based prediction strategies for

stationary and ergodic sequences. The main advantage of this approach

in contrast to the partition-based strategy is that it replaces the rigid dis-

cretization of the past appearances by more flexible rules. This also often

leads to faster algorithms in practical applications.

To simplify the notation, we start with the simple “moving-window”

scheme, corresponding to a uniform kernel function, and treat the general

case briefly later. Just like before, we define an array of experts h(k,`),

where k and ` are positive integers. We associate to each pair (k, `) two

radii rk,` > 0 and r′k,` > 0 such that, for any fixed k

lim
`→∞

rk,` = 0, (5.26)

and

lim
`→∞

r′k,` = 0. (5.27)

Finally, let the location of the matches be

J (k,`)
n =

{
k < t < n : ‖xt

t−k − xn
n−k‖ ≤ rk,`, ‖yt−1

t−k − yn−1
n−k‖ ≤ r′k,`

}
.

Then the elementary expert h
(k,`)
n at time n is defined by

h(k,`)
n (xn

1 , y
n−1
1 ) =

∑
{t∈J

(k,`)
n } yt

|J (k,`)
n |

, n > k + 1, (5.28)

where 0/0 is defined to be 0. The pool of experts is mixed the same way

as in the case of the partition-based strategy (cf. (5.18), (5.19), (5.20) and

(5.21)).

Theorem 5.2. Suppose that (5.26) and (5.27) are verified. Then the

kernel-based strategy defined above is universally consistent with respect to

the class of all jointly stationary and ergodic processes {(Xn, Yn)}∞−∞ such

that |Y0| ≤ B.

Remark 5.2. This theorem may be extended to a more general class of

kernel-based strategies. Define a kernel function as any map K : R+ →
R+. The kernel-based strategy parallels the moving-window scheme defined

above, with the only difference that in definition (5.28) of the elementary
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strategy, the regression function estimate is replaced by

h(k,`)
n (xn

1 , y
n−1
1 )

=

∑
{k<t<n} K

(
‖xt

t−k − xn
n−k‖/rk,`

)
K
(
‖yt−1

t−k − yn−1
n−k‖/r′k,`

)
yt

∑
{k<t<n} K

(
‖xt

t−k − xn
n−k‖/rk,`

)
K
(
‖yt−1

t−k − yn−1
n−k‖/r′k,`

) .

Observe that ifK is the näıve kernelK(x) = I{x≤1}, we recover the moving-

window strategy discussed above. Typical nonuniform kernels assign a

smaller weight to the observations xt
t−k and yt−1

t−k whose distance from xn
n−k

and yn−1
n−k is larger. Such kernels promise a better prediction of the local

structure of the conditional distribution.

5.3.3. Nearest neighbor-based prediction strategy

This strategy is yet more robust with respect to the kernel strategy and

thus also with respect to the partition strategy. Since it does not suffer from

scaling problem as partition and kernel-based strategies where the quantizer

and the radius has to be carefully chosen to obtain “good” performance.

As well as this, in practical applications it runs extremely fast compared

with the kernel and partition schemes as it is much less likely to get bogged

down in calculations for certain experts.

To introduce the strategy, we start again by defining an infinite array

of experts h(k,`), where k and ` are positive integers. Just like before, k is

the length of the past observation vectors being scanned by the elementary

expert and, for each `, choose p` ∈ (0, 1) such that

lim
`→∞

p` = 0 , (5.29)

and set

¯̀= bp`nc
(where b.c is the floor function). At time n, for fixed k and ` (n > k +
¯̀+ 1), the expert searches for the ¯̀ nearest neighbors (NN) of the last

seen observation xn
n−k and yn−1

n−k in the past and predicts accordingly. More

precisely, let

J (k,`)
n =

{
k < t < n : (xt

t−k, y
t−1
t−k) is among the ¯̀ NN of (xn

n−k, y
n−1
n−k) in

(xk+1
1 , yk1 ), . . . , (x

n−1
n−k−1, y

n−2
n−k−1)

}

and introduce the elementary predictor

h(k,`)
n (xn

1 , y
n−1
1 ) =

∑
{t∈J

(k,`)
n } yt

|J (k,`)
n |
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if the sum is nonvoid, and 0 otherwise. Finally, the experts are mixed as

before (cf. (5.18), (5.19), (5.20) and (5.21)).

Theorem 5.3. Suppose that (5.29) is verified and that for each vector s

the random variable

‖(Xk+1
1 , Y k

1 )− s‖

has a continuous distribution function. Then the nearest neighbor strategy

defined above is universally consistent with respect to the class of all jointly

stationary and ergodic processes {(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

5.3.4. Generalized linear estimates

This section is devoted to an alternative way of defining a universal pre-

dictor for stationary and ergodic processes. It is in effect an extension of

the approach presented in [Györfi and Lugosi (2001)]. Once again, we ap-

ply the method described in the previous sections to combine elementary

predictors, but now we use elementary predictors which are generalized lin-

ear predictors. More precisely, we define an infinite array of elementary

experts h(k,`), k, ` = 1, 2, . . . as follows. Let {φ(k)
j }`j=1 be real-valued func-

tions defined on (Rd)
(k+1) ×R

k. The elementary predictor h
(k,`)
n generates

a prediction of form

h(k,`)
n (xn

1 , y
n−1
1 ) =

∑̀

j=1

cn,jφ
(k)
j (xn

n−k, y
n−1
n−k) ,

where the coefficients cn,j are calculated according to the past observa-

tions xn
1 , y

n−1
1 . More precisely, the coefficients cn,j are defined as the real

numbers which minimize the criterion

n−1∑

t=k+1


∑̀

j=1

cjφ
(k)
j (xt

t−k, y
t−1
t−k)− yt




2

(5.30)

if n > k + 1, and the all-zero vector otherwise. It can be shown using

a recursive technique (see e.g., [Tsypkin (1971)], [Györfi (1984)], [Singer

and Feder (2000)], and [Györfi and Lugosi (2001)]) that the cn,j can be

calculated with small computational complexity.

The experts are mixed via an exponential weighting, which is defined

the same way as earlier (cf. (5.18), (5.19), (5.20) and (5.21)).
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Theorem 5.4 (Györfi and Lugosi, 2001). Suppose that |φ(k)
j | ≤ 1 and,

for any fixed k, suppose that the set



∑̀

j=1

cjφ
(k)
j ; (c1, . . . , c`), ` = 1, 2, . . .





is dense in the set of continuous functions of d(k + 1) + k variables.

Then the generalized linear strategy defined above is universally consis-

tent with respect to the class of all jointly stationary and ergodic processes

{(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

5.4. Universally consistent predictions: unbounded Y

5.4.1. Partition-based prediction strategies

Let Ê
(k,`)
n (xn

1 , y
n−1
1 , z, s) be defined as in Section 5.3.1. Introduce the trun-

cation function

Tm(z) =





m if z > m

z if |z| < m

−m if z < −m,

Define the elementary predictor h(k,`) by

h(k,`)
n (xn

1 , y
n−1
1 ) = Tnδ

(
Ê(k,`)

n (xn
1 , y

n−1
1 , G`(x

n
n−k), F`(y

n−1
n−k))

)
,

where

0 < δ < 1/8,

for n = 1, 2, . . . . That is, h
(k,`)
n is the truncation of the elementary predictor

introduced in Section 5.3.1.

The proposed prediction algorithm proceeds as follows: let {qk,`} be a

probability distribution on the set of all pairs (k, `) of positive integers such

that for all k, `, qk,` > 0. For a time dependent learning parameter ηt > 0,

define the weights

wt,k,` = qk,`e
−ηt(t−1)Lt−1(h

(k,`)) (5.31)

and their normalized values

pt,k,` =
wt,k,`

Wt
, (5.32)



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

Nonparametric Sequential Prediction of Stationary Time Series 211

where

Wt =

∞∑

i,j=1

wt,i,j . (5.33)

The prediction strategy g is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑

k,`=1

pt,k,`h
(k,`)(xt

1, y
t−1
1 ) , t = 1, 2, . . . (5.34)

Theorem 5.5 (Györfi and Ottucsák, 2007). Assume that the condi-

tions (a), (b), (c) and (d) of Theorem 5.1 are satisfied. Choose ηt = 1/
√
t.

Then the prediction scheme g defined above is universally consistent with

respect to the class of all ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
1 } < ∞.

Here we describe a result, which is used in the analysis. This lemma is

a modification of the analysis of et al. [Auer et al. (2002)], which allows of

the handling the case when the learning parameter of the algorithm (ηt) is

time-dependent and the number of the elementary predictors is infinite.

Lemma 5.7 (Györfi and Ottucsák, 2007). Let h(1), h(2), . . . be a se-

quence of prediction strategies (experts). Let {qk} be a probability distri-

bution on the set of positive integers. Denote the normalized loss of the

expert h = (h1, h2, . . . ) by

Ln(h) =
1

n

n∑

t=1

`t(h),

where

`t(h) = `(ht, Yt)

and the loss function ` is convex in its first argument h. Define

wt,k = qke
−ηt(t−1)Lt−1(h

(k))

where ηt > 0 is monotonically decreasing, and

pt,k =
wt,k

Wt

where

Wt =
∞∑

k=1

wt,k .
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If the prediction strategy g = (g1, g2, . . . ) is defined by

gt =

∞∑

k=1

pt,kh
(k)
t t = 1, 2, . . .

then for every n ≥ 1,

Ln(g) ≤ inf
k

(
Ln(h

(k))− ln qk
nηn+1

)
+

1

2n

n∑

t=1

ηt

∞∑

k=1

pt,k`
2
t (h

(k)).

Proof. Introduce some notations:

w′
t,k = qke

−ηt−1(t−1)Lt−1(h
(k)),

which is the weight wt,k, where ηt is replaced by ηt−1 and the sum of these

are

W ′
t =

∞∑

k=1

w′
t,k.

We start the proof with the following chain of bounds:

1

ηt
ln

W ′
t+1

Wt
=

1

ηt
ln

∑∞
k=1 wt,ke

−ηt`t(h
(k))

Wt

=
1

ηt
ln

∞∑

k=1

pt,ke
−ηt`t(h

(k))

≤ 1

ηt
ln

∞∑

k=1

pt,k

(
1− ηt`t(h

(k)) +
η2t
2
`2t (h

(k))

)
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because of e−x ≤ 1− x+ x2/2 for x ≥ 0. Moreover,

1

ηt
ln

W ′
t+1

Wt

≤ 1

ηt
ln

(
1− ηt

∞∑

k=1

pt,k`t(h
(k)) +

η2t
2

∞∑

k=1

pt,k`
2
t (h

(k))

)

≤ −
∞∑

k=1

pt,k`t(h
(k)) +

ηt
2

∞∑

k=1

pt,k`
2
t (h

(k)) (5.35)

= −
∞∑

k=1

pt,k`(h
(k)
t , Yt) +

ηt
2

∞∑

k=1

pt,k`
2
t (h

(k))

≤ −`

( ∞∑

k=1

pt,kh
(k)
t , Yt

)
+

ηt
2

∞∑

k=1

pt,k`
2
t (h

(k)) (5.36)

= −`t(g) +
ηt
2

∞∑

k=1

pt,k`
2
t (h

(k)) (5.37)

where (5.35) follows from the fact that ln(1 + x) ≤ x for all x > −1 and

in (5.36) we used the convexity of the loss `(h, y) in its first argument h.

From (5.37) after rearranging we obtain

`t(g) ≤ − 1

ηt
ln

W ′
t+1

Wt
+

ηt
2

∞∑

k=1

pt,k`
2
t (h

(k)) .

Then write a telescope formula:

1

ηt
lnWt −

1

ηt
lnW ′

t+1 =

(
1

ηt
lnWt −

1

ηt+1
lnWt+1

)

+

(
1

ηt+1
lnWt+1 −

1

ηt
lnW ′

t+1

)

= (At) + (Bt).
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We have that
n∑

t=1

At =
n∑

t=1

(
1

ηt
lnWt −

1

ηt+1
lnWt+1

)

=
1

η1
lnW1 −

1

ηn+1
lnWn+1

= − 1

ηn+1
ln

∞∑

k=1

qke
−ηn+1nLn(h

(k))

≤ − 1

ηn+1
ln sup

k
qke

−ηn+1nLn(h
(k))

= − 1

ηn+1
sup
k

(
ln qk − ηn+1nLn(h

(k))
)

= inf
k

(
nLn(h

(k))− ln qk
ηn+1

)
.

ηt+1

ηt
≤ 1, therefore applying Jensen’s inequality for concave function, we

get that

Wt+1 =
∞∑

i=1

qie
−ηt+1tLt(h

(i))

=

∞∑

i=1

qi

(
e−ηttLt(h

(i))
) ηt+1

ηt

≤
( ∞∑

i=1

qie
−ηttLt(h

(i))

) ηt+1
ηt

=
(
W ′

t+1

) ηt+1
ηt .

Thus,

Bt =
1

ηt+1
lnWt+1 −

1

ηt
lnW ′

t+1

≤ 1

ηt+1

ηt+1

ηt
lnW ′

t+1 −
1

ηt
lnW ′

t+1

= 0.

We can summarize the bounds:

Ln(g) ≤ inf
k

(
Ln(h

(k))− ln qk
nηn+1

)
+

1

2n

n∑

t=1

ηt

∞∑

k=1

pt,k`
2
t (h

(k)) .

�
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Proof of Theorem 5.5. Because of (5.1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

Because of the proof of Theorem 5.1, as n → ∞, a.s.,

Ê(k,`)
n (Xn

1 , Y
n−1
1 , z, s) → E{Y0 | G`(X

0
−k) = z, F`(Y

−1
−k ) = s},

and therefore for all z and s

Tnδ

(
Ê(k,`)

n (Xn
1 , Y

n−1
1 , z, s)

)
→ E{Y0 | G`(X

0
−k) = z, F`(Y

−1
−k ) = s}.

By Lemma 5.6, as n → ∞, almost surely,

Ln(h
(k,`))

=
1

n

n∑

t=1

(h(k,`)(Xt
1, Y

t−1
1 )− Yt)

2

=
1

n

n∑

t=1

(
Ttδ

(
Ê

(k,`)
t (Xt

1, Y
t−1
1 , G`(X

t
t−k), F`(Y

t−1
t−k ))

)
−Yt

)2

→ E{(Y0 − E{Y0 | G`(X
0
−k), F`(Y

−1
−k )})2}

def
= εk,`.

In the same way as in the proof of Theorem 5.1, we get that

inf
k,l

εk,l = lim
k,`→∞

εk,` = E

{(
Y0 − E{Y0|X0

−∞, Y −1
−∞}

)2}
= L∗.

Apply Lemma 5.7 with choice ηt = 1√
t
and for the squared loss `t(h) =

(ht − Yt)
2, then the square loss is convex in its first argument h, so

Ln(g) ≤ inf
k,`

(
Ln(h

(k,`))− 2 ln qk,`√
n

)

+
1

2n

n∑

t=1

1√
t

∞∑

k,`=1

pt,k,`
(
h(k,`)(Xt

1, Y
t−1
1 )− Yt

)4
. (5.38)
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On the one hand, almost surely,

lim sup
n→∞

inf
k,`

(
Ln(h

(k,`))− 2 ln qk,`√
n

)

≤ inf
k,`

lim sup
n→∞

(
Ln(h

(k,`))− 2 ln qk,`√
n

)

= inf
k,`

lim sup
n→∞

Ln(h
(k,`))

= inf
k,`

εk,`

= lim
k,`→∞

εk,`

= L∗.

On the other hand,

1

n

n∑

t=1

1√
t

∑

k,`

pt,k,`(h
(k,`)(Xt

1, Y
t−1
1 )− Yt)

4

≤ 8

n

n∑

t=1

1√
t

∑

k,`

pt,k,`

(
h(k,`)(Xt

1, Y
t−1
1 )4 + Y 4

t

)

≤ 8

n

n∑

t=1

1√
t

∑

k,`

pt,k,`
(
t4δ + Y 4

t

)

=
8

n

n∑

t=1

t4δ + Y 4
t√

t
,

therefore, almost surely,

lim sup
n→∞

1

n

n∑

t=1

1√
t

∑

k,`

pt,k,`(h
(k,`)(Xt

1, Y
t−1
1 )− Yt)

4

≤ lim sup
n→∞

8

n

n∑

t=1

Y 4
t√
t

= 0,

where we applied that E{Y 4
1 } < ∞ and 0 < δ < 1

8 . Summarizing these

bounds, we get that, almost surely,

lim sup
n→∞

Ln(g) ≤ L∗

and the proof of the theorem is finished. �
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Corollary 5.2 (Györfi and Ottucsák, 2007). Under the conditions of

Theorem 5.5,

lim
n→∞

1

n

n∑

t=1

(
E{Yt | Xt

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2
= 0 a.s. (5.39)

Proof. By Theorem 5.5,

lim
n→∞

1

n

n∑

t=1

(
Yt − gt(X

t
1, Y

t−1
1 )

)2
= L∗ a.s. (5.40)

and by the ergodic theorem we have

lim
n→∞

1

n

n∑

t=1

E

{(
Yt − E{Yt | Xt

−∞, Y t−1
−∞ }

)2 | Xt
−∞, Y t−1

−∞

}
= L∗ (5.41)

almost surely. Now we may write as n → ∞, that

1

n

n∑

t=1

(
E{Yt | Xt

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2

=
1

n

n∑

t=1

E{
(
Yt − gt(X

t
1, Y

t−1
1 )

)2 | Xt
−∞, Y t−1

−∞ }

− 1

n

n∑

t=1

E{
(
Yt − E{Yt | Xt

−∞, Y t−1
−∞ }

)2 | Xt
−∞, Y t−1

−∞ }

=
1

n

n∑

t=1

E{
(
Yt − gt(X

t
1, Y

t−1
1 )

)2 | Xt
−∞, Y t−1

−∞ }

− 1

n

n∑

t=1

(
Yt − gt(X

t
1, Y

t−1
1 )

)2
+ o(1) (5.42)

= 2
1

n

n∑

t=1

gt(X
t
1, Y

t−1
1 )(Yt − E{Yt | Xt

−∞, Y t−1
−∞ })

− 1

n

n∑

t=1

(
Y 2
t − E{Y 2

t | Xt
−∞, Y t−1

−∞ }
)
+ o(1) a.s.

where (5.42) holds because of (5.40) and (5.41). The second sum is

1

n

n∑

t=1

(
Y 2
t − E{Y 2

t | Xt
−∞, Y t−1

−∞ }
)
→ 0 a.s.

by the ergodic theorem. Put

Zt = gt(X
t
1, Y

t−1
1 )(Yt − E{Yt | Xt

−∞, Y t−1
−∞ }).
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In order to finish the proof it suffices to show

lim
n→∞

1

n

n∑

t=1

Zt = 0 . (5.43)

Then

E{Zt | Xt
−∞, Y t−1

−∞ } = 0,

for all t, so the Zt’s form a martingale difference sequence. By the strong

law of large numbers for martingale differences due to [Chow (1965)], one

has to verify (5.25). By the construction of gn,

E
{
Z2
n

}
=E
{(

gn(X
n
1 , Y

n−1
1 )(Yn − E{Yn | Xn

−∞, Y n−1
−∞ })

)2}

≤E
{
gn(X

n
1 , Y

n−1
1 )2Y 2

n

}

≤n2δ
E
{
Y 2
1

}
,

therefore (5.25) is verified, (5.43) is proved and the proof of the corollary

is finished. �

5.4.2. Kernel-based prediction strategies

Apply the notations of Section 5.3.2. Then the elementary expert h
(k,`)
n at

time n is defined by

h(k,`)
n (xn

1 , y
n−1
1 ) = Tmin{nδ,`}

(∑
{t∈J

(k,`)
n } yt

|J (k,`)
n |

)
, n > k + 1,

where 0/0 is defined to be 0 and 0 < δ < 1/8. The pool of experts is mixed

the same way as in the case of the partition-based strategy (cf. (5.31),

(5.32), (5.33) and (5.34)).

Theorem 5.6 (Biau et al., 2010). Choose ηt = 1/
√
t and suppose that

(5.26) and (5.27) are verified. Then the kernel-based strategy defined above

is universally consistent with respect to the class of all jointly stationary

and ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
0 } < ∞.
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5.4.3. Nearest neighbor-based prediction strategy

Apply the notations of Section 5.3.3. Then the elementary expert h
(k,`)
n at

time n is defined by

h(k,`)
n (xn

1 , y
n−1
1 ) = Tmin{nδ,`}

(∑
{t∈J

(k,`)
n } yt

|J (k,`)
n |

)
, n > k + 1,

if the sum is nonvoid, and 0 otherwise and 0 < δ < 1/8. The pool of experts

is mixed the same way as in the case of the histogram-based strategy (cf.

(5.31), (5.32), (5.33) and (5.34)).

Theorem 5.7 (Biau et al., 2010). Choose ηt = 1/
√
t and suppose that

(5.29) is verified. Suppose also that for each vector s the random variable

‖(Xk+1
1 , Y k

1 )− s‖
has a continuous distribution function. Then the nearest neighbor strategy

defined above is universally consistent with respect to the class of all jointly

stationary and ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
0 } < ∞.

5.4.4. Generalized linear estimates

Apply the notations of Section 5.3.4 . The elementary predictor h
(k,`)
n

generates a prediction of form

h(k,`)
n (xn

1 , y
n−1
1 ) = Tmin{nδ,`}


∑̀

j=1

cn,jφ
(k)
j (xn

n−k, y
n−1
n−k)


 ,

with 0 < δ < 1/8. The pool of experts is mixed the same way as in the

case of the histogram-based strategy (cf. (5.31), (5.32), (5.33) and (5.34)).

Theorem 5.8 (Biau et al., 2010). Choose ηt = 1/
√
t and suppose that

|φ(k)
j | ≤ 1 and, for any fixed k, suppose that the set




∑̀

j=1

cjφ
(k)
j ; (c1, . . . , c`), ` = 1, 2, . . .





is dense in the set of continuous functions of d(k + 1) + k variables.

Then the generalized linear strategy defined above is universally consis-

tent with respect to the class of all jointly stationary and ergodic processes

{(Xn, Yn)}∞−∞ such that

E{Y 4
0 } < ∞.
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5.4.5. Prediction of Gaussian processes

We consider in this section the classical problem of Gaussian time series

prediction. In this context, parametric models based on distribution as-

sumptions and structural conditions such as AR(p), MA(q), ARMA(p,q)

and ARIMA(p,d,q) are usually fitted to the data (cf. [Gerencsér and Ris-

sanen (1986)], [Gerencsér (1992, 1994)]). However, in the spirit of modern

nonparametric inference, we try to avoid such restrictions on the process

structure. Thus, we only assume that we observe a string realization yn−1
1

of a zero mean, stationary and ergodic, Gaussian process {Yn}∞−∞, and try

to predict yn, the value of the process at time n. Note that there is no side

information vectors xn
1 in this purely time series prediction framework.

It is well known for Gaussian time series that the best predictor is a

linear function of the past:

E{Yn | Yn−1, Yn−2, . . .} =

∞∑

j=1

c∗jYn−j ,

where the c∗j minimize the criterion

E








∞∑

j=1

cjYn−j − Yn




2




.

Following [Györfi and Lugosi (2001)], we extend the principle of general-

ized linear estimates to the prediction of Gaussian time series by considering

the special case

φ
(k)
j (yn−1

n−k) = yn−jI{1≤j≤k},

i.e.,

h̃(k)
n (yn−1

1 ) =

k∑

j=1

cn,jyn−j .

Once again, the coefficients cn,j are calculated according to the past obser-

vations yn−1
1 by minimizing the criterion:

n−1∑

t=k+1




k∑

j=1

cjyt−j − yt




2

if n > k, and the all-zero vector otherwise.

With respect to the combination of elementary experts h̃(k), applied in

[Györfi and Lugosi (2001)] the so-called “doubling-trick”, which means that
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the time axis is segmented into exponentially increasing epochs and at the

beginning of each epoch the forecaster is reset.

In this section we propose a much simpler procedure which avoids in

particular the doubling-trick. To begin, we set

h(k)
n (yn−1

1 ) = Tmin{nδ,k}
(
h̃(k)
n (yn−1

1 )
)
,

where 0 < δ < 1
8 , and combine these experts as before. Precisely, let {qk}

be an arbitrarily probability distribution over the positive integers such

that for all k, qk > 0, and for ηn > 0, define the weights

wk,n = qke
−ηn(n−1)Ln−1(h

(k)
n )

and their normalized values

pk,n =
wk,n∑∞
i=1 wi,n

.

The prediction strategy g at time n is defined by

gn(y
n−1
1 ) =

∞∑

k=1

pk,nh
(k)
n (yn−1

1 ), n = 1, 2, . . .

Theorem 5.9 (Biau et al., 2010). Choose ηt = 1/
√
t. Then the predic-

tion strategy g defined above is universally consistent with respect to the

class of all jointly stationary and ergodic zero-mean Gaussian processes

{Yn}∞−∞.

The following corollary shows that the strategy g provides asymptoti-

cally a good estimate of the regression function in the following sense:

Corollary 5.3 (Biau et al., 2010). Under the conditions of Theorem

5.9,

lim
n→∞

1

n

n∑

t=1

(
E{Yt | Y t−1

1 } − g(Y t−1
1 )

)2
= 0 almost surely.

Corollary 5.3 is expressed in terms of an almost sure Cesáro consistency.

It is an open problem to know whether there exists a prediction rule g such

that

lim
n→∞

(
E{Yn|Y n−1

1 } − g(Y n−1
1 )

)
= 0 almost surely (5.44)

for all stationary and ergodic Gaussian processes. [Schäfer (2002)] proved

that, under some additional mild conditions on the Gaussian time series,

the consistency (5.44) holds.
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5.5. Pattern recognition for time series

In this section we apply the same ideas to the seemingly more difficult clas-

sification (or pattern recognition) problem. The setup is the following: let

{(Xn, Yn)}∞−∞ be a stationary and ergodic sequence of pairs taking values

in R
d × {0, 1}. The problem is to predict the value of Yn given the data

(Xn
1 , Y

n−1
1 ).

We may formalize the prediction (classification) problem as follows. The

strategy of the classifier is a sequence f = {ft}∞t=1 of decision functions

ft :
(
R

d
)t × {0, 1}t−1 → {0, 1}

so that the classification formed at time t is ft(X
t
1, Y

t−1
1 ). The normalized

cumulative 0− 1 loss for any fixed pair of sequences Xn
1 , Y n

1 is now

Rn(f) =
1

n

n∑

t=1

I{ft(Xt
1,Y

t−1
1 ) 6=Yt}.

In this case there is a fundamental limit for the predictability of the

sequence, i.e., [Algoet (1994)] proved that for any classification strategy f

and stationary ergodic process {(Xn, Yn)}∞n=−∞,

lim inf
n→∞

Rn(f) ≥ R∗ a.s., (5.45)

where

R∗= E

{
min

(
P{Y0 = 1|X0

−∞, Y −1
−∞},P{Y0 = 0|X0

−∞, Y −1
−∞}

)}
,

therefore the following definition is meaningful:

Definition 5.2. A classification strategy f is called universally consistent

if for all stationary and ergodic processes {Xn, Yn}∞−∞,

lim
n→∞

Rn(f) = R∗ almost surely.

Therefore, universally consistent strategies asymptotically achieve the

best possible loss for all ergodic processes. The first question is, of course,

if such a strategy exists. [Ornstein (1978)] and [Bailey (1976)] proved the

existence of universally consistent predictors. This was later generalized by

[Algoet (1992)]. A simpler estimator with the same convergence property

was introduced by [Morvai et al. (1996)]. Motivated by the need of a practi-

cal estimator, [Morvai et al. (1997)] introduced an even simpler algorithm.

However, it is not known whether their predictor is universally consistent.
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[Györfi et al. (1999)] introduced a simple randomized universally consistent

procedure with a practical appeal. Their idea was to combine the decisions

of a small number of simple experts in an appropriate way.

The same idea was used in [Weissman and Merhav (2004)]. They studied

the consistency in noisy environment. In their model the past of Yt is not

available for the predictor, it has only access to the noisy past Xt−1
1 . Xt

is a noisy function of Yt, that is, Xt = u(Yt, Nt), where u : {0, 1} × R →
R is a function and {Nt} is some noise process. A general loss function

`(f ′
t(X

t−1
1 ), Yt) is considered, where f ′

t : Rt−1 → R and f ′
t(X

t−1
1 ) is the

estimate of Yt. They used an algorithm based on [Vovk (1998)] to combine

the simple experts and used doubling trick to fit the algorithm to infinite

time horizon. In case of 0− 1 loss, one may easily modify the results in the

sequel such that, they can be applied for the problem of [Weissman and

Merhav (2004)].

5.5.1. Pattern recognition

In pattern recognition, the label Y takes only finitely many values. For

simplicity assume that Y takes two values, say 0 and 1. The aim is to

predict the value of Y given the value of feature vector X (e.g., to predict

whether a patient has a special disease or not, given some measurements of

the patient like body temperature, blood pressure, etc.). The goal is to find

a function g∗ : Rd → {0, 1} which minimizes the probability of g∗(X) 6= Y ,

i.e., to find a function g∗ such that

P{g∗(X) 6= Y } = min
g:Rd→{0,1}

P{g(X) 6= Y }, (5.46)

where g∗ is called the Bayes decision function, and P{g(X) 6= Y ) is the

probability of misclassification. (Concerning the details see [Devroye et al.

(1996)].)

The Bayes decision function can be obtained explicitly.

Lemma 5.8.

g∗(x) =

{
1 if P{Y = 1|X = x} ≥ 1/2,

0 if P{Y = 1|X = x} < 1/2,

is the Bayes decision function, i.e., g∗ satisfies (5.46).

Proof. Let g : Rd → {0, 1} be an arbitrary (measurable) function. Fix
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x ∈ R
d. Then

P{g(X) 6= Y |X = x} = 1− P{g(X) = Y |X = x}
= 1− P{Y = g(x)|X = x}.

Hence,

P{g(X) 6= Y |X = x} − P{g∗(X) 6= Y |X = x}
= P{Y = g∗(x)|X = x} − P{Y = g(x)|X = x} ≥ 0,

because

P{Y = g∗(x)|X = x} = max {P{Y = 0|X = x},P{Y = 1|X = x}}
by the definition of g∗. This proves

P{g∗(X) 6= Y |X = x} ≤ P{g(X) 6= Y |X = x}
for all x ∈ R

d, which implies

P{g∗(X) 6= Y } =

∫
P{g∗(X) 6= Y |X = x}µ(dx)

≤
∫

P{g(X) 6= Y |X = x}µ(dx)

= P{g(X) 6= Y }.
�

P{Y = 1|X = x} and P{Y = 0|X = x} are the so-called a posteriori

probabilities. Observe that

P{Y = 1|X = x} = E{Y |X = x} = m(x).

A natural approach is to estimate the regression function m by an estimate

mn using data Dn = {(X1, Y1), . . . , (Xn, Yn)} and then to use a so-called

plug-in estimate

gn(x) =

{
1 if mn(x) ≥ 1/2,

0 if mn(x) < 1/2,

to estimate g∗. The next lemma implies that if mn is close to the real

regression function m, then the error probability of decision gn is near to

the error probability of the optimal decision g∗.

Lemma 5.9. Let m̂ : Rd → R be a fixed function and define the plug-in

decision ĝ by

ĝ(x) =

{
1 if m̂(x) ≥ 1/2,

0 if m̂(x) < 1/2.
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Then

0 ≤ P{ĝ(X) 6= Y } − P{g∗(X) 6= Y }

≤ 2

∫

Rd

|m̂(x)−m(x)|µ(dx)

≤ 2

(∫

Rd

|m̂(x)−m(x)|2µ(dx)
) 1

2

.

Proof. It follows from the proof of Lemma 5.8 that, for arbitrary x ∈ R
d,

P{ĝ(X) 6= Y |X = x} − P{g∗(X) 6= Y |X = x}

= P{Y = g∗(x)|X = x} − P{Y = ĝ(x)|X = x}

= I{g∗(x)=1}m(x) + I{g∗(x)=0}(1−m(x))

−
(
I{ĝ(x)=1}m(x) + I{ĝ(x)=0}(1−m(x))

)

= I{g∗(x)=1}m(x) + I{g∗(x)=0}(1−m(x))

−
(
I{g∗(x)=1}m̂(x) + I{g∗(x)=0}(1− m̂(x))

)

+
(
I{g∗(x)=1}m̂(x) + I{g∗(x)=0}(1− m̂(x))

)

−
(
I{ĝ(x)=1}m̂(x) + I{ĝ(x)=0}(1− m̂(x))

)

+
(
I{ĝ(x)=1}m̂(x) + I{ĝ(x)=0}(1− m̂(x))

)

−
(
I{ĝ(x)=1}m(x) + I{ĝ(x)=0}(1−m(x))

)

≤ I{g∗(x)=1}(m(x)− m̂(x)) + I{g∗(x)=0}(m̂(x)−m(x))

+ I{ĝ(x)=1}(m̂(x)−m(x)) + I{ĝ(x)=0}(m(x)− m̂(x))

(because of

I{ĝ(x)=1}m̂(x) + I{ĝ(x)=0}(1− m̂(x)) = max{m̂(x), 1− m̂(x)}
by definition of ĝ)

≤ 2|m̂(x)−m(x)|.
Hence

0 ≤ P{ĝ(X) 6= Y } − P{g∗(X) 6= Y }

=

∫
(P{ĝ(X) 6= Y |X = x} − P{g∗(X) 6= Y |X = x})µ(dx)

≤ 2

∫
|m̂(x)−m(x)|µ(dx).

The second assertion follows from the Cauchy-Schwarz inequality. �
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It follows from Lemma 5.9 that the error probability of the plug-in

decision gn defined above satisfies

0 ≤ P{gn(X) 6= Y |Dn} − P{g∗(X) 6= Y }

≤ 2

∫

Rd

|mn(x)−m(x)|µ(dx)

≤ 2

(∫

Rd

|mn(x)−m(x)|2µ(dx)
) 1

2

.

Thus estimates mn with small L2 error automatically lead to estimates gn
with small misclassification probability.

This can be generalized to the case where Y takesM ≥ 2 distinct values,

without loss of generality (w.l.o.g.) 1, . . . , M (e.g., depending on whether

a patient has a special type of disease or no disease). The goal is to find a

function g∗ : Rd → {1, . . . ,M} such that

P{g∗(X) 6= Y } = min
g:Rd→{1,...,M}

P{g(X) 6= Y },

where g∗ is called the Bayes decision function. It can be computed using

the a posteriori probabilities P{Y = k|X = x} (k ∈ {1, . . . ,M}):

g∗(x) = arg max
1≤k≤M

P{Y = k|X = x}.

The a posteriori probabilities are the regression functions

P{Y = k|X = x} = E{I{Y=k}|X = x} = m(k)(x).

Given data Dn = {(X1, Y1), . . . , (Xn, Yn)}, estimates m
(k)
n of m(k) can be

constructed from the data set

D(k)
n = {(X1, I{Y1=k}), . . . , (Xn, I{Yn=k})},

and one can use a plug-in estimate

gn(x) = arg max
1≤k≤M

m(k)
n (x)

to estimate g∗. If the estimates m
(k)
n are close to the a posteriori proba-

bilities, then again the error of the plug-in estimate is close to the optimal

error.
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5.5.2. Prediction for binary labels

In this section we present a simple (non-randomized) on-line classifica-

tion strategy, and prove its universal consistency. Consider the prediction

scheme gt(X
t
1, Y

t−1
1 ) introduced in Sections 5.3.1 or 5.3.2 or 5.3.3 or 5.3.4,

and then introduce the corresponding classification scheme:

ft(X
t
1, Y

t−1
1 ) =

{
1 if gt(X

t
1, Y

t−1
1 ) > 1/2

0 otherwise.

The main result of this section is the universal consistency of this simple

classification scheme:

Theorem 5.10 (Györfi and Ottucsák, 2007). Assume that the condi-

tions of Theorems 5.1 or 5.2 or 5.3 or 5.4. Then the classification scheme

f defined above satisfies

lim
n→∞

Rn(f) = R∗ almost surely

for any stationary and ergodic process {(Xn, Yn)}∞n=−∞.

Proof. Because of (5.45) we have to show that

lim sup
n→∞

Rn(f) ≤ R∗ a.s.

By Corollary 5.1,

lim
n→∞

1

n

n∑

t=1

(
E{Yt | Xt

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2
= 0 a.s. (5.47)

Introduce the Bayes classification scheme using the infinite past:

f∗
t (X

t
−∞, Y t−1

−∞ ) =

{
1 if P{Yt = 1 | Xt

−∞, Y t−1
−∞ } > 1/2

0 otherwise,

and its normalized cumulative 0− 1 loss:

Rn(f
∗) =

1

n

n∑

t=1

I{f∗
t (X

t
−∞,Y t−1

−∞ ) 6=Yt}.

Put

R̄n(f) =
1

n

n∑

t=1

P{ft(Xt
1, Y

t−1
1 ) 6= Yt | Xt

−∞, Y t−1
−∞ }

and

R̄n(f
∗) =

1

n

n∑

t=1

P{f∗
t (X

t
−∞, Y t−1

−∞ ) 6= Yt | Xt
−∞, Y t−1

−∞ }.
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Then

Rn(f)− R̄n(f) → 0 a.s.

and

Rn(f
∗)− R̄n(f

∗) → 0 a.s.,

since they are the averages of bounded martingale differences. Moreover,

by the ergodic theorem

R̄n(f
∗) → R∗ a.s.,

so we have to show that

lim sup
n→∞

(R̄n(f)− R̄n(f
∗)) ≤ 0 a.s.

Lemma 5.9 implies that

R̄n(f)− R̄n(f
∗) =

1

n

n∑

t=1

(
P{ft(Xt

1, Y
t−1
1 ) 6= Yt | Xt

−∞, Y t−1
−∞ }

−P{f∗
t (X

t
−∞, Y t−1

−∞ ) 6= Yt | Xt
−∞, Y t−1

−∞ }
)

≤ 2
1

n

n∑

t=1

∣∣E{Yt | Xt
−∞, Y t−1

−∞ } − gt(X
t
1, Y

t−1
1 )

∣∣

≤ 2

√√√√ 1

n

n∑

t=1

∣∣E{Yt | Xt
−∞, Y t−1

−∞ } − gt(Xt
1, Y

t−1
1 )

∣∣2

→ 0 a.s.,

where in the last step we applied (5.47). �
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Chapter 6

Empirical Pricing American Put Options
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In this note we study the empirical pricing American options. The pric-
ing American option is an optimal stopping problem, which can be de-
rived from a backward recursion such that in each step of the recursion
one needs conditional expectations. For empirical pricing, [Longstaff
and Schwartz (2001)] suggested to replace the conditional expectations
by regression function estimates. We survey the current literature and
the main techniques of nonparametric regression estimates, and derive
new empirical pricing algorithms.

6.1. Introduction: the valuation of option price

6.1.1. Notations

One of the most important problems in option pricing theory is the val-

uation and optimal exercise of derivatives with American-style exercise

features. Such derivatives are, for example, the equity, commodity, for-

eign exchange, insurance, energy, municipal, mortgage, credit, convertible,

swap, emerging markets, etc. Despite recent progresses, the valuation and

optimal exercise of American options remains one of the most challenging

problems in derivatives finance. In many financial contracts it is allowed

to exercise the contract early before expiry. For example, many exchange

traded options are of American type and allow the holder any exercise date

before expiry, mortgages have often embedded prepayment options such

that the mortgage can be amortized or repayed, or life insurance contracts

allow often for early surrender. In this paper we consider data driven pric-

ing of options with early exercise features.

231
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Let Xt be the asset price at time t, K the strike price, r the discount

rate. For American put option, the payoff function ft with discount factor

e−rt is

ft(Xt) = e−rt (K −Xt)
+

.

For maturity time T , let T= {1, . . . , T} be the time frame for American

options. Let Ft denote the σ-algebra generated by X0 = 1, X1, . . . , Xt then

an integer valued random variable τ is called stopping time if {τ = t} ∈ Ft,

for all t = 1, . . . , T . If T̃(0, . . . , T ) stands for the set of stopping times

taking values in (0, . . . , T ) then the task of pricing the American option is

to determine

V0 = sup
τ∈T̃(0,...,T )

E {fτ (Xτ )} . (6.1)

The main principles of pricing American put option described below can

be extended to more general payoffs, for example, the payoffs may depend

on many assets’ prices (cf. [Tsitsiklis and Roy (2001)]).

Let τ∗ be the optimum stopping time, i.e.,

E {fτ∗ (Xτ∗)} = sup
τ∈T̃(0,...,T )

E {fτ (Xτ )}

6.1.2. Optimal stopping

An alternative formulation of τ∗ can be derived as follows. Introduce the

notation

qt(x) = sup
τ∈T̃{t+1,...,T}

E {fτ (Xτ ) | Xt = x} (6.2)

continuation value, where T̃ {t+ 1, . . . , T} refers to the possible stopping

times taking values in {t+ 1, . . . , T}.

Theorem 6.1 (cf. Chow et. al, 1971, Shiryayev, 1978, Kohler, 2010).

Put

τ q = min {1 ≤ s ≤ T : qs (Xs) ≤ fs (Xs)} .

If the assets prices {Xt} form a Markov process then

τ∗ = τ q.

The intuition behind the optimal stopping rule τ q is that at any exercise

time, the holder of an American option optimally compares the payoff from
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immediate exercise with the expected payoff from continuation, and then

exercises if the immediate payoff is higher. Thus, the optimal exercise

strategy is fundamentally determined by the conditional expectation of the

payoff from continuing to keep the option alive. The key insight underlying

the current approaches is that this conditional expectation can be estimated

from data.

As a byproduct of the proof of Theorem 6.1, one may check the the

following:

Theorem 6.2 (cf. Tsitsiklis and Roy, 1999, Kohler, 2010). We get

that

qT (x) = 0,

while at any t < T

qt(x) = E {max {ft+1 (Xt+1) , qt+1 (Xt+1)} | Xt = x} (6.3)

which means that there is a backward recursive scheme.

(6.3) implies that

qt(x) = E {max {ft+1 (Xt+1) , qt+1 (Xt+1)} | Xt = x}
= E

{
max

{
e−r(t+1) (K −Xt+1)

+
, qt+1 (Xt+1)

}
| Xt = x

}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt
Xt

)+

, qt+1

(
Xt+1

Xt
Xt

)}
| Xt = x

}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt
x

)+

, qt+1

(
Xt+1

Xt
x

)}
| Xt = x

}
.

(6.4)

6.1.3. Martingale approach: the primal-dual problem

As we defined in the Introduction, the initial problem is to find the optimal

stopping time which provides the price of American option:

V0 = sup
τ∈T̃(0,...,T )

E {fτ (Xτ )} ,

where the sup is taken over the stopping times τ . The dual problem is

formulated by [Rogers (2002)], [Haugh and Kogan (2004)] to obtain an

alternative valuation method. Let
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U0 = inf
M∈M

E

{
max

t∈{0,1....T}
(ft (Xt)−Mt)

}
(6.5)

where M is the set of martingales with M0 = 0 and with the same filtration

σ (Xt, . . . , X1). The dual method is based on the next theorem.

Theorem 6.3. (cf. Rogers, 2002, Haugh and Kogan, 2004,

Glasserman, 2004, Kohler, 2010) If Xt is a Markov process then

U0 = V0

This result is based on the important observation that one can obtain

a martingale from the pay-off function and continuation value in a natural

way.

Theorem 6.4. (cf. Glasserman, 2004, Tsitsiklis and Roy, 1999,

Kohler, 2010) The optimal martingale is of form

M∗
t =

t∑

s=1

(max {fs (Xs) , qs (Xs)} − qs−1 (Xs−1))

and indeed M∗
t is a martingale.

The valuation task now is converted into an estimate of the martingale

M∗
t .

6.1.4. Lower and upper bounds of qt(x)

In pricing American option, the continuation values qt(x) play an impor-

tant role. For empirical pricing, one has to estimate them, which is possible

using the backward recursion (6.3). However, using this recursion the es-

timation errors are accumulated, therefore there is a need to control the

error propagation.

We introduce a lower bound of qt(x):

q
(l)
t (x) = max

s∈{t+1,...,T}
E {fs(Xs)|Xt = x} .

Since any constant τ = s is a stopping time, we have that

q
(l)
t (x) ≤ qt(x).

We shall show that q
(l)
t (x) can be estimated easier than that of qt(x)

and the estimate has a fast rate of convergence, so if q
(l)
t,n(x) and qt,n(x) are
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the estimates of q
(l)
t (x) and qt(x), resp., then

q̂t,n(x) := max{qt,n(x), q(l)t,n(x)}

is an (hopefully) improved estimate of qt(x).

Next we introduce an upper bound. For τ ∈ T̃ {t+ 1, . . . , T}, we have

that

fτ (Xτ ) ≤ max
s∈{t+1,...,T}

fs(Xs),

therefore

qt(x) = sup
τ∈T̃{t+1,...,T}

E {fτ (Xτ ) | Xt = x} ≤ E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}
.

Introduce the notation

q
(u)
t (x) := E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}
,

then we get an upper bound

qt(x) ≤ q
(u)
t (x).

Again, q
(u)
t (x) can be estimated easier than that of qt(x) and the estimate

has a fast rate of convergence, so if q
(u)
t,n (x) and qt,n(x) are the estimates of

q
(u)
t (x) and qt(x), resp., then

q̂t,n(x) := min{qt,n(x), q(u)t,n (x)}

is an improved estimate of qt(x).

The combination of the lower an upper bounds reads as follows:

max
s∈{t+1,...,T}

E {fs(Xs)|Xt = x} ≤ qt(x) ≤ E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}
,

while the improved estimate has the form

q̂t,n(x) =





q
(u)
t,n (x) if q

(u)
t,n (x) < qt,n(x),

qt,n(x) if q
(u)
t,n (x) ≥ qt,n(x) ≥ q

(l)
t,n(x),

q
(l)
t,n(x) if qt,n(x) < q

(l)
t,n(x).
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6.1.5. Sampling

In a real life problem we have a single historical data sequence X1, . . . , XN .

Definition 6.1. The process {Xt} is called of memoryless multiplicative

increments, if X1/X0, X2/X1, . . . are independent random variables.

Definition 6.2. The process {Xt} is called of stationary multiplicative

increments, if the sequence X1/X0 = X1, X2/X1, . . . is strictly stationary.

As mentioned earlier, the continuation value qt(x) plays an important

role in the optimum pricing, which is the supremum of conditional expecta-

tions. Conditional expectations can be considered as regression functions,

and in the empirical pricing the regression function is replaced by its es-

timate. For regression function estimation, we are given independent and

identically distributed (i.i.d) copies of X1, . . . , XT , i.e., one generates i.i.d.

sample path prices:

Xi,1, . . . , Xi,T , (6.6)

i = 1, ...n.

Based on the historical data sequence X1, . . . , XN , one can construct

samples for (6.6) as follows:

(i) For the Monte Carlo sampling, one assumes that the data generating

process is completely known, i.e., that there is perfect parametric model

and all parameters of this process are already estimated from histori-

cal data X1, . . . , XN (cf. Longstaff, Schwartz [Longstaff and Schwartz

(2001)]). Thus, one can artificially generate independent sample paths

(6.6). The weakness of this approach is that usually the size N of the

historical data is not large enough in order to have a good model and

reliable parameter estimates.

(ii) For disjoint sampling, N = nT and2i = 1, . . . , n = N/T . However, we

haven’t the required i.i.d. property unless the processX1, . . . , XnT have

memoryless and stationary multiplicative increments, which means that

X1/X0, X2/X1, . . . , XnT /XnT−1 are i.i.d.

(iii) For sliding sampling,

Xi,t :=
Xi+t

Xi
, (6.7)

i = 1, . . . , n = N−T . In this way we get a large sample, however, there

is no i.i.d. property.
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(iv) For bootstrap sampling, we generate i.i.d. random variables T1, . . . , Tn

uniformly distributed on 1, . . . , N − T and

Xi,t :=
XTi+t

XTi

, (6.8)

i = 1, . . . , n.

6.1.6. Empirical pricing and optimal exercising of American

option

If the continuation values qt(x), t = 1, . . . T were known, then the optimal

stopping time τi for path Xi,1, . . . , Xi,T can be calculated:

τi = min {1 ≤ s ≤ T : qs (Xi,s) ≤ fs (Xi,s)} .

Then the price V0 can be estimated by the average

1

n

n∑

i=1

fτi (Xτi) . (6.9)

The continuation values qt(x), t = 1, . . . T are unknown, there-

fore one has to generate some estimates qt,n(x), t = 1, . . . T . [Kohler

et al. (2008)] suggested a splitting approach as follows. Split the

sample {Xi,1, . . . , Xi,T }ni=1 into two samples: {Xi,1, . . . , Xi,T }mi=1 and

{Xi,1, . . . , Xi,T }ni=m+1. We estimate qt(x) by qt,m(x), (t = 1, . . . T ) from

{Xi,1, . . . , Xi,T }mi=1, and construct some approximations of the optimal

stopping time τi for path Xi,1, . . . , Xi,T

τi,m = min {1 ≤ s ≤ T : qs,m (Xi,s) ≤ fs (Xi,s)} ,

and then the price V0 can be estimated by the average

1

n−m

n∑

i=m+1

fτi,m
(
Xτi,m

)
.

For empirical exercising at the time frame [N + 1, N + T ], we are given

the past data X1, . . . , XN based on which generate some estimates qt,N (x),

t = 1, . . . T . Then the empirical exercising of American option can

be defined by the stopping time

τN = min {1 ≤ s ≤ T : qs,N (XN+s/XN ) ≤ fs (XN+s/XN )} .
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If the continuation values qt(x), t = 1, . . . T were known, then the op-

timal martingale M∗
i,t for path Xi,1, . . . , Xi,T can be calculated:

M∗
i,t =

t∑

s=1

(max {fs (Xi,s) , qs (Xi,s)} − qs−1 (Xi,s−1)) .

Then the price V0 can be estimated by the average

1

n

n∑

i=1

max
t∈{0,1....T}

(
ft (Xi,t)−M∗

i,t

)
. (6.10)

The continuation values qt(x), t = 1, . . . T are unknown, then using

the splitting approach described above generate some estimates qt,m(x),

t = 1, . . . T are available and the approximations of the optimal martingale

M∗
i,t for path Xi,1, . . . , Xi,T :

M∗
i,t,m =

t∑

s=1

(max {fs (Xi,s) , qs,m (Xi,s)} − qs−1,m (Xi,s−1)) .

Then the price V0 can be estimated by the average

V0,n =
1

n−m

n∑

i=m+1

max
t∈{0,1....T}

(
ft (Xi,t)−M∗

i,t,m

)
.

For option pricing, a nonparametric estimation scheme was firstly pro-

posed by [Carrier (1996)], while [Tsitsiklis and Roy (1999)] and [Longstaff

and Schwartz (2001)] estimated the continuation value.

6.2. Special case: pricing for process with memoryless and

stationary multiplicative increments

In this section we assume that the assets prices {Xt} have memoryless

and stationary multiplicative increments. This properties imply that, for

s > t, Xs

Xt
and Xt are independent, and

Xs

Xt
and Xs−t

X0
= Xs−t have the same

distribution.
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6.2.1. Estimating qt

For t < T , the recursion (6.4) implies that

qt(x) = E {max {ft+1 (Xt+1) , qt+1 (Xt+1)} | Xt = x}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt
x

)+

, qt+1

(
Xt+1

Xt
x

)}
| Xt = x

}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt
x

)+

, qt+1

(
Xt+1

Xt
x

)}}

= E

{
max

{
e−r(t+1) (K −X1x)

+
, qt+1 (X1x)

}}
, (6.11)

where in the last two steps we assumed independent and stationary mul-

tiplicative increments. By a backward induction we get that, for fixed t,

qt(x) is a monotonically decreasing and convex function of x.

If we are given data X1, . . . , XN , i = 1, . . . , N then, for any fixed t, let

qt+1,N (x) be an estimate of qt+1(x). Thus, introduce the estimate of qt(x)

in a backward recursive way as follows:

qt,N (x) =
1

N

N∑

i=1

max
{
e−r(t+1) (K − xXi/Xi−1)

+
, qt+1,N (xXi/Xi−1)

}
.

(6.12)

From (6.12) we can derive a numerical procedure such that consider a

grid

G := {j · h},

j = 1, 2, . . . , where the step size of the grid h > 0, for example h = 0.01.

In each step of (6.12) we make the recursion for x ∈ G, and then linearly

interpolate for x /∈ G.

The weakness of this estimate can be that maybe the estimation errors

are cumulated, therefore we consider the estimates of the lower and upper

bounds, too.
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6.2.2. Estimating the lower and upper bounds of qt(x)

For memoryless process, the lower bound of qt(x) has a simple form:

q
(l)
t (x) = max

s∈{t+1,...,T}
E {fs(Xs)|Xt = x}

= max
s∈{t+1,...,T}

e−rs
E

{(
K − Xs

Xt
Xt

)+

| Xt = x

}

= max
s∈{t+1,...,T}

e−rs
E

{(
K − Xs

Xt
x

)+

| Xt = x

}

= max
s∈{t+1,...,T}

e−rs
E

{(
K − Xs

Xt
x

)+
}

= max
s∈{t+1,...,T}

e−rs
E

{
(K −Xs−tx)

+
}
,

where in the last two steps we assumed memoryless and stationary multi-

plicative increments.

Thus

q
(l)
t (x) = sup

s∈{t+1,...,T}
e−rs

E

{
(K −Xs−tx)

+
}
.

If we are given data Xi,1, . . . , Xi,T , i = 1, ...n then the estimate of q
(l)
t (x)

would be

q
(l)
t,n(x) = max

s∈{t+1,...,T}
e−rs 1

n

n∑

i=1

(K −Xi,s−tx)
+
.
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Concerning the upper bound, the previous arguments imply that

q
(u)
t (x) = E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}

= E

{
max

s∈{t+1,...,T}
e−rs(K −Xs)

+ | Xt = x

}

= E

{
max

s∈{t+1,...,T}
e−rs

(
K − Xs

Xt
Xt

)+

| Xt = x

}

= E

{
max

s∈{t+1,...,T}
e−rs

(
K − Xs

Xt
x

)+

| Xt = x

}

= E

{
max

s∈{t+1,...,T}
e−rs

(
K − Xs

Xt
x

)+
}

= E

{
max

s∈{t+1,...,T}
e−rs (K −Xs−tx)

+

}
.

If we are given data Xi,1, . . . , Xi,T , i = 1, ...n, then the estimate of

q
(u)
t (x) would be

q
(u)
t,n (x) =

1

n

n∑

i=1

max
s∈{t+1,...,T}

e−rs (K −Xi,s−tx)
+
.

The combination of the lower an upper bounds reads as follows:

max
s∈{t+1,...,T}

E

{
e−rs (K −Xs−tx)

+
}
≤ qt(x) ≤ E

{
max

s∈{t+1,...,T}
e−rs (K −Xs−tx)

+

}
.

Again, using the estimates of the lower and upper bound, we suggest a

truncation of the estimates of the continuation value:

q̂t,N (x) =





q
(u)
t,n (x) if q

(u)
t,n (x) < qt,N (x),

qt,N (x) if q
(u)
t,n (x) ≥ qt,N (x) ≥ q

(l)
t,n(x),

q
(l)
t,n(x) if qt,N (x) < q

(l)
t,n(x).

6.2.3. The growth rate of an asset and the Black-Scholes

model

In this section we still assume that the assets prices {Xt} have memoryless

and stationary multiplicative increments, and in discrete time show that the

Black-Scholes formula results in a good approximation of the lower bound

q
(l)
t (x). Consider an asset, the evolution of which characterized by its price
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Xt at trading period (let’s say trading day) t. In order to normalize, put

X0 = 1. Xt has exponential trend:

Xt = etWt ≈ etW ,

with average growth rate (average daily yield)

Wt :=
1

t
lnXt

and with asymptotic average growth rate

W := lim
t→∞

1

t
lnXt.

Introduce the returns Zt as follows:

Zt =
Xt

Xt−1
.

Thus, the return Zt denotes the amount obtained after investing a unit cap-

ital in the asset on the t-th trading period. Because {Xt} is of independent

and stationary multiplicative increments, the sequence {Zt} is i.i.d. Then

the strong law of large numbers (cf. [Stout (1974)]) implies that

Wt =
1

t
lnXt

=
1

t
ln

t∏

i=1

Xi

Xi−1

=
1

n
ln

n∏

i=1

Zi

=
1

n

n∑

i=1

lnZi

→ E{lnZ1} = E{lnX1}

almost surely (a.s.), therefore

W = E{lnX1}.

The problem is how to calculate E{lnX1}. It is not an easy task, one

should know the distribution of X1. For the approximate calculation of log-

optimal portfolio, [Vajda (2006)] suggested to use the second order Taylor

expansion of the function ln z at z = 1:

h(z) := z − 1− 1

2
(z − 1)2.
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Table 6.1. The average empirical daily yield, variance,
growth rate and estimated growth rate for the 19 stocks
from [Gelencsér and Ottucsák (2006)].

stock ra σ W W̃

ahp 0.000602 0.0160 0.000473 0.000474
alcoa 0.000516 0.0185 0.000343 0.000343
amerb 0.000616 0.0145 0.000511 0.000510

coke 0.000645 0.0152 0.000528 0.000528
dow 0.000576 0.0167 0.000436 0.000436
dupont 0.000442 0.0153 0.000325 0.000324
ford 0.000526 0.0184 0.000356 0.000356

ge 0.000591 0.0151 0.000476 0.000476
gm 0.000408 0.0171 0.000261 0.000261
hp 0.000807 0.0227 0.000548 0.000548
ibm 0.000495 0.0161 0.000365 0.000365

inger 0.000571 0.0177 0.000413 0.000413
jnj 0.000712 0.0153 0.000593 0.000593
kimbc 0.000599 0.0154 0.000479 0.000480

merck 0.000669 0.0156 0.000546 0.000546
mmm 0.000513 0.0144 0.000408 0.000408
morris 0.000874 0.0169 0.000729 0.000730
pandg 0.000579 0.0140 0.000478 0.000479

schlum 0.000741 0.0191 0.000557 0.000557

For daily returns, this is a very good approximation, so it is a natural idea

to introduce the semi-log approximation of the asymptotic growth rate:

W̃ = E{h(X1)}.
W̃ has the advantage that it can be calculated just knowing the first and

second moments of X1. Put

E{X1} = 1 + ra

and

Var(X1) = σ2,

then

W̃ = E{h(X1)} = E{X1 − 1− 1

2
(X1 − 1)2} = ra −

σ2 + r2a
2

≈ ra −
σ2

2
.

Table 6.1 summarizes the growth rate of some big stocks on New York

Stock Exchange (NYSE). The used database contains daily relative closing

prices of several stocks and it is normalized by divident and splits for all

trading days. For more information about the database see the homepage
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[Gelencsér and Ottucsák (2006)]. One can see that W̃ is really a good

approximation of W .

If the expiration time T is much larger than 1 day then for lnXT we

cannot apply the semi-log approximation, we should approximate the dis-

tribution of lnXT .

As for the binomial model or for the Cox-Ross-Rubinstein model or for

the construction of geometric Brownian motion (cf. [Luenberger (1998)]),

in addition, we assumed that {Zt} are i.i.d. Then

Var

(
t∑

i=1

lnZi

)

≈ Var

(
t∑

i=1

h(Zi)

)

= tVar (h(Z1))

= tVar

(
X1 − 1− 1

2
(X1 − 1)2

)

= t

(
E{(X1 − 1)2} − E{(X1 − 1)3}+ 1

4
E{(X1 − 1)4} − (ra −

1

2
(σ2 + r2a))

2

)

≈ tσ2.

Thus, by the central limit theorem we get that lnXt is approximately Gaus-

sian distributed with mean t(ra − (σ2 + r2a)/2) ≈ t(ra − σ2/2) and variance

tσ2:

lnXt
D≈ N

(
t(ra − σ2/2), tσ2

)
,

so we derived the discrete time version of the Black-Scholes model.

We have that

lnXt
D≈ N

(
tv0, tσ

2
)

where

v0 = ra − σ2/2.

Let Z
D
= N (0, 1) then

E

{
(K − xXt)

+
}
= E

{(
K − xelnXt

)+}

=

∫ ∞

−∞

(
K − xetv0+

√
tσz
)+ 1√

2πσ
e−

z2

2σ2 dz.
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We have

K − xetv0+
√
tσz > 0

if and only if

log
K

x
> tv0 +

√
tσz,

equivalently

z0 :=
log K

x − tv0√
tσ

> z.

Thus

E

{
(K − xXt)

+
}
=

∫ z0

−∞

(
K − xetv0+

√
tσz
)+ 1√

2πσ
e−

z2

2σ2 dz

= KΦ(z0)−
xetv0

√
2π

∫ z0

−∞
e
√
tσz−z2

0/2dz

= KΦ(z0)−
xet(v0+σ2/2)

√
2π

∫ z0

−∞
e
(z−

√
tσ)2

2 dz

= KΦ(z0)− xet(v0+σ2/2)Φ
(
z0 −

√
tσ
)
.

Consequently

e−rt
E

{
(K − xXt)

+
}

= e−rt

(
KΦ

(
log K

x − tv0√
tσ

)
− xet(v0+σ2/2)Φ

(
log K

x − tv0√
tσ

−
√
tσ

))
,

therefore we get that

q
(l)
t (x)

= sup
s∈{t+1,...,T}

e−rs
E

{
(K −Xs−tx)

+
}

= e−rt

· sup
s∈{1,...,T−t}

e−rs

(
KΦ

(
log K

x − sv0√
sσ

)
− xes(v0+σ2/2)Φ

(
log K

x − sv0 − sσ2

√
sσ

))
.

6.3. Nonparametric regression estimation

In order to introduce efficient estimates of qt(x), for general Markov process,

we briefly summarize the basics of nonparametric regression estimation. In

regression analysis one considers a random vector (X,Y ), where X and
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Y are R-valued, and one is interested how the value of the so-called re-

sponse variable Y depends on the value of the observation X. This means

that one wants to find a function f : R → R, such that f(X) is a “good

approximation of Y ,” that is, f(X) should be close to Y in some sense,

which is equivalent to making |f(X) − Y | “small.” Since X and Y are

random, |f(X)−Y | is random as well, therefore it is not clear what “small

|f(X) − Y |” means. We can resolve this problem by introducing the so-

called mean squared error of f ,

E|f(X)− Y |2,

and requiring it to be as small as possible. So we are interested in a function

m : R → R such that

E|m(X)− Y |2 = min
f :R→R

E|f(X)− Y |2.

According to Chapter 5 of this volume, such a function can be obtained

explicitly by the regression function:

m(x) = E{Y |X = x}.

In applications the distribution of (X,Y ) (and hence also the regression

function) is usually unknown. Therefore it is impossible to predict Y using

m(X). But it is often possible to observe data according to the distribution

of (X,Y ) and to estimate the regression function from these data.

To be more precise, denote by (X,Y ), (X1, Y1), (X2, Y2), . . . i.i.d. ran-

dom variables with EY 2 < ∞. Let Dn be the set of data defined by

Dn = {(X1, Y1), . . . , (Xn, Yn)} .

In the regression function estimation problem one wants to use the data Dn

in order to construct an estimate mn : R → R of the regression function m.

Here mn(x) = mn(x,Dn) is a measurable function of x and the data. For

simplicity, we will suppress Dn in the notation and write mn(x) instead of

mn(x,Dn).

In this section we describe the basic principles of nonparametric regres-

sion estimation: local averaging, or least squares estimation). (Concerning

the details see Chapter 5 of this volume and [Györfi et al. (2002)].)

The local averaging estimates of m(x) can be written as

mn(x) =

n∑

i=1

Wn,i(x) · Yi,
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where the weights Wn,i(x) = Wn,i(x,X1, . . . , Xn) ∈ R depend on

X1, . . . , Xn. Usually the weights are nonnegative and Wn,i(x) is “small” if

Xi is “far” from x.

An example of such an estimate is the partitioning estimate. Here one

chooses a finite or countably infinite partition Pn = {An,1, An,2, . . . } of

R consisting of cells An,j ⊆ R and defines, for x ∈ An,j , the estimate by

averaging Yi’s with the corresponding Xi’s in An,j , i.e.,

mn(x) =

∑n
i=1 I{Xi∈An,j}Yi∑n
i=1 I{Xi∈An,j}

for x ∈ An,j ,

where IA denotes the indicator function of set A. Here and in the following

we use the convention 0
0 = 0. For the partition Pn, the most important

example is when the cells An,j are intervals of length hn. For interval

partition, the consistency conditions mean that

lim
n→∞

hn = 0 and lim
n→∞

nhn = ∞. (6.13)

The second example of a local averaging estimate is the Nadaraya–

Watson kernel estimate. Let K : R → R+ be a function called the kernel

function, and let h > 0 be a bandwidth. The kernel estimate is defined by

mn(x) =

∑n
i=1 K

(
x−Xi

h

)
Yi∑n

i=1 K
(
x−Xi

h

) .

Here the estimate is a weighted average of the Yi, where the weight of Yi

(i.e., the influence of Yi on the value of the estimate at x) depends on the

distance between Xi and x. For the bandwidth h = hn, the consistency

conditions are (6.13). If one uses the so-called naive kernel (or window

kernel) K(x) = I{‖x‖≤1}, then

mn(x) =

∑n
i=1 I{‖x−Xi‖≤h}Yi∑n
i=1 I{‖x−Xi‖≤h}

,

i.e., one estimates m(x) by averaging Yi’s such that the distance between

Xi and x is not greater than h.

Our final example of local averaging estimates is the k-nearest neighbor

(k-NN) estimate. Here one determines the k nearest Xi’s to x in terms of

distance ‖x−Xi‖ and estimates m(x) by the average of the corresponding

Yi’s. More precisely, for x ∈ R, let

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x))

be a permutation of

(X1, Y1), . . . , (Xn, Yn)



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

248 L. Györfi and A. Telcs

such that

|x−X(1)(x)| ≤ · · · ≤ |x−X(n)(x)|.

The k-NN estimate is defined by

mn(x) =
1

k

k∑

i=1

Y(i)(x).

If k = kn → ∞ such that kn/n → 0 then the k-nearest-neighbor regression

estimate is consistent.

Least squares estimates are defined by minimizing the empirical L2 risk

1

n

n∑

i=1

|f(Xi)− Yi|2

over a general set of functions Fn. Observe that it doesn’t make sense to

minimize the empirical L2 risk over all functions f , because this may lead

to a function which interpolates the data and hence is not a reasonable

estimate. Thus one has to restrict the set of functions over which one

minimizes the empirical L2 risk. Examples of possible choices of the set

Fn are sets of piecewise polynomials with respect to a partition Pn, or

sets of smooth piecewise polynomials (splines). The use of spline spaces

ensures that the estimate is a smooth function. An important member of

least squares estimates is the generalized linear estimates. Let {φj}∞j=1 be

real-valued functions defined on R and let Fn be defined by

Fn =



f ; f =

`n∑

j=1

cjφj



 .

Then the generalized linear estimate is defined by

mn(·) = argmin
f∈Fn

{
1

n

n∑

i=1

(f(Xi)− Yi)
2

}

= argmin
c1,...,c`n





1

n

n∑

i=1




`n∑

j=1

cjφj(Xi)− Yi




2




.

If the set



∑̀

j=1

cjφj ; (c1, . . . , c`), ` = 1, 2, . . .
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is dense in the set of continuous functions, `n → ∞ and `n/n → 0 then the

generalized linear regression estimate defined above is consistent. For least

squares estimates, other example can be the neural networks or radial basis

functions or orthogonal series estimates or splines.

6.4. General case: pricing for process with stationary mul-

tiplicative increments

6.4.1. The backward recursive estimation scheme

Using the recursion (6.3), if the function qt+1 (x) were known, then qt(x)

would be a regression function, which can be estimated from data

Dt = {(Xi,t, Yi,t)}ni=1 ,

with

Yi,t = max {ft+1(Xi,t+1), qt+1(Xi,t+1)} .

However, the function qt+1(x) is unknown. Once we have an estimate qt+1,n

of qt+1 we can get an estimate of the next qt by generating samples Dt with

Y
(n)
i,t = max {ft+1 (Xi,t+1) , qt+1,n (Xi,t+1)} .

6.4.2. The Longstaff-Schwartz (LS) method

In this section we briefly survey on recent papers which generalized or

improved the Markov chain Monte Carlo and/or LS method.

First we recall the original method developed by [Longstaff and Schwartz

(2001)] then we elaborate on some refinements and variations. All these

methods have the following basic characteristics. They assume that the

price process of the underlying asset very well described by a theoretical

model, by the Black-Scholes (BS) model or a Markov chain model. In

both cases it is also assumed that we have from historical data a perfect

estimate of the model parameters hence Monte Carlo (MC) generation of

arbitrary large number of sample paths of the price process provide arbi-

trarily good approximation of the real situation, i.e., one applies a Monte

Carlo sampling.

[Longstaff and Schwartz (2001)] suggested a quadratic regression as fol-

lows. Given that qt is expressed by a conditional expectation (6.2), we

can seek for a regression function which determine the value of qt. Let us
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consider a function space e.g. L2 and an orthonormal basis, the weighted

Laguerre polynomials

L0 (x) = exp(−x/2)

L1 (x) = (1− x)L0 (x)

L2 (x) =
(
1− 2x+ x2/2

)
L0 (x)

Ln (x) =
ex

n!

dn

dxn

(
xne−x

)
.

we determine the coefficients: in case of k = 2, a1, a2, a3 :

(a0,t, a1,t, a2,t) = argmin
(a0,a1,a2)

n∑

i=1

(a0L0 (Xi,t) + a1L1 (Xi,t) + a2L2 (Xi,t)− Yi,t)
2

and obtain the estimate of qt

qt,n (x) =
2∑

i=0

ai,tLi(x).

Other choices might be, Hermite, Legendre, Chebysev, Gegenbauer, Jacoby,

trigonometric or even power functions do the job.

[Egloff (2005)] suggested to replace the parametric regression in the LS

method by nonparametric estimates. For example, in the possession of the

generated variables one can get the least square estimate of qt by

qt,n = argmin
f∈F

{
1

n

n∑

i=1

(f (Xi,t)− Yi,t)
2

}
,

where F is a function space.

[Kohler (2008)] studied the possible refinement, improvement of the LS

method in several papers. One significant extension is the computational

adaptation of the original LS method to options based on d underlying

assets, which lifts up the problem. This amounts to analyze d-dimensional

time-series such that [Kohler (2008)] suggested a penalized spline estimate

over a Sobolev space.

[Kohler et al. (2010)] investigated a least squares method for empirical

pricing compound American option if the corresponding space of functions

F is defined by neural networks (NN).

[Egloff et al. (2007)] reduced the error propagation with the rule such

that the non-in the money paths are sorted out, and for (Xi,s, Yi,s) generate

new path working on t, ...T (not the already used for t + 1...T ) reducing

error propagation. They studied an empirical error minimization estimate

for a function space of polynomial splines.
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6.4.3. A new estimator

Let’s introduce a partitioning like estimate, i.e., for the grid G and for

x ∈ G put

qt,n(x) =

∑n
i=1 max {ft+1(Xi,t+1), qt+1,n(Xi,t+1)} I{|Xi,t−x|≤h/2}∑n

i=1 I{|Xi,t−x|≤h/2}
, (6.14)

where I denotes the indicator, and 0/0 = 0 by definition. Obviously, this

estimate should be slightly modified if the denominator of the estimate is

not large enough. Then linearly interpolate for x /∈ G.

We have that

max
s∈{t+1,...,T}

E {fs(Xs) | Xt = x} ≤ qt(x) ≤ E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}
,

where both the lower and the upper bounds are true regression function.

For x ∈ G, the lower bound can be estimated by

q
(l)
t,n(x) = max

s∈{t+1,...,T}

∑n
i=1 fs(Xi,s)I{|Xi,t−x|≤h/2}∑n

i=1 I{|Xi,t−x|≤h/2}
,

while an estimate of the upper bound can be

q
(u)
t,n (x) =

∑n
i=1 maxs∈{t+1,...,T} fs(Xi,s)I{|Xi,t−x|≤h/2}∑n

i=1 I{|Xi,t−x|≤h/2}
.

Again, a truncation is proposed:

q̂t,n(x) =





q
(u)
t,n (x) if q

(u)
t,n (x) < qt,n(x),

qt,n(x) if q
(u)
t,n (x) ≥ qt,n(x) ≥ q

(l)
t,n(x),

q
(l)
t,n(x) if qt,n(x) < q

(l)
t,n(x).
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Kohler, M., Krzyżak, A. and Walk., H. (2008). Upper bounds for bermudan
options on markovian data using nonparametric regression and areduced
number of nested monte carlo steps, Statistics and Decision 26, pp. 275–
288.

Longstaff, F. A. and Schwartz, E. S. (2001). Valuing american options by simu-
lation: a simple least-squares proach, Review of FinancialStudies 14, pp.
113–147.

Luenberger, D. G. (1998). Investment Science (Oxford University Press, New
York, Oxford).

Rogers, L. C. G. (2002). Monte Carlo valuation of American options, Mathemat-
ical Finance 12, pp. 271–286.

Stout, W. F. (1974). Almost sure convergence (Academic Press, New York).

Tsitsiklis, J. N. and Roy, B. V. (1999). Optimal stopping of markov processes:
Hilbert space theory, approximation algorithms, and an application to pric-
ing high-dimensional financial derivatives, IEEE Trans. Autom.Control 44,
pp. 1840–1851.

Tsitsiklis, J. N. and Roy, B. V. (2001). Regression methods for pricing complex
american-style options, IEEE Trans. Neural Networks 12, pp. 694–730.

Vajda, I. (2006). Analysis of semi-log-optimal investment strategies, in
M. M. Huskova (ed.), Prague Stochastics 2006 (MATFYZPRESS), pp. 719–
727.



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

Subject Index

0− 1 loss, 222, 223, 227

admissible portfolio, 7, 9, 26

American put option, 231–234,

237, 250

average growth rate, 80, 86, 93,

97

asymptotic, 80, 83, 84, 89, 90,

93, 94

Banachs fixed point theorem,

130, 140

Bellman equation, 127–129, 131,

133, 139–141, 143, 145, 147

discounted, 129, 130, 141, 142

benchmark approach, 1, 5, 60

Black-Scholes model, 241, 244,

249

commission factor, 120, 127

derivative pricing, 5, 6, 15, 39, 67

dynamic programming, 124, 128

elementary portfolio, 104, 105

elementary predictors/experts,

206–211, 218–220

empirical pricing, 231, 234, 237,

250

expert, 103, 104, 106, 107, 111,

112

exponential weighting, 104, 105

geometric average/mean, 2, 3, 8,

9, 34, 43, 47

Growth Optimal Portfolio/GOP,

1–6, 9–15, 22, 30–32, 39, 41, 42,

48, 52, 54, 58, 59, 61, 62, 67

horse racing, 79, 90

Kelly

criterion, 2

game, 79, 87, 88

Kuhn-Tucker, 5, 155–157, 163,

164, 169

leverage, 151, 152, 168, 170, 172,

174

market process, 80, 83, 85, 97,

100

Markov process, 117, 118, 123,

232, 234

martingale

martingale approach, 233

martingale density, 21, 28, 52

martingale difference sequence,

253



January 26, 2011 12:53 World Scientific Review Volume - 9in x 6in MLFFE

254 Subject Index

98, 99

supermartingale, 1, 4, 5, 16, 17,

19, 26, 27, 29, 52–54, 58,

63, 66

mean-variance approach, 4, 5, 30,

31, 39, 41–47, 61, 64

memoryless market process, 83,

84

memoryless multiplicative incre-

ments, 236, 238, 240, 241

multi-period investment, 79, 82

no-ruin, 13, 151, 160, 162, 163,

168, 171, 174
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