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Chapter 2

ON THE HISTORY OF THE GROWTH OPTIMAL
PORTFOLIO

Morten Mosegaard Christensen

Abstract

The growth optimal portfolio (GOP) is a portfolio which hasnaximal expected
growth rate over any time horizon. As a consequence, thigghioris sure to out-
perform any other significantly different strategy as timeetihorizon increases. This
property in particular has fascinated many researchemandie and mathematics cre-
ated a huge and exciting literature on growth optimal inmestt. This paper attempts
to provide a comprehensive survey of the literature andiegpbns of the GOP. In
particular, the heated debate of whether the GOP has a bpkaia among portfolios
in the asset allocation decision is reviewed as this sthséo be an area where some
misconceptions exists. The survey also provides an exensview of the recent use
of the GOP as a pricing tool, in for instance the so-callechdenark approach”. This
approach builds on the nuaraire property of the GOP, that is, the fact that any other
asset denominated in units of the GOP become a supermaetinga
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1. Introduction and a Historical Overivew

Over the past 50 years a large number of papers have investigated ;eA&@e name
implies this portfolio can be used by an investor to maximize the expected graethf tas
or her portfolio. However, this is only one among many uses of this objettielliterature it
has been applied in as diverse connections as portfolio theory and ggmuiiiity theory,
information theory, game theory, theoretical and applied asset pricingaimse, capital
structure theory, macro-economy and event studies. The ambition ofékenprpaper is
to present a reasonably comprehensive review of the differentections in which the
portfolio has been applied. An earlier survey in Hakansson and Zient&b)¥ocused
mainly on the applications of the GOP for investment and gambling purposesougltth
this will be discussed in Section 3., the present paper has a somewhateagper.

The origins of the GOP have usually been tracked to the paper Kelly (18&6¢e the
name “Kelly criterion”, which is used synonymously. (The name Kelly critepoobably
originates from Thorp (1971).) Kelly’s motivation came from gambling andrimiation
theory, and his paper derived a striking but simple result: There is an dmjanabling
strategy, such that with probability one, this optimal gambling strategy will aciaieu
more wealth than any other different strategy. Kelly’s strategy was thatlgroptimal
strategy and in this respect the GOP was discovered by him. Howevdhewltiis is the
true origin of the GOP depends on a point of view. The GOP is a portfolio veitieral
aspects, one of which is the maximization of tpeometric mean In this respect, the
history might be said to have its origin in Williams (1936), who considered satecs
in a multi-period setting and reached the conclusion that due to compoungewyilators
should worry about the geometric mean and not the arithmetic ditto. Williams did not
reach any result regarding the growth properties of this approaciwdmioften cited as
the earliest paper on the GOP in the seventies seemingly due to the remaanoetigc
mean made in the appendix of his paper. Yet another way of approacharystiory of
the GOP is from the perspective of utility theory. As the GOP is the choice ofa lo
utility investor, one might investigate the origin of this utility function. In this senge th
history dates even further back to the 18th century. The mathematician Riamend
Montemort challenged Nicolas Bernoulli with five problems, one of which thasamous
St. Petersburg paradox. The St. Petersburg paradox refers toithegsing game, where
returns are given &'~ !, wheren is the number of games before “heads” come up the first
time. The expected value of participating is infinite, but in Nicolas Bernoulli'sdspno
sensible man would pay 20 dollars for participating. Nicolas Bernoulli ptsedroblem to
his cousin, Daniel Bernoulli, who suggested using a utility function to ertbatgrational)
gamblers will use a more conservative strategy. Note that any unboutitigdfunction
is subject to the generalized St. Petersburg paradox, obtained by steiogtcomes of
the original paradox sufficiently to provide infinite expected utility. For mofermation
see e.g. Bernoulli (1954), Menger (1967), Samuelson (1977) oe A2301). Nicolas
Bernoulli conjectured that gamblers should be risk averse, but lesstheyifhad high
wealth. In particular, he suggested that marginal utility should be invemggional to
wealth, which is tantamount to assuming log-utility. However, the choice of ithgar
appears to have nothing to do with the growth properties of this strategysamistimes
suggested. The original article “Specimen Theoriae Nova de Mensutia"Smom 1738
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is reprinted in Econometrica Bernoulli (1954) and do not mention growttshduld be
noted that the St. Petersburg paradox was resolved even earlier imgCraho used the
square-root function in a similar way. Hence log-utility has a history goimdy baleast 250
years and in this sense, so has the GOP. It seems to have been Berhoudlisome extent
inspired the article Latén(1959). Independent of Kelly’s result, Lafasuggested that
investors should maximize the geometric mean of their portfolios, as this would maximiz
the probability that the portfolio would be more valuable than any other portfolioe
cited paper by Latamhas a reference to Kelly’s 1956 paper, but Latarentions that he
was unaware of Kelly’s result before presenting the paper at anrezolidéerence in 1956.
Independent of where the history of the GOP is said to start, the realshierthe GOP
was not awoken until after the papers by Kelly and LataAs will be described later on,
the goal suggested by Lagicaused a great deal of debate among economists which has
not completely died out yet. The paper by Kelly caused a great deal of irateéditerest in

the mathematic and gambling community. Breiman (1960, 1961) expanded theisuadly
Kelly (1956) and discussed applications for long term investment and gagriblen more
general mathematical setting.

Calculating the growth optimal strategy is generally very difficult in discrete tintk a
is treated in Bellman and Kalaba (1957), Elton and Gruber (1974) and NPa&srson, and
Weide (1977b) although the difficulties disappear whenever the marketriplete. This
is similar to the case when jumps in asset prices happen at random. In theioostiime
continuous-diffusion case, the problem is much easier and was solveérioriv(1969).
This problem along with a general study of the properties of the GOP hese $tudied
for decades and is still being studied today. Mathematicians fascinated pgoiberties of
the GOP has contributed to the literature with a significant number of theoraticaes
spelling out the properties of the GOP in a variety of scenarios and incghageneralized
settings, including continuous time models based on semimartingale represevitassat
prices. Today, solutions to the problem exist in a semi-explicit form and ige¢heral case,
the GOP can be characterized in terms of the semimartingale characteristic &iplan-
linear integral equation must still be solved to get the portfolio weights. Thpepties of
the GOP and the formulas required to calculate the strategy in a given se-diseussed
in Section 2.. It has been split into two parts. Section 2.1. deals with the simptetdiime
case, providing the main properties of the GOP without the need of demamdithgmat-
ical techniques. Section 2.2. deals with the fully general case, wheze@gse processes
are modeled as semimartingales, and contains examples on important spssal ca

The growth optimality and the properties highlighted in Section 2. inspired autbor
recommend the GOP as a universally “best” strategy and this sparketkd diedate. In a
number of papers Paul Samuelson and other academics argued thatRheas@nly one
among many other investment rules and any belief that the GOP was uhjvetgeerior
rested on a fallacy. The substance of this discussion is explained in det8gstion 3.1..
The debate from the late sixties and seventies contains some important ledsehekd in
mind when discussing the application of the GOP as a long term investmentgtrateg

The use of the GOP became referred to agjttwavth optimum theonand it was intro-
duced as an alternative to expected utility and the mean-variance appsdadsset pric-
ing. It was argued that a theory for portfolio selection and asset prizsgd on the GOP
would have properties which are more appealing than those implied by thevaganee
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approach developed by Markowitz (1952). Consequently, a signifamaount of the liter-
ature deals with comparing the two approaches. A discussion of the relatimedn the
GOP and the mean-variance model is presented in Section 3.2. Since a nuameardor
applying the GOP is its ability to outperform other portfolios over time, authore tréed

to estimate the time needed to be “reasonably” sure to obtain a better resulthes@QP.
Some answers to this question are provided in Section 3.3.

The fact that asset prices, when denominated in terms of the GOP, begpemmartin-
gales was realized quite early, appearing in a proof in Breiman (196&)F€m 1]. It was
not until 1990 in Long (1990) that this property was given a more thdrdrgatment. Al-
though Long suggested this as a method for measuring abnormal retuneninsaudies
and this approach has been followed recently in working papers byd;e3antis, and
Ortu (2000) and Hentschel and Long (2004), the consequences afitteraire property
stretches much further. It suggested a change ofémaime technique for asset pricing un-
der which a change of probability measure would be unnecessary. rehérfie this is
treated explicitly appears to be in Bajeux-Besnaino and Portait (199729 latthnineties.
At first, the use of the GOP for derivative pricing purposes was ¢isdlgrjust the choice
of a particular pricing operator in an incomplete market. Over the past fues ythis idea
became developed further in the benchmark framework of Platen (2882ater papers,
who emphasize the applicability of this idea in the absence of a risk-neutlbdhlpitity
measure. The use of the GOP as a tool for derivative pricing is revisw@elction 4.. This
has motivated a substantial part of this thesis, because it essentially glealtbie approach
of using some risk neutral measure for pricing derivatives. During tleisisH am going to
conduct a (hopefully) thorough analysis of what arbitrage conceptsetevant in a mathe-
matically consistent theory of derivative pricing and what role martingalesorea play in
this context. Section 4. gives a motivation and foreshadows some of thitsregill derive
later on. A complete survey of the benchmark approach is beyond the s€tiis paper,
but may be found in Platen (2006).

The suggestion that such GOP denominated prices could be martingales isamhpor
to the empirical work, since this provide a testable assumption which can ified/é&om
market data. The Kuhn-Tucker conditions for optimum provides only tphersoartingale
property which may be a problem, see Section 2. and Section 5. Few empatk exist,
and most appeared during the seventies. Some papers tried to obtaircevimtesr against
the assumption that the market was dominated by growth optimizers and to sabehow
growth optimum model compared to the mean-variance approach. Othersitrgument
the performance of the GOP as an investment strategy, in comparison witlsgiegies.
Section 5. deals with the existing empirical evidence related to the GOP.

Since an understanding of the properties of the GOP provides a usekdgtound for
analyzing the applications, the first task will be to present the relevanitseshich de-
scribe some of the remarkable properties of the GOP. The next sectigmaisiss into a
survey of discrete time results which are reasonably accessible and anmattrematically
demanding survey in continuous time. This is not just mathematically convenieatdo
fairly chronological. It also discusses the issues relatesbteingfor the growth optimal
portfolio strategy, which is a non-trivial task in the general case. Realat are particu-
larly interested in the GOP from an investment perspective may prefer tatekigeneral
treatment in Section 2.2. with very little loss. However, most of this thesis relteagixely
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on the continuous time analysis and later chapters builds on the results ohlte8extion
2.2.. Extensive references will be given in the notes at the end of eatbrsand only the
most important references are kept within the main text, in order to keepurit tunel short.

2. Theoretical Studies of the GOP

The early literature on the GOP was usually framed in discrete time and cetidee-
stricted number of distributions. Despite the simplicity and loss of generality, ofidise
interesting properties of the GOP can be analyzed within such a frameiMoekmore re-
cent theory has almost exclusively considered the GOP in continuous titneoasiders
very general set-ups, requiring the machinery of stochastic integrais@metimes ap-
plies a very general class of processes, semimartingales, which arsuitetl-for financial
modeling. Although many of the fundamental properties of the GOP carntotke gen-
eral case, there are some quite technical, but very important differémtiee discrete time
case.

Section 2.1. reviews the major theoretical properties of the GOP in a discrete time
framework, requiring only basic probability theory. Section 2.2., on therdihad, sur-
veys the GOP problem in a very general semimartingale setting and placesnsudbes
within this framework. It uses the theory of stochastic integration with regpesemi-
martingales, but simpler examples have been provided for illustrative pesp@oth sec-
tions are structured around three basic iss&agstencewhich is fundamental, particularly
for theoretical applicationsGrowth propertiesare those that are exploited when using the
GOP as an investment strategy. Finally, theréraire propertywhich is essential for the
use of the GOP in derivative pricing.

2.1. Discrete Time

Consider a market consisting of a finite number of non-dividend payisgtsisThe market
consists off 4 1 assets, represented by & 1 dimensional vector procesS, where

S = {S(t) = (SO(1),...8D@)), t e {0,1,.. .,T}} . )

The first assef(©) is sometimes assumed to be risk-free from one period to the next, i.e.
the valueS(©)(¢) is known at timet — 1. In other wordsS(©) is a predictable process. Math-
ematically, let((2, 7, F, P) denote a filtered probability space, whefe= (F)cq0,1,..73
is an increasing sequence of information sets. Each price prétéss- {SO (1), t
{0,1,...T}} is assumed to be adapted to the filtrationin words, the price of each asset
is known at timef, given the informatiorF;. Sometimes it will be convenient to work on an
infinite time horizon in which cas€ = oo. However, unless otherwise notddis assumed
to be some finite number.

Define thereturnprocess

R= {R(t) — (R'(t),...Ri(t)), t € {1,2,... ,T}}

by Ri(t) & % — 1. Often it is assumed that returns are independent over time, and

for simplicity this assumption is made in this section.
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Investors in such a market consider the choice sfrategy
5= {5(t) = (6O(),...6@D @), teo,... ,T}},

whered(®(t) denotes the number of units of assehat is being held during the period
(t,t+1]. As usual some notion of “reasonable” strategy has to be used. Defihitiakes
this precise.

Definition 1 A trading strategys, generates the portfolio value proceS&) (t) £ §(t) -
S(t). The strategy is calleddmissiblef it satisfies the three conditions

1. Non-anticipative: The procegds adapted to the filtratiodF, meaning thab(¢) can
only be chosen based on information available at time

2. Limited liability: The strategy generates a portfolio proces$ (t) which is non-
negative.

3. Self-financingd(t—1)-S(t) = §(t)-S(t),t € {1,... T} or equivalentlyA S (¢) =
5(t —1) - AS(t).

The set of admissible portfolios in the market will be den&é8d), and©(.S) will denote
the strictly positive portfolios. It is assumed titatS) # (.

Here, the notation -y denotes the standard Euclidean inner product. These assumptions are
fairly standard. The first part assumes that any investor is unable tintmothe future, only
the current and past information is available. The second part redlué@s/estor to remain
solvent, since his total wealth must always be non-negative. This reugmtewill prevent
him from taking an unreasonably risky position. Technically, this congtrsimot strictly
necessary in the very simple set-up described in this subsection, unléssgerizonT is
infinite. The third part requires that the investor re-invests all money in éae step. No
wealth is withdrawn or added to the portfolio. This means that intermediate rwqutisun
is not possible. Although this is a restriction in generality, consumption catidveca at
the cost of slightly more complex statements. Since consumption is not imporntahefo
purpose of this survey, | have decided to leave it out altogether. Therement that it
should be possible to form a strictly positive portfolio is important, since thethroate of
any portfolio with a chance of defaulting will be minus infinity.

Consider an investor who invests a dollar of wealth in some portfolio. At tlleogn
periodT his wealth becomes

STy = $D0) TT 1 + RO (1))

whereR()(t) is the return in period. If the portfolio fractionsare fixed during the period,
the right-hand-side is the productBfiid random variables. Thgeometric averageeturn
over the period is then

T—-1 %
<H (1+ R(5)(i))> .

=0
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Because the returns of each period are iid, this average is a samplegedhmtric mean
value of the one-period return distribution. For discrete random variablegyebenetric

mean of a random variabl¥ taking (not necessarily distinct) values, . . . g with equal

probabilities is defined as

G(X) 2 (0 2,) = (T3] ) = exp(Ellog (X)),

wherez;, is the distinct values o and f; is the frequency of whickX = x, that is

fr = P(X = xz). In other words, the geometric mean is the exponential function of
the growth rateg® (t) 2 £[log(1 + R)(t)] of some portfolio. Hence if2 is discrete or
more precisely if ther-algebraF on € is countable, maximizing the geometric mean is
equivalent to maximizing the expected growth rate. Generally, one defiaggetmetric
mean of an arbitrary random variable by

G(X) = exp(&[log(X)])

assuming the mean valdglog(X )] is well defined. Over long stretches intuition dictates
that each realized value of the return distribution should appear ongavéra number of
times dictated by its frequency, and hence as the number of periods mdteasuld hold
that

T-1 T ;
(H(l + R((S)(Z))> = exp <ZZT:1 10?(5@)@))) - G(l + R(5)(1))
=0

asT — oo. This states that the average growth rate converges to the expectetth grow
rate. In fact this heuristic argument can be made precise by an applicétibe kaw of
large numbers, but here | only need it for establishing intuition. In multi-pemodels,

the geometric mean was suggested by Williams (1936) as a natural perfermaasure,
because it took into account the effects from compounding. Insteacbf/ing about

the average expected return, an investor who invests repeatedly shouidabout the
geometric mean return. As | will discuss later on, not everyone liked thislde# explains
why one might consider the problem

SO(T)
sup & |log ( >
S6)(T)e [ S©)(0)

(2)

Definition 2 A solution,S®, to (2) is called a GOP.

Hence the objective given by (2) is often referred to as dleemetric mean criteria
Economists may view this as the maximization of expected terminal wealth for amdindiv
ual with logarithmic utility. However, it is important to realize that the GOP was intced
into economic theory, not as a special case of a general utility maximizatidteprobut
because it seems as an intuitive objective, when the investment horiztmhetrever sev-
eral periods. The next section will demonstrate the importance of thiswatser. For
simplicity it is always assumed thé’t“”(O) = 1, i.e. the investors start with one unit of
wealth.
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If an investor can find an admissible portfolio having zero initial cost anithvjro-
vides a strictly positive pay-off at some future date, a solution to (2) willex@t. Such a
portfolio is called ararbitrageand is formally defined in the following way.

Definition 3 An admissible strategyis called an arbitrage strategy if
SOOy=0 PISOT))>0=1 PSOT)>0)>0.

It seems reasonable that this is closely related to the existence of a solutiailenp (2),
because the existence of a strategy that creates “something out of riatlong provide
an infinitely high growth rate. In fact, in the present discrete time set-up, théiwgs are
completely equivalent.

Theorem 1 There exists a GO, if and only if there is no arbitrage. If the GOP exists
its value process is unique.

The necessity of no arbitrage is straightforward as indicated above stffieiency will
follow directly once the nureraire property of the GOP has been established, see Theorem
4 below. In a more general continuous time set-up, the equivalence lmetaeebitrage and
the existence of a GOP, as predicted from Theorem 4., is not completenmiutechnically
much more involved. The unigueness of the GOP only concerns the valuesst not
the strategy. If there are redundant assets, the GOP strategy is essasgly unique.
Uniqueness of the value process will follow from the Jensen inequalitg te nuréraire
property has been established. The existence and uniqueness of pl&®Bnly a minor
role in the theory of investments, where it is more or less taken for grantethelline
of literature that deals with the application of the GOP for pricing purpostabkshing
existence is essential.

It is possible to infer some simple properties of the GOP strategy, withoutfustiec-
ifications of the model:

Theorem 2 The GOP strategy has the following properties:

1. The fractions of wealth invested in each asset are independent ofvidieofetotal
wealth.

2. The invested fraction of wealth in assét proportional to the return on assét

3. The strategy isnyopic

The first part is to be understood in the sense thatfthetionsinvested are independent
of current wealth. Moreover, the GOP strategy allocates funds in piopdo the excess
return on an asset. Myopia means shortsighted and implies that the GOPysinateg
given period depends only on the distribution of returns in the next pertéeince the
strategy is independent of the time horizon. Despite the negative flavoratte"myopic”
can be given, it may for practical reasons be quite convenient to hatatagy which
only requires the estimation of returns one period ahead. It seems abtson assume,
that return distributions further out in the future are more uncertain. davg the GOP
strategy depends only on the distribution of asset returns one periad abge that

T
£ [1og(s<5> (T))} =1og(S@(0)) + > & [1og(1 + RO (i))} .

=1
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In general, obtaining the strategy in an explicit closed form is not possitiis. involves
solving a non-linear optimization problem. To see this, | derive the firstraroeditions
of (2). Since by Theorem 2 the GOP strategy is myopic and the investeibfraare
independent of wealth, one needs to solve the problem

SO (t+1)
& |l — 3
e s (i) o
. . i RIAOEIO)
for eacht € {0,1,...,7 — 1}. Using the fractions}(t) = ECOTON. the problem can be
written
sup & [log <1 +(1- ng)Ro(t) + ZW%R%Q) . 4
75 (t)ERY i=1 i=1

The properties of the logarithm ensures that the portfolio will automaticallgrbeadmis-
sible. By differentiation, the first order conditions become

1+ Ri(t)
S-1 | T Rag)
1+ R(t)
This constitutes a set df+ 1 non-linear equation to be solved simultaneously such that one
of which is a consequence of the others, due to the constrainfigf 7% = 1. Although
these equations do not generally posses an explicit closed-form soltitene are some
special cases which can be handled:

}:1 ie{0,1,...,n}. )

Example 1 (Betting on events)Consider a one-period model. At time= 1 the outcome

of the discrete random variabl& is revealed. If the investor bets on this outcome, he
receives a fixed number times his original bet, which | normalize to one dollar. If the
expected return from betting is negative, the investor would prefer to avtiddpef pos-
sible. Letd; = {w|X (w) = x;} be the sets of mutual exclusive possible outcomes, where
x; > 0. Some straightforward manipulations provide

1= | = = =
8[1+Ré] 5[773

7
s

and hencer; = P(4;). Consequently, the growth-maximizer bets proportionally on the
probability of the different outcomes.

In the example above, the GOP strategy is easily obtained since there is adinibemof
mutually exclusive outcomes and it was possible to bet on any of these owctiroan be
seen by extending the example, that the odds for a given event has nu onghefraction
of wealth used to bet on the event. In other words, if all events have the peobability
the pay-off if the event come true does not alter the optimal fractions.

Translated into a financial terminology, Example 1 illustrates the case when thetma
is complete The market is complete whenever Arrow-Debreu securities paying aia d
in one particular state of the world can be replicated, and a bet on eaatcewd be inter-
preted as buying an Arrow-Debreu security. Markets consisting afwhDebreu securities
are sometimes referred to as “horse race markets” because only omigysébhe winner”,
will make a pay-off in a given state. In a financial setting, the securitiemnast often not
modelled as Arrow-Debreu securities.
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Example 2 (Complete Markets) Again, a one-period model is considered. Assume that
the probability spacé? is finite, and forw; € (2 there is a strategy,,, such that at time 1

§0w;) (w) = Loy

Then the growth optimal strategy, by the example above, is to hold a fradtiotabwealth
equal toP(w) in the portfolioS©%~). In terms of the originial securities, the investor needs

to invest
= 2 P(w)ms

wherer} is the fraction of assetheld in the portfoliaS ).

The conclusion that a GOP can be obtained explicitly in a complete market is guite g
eral. In an incomplete discrete time setting things are more complicated and natexplic
solution will exist, requiring the use of numerical methods to solve the nonrlilveor-
der conditions. The non-existence of an explicit solution to the problemrmvessioned by
e.g. Mossin (1973) as a main reason for the lack of popularity of the Gregthmum
model in the seventies. Due to the increase in computational power over ghénhjpty
years, time considerations have become unimportant. Leaving the calcukidedor a
moment, | turn to the distinguishing properties of the GOP, which have made itamgte
lar among academics and investors searching for a utility independenieciaieportfolio
selection. A discussion of the role of the GOP in asset allocation and invastie@sions

is postponed to Section 3..

Theorem 3 The portfolio process$ () (t) has the following properties

1. If assets are infinitely divisible, the ruin probability(S® (t) = 0 for some t< T),
of the GOP is zero.

2. If, additionally, there is at least one asset with non-negative expegtedh rate,
then the long-term ruin probability (defined below) of the GOP is zero.
S (¢)

3. For any strategy it holds thatlim sup % log (S@—)(t)) < 0 almost surely.

4. Asymptotically, the GOP maximizes median wealth.

The no ruin property critically depends amfinite divisibility of investments. This means
that an arbitrary small amount of a given asset can be bought or seldiealth becomes
low, the GOP will require a constant fraction to be invested and hencessiashabsolute
amount must be feasible. If not, ruin is a possibility. In general, any stratbigch invests a
fixed relative amount of capital will never cause the ruin of the investoniteftime as long
as arbitrarily small amounts of capital can be invested. In the case, whenavtstor is
guaranteed not to be ruined at some fixed time/ahg term ruin probabilityof an investor
following the strategy is defined as

P(liminf S©) () = 0).

t—o00
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Only if the optimal growth rate is greater than zero can ruin in this sense lideavd\ote
that seemingly rational strategies such as “bet such&¥{] is maximized” can be shown
to ensure certain ruin, even in fair or favorable games. A simple exampliellwethead or
tail using a false coin, where chances of head are 90%. If a playealdtis money on
head, then the chance that he will be ruined igames will bel —0.9" — 1. Interestingly,
certain portfolios selected by maximizing utility can have a long-term ruin piibtyabf
one, even if there exist portfolios with a strictly positive growth rate. Thismad¢hat some
utility maximizing investors are likely to end up with, on average, very little wealthe Th
third property is the distinguishing feature of the GOP. It implies that with gritibaone,
the GOP will overtake the value of any other portfolio and stay ahead iritddfinn other
words, foreverypath taken, if the strategyis different from the GOP, there is an instant
s such thatS@(t) > SO (t) for everyt > s. Hence, although the GOP is defined so as
to maximize theexpectedgrowth rate, it also maximizes the long term growth rate in an
almost suresense. The proof in a simple case is due to Kelly (1956), more sources are
cited in the notes. This property has led to some confusion: if the GOP ocutpesrfany
other portfolio at some point in time, it may be tempting to argue that long term imgesto
should all invest in the GOP. This is, however, not literally true and | will ascthis in
Section 3.1.. The last part of the theorem has received less attentior.ténmedian of a
distribution is unimportant to an investor maximizing expected utility, the fact thad e
maximizes the median of wealth in the long run is of little theoretical importance, at leas
in the field of economics. Yet, for practical purposes it may be interestimgg $or highly
skewed distributions the median is quite useful as a measure of the most liktetyraal.
The property was recently shown by Ethier (2004).

Another performance criterion often discussed is the expected time to aezettain
level of wealth. In other words, if the investor wants to get rich fast, wlrategy should
he use? It isiotgenerally true that the GOP is the strategy which minimizes this time, due
to the problem ofovershooting If one uses the GOP, chances are that the target level is
exceeded significantly. Hence a more conservative strategy might be beitee wishes
to attain a goal and there is no “bonus” for exceeding the target. To gmathematical
formulation define

(z) £ inf{t | SO (t) > x}

and letg’ (t) denote the growth rate of the stratefjyat timet € {1,...,}. Note that due

to myopia, the GOP strategy does not depend on the final time, so it makesselefine

it even if T = oo. Hence,g%(t) denotes the expected growth rate using the GOP strategy.
If returns are iid, them(t) is a constantg?. Defining the stopping time(®)(z) to be the

first time the portfolioS(®) exceeds the level, the following asymptotic result holds true.

Lemma 1 (Breiman, 1961) Assume returns to be iid. Then for any stratégy

lim £[r9(z)] — [0 (z)] = Z 1— 9‘5(@-).
In fact, a technical assumption needed is that the varidbigg(®)(t)) be non-lattice
A random variableX is lattice if there is some € R and somé > 0 such thatP(X ¢
a+bZ) = 1, whereZ = {...,-2,-1,0,1,2,...}. As ¢ is larger thary’, the right-
hand side is non-negative, implying that the expected time to reach a gogfriptasically
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minimized when using the GOP, as the desired level is increased indefinitelgthén
words, for “high” wealth targets, the GOP will minimize the expected time to reash th
target. Note that the assumption of iid returns implies that the expected growtisra
identical for all periods. For finite hitting levels, the problem of overshaptan be dealt

with by introducing a “time rebate” when the target is exceeded. In this thee;zOP
strategy remains optimal for finite levels. The problem of overshooting is eliedria the
continuous time diffusion case, because the diffusion can be controltadhiaseously and

in this case the GOP will minimize the time to reach any goal, see Pestien and Sudderth
(1985).

This ends the discussion of the properties that are important when congittee GOP
as an investment strategy. Readers whose main interest is in this directiorkipalyes
remainder of this chapter. Apart from the growth property, there is anqtioperty, of
the GOP, thenuméraire propertywhich | will explain below, and which is important in
order to understand the role of the GOP in the fields of derivative/assetgp Consider
equation (5) and assume there is a solution satisfying these first oraétiaos. It follows
immediately that the resulting GOP will have the property that expected retuany asset
measured against the return of the GOP will be zero. In other words, K Ggominated
returns of any portfolio are zero, then GOP denominated prices begmrgigalessince

L+ R(t+1)] . |SOt+1) 5D |
& [1+R5(t+1)} =& !5(5)(t+1) S<5)(t)] =1

which implies that
SOE+1)| SO

S@(t+1) S@)(t)

If asset prices in GOP denominated units are martingales, then the empidbabpity
measureP is an equivalent martingale measure (EMM). This suggests a way of pacing
given pay-off. Measure it in units of the GOP and take the ordinaryaaer In fact this
methodology was suggested recently and will be discussed in Section 4.ralBetiere

is no guarantee that (5) has a solution. Even if Theorem 1 ensuresishener of a GOP,

it may be that the resulting strategy does not satisfy (5). Mathematically, thistishiei
statement that an optimum need not be attained in an inner point, but can bedatain
the boundary. Even in this case something may be said about GOP denométated

- they becomestrictly negative- and the GOP denominated price processes become strict
supermartingales.

&

S (¢)
S(9) (t)

Theorem 4 The processS()(t) £
interior of the set

is a supermartingale. If%(¢) belongs to the

{z e R¥Investing the fractions at timet is admissiblg,
thenS()(t) is a true martingale.

Note that$(®)(¢) can be a martingale even if the fractions are not in the interior of the set
of admissible strategies. This happens in the (rare) cases where tt@dastconditions
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are satisfied on the boundary of this set. The fact that the GOP has tteraiterprop-
erty follows by applying the bountbg(x) < x — 1 and the last part of the statement is
obtained by considering the first order conditions for optimality, see Equéiijo The fact
that the nuréraire property of the portfoli®@ implies thatS® is the GOP is shown by
considering the portfolio

SEOt) 2 eSO () + (1 — )5 (1),

using the nuraéraire property and lettingturn to zero.

The martingale condition has been used to establish a theory for pricingifihassets,
see Section 4., and to test whether a given portfolio is the GOP, see Sectidnté that
the martingale condition is equivalent to the statement that returns denominaiitsiof
the GOP become zero. A portfolio with this property was calletisiéraire portfolioby
Long (1990). If one restricts the definition such that a guare portfolio only covers the
case where such returns are exactly zero, then &raim portfolio need not exist. In the
case where (5) has no solution, there is no araire portfolio, but under the assumption
of no arbitrage there is a GOP and hence the existence of @mimm portfolio is not
a consequence of no arbitrage. This motivated the generalized definfitaonwreraire
portfolio, made by Becherer (2001), who defined a &taire portfolio as a portfolia$(®,
such that for all other strategies, the processLZ%g; would be a supermartingale. By
Theorem 4 this portfolio is the GOP.

It is important to check that the nuéraire property is valid, since otherwise the empir-
ical tests of the martingale restriction implied by (5) become invalid. Moreoganguhe
GOP and the change of n@maire technique for pricing derivatives becomes unclear as will
be discussed in Section 4..

A simple example illustrates the situation that GOP denominated asset prices may be
supermartingales.

Example 3 (Becherer (2001), Bhimann and Platen (2003)) Consider a simple one pe-
riod model and let the markés(?), S(1)) be such that the first asset is risk fre#? (¢) = 1,

t € {0,T}. The second asset has a log-normal distributieg( S (1)) ~ N (u, 0?) and
S™M(0) = 1. Consider an admissible strategy= (6(*), §(1)) and assume the investor has
one unit of wealth. Since

SO(T) =60 4 M sM(T) >0

and SV (T') is log-normal, it follows that®) € [0, 1] in order for the wealth process to be
non-negative. Now

£ [log (5@ (T))] —¢ [bg (1460 (sM(T) — §© (T)))} .
First order conditions imply that

SM(T)
14 W(SW(T) - SO(T))

SO(T)
1+ M (sM(T) — 50O)(T))
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It can be verified that there is a solution to this equation if and orjjy|i "72 If M—%Q <0
then it is optimal to invest everything #%. The intuition is, that compared to the risk-less
asset the risky asset has a negative growth rate. Since the two are izt is optimal
not to invest in the risky asset at all. In this case

SOy =1 SW(T) = 5U(T).

it follows that5(® is a martingale, wherea8(V) (T') = S((T') is a strict supermartingale,
since€[SM(T)|F] < SM(0) = 1. Conversely, ifx > % then it is optimal to invest
everything in asset 1, because the growth rate of the risk-free eslagiveto the growth
rate of the risky asset is negative. The word relative is important bedhesgrowth rate
in absolute terms is zero. In this case

STy =1

and henceS(©) is a supermartingale, wherea? is a martingale.

The simple example shows that there is economic intuition behind the case when GO
denominated asset prices become true martingales. It happens in twokiestbs it may
happen if the growth rate of the risky asset is low. In other words, theenharice of risk
is very low and investors cannot create short positions due to limited liabilitydd #te
risky asset. Secondly, it may happen if the risky asset has a high gratgttcorresponding
to the situation where the market price of risk is high. In the example this pames
top > %2 Investors cannot have arbitrary long positions in the risky assetapybe®f
the risk of bankruptcy. The fact that investors avoid bankruptcy isasnmdnsequence of
Definition 1, it will persist even without this restriction. Instead, it derifresn the fact that
the logarithmic utility function turns to minus infinity as wealth turns to zero. Coresettyy
any strategy that may result in zero wealth with positive probability will be aidOne
may expect to see the phenomenon in more general continuous-time modateswdere
investors are facing portfolio constraints or if there are jumps which magesug reduce
the value of the portfolio. | will return to this issue in the next section.

Notes

The assumption of independent returns can be loosened, see Hakandd.iu (1970)
and Algoet and Cover (1988). Although strategies in such set-upddsbeubased on
previous information, not just the information of the current realizatiorstadk prices, it
can be shown that the growth and nenaire property remains intact in this set-up.

That no arbitrage is necessary seems to have been noted quite earlykdéyskian
(1971a), who formulated this as a “no easy money” condition, wherey“gamey” is
defined as the ability to form a portfolio whose return dominates the risk ftegest rate
almost surely. The one-to-one relation to arbitrage appears in Maiers®etand Weide
(1977b)[Theorem 1 and 1'] and although Maier, Peterson, and W&i€7b) do not men-
tion arbitrage and state price densities (SPD) explicitly, their results couldhizesed as
the equivalence between the existence of a solution to problem 2 and thenegi®f an
SPD [Theorem 1] and the absence of arbitrage [Theorem 1']. Téigtifine the relation is
mentioned explicitly is in Long (1990). Long’s Theorem 1, as statedptditerally true,



On the history of the Growth Optimal Portfolio 15

although it would be if nurraire portfolio was replaced by GOP. Unigueness of the value
processS(@(t), was remarked in Breiman (1961)[Proposition 1].

The properties of the GOP strategy, in particular the myopia was analyzedssiivi
(1968). Papers addressing the problem of obtaining a solution to thieprificiude Bell-
man and Kalaba (1957), Ziemba (1972), Elton and Gruber (1974), Ma&erson, and
Weide (1977b) and Cover (1984). The methods are either approximatitmased on non-
linear optimization models.

The proof of the second property of Theorem 3 dates back to Kellygj1fats a very
special case of Bernoulli trials but was noted independently by Eata®59). The results
where refined in Breiman (1960, 1961) and extended to general distrisun Algoet and
Cover (1988).

The expected time to reach a certain goal was considered in Breiman @9&1he
inclusion of a rebate in Aucamp (1977) implies that the GOP will minimize this time for
finite levels of wealth.

The nungraire property can be derived from the proof of Breiman (196 8¢Fém 3].
The term nuraraire portfolio is from Long (1990). The issue of supermartingality vwas a
parently overlooked until explicitly pointed out in Kramkov and Schacheenéy999)[Ex-
ample 5.1]. A general treatment which takes this into account is found indBexct2001),
see also Korn and Séh(1999) and Bhimann and Platen (2003) for more in a discrete time
setting.

2.2. Continuous Time

In this section some of the results are extended to a general continuous tinmevivek.
The main conclusions of the previous section stand, although with some impoxdifi-
cations, and the mathematical exposition is more challenging. For this reasarstlits
are supported by examples. Most conclusions from the continuouscagaportant for
the treatment in Section 4. and the remainder of this thesis which is held in camtihonee.

The mathematical object used to model the financial market given by (1pwsan
d + 1-dimensional semimartingalé, living on a filtered probability spacg?, F, F, P),
satisfying the usual conditions, see Protter (2004). Being a semimartirfyabn be de-
composed as

S(t) = A(t) + M(t)

whereA is a finite variation process and is a local martingale. The reader is encouraged
to think of these aglrift and volatility respectively, but should beware that the decompo-
sition above is not always unique. f can be chosen to be predictable, then the decom-
position is unique. This is exactly the case witeis a special semimartingale, see Protter

(2004). Following standard conventions, the first security is assumesl tioebnuréraire,

and hence it is assumed t&#t) (1) = 1 almost surely for alt € [0, 7. The investor needs

to choose a strategy, represented bydhel dimensional process

5= {8(t) = (0O ), ..., 6@ 1)), t € 0,T7}.
The following definition of admissibility is the natural counterpart to Definition 1

Definition 4 An admissible trading strategy, satisfies the three conditions:
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1. ¢ is an S-integrable, predictable process.
2. The resulting portfolio valug® £ S°% 50 (£)S(@(t) is non-negative.
3. The portfolio is self-financing, that &%) (t) = [ 5(s)dS(s).

Here, predictability can be loosely interpreted as left-continuity, but moeeiggly, it
means that the strategy is adapted to the filtration generated by all left-camdigftto
adapted processes. In economic terms, it means that the investor change dis port-
folio to guard against jumps that occur randomly. For more on this and aitotefiof
integrability with respect to a semimartingale, see Protter (2004). The seequuement

is important in order to rule out simple, but unrealistic, strategies leading itoeayd, as for
instance doubling strategies. The last requirement states that the invessorat withdraw

or add any funds. Recall thex(S) denotes the set of non-negative portfolios, which can be
formed using the elements 6f It is often convenient to consider portfolio fractions, i.e.

75 = {ms(t) = (12(0),..., 7)), t € [0,00)}

with coordinates defined by:
(6)

One may define the GOB?), as in Definition 2, namely as the solution to the problem

SO 2 arg  sup S[log(5(6)(T>)]~ (7)
S0 eB(S)

This of course only makes sense if the expectation is uniformly boundéd Shalthough
alternative and economically meaningful definitions exist which circumverptoblem of
having
sup  Eflog(S(T))] = cc.
S®ee(s)

For simplicity, | use the following definition.
Definition 5 A portfolio is called a GOP if it satisfie&).

In discrete time, there was a one-to-one correspondence betweehbitnage and the
existence of a GOP. Unfortunately, this breaks down in continuous time $éxeral def-
initions of arbitrage are possible. A key existence result is based ontthie #&ramkov
and Schachermayer (1999), who used the notioN@fFree Lunch with Vanishing Risk
(NFLVR). The essential feature of NFLVR is the fact that it implies the eristeof an
equivalent martingale measure, see Delbaen and Schachermayer{2989% More pre-
cisely, if asset prices are locally bounded, the measure is an equilatahtmartingale
measure and if they are unbounded, the measure becomes an equigatentnartingale
measure. Here, these measures will all be referred to collectively asksmi martingale
measures (EMM).
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Theorem 5 Assume that

sup  E[log(SO(T))] < oo
S5 eo(s)

and that NFLVR holds. Then there is a GOP.

Unfortunately, there is no clear one-to-one correspondence betiveexistence of a
GOP and no arbitrage in the sense of NFLVR. In fact, the GOP may easity@wsn when
NFLVR is not satisfied, and NFLVR does not guarantee that the expgobedh rates are
bounded. Moreover, the choice of né@raire influences whether or not NFLVR holds. A
less stringent and nuenaire invariant condition is the requirement that the market should
have amartingale densityA martingale density is a strictly positive procegs,such that
SZ is a local martingale. In other words, a Radon-Nikodym derivative afes&MM is
a martingale density, but a martingale density is only the Radon-Nikodymadiggwf an
EMM if it is a true martingale. Modifying the definition of the GOP slightly, one magvgh
that:

Corollary 1 There is a GOP if and only if there is a martingale density.

The reason why this addition to the previous existence result may be impisridiat
cussed in Section 4..

To find the growth optimal strategy in the current setting can be a non-ttaskl.
Before presenting the general result an important, yet simple, examplesisred.

Example 4 Let the market consist of two assets, a stock and a bond. SpecificaBptie
describing these assets are given by

dsO) = SO t)rdt
dSW@) = SW@) (adt + odW (1))

whereW is a Wiener process and a, o are constants. Using fractions, any admissible
strategy can be written

dSO () = SO ) ((r + n(t)(a — r))dt + 7 (t)odW (t)).

Applying I©’s lemma toY (t) = log(S®)(t)) provides
dY (t) = <(r +7(t)(a—71) — %W(t)QUQ)dt + W(t)adW(t)> :

Hence, assuming the local martingale with differentiéd)odW (t) to be a true martingale,
it follows that

T
Eflog(SON(T)) = & { /0 (r+n(t)(a —17) — ;w(t)%Z)dt} ,

so by maximizing the expression for edthv) the optimal fraction is obtained as

a—r
m(t) = —5-
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Hence, inserting the optimal fractions into the wealth process, the GOP isildeddy the
SDE

a—r>2>dt+a—r

g g

ds@ (1) = SO (¢) <(r +( dW(t)> 2 SO(t) ((r + 6)dt + 0dW (1)) .

The parametef = “—" is the market price of risk process.

The example illustrates how the myopic properties of the GOP makes it relatasjyte
derive the portfolio fractions. Although the method seems heuristic, it wilkvilovery
general cases and when asset prices are continuous, an explitdrs@walways possible.
This however, is not true in the general case. A very general reaslpvovided in Goll and
Kallsen (2000, 2003), who showed how to obtain the GOP in a setting with intéaitee
consumption and consumption takes place according to a (possibly randosyneption
clock. Here the focus will be on the GOP strategy and its correspondinighw@acess,
whereas the implications for optimal consumption will not be discussed. kr dodstate
the result, the reader is reminded of the semimartingbdgacteristic tripleisee Jacod and
Shiryaev (1987). Fix a truncation functia,i.e. a bounded function with compact support,
h: R — R?, such that(z) = z in a neighborhood around zero. For instance, a common
choice would bé:(x) = x1(|,<1). For such truncation function, there is a triplet, B, v),
describing the behavior of the semimartingale. One may choose a “goadnvetsat is,
there exists a locally integrable, increasing, predictable pro¢essich tha( A, B, v) can
be written as

A= / adA, B = / bdA, and v(dt,dv) = dA,Fy(dv).

The processA is related to the finite variation part of the semimartingale, and it can be
thought of as a generalized drift. The procésss similarly interpreted as the quadratic
variation of the continuous part &, or in other words it is the square volatility where
volatility is measured in absolute terms. The processthe compensated jump measure,
interpreted as the expected number of jumps with a given size over a smalaintsote
that A depends on the choice of truncation function.

Example 5 Let S(Y) be as in Example 4, i.e. geometric Brownian Motion. THen ¢ and
dA(t) = SV (t)adt dB(t) = (SW (t)o)%dt.

Theorem 6 (Goll & Kallsen, 2000) Let S have a characteristic triplet A, B,v) as de-
scribed above. Suppose there is an admissible strategyh corresponding fractionss,
such that

. mk(t) . 27
al(t) = 3 o= (0 (1) + ———— —h(2) | F(t,dx) =0 (8)
= /Rd 1+, 5(%(2) 't

(2

for P ® dA almost all (w,t) € Q x [0,T], wherej € {0,...,d}. Thend is the GOP
strategy.
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Essentially, equation (8) represent the first order conditions for optimatity they
would be obtained easily if one tried to solve the problem in a pathwise sendena in
Example 4. From Example 3 in the previous section it is clear, that such a sahatéal not
exist, because there may be a “corner solution”.

The following examples show how to apply Theorem 6.

Example 6 Assume that discounted asset prices are driven byratimensional Wiener
process. The locally risk free asset is used asé@maime, whereas the remaining risky assets
evolve according to

dsD(t) = dt+ZS £65 (£)dW (t)

fori € {1,...,d}. Hered'(t) is the excess return above the risk free rate. From this
equation, the decomposition of the semimartingaliellows directly. Choosingd = ¢, a
good version of the characteristic triplet becomes

(A, B,v) = < / a(t)S(t)dt, / S(t)b(t)(S(t)b(t))Tdt,> .

Consequently, in vector form and after division$)y) (t) equation(8) yields that

a(t) — (b(e)b(t) s (t) = 0.

In the particular case wheren = d and the matrixb is invertible, | get the well-known
result that

m(t) = b~ (1)0(1),

whered(t) = b=1(t)a(t) is the market price of risk.

Generally, whenever the asset prices can be represented by a coatBamimartingale,
a closed form solution to the GOP strategy may be found. The cases wingpe pre
included are less trivial as shown in the following example.

Example 7 (Poissonian Jumps)Assume that discounted asset prices are driven by.an
dimensional Wiener procesd/, and ann — m dimensional Poisson jump proceﬁé With
intensityA € R*~™. Define the compensated Poisson proagss = N (t fo

Then asset prices evolve as

ds(t) = t)dt + ZS £)0M (£)dW (¢ Z SO ()p5 (£)dg (t)
j=m+1
fori € {1,...,d}. Ifitis assumed that = d, then an explicit solution to the first order

conditions may be found. Assume th@h = {v"/(t)}; je(1
if it is assumed that no arbitrage exists. Define

4y is invertible. This follows

-----

0(t) £ b1 (t)(a (t),...,a% ()",
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If 67(t) > N (t) forj € {m +1,...,d}, then there is an arbitrage, so it can be assumed
that6’(¢t) < M (t). In this case, the GOP fractions satisfy the equation

m-+1 d T
(18, .., 7ie) T = 0T) L) (91@), 8T, Am“?t) _%H(t),...,wtﬁ%> .
It can be seen that the optimal fractions are no longer linear in the mankee of risk.
This is because when jumps are present, investments cannot be stateatily, since a
sudden jump may imply that the portfolio becomes non-negative. Note thmatket price
of jump risk needs to be less than the intensity for the expression to be we#didfi the
market is complete, then this restriction follows by the assumption of no agbitra

In general when jumps are present, there is no explicit solution in an inctemplerket.
In such cases, it is necessary to use numerical methods to solve eq@tioks(in the
discrete case, the assumption of complete markets will enable the derivatefuty
explicit solution of the problem. In the case of more general jump distributiohsye
the jump measure does not have a countable support set, the market lmamoonpleted
by any finite number of assets. The jump uncertainty which appears in tlicaaghen
be interpreted as driven by a Poisson process of an infinite dimensiahisinase, one
may still find an explicit solution if the definition of a solution is generalized slighslyna
Christensen and Larsen (2007).

As in discrete time the GOP can be characterized in terms of its growth properties

Theorem 7 The GOP has the following properties:
1. The GOP maximizes the instantaneous growth rate of investments.
2. In the long term, the GOP will have a higher realized growth rate than ahgro

strategy, i.e.

lim sup % log(S®)(T)) < lim sup % log(S@(T))

T—o0 T—o0

for any other admissible strateg/?).

The instantaneous growth rate is the drifi@f(S©®)(t)).

Example 8 In the context of Example 4 the instantaneous growth igig), of a portfolio
5 was found by applying thedtformula to get

dyY (t) = <(r +r(t)(a—1r) — %ﬂ(t)QUQ)dt + W(t)adW(t)> :

Hence, the instantaneous growth rate is

1
PO =r+rt)a—r)— §7r(t)202.
In example 4 | derived the GOP, exactly by maximizing this expressionatitesGOP

maximized the instantaneous growth rate by construction.



On the history of the Growth Optimal Portfolio 21

As mentioned, the procedure of maximizing the instantaneous growth rate rapplied in

a straightforward fashion in more general settings. In the case of a Wdemen diffusion
with deterministic parameters, the second claim can be obtained directly bytlisitagy of
large numbers for Brownian motion. The second claim does not rest asgiuenption of
continuous asset prices although this was the setting in which it was prolredmportant
thing is that other portfolios measured in units of the GOP become superm&esin§ace
this is shown below for the general case of semimartingales, the proof ai2éar(1989)
will also apply here as shown in Platen (2004a).

As in the discrete setting, the GOP enjoys the ataire property. However, there are

some subtle differences.

A S (¢)

Theorem 8 Let S denote any admissible portfolio process and defiffe(t) ot

Then

1. S©)(t) is a supermartingale if and only @ (¢) is the GOP.,

2. The proces%(;)? is a submartingale.

3. If asset prices are continuous, thefY)(¢) is a local martingale.

In the discrete case, it was shown that prices denominated in units of thecQ@dPbe-
come strict supermartingales. In the case of (unpredictable) jumps, thislstalyaopen,
practically for the same reasons as before. If there is a large expetted on some asset
and a very slim chance of reaching values close to zero, the log-inusstoplicitly re-
stricted from taking large positions in this asset, because by doing so He risluruin at
some point. This is related to the structure of the GOP in a complete market amedpia
Example 7.

There is a small but important difference to the discrete time setting. It may be tha
GOP denominated prices becosteict local martingales, which is a local martingale that
is not a martingale. This is a special case of being a strict supermartingzde dire to the
Fatou lemma, a non-negative local martingale may become a supermartingeeca3é
does not arise because of any implicit restraints on the choice of porttoidshe threat
of being illiquid. Instead, it has to do with the fact that not all portfolios “gbts biggest
bang for the buck” as will be explained in Section 4..

Example 9 (Example 4 continued)Assume a market as in Example 4. An application of
the 1 formula implies that

dS©O (1) = =S5O (1)gdw (¢)

and
dSW () = S (@) (b(t) — 0)dW (t).

The processes above are local martingales since they ariegrals with respect to a
Wiener process. A sufficient condition for a local martingale to be a trudingale is
given by the so-called Novikov condition, see Novikov (1973) requiring

£ [exp (; /OT 0(t)2dt>] < o0,
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which is satisfied in this case sinéés a constant. However, in more general modetan

be a stochastic process. Several examples exist where the Nowilditiarois not satisfied

and hence the processg4”) and S become true supermartingales. A simple example is
the situation wheres(!) is a Bessel process of dimension three. The inverse of this process
is the standard example of a local martingale which is not a martingale.

The fact that local martingales need not be martingales is important in thg tfewbitrage
free pricing and will be discussed in Section 4.. In these cases, théraireimay be
outperformed by trading the GOP.

The growth properties indicating that in the long run the GOP will outperfdrotizer
portfolios have made it very interesting in the literature on asset allocatioit hadg been
argued that the GOP is a universally “best” investment strategy in the longTiuis ap-
plication and the debate it has raised in the academic community is reviewed inxthe ne
section. A second and more recent application is theawaire property, particularly inter-
esting in the literature on arbitrage pricing, is reviewed subsequently.

Notes

The literature on the properties of the GOP is huge and only a few havalississed
here. The properties of this chapter have been selected becausavhatthacted the most
interest in the literature. Using the logarithm as utility function often providegtvactable
results, so the GOP arises implicitly in a large number of papers which, for sitpplise
this function as part of the theory. To manage the literature on the subjeste fbcused on
papers which deal explicitly with the GOP. Theorem 5 appears in Bec{gf@t)[Theorem
4.5] and is a straightforward application of Kramkov and Schachermag®9j[Theorem
2.2]. In some papers the GOP is defined in a pathwise sense, see Pla&22@Mc) and
Christensen and Platen (2005), which circumvents the problem of infirpeecesd growth
rates. An alternative solution is to define the GOP in terms of relative growak,raee
Algoet and Cover (1988). An alternative existence proof, which is mdaext, but does
not relate explicitly to the notion of arbitrage, can be found in Aase (1988)%ase and
Oksendal (1988). Long (1990)[Appendix B, page 58] claims that xietence of the GOP
follows from no arbitrage alone, but this is in general incorrect. Thefgtat the existence
of a GOP is equivalent to the existence of a martingale density is found int€sen and
Larsen (2007).

Theorem 6 was proved by Goll and Kallsen (2000) and expanded thasttic con-
sumption clocks in Goll and Kallsen (2003). The solution in a complete Wierneerdr
set-up with constant parameters dates back to Merton (1969), exteniston (1971,
1973). Aase (1988) introduced the problem in a jump-diffusion setting aridedl a sim-
ilar formula in the context of a model with Wiener and Poisson noise using the&e
principle. This has been extended in Aase (1984, 1986, 1988), Br(1@99), Korn, Oer-
tel, and Schl (2003). Yan, Zhang, and Zhang (2000) and Hurd (2004) stuggreential
Levy processes and Platen (2004c) obtains a fully explicit solution in teafea complete
Poisson/Wiener market, similar to Example 7. It was noted by Aase (1984¢dbation
(8) would follow from a pathwise optimization problem. Christensen and Pl&ed5)
follows this procedure in a general marked point process setting amdssxghe solution
in terms of the market price of risk. | show that a generalized version of5{@@ can
be characterized explicitly and approximated by a sequence of portfolagpiroximately



On the history of the Growth Optimal Portfolio 23

complete markets. In an abstract framework, relying on the duality resHitashkov and
Schachermayer (1999) and the decomposition of Schweizer (1998heaaj solution was
obtained in Christensen and Larsen (2007).

The problem of determining the GOP can be extended to the case of portolio ¢
straints, see, for instance, Cvitarind Karatzas (1992) and in particular Goll and Kallsen
(2003). The case of transaction costs is considered in Serva (1969 and lyengar
(2000) and Aurell and Muratore-Ginanneschi (2004). Casesentiner growth optimizer
has access to a larger filtration are treated by, for instance, Ammendingesildr, and
Schweizer (1998), who show how expanding the set of available inf@mimcreases the
maximal growth rate. In the setting of continuous asset prices, Larsenitkadic (2008)
show that the existence of a GOP when the filtration is enlarged, guardinéepesce pro-
cess will remain a semimartingale, which is convenient since arbitrage mayramselels,
where this property is not guaranteed. A model free approach to the matiominf port-
folio growth rate is derived in Cover (1991), and the literature on “wsikeportfolios”.

Theorem 7(1) has often been used as the definition of the GOP. (2) nwasdpin
Karatzas (1989) in the setting of continuous diffusions. For furtherltesn the theo-
retical long-term behavior of the GOP in continuous time, the reader igeefés Pestien
and Sudderth (1985), Heath et al. (1987) and Browne (1999). Aisabf the long term
behavior and ruin probability is conducted in Aase (1986).

The nun&raire property in continuous time was shown initially by Long (1990). The is-
sue of whether GOP denominated prices become supermartingales iselisicuBecherer
(2001), Korn, Oertel, and Sah(2003), Hurd (2004) and Christensen and Larsen (2007).
The fact that the GOP is a submartingale in any other denomination is shownihgtnce
Aase (1988). For examples of models, where the inverse GOP is notladalienartingale,
see Delbaen and Schachermayer (1995a) for a very simple examplesatiuahd Platen
(2002a) for a more elaborate one. The standard (mathematical) textbeotre# for such
processes is Revuz and Yor (1991).

3. The GOP as an Investment Strategy

When the GOP was introduced to the finance community, it was not as theakesplying
a logarithmic utility function, but in the context of maximizing growth. Investmenotie
based on growth is an alternative to utility theory and is directly applicableusecthe
specification of the goal is quite simple. The popularity of the mean-varigmu®ach is
probably not to be found in its theoretical foundation, but rather thetfi@attit suggested a
simple trade-of between return and uncertainty. Mean-variance basédlip choice left
one free parameter, the amount of variance acceptable to the individesion The theory
of growth optimal investment suggests the GOP as an investment tool for tmiph
investors because of the properties stated in the previous section, infzautiecause it will
almost surely dominate other investment strategies in terms of wealth as the timanhoriz
increases. Hence, in the literature of portfolio management, the GOP hadeés, and is
still, advocated as a useful investment strategy, because utility maximizationnseavbat
abstract investment goal. For example, Roy (1952)[Page 433] states tha

“In calling in a utility function to our aid, an appearance of generality is
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achieved at the cost of a loss of practical significance, and applicabiliyrin
results. A man who seeks advice about his actions will not be gratefttéor
suggestion that he maximize expected utility.”

In these words lies the potential strength of the growth optimal approach g¢stinent.
However, utility theory being a very influential if nabe dominating paradigm, is a chal-
lenge to alternative, normative, theories of portfolio selection. If investme correctly
modeled as individuals who maximize some (non-logarithmic) utility function, then the
growth rate per se is of no importance and it makes no sense to recommen@kh&oG
such individuals.

In this section three issues will be discussed. Firstly, the lively debate wrwiely
the GOP can be applied as an investment strategy is reviewed in detail. Taie dehtains
several points which may be useful to keep in mind, since new papers in thif literature
often express the point of view that the GOP deserves a special place imitrerse of
investment strategies. In Section 3.1., the discussion of whether the GOBptace or
proxy other investment strategies when the time horizon of the investor is |pngssnted.
The section is aimed to be a chronological review of the pros and cons Gi(ifeas seen
by different authors. Secondly, because the strategy of maximizingtlyrappeared as
a challenge to the well-established mean-variance dogma, and becauge padrof the
literature has compared the two, Section 3.2. will deal with the relation betwesrihg
optimal investments and mean-variance efficient investments. Finally, eet@aisnain
argument for the GOP has been its growth properties, some theoreticditiitig the
ability of the GOP to dominate other strategies over time will be provided in Section 3.3

Before commencing, let me mention that the GOP has found wide applicationsiin ga
bling and to some extent horse racing. In these disciplines a main issue is hgairt@n
edge”, i.e. to create a favorable game with non-negative expected gratetiof wealth.
Obviously, if the game cannot be made favorable, i.e. there is no strategytlsat the
expected pay-off is larger than the bet, the growth optimal strategy is o$eaimply to
walk away. If, on the other hand, it is possible to turn the game into a fakeogaimne, then
applying the growth optimal strategy is possible. This can be done in e.g. Bédagksince
simple card counting strategies can be applied to shift the odds slightly. Sintitaslynay
be done in horse-racing by playing different bookmakers, see Harst Ziemba (1990).
There are literally hundreds of papers on this topic. Growth maximizing stestege in
this stream of literature predominantly denoted “Kelly strategies”. It agpeat Kelly
strategies or fractional Kelly strategies are quite common in the theory of gajrdotich
despite the striking similarity with investment decisions, the gambling literature epjmea
pay limited attention to the expected utility paradigm in general. Perhaps bayzmbéers
by nature are much less risk averse than “common investors”. A geretaddiwhich may
be interesting in the context of asset allocation is that model uncertaintyadigrieads to
over-betting. Hence, if one wishes to maximize the growth rate of investmentnight
wish to apply a fractional Kelly strategy, because the model indicated strewedd be “too

risky”.

Notes
Some further references for applying the GOP in gambling can be founthaeiko,
MacLean, and Ziemba (1992), and in particular the survey Hakansgbdiamba (1995)
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and the paper Thorp (1998). See also the papers Ziemba (2003, f20@dmne easy-to-
read accounts. A standard reference in gambling is the book Thorp)296ile the book
Poundstone (2005) and the edited volume Maclean, Thorp, and Ziemb@) (20ntain
popular treatment of the application of Kelly-strategies in gambling and investmen

3.1. Isthe GOP Better? - The Samuelson Controversy

The discussion in this section is concerned with whether the different adisilmf the
growth optimal investment constitute a reasonable criteria for selecting lastfdMore
specifically, | discuss whether the GOP can be said to be “better” in anyraibematical
sense and whether the GOP is an (approximately) optimal decision rule éstans with
a long time horizon. Due to the chronological form of this section and the sixtense
of quotes, most references are given in the text, but further refesemay be found in the
notes.

It is a fact that the GOP attracted interest primarily due to the properties statée-
orem 3. A strategy, which in the long run will beat any other strategy in tefmgealth
sounds intuitively attractive, in particular to the investor who is not corezkmith short
term fluctuations, but has a long horizon. Such an investor can leanamatcivatch his
portfolio grow and eventually dominate all others. From this point of view it s@ynd as
if any investor would prefer the GOP, if only his investment horizon is gefiity long.

Unfortunately, things are not this easy as was initially pointed out by Sammugl963).
Samuelson argues in his 1963 paper, that if one is not willing to acceptainthbn one
will never rationally accept a sequence of that bet, no matter the probabilitynoing. In
other words, if one does not follow the growth optimal strategy over orieghehen it will
not be rational to follow the rule when there are many periods. His articletiaduressed
directly to anyone in particular, rather it is written to “dispel a fallacy of widerency”,
see Samuelson (1963)[p. 50]. However, whether it was intendedtpSamuelson’s pa-
per serves as a counterargument to the proposed strategy ireL(d@60). Latad had
suggested as the criteria for portfolio choice, see L&a{@859)[p. 146], that one chooses

“...the portfolio that has a greater probability (P’) of being as valuable oemor
valuable than any other significantly different portfolio at the end géars;n
being large.”

Lataré had argued that this was logical long-term goal, but that it “would nptyap
to one-in-a-lifetime choices” [p. 145]. This view is repeated in Latand Tuttle (1967).
It would be reasonable to assume that this is the target of Samuelsons criliglesd,
Samuelson argues that to use this goal is counter logical, first of all #edadoes not
provide a transitive ordering and secondly as indicated above it is tiohahto change
objective just because the investment decision is repeated in a numbeiiaafspeThis
criticism is valid to a certain extent, but it is based on the explicit assumption dlatint
rationally” means maximizing an expected utility of a certain class. Samuelsor#astiat
is meant as a normative statement. Experimental evidence shows that isnasipact
inconsistently, see for instance Benartzi and Thaler (1999). Note tieab@y construct
utility functions, such that two games are accepted, but one is not. An exasripléact
given by Samuelson himiself (sic) in the later paper Samuelson (1984).eFuefierences
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to this discussion are cited in the notes. However, Lataaver claimed his decision rule to
be consistent with utility theory. In fact, he seems to be aware of this, astks sta

“For certain utility functions and for certain repeated gambles, no amount of
repetition justifies the rule that the gamble which is almost sure to bring the
greatest wealth is the prefereable one.”

See Lataa (1959)[p. 145, footnote 3]. Thorp (1971) clarifies the argumenteniad
Samuelson that making choices based on the probability that some portfolicovik:td
ter or worse than others is non-transitive. However, in the limit, the propbgsacterizing
the GOP is that it dominates all other portfolios almost surely. This propeziggkequal
almost surely, clearly is transitive. Moreover, Thorp argues that ievire case where tran-
sitivity does not hold, a related form of “approximate transitivity” does, Beorp (1971)[p.
217]. Consequently he does not argue against Samuelson (at ledsecty), but merely
points out that the objections made by Samuelson do not pose a problemntfoedry. One
may wish to emphasize that to compare the outcomes as the number of repetitiotes tur
infinity, requires the limits(®) (t) to be well-defined, something which is usually not the
case whenever the expected growth rate is non-negative. Howewear,Theorem 7, the
limit

lim 5@ (¢)

t—o00

is well-defined and less than one almost surely. Hence the question afitigndepends
on whether fi-large” meansn the limit, in which case it holds or it means for certdinite
but largen, in which case it does not hold. Second, as pointed out above “actingatly”

is in the language of Samuelson to have preferences that are consigkeatsmgle Von-
Neumann Morgenstern utility function. Whether investors who act consigtarcording

to the same utility function ever existed is a questionable and this is not assuntied by
proponents of the GOP, who intended the GOP as a normative investment rule

A second question is whether due to the growth properties there may be spnte w
say that “in the long run, everyone should use the GOP”.

In this discussion Samuelson points directly to Williams (1936), Kelly (1956)Land
taré (1959). The main point is that just because the GOP in the long run will pnd u
dominating the value of any other portfolio, it will not be true, over any twrihowever
long, that the GOP is better for all investors. In Samuelson’s own woedsSamuelson
(1971)[p. 2494]:

“...it is tempting to believe in the truth of the following false corollary:

False Corollary.If maximizing the geometric mean almost certainly leads to

a better outcome, then the expected utility of its outcome exceeds that of any
other rule, provided thaf is sufficiently large.”

Such an interpretation of the arguments given by for instance eatay be possible,
see Lataé (1959)[footnote on page 151]. Later it becomes absolutely clear anat&son
did indeed interpret Latd@nin this way, but otherwise it is difficult to find any statement
in the literature which explicitly expresses the point of view which is inheretianfalse
corollary of Samuelson (1971). Possibly the view point expressed itkdvatz (1959)
could be interpreted along these lines. Markowitz finds it irrational thatteng investors
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would not choose the GOP - he does not argue that investors with other futilitfions
would not do it, but rather he argues that one should not have other utifittibns in the
very long run. This is criticized by Thorp (1971), who points out that thgifon taken by
Markowitz (1959) cannot be supported mathematically. Nevertheless,dimisgd view is
somewhat different to that expressed by the false corollary. Whethievers in the false
corollary ever existed is questioned by Thorp (1971)[p. 602]. Thetp®that one cannot
exchange the limits in the following way: if

. SOt
tlg(r)lo S(é)(t

<1

~—

then it does not hold that

. 5 . s
lim E[U(SO ()] < lim EU (S (1))],
given some utility functior/. This would require, for instance, the existence of the point-
wise limit S (c0) and uniform integrability of the random variablg§.S®(¢)). Even if
the limit and the expectation operator can be exchanged, one mightfays® (¢))] >
E[U(S@(t))] for all finite t and equality in the limit. The intuitive reason is that even if the
GOP dominates another portfolio with a very high probability, i.e.

P(SD(t) < SO (1) =1 —¢,

then the probability of the outcomes where the GOP performs poorly may stidezapt-
able to an investor who is more risk averse than a log-utility investor. In otbedsythe
left tail distribution of the GOP may be too “thick” for an investor who is more Hskrse
than the log-utility investor. It seems that a large part of the dispute is cduyselhims
which argue that the aversion towards such losses is “irrational” be¢heprobability be-
comes arbitrarily small, whereas the probability of doing better than eveslsadecomes
large. Whether or not such an attitude is “irrational” is certainly a debatabljes and is
probably more a matter of opinion than a matter of mathematics.

When it became clear that the GOP would not dominate other strategies inyatsi cr
clear sense, several approximation results where suggested. Treophijovas that as the
time horizon increased, the GOP wouddproximatghe maximum expected utility of other
utility functions. However, even this project failed. Merton and Samuel$8i4a) pointed
out a flaw in an argument in Hakansson (1971b) and Samuelson (18&t§ log-normal
approximation to the distribution of returns over a long period can be madkandson
(1974) admits to this error, but points out that this has no consequenicésefgeneral
statements of his paper. Moreover, Merton and Samuelson (1974akeethar a conjec-
ture made by Samuelson (1971) and Markowitz (1972), that over a loigphahe GOP
will equal or be a good approximation to the optimal policy when investors hauaded
utility, is incorrect. Presumably, this unpublished working paper, redetoeby Merton
and Samuelson (1974a) is an older version of Markowitz (1976). Fithly, remark that
Markowitz (1972) did not define precisely what a “good approximatioaswSecondly,
Goldman (1974) gives a counter example showing that following the GOtlegyrean lead
to a large loss in terms of certainty equivalents, even when investors tmwended utility
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function. If U is a bounded utility function, then certainty(S®(t)) is a family of uni-
formly integrable variables and consequently, any converging segquesc converges in
mean. This means that it is true that

lim E[U(SON(T)] = lim E[USE(T)],

T—o0 T—00
but the argument in, for instance, Goldman (1974) is #{at(S® (¢))] converges much

slower ag — oo than for the optimal policy. In other words,df; is the optimal policy for
an investor with utility functiori/, then Goldman (1974) provides an example such that

EW (D) _
=0 EU(SEI(1))]

So even though the absolute difference in utility levels when applying the G@#ahsf
the optimal strategy is shrinking, the GOP does infinitely worse than the optiratégyr
in terms of relative utility. Similarly, one may investigate the certainty equivalenafo
investor who is forced to invest in the GOP. The certainty equivalent mesgioe amount
of extra wealth needed to obtain the same level of utility when using a suboptiaizigy.
The certainty equivalent when using the GOP in place of the optimal strateggualy
not decreasing as time goes by. Markowitz (1976) argues that the aniferiasymptotic
optimality adopted by Merton and Samuelson (1974a) and Goldman (1974&dseptable,
because it violates the notion that only the normalized form of the game issaegder
comparing strategies. The “bribe”, which is described as a concept siilertainty
equivalent, cannot be inferred by the normalized form of the game. dvidik moves on
to define utility on a sequence of games and concludes that if the investaing tavo
sequence and X’ and prefersX to X' if X,, > X/, from a certainn with probability
one, then such an investor should choose the GOP. A very similar supfptbré max-
expected-growth-rate point of view is given by Miller (1975), who shahat if the utility
function depends only on the tail of the wealth sequence of investmentsthi&OP is
optimal. In technical terms, {fX,,),cn iS @ sequence such th&t, represents wealth after
periods, the/ : R™® — Ris such that{/(x1, ..., xy,...) > U(z,..., 2z, ...) whenever
Tpgj > :c’n_‘_j for somen € N and allj > n. This abstract notion implies that the investor
will only care about wealth effects, that are “far out in the future”. linglear whether such
a criterion can be given an axiomatic foundation, although it does have rez®mblance
to the Ramsey-Weizsker overtaking criterion used in growth theory, see Brock (197%0) fo
the construction of an axiomatic basis.

It seems that the debate on this subject was somewhat obstructed bdeaeseas
some disagreement about the correct way to measure whether somethingded' ap-
proximation”. The concept of “the long run” is by nature not an absoluintjty and
depends on the context. Hence, the issue of how long the long run is wiktesded later
on.

In the late seventies the discussion became an almost polemic repetition oflike ear
debate. Ophir (1978) repeats the arguments of Samuleson and proxéeples where
the GOP strategy as well as the objective suggested by &atdhprovide unreasonable
outcomes. In particular, he notes the lack of transitivity when choosing ¥kstment with
the highest probability of providing the best outcome. L&t§078) counter-argues that
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nothing said so far invalidates the usefulness of the GOP and that heaueweritted to
the fallacies mentioned in Samuelsons paper. As for his choice of objectiaeelrefers to
the discussion in Thorp (1971) regarding the lack of transitivity. Mogeoatare points
out that a goal which he advocates for use when making a long seqoénoestment
decisions, is being challenged by an example involving only wmgquedecision. In La-
tare (1959), Lataa puts particular emphasis on the point that goals can be different in the
short and long run. As mentioned, this was exactly the reasoning whichebsonwattacks
in Samuelson (1963). Ophir (1979) refuses to acknowledge that dgoalddsdepend on
circumstances and once again establishes that &saialnjective is inconsistent with the ex-
pected utility paradigm. Paul Samuelson, in Samuelson (1979), gets the lasinaas,
rather amusing, article which is held in words of only one syllabus (apam the word
syllabus itself!). In two pages he disputes that the GOP has any specitd,rhacked by
his older papers. The polemic nature of these papers emphasizes thaf fiae discussion
for and against maximizing growth rates depend on a point of view and isetassarily
supported by mathematical necessities.

To sum up this discussion, there seems to be complete agreement that thar@GiR ¢
ther proxy for nor dominate other strategies in terms of expected utility, anaatier how
long (finite) horizon the investor has, utility based preferences can ntake portfolios
more attractive because they have a more appropriate risk profile. ldgvieshould be
understood that the GOP was recommended as an alternative to expectecndildg a
normativerather thardescriptivetheory. In other words, authors that argued pro the GOP
did so because they believed growth optimality to be a reasonable investnanivgb
attractive properties that would be relevant to long horizon investorsy Tédcommended
the GOP because it seems to manifest the desire of getting as much wealthasspfas-
sible. On the other hand, authors who disagreed did so because theyt didlieve that
every investor could be described as log-utility maximizing investors. Thait gothat if
an investor can bdescribedas utility maximizing, it is pointless toecommendh portfolio
which provides less utility than would be the case, should he choose optimalhzetithe
disagreement has it roots in two very fundamental issues, namely whethardility the-
ory is a reasonable way of approaching investment decisions in pranticgteether utility
functions, different from the logarithm, is a realistic description of indigidiong-term
investors. The concept of utility based portfolio selection, although wideddumay be
criticized by the observation that investors may be unaware of their own utilitgtions.
Even the three axioms required in the construction of utility functions, sepsKiE988)
have been criticized, because there is some evidence that choice$madedn the coher-
ent fashion suggested by these axioms. Moreover, to say that onggipadeides higher
utility than another strategy may be “business as usual” to the economist.thigfees it is a
very abstract statement, whose content is based on deep assumptigsithalerkings of
the minds of investors. Consequently, although utility theory is a convenmet@nsistent
theoretical approach it is not a fundamental law of nature. Neither is igysupported
by empirical data and experimental evidence. (See for instance the naphmoBossaerts
(2002) for some of the problems that asset pricing theory that builds dPMCand other
equilibrium models are facing and how some may be explained by experimeittahee
on selection.) After the choice of portfolio has been made it is important to nateiiy
one path is ever realized. It is practically impossible to veeifypostwhether some given
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portfolio was “the right choice”. In contrast, the philosophy of maximizingvgh and the
long-run growth property are formulated in dollars, not in terms of utility, smavhen one
evaluates the portfolio performance ex post, there is a greater likelihobthéh&OP will

come out as a “good idea”, because the GOP has a high probability ofieirggvaluable
than any other portfolio. It seems plausible that individuals, who obgberefinal wealth
will not care that their wealth process is the result of an ex-ante cqumetlio choice,
when it turns out that the performance is only mediocre compared to othénlws.

Every once in a while articles continue the debate about the GOP as a \amiglsp
strategy. These can be separated into two categories. The first, capresented by
McEnally (1986) who agrees that the criticism raised by Samuelson is vatideter, he
argues that for practical purposes, in particular when investing fusipe, the probability
that one will realize a gain is important to investors. Consequently, E&tanbgoal is not
without meritin McEnally’s point of view. Hence this category consists osdwho simply
believe the GOP to be a tool of practical importance and this view reflects ttodustons
| have drawn above.

The second category does not acknowledge the criticism to the sameaxdestchar-
acterized by statements such as

“... Kelly has shown that repetition of the investment many times gives an ob-
jective meaning to the statement that the Growth-optimal strategy is the best,
regardless to the subjective attitude to risk or other psychological coasider
tions.”

see Aurell et al. (2000b)[Page 4]. The contributions of this specifiepée within the
theory of derivative pricing and will be considered in Section 4.. Helienply note that
they argue in contrary to the conclusions of my previous analysis. In pkntichey seem
to insist on an interpretation of Kelly, which has been disproved. Theirgre&tion is
even more clear in the working paper version Aurell et al. (2000a¥Bagstating:

“Suppose some agents want to maximize non-logarithmic utility... and we
compare them using the growth optimal strategy, they would almost surely
end up with less utility according to their own criterion.”,

which appears to be a misconception and in general the statement will nditéity as
explained previously. Hence some authors still argue that eagignallong term investor
should choose the GOP. They seem to believe that either other prefeneiicyield the
same result, which is incorrect, or that other preferences are irratighigh is a viewpoint
that is difficult to defend on purely theoretical grounds. A related ide&hwis some-
times expressed is that it does not make sense to be more risk-seekingethagatithmic
investor. This viewpoint was expressed and criticized very early in thetiter. Nev-
ertheless, it seems to have stuck and is found in many papers discussiB@Ehas an
investment strategy. Whether it is true depends on the context. Althougpporsed by
utility theory, the viewpoint finds support within the context of growth-lthswestment.
Investors who invest more in risky securities than the fraction warrantédeoGOP will,
by definition, obtain a lower growth rate over time and at the same time they wilhiace
risk. Since the added risk does not imply a higher growth rate of wealth gtitoles a
choice which is “irrational”, but only in the same way as choosing a nooiefii portfolio
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within the mean-variance framework. It is similar to the discussion of wheth#re long
run, stocks are better than bonds. In many models, stocks will outperfoneiskbalmost
surely as time goes to infinity. Whether long-horizon investors should invest in stocks
depends: from utility based portfolio selection the answer may be no. Ifatevise prop-
erties of the wealth distribution is emphasized, then the answer may be yesashthev
case in this section, arguments supporting the last view will often be incompaithléhe
utility based theories for portfolio selection. Similar is the argument that “rigsgo zero
as time goes to infinity” because portfolio values will often converge to infirsttha time
horizon increases. Hence, risk measures such as VaR will convezgeatas time turns to
infinity, which is somewhat counterintuitive, see Treussard (2005).

In conclusion, many other unclarities in the finance relate to the fact thathaisa
property may not always be reflected when using expected utility to diweviue portfo-
lio choice. Itis a trivial exercise to construct a sequence of randoiablas that converge
to zero, and yet the mean value converges to infinity. In other wordsitllmay con-
verge to zero almost surely and still be preferred to a risk-free agsetitility maximizing
agent. Intuition dictates that one should never apply such a portfolio ogdotiy term,
whereas the utility maximization paradigm says differently. Similarly, if one pliotheats
others almost surely over a long horizon, then intuition suggests that thisereagdod in-
vestment. Still utility maximization refuses this intuition. It is those highly counterintiitiv
results which have caused the debate among economists and which contiasedoubt
on the issue of choosing a long term investment strategy.

As a way of investigating the importance of the growth property of the GOdjdde
3.3. sheds light on how long it will take before the GOP gets ahead of otrdolos. |
will document that choosing the GOP because it outperforms other postfolxy not be a
strong argument because it may take hundreds of years before trabpity of outperfor-
mance becomes high.

Notes

The criticism by Samuelson and others can be found in the papers, Sam(IE§63,
1969, 1971, 1979, 1991), Merton and Samuelson (1974a, 1974kp@inir (1978, 1979).
The sequence of papers provides a very interesting criticism. Althoughdtheoint out
certain factual flaws, some of the viewpoints may be characterized agfiggl)aopinions
rather than truth in any objective sense.

Some particularly interesting references which explicitly take a differentistathis
debate is Latam (1959, 1978), Hakansson (1971a, 1971b) and Thorp (1988)1@&hich
are all classics. Some recent support is found in McEnally (1986)elRet al. (2000b),
Michaud (2003) and Platen (2005c). The view that investment of morelid@®o in the
GORP is irrational is common in the gambling literature - referred to as “overbetiimg)
is found for instance in Ziemba (2003, 2004, 2005). In a finance cbtliexargument is
voiced in Platen (2005b). Game theoretic arguments in favor of using thei&0end in
Bell and Cover (1980, 1988). Rubinstein (1976) argues that usingrgkzed logarithmic
utility has practical advantages to other utility functions, but does not clapgargrity of
investment strategies based on such assumptions. The “fallacy of lardgeersf problem is
considered in numerous papers, for instance Samuelson (1984)1R883, Brouwer and
den Spiegel (2001) and Vivian (2003). It is shown in Ross (1999)ithdility functions
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have a bounded first order derivative near zero, then they maydraseept a long sequence
of bets, while rejecting a single one.

A recent working paper, Rotar (2004), considers investors with destdreliefs, that is,
investors who maximize expected utility not with respect to the real world measutrwith
respect to some transformation. Conditions such that selected portfolicesppribximate
the GOP as the time horizon increases to infinity are given.

3.2. Capital Growth and the Mean-Variance Approach

In the early seventies, the mean-variance approach developed inwlarkb952) was the
dominating theory for portfolio selection. Selecting portfolios by maximizing ginowas
much less used, but attracted significant attention from academics amdl sereparisons
of the two approaches can be found in the literature from that periodaf€plar interest
was the question of whether or not the two approaches could be unitedhayifvhere
fundamentally different. | will review the conclusion from this investigatiomaglavith a
comparison of the two approaches. In general, growth maximization and-vaeance
based portfolio choice are two different things. This is unsurprisinggsiris well-known
that mean-variance based portfolio selection is not consistent with maximigingrautil-
ity function except for special cases. Given the theoretically more saliddation of the
growth optimum theory compared to mean-variance based portfolios se|datibirtry to
explain why the growth optimum theory became much less widespread. Misigpahe
discussion are presented in discrete time, but in the second part of thisdee continu-
ous time parallel will be considered since the conclusions here are vésyedif.

Discrete time

Consider the discrete time framework of Section 2.1.. Recall that a meamcae#i-
cient portfolio, is a portfolio, such that any other portfolio having the samanmeturn will
have equal or higher variance. These portfolios are obtained aslthi®sdo a quadratic
optimization program. It is well-known that the theoretical justification of thiveppgh re-
quires either a quadratic utility function or some fairly restrictive assumptidh®@nolass of
return distribution, the most common being the assumption of normally distributedse
The reader is assumed to be familiar with the method, but sources are citednotéise
Comparing this method for portfolio selection to the GOP yields the following génen-
clusion.

» The GOP is in general not mean-variance efficient. Hakansson &l 8dhstruct ex-
amples such that the GOP lies very far from the efficient frontier. Themmpgles are
guite simple and involve only a few assets with two point distributions but illustrate
the fact that the GOP may be far from the mean-variance efficient froriites is
perhaps not surprising given the fact that mean-variance selectiobeceelated to
guadratic utility, whereas growth optimality is related to logarithmic utility. Only for
specific distributions will the GOP be efficient. Note that if the distribution has su
port on the entire real axis, then the GOP is trivially efficient, since all manikpe
put in the risk-free asset. This is the case for normally distributed returns.

* Mean-variance efficient portfolios risk ruin. From Theorem 3 andsihiesequent
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discussion, it is known that if the growth rate of some asset is positive aridwbst-
ment opportunities are infinitely divisible, then the GOP will have no probabifity o
ruin, neither in the short or the long run sense. This is not the case for-uaemnce
efficient portfolios, since there are efficient portfolios which can bezoegative and
some which have a negative expected growth rate. Although portfolios widga-
tive expected growth rate need not become negative, such portfoliosomiterge to
zero as the number of periods turn to infinity.

* Mean-variance efficient portfolio choice is inconsistent with first orstechastic
dominance. Since the quadratic utility function is decreasing from a certam po
onwards, a strategy which provides more wealth almost surely may noeferned
to one that brings less wealth. Since the logarithmic function is increasing,@fe G
will not be dominated by any portfolio.

The general conclusions above leave the impression that the growthibasstment strate-
gies and the mean-variance efficient portfolios are very different. vieig is challenged
by authors who show that approximations of the geometric mean by the firsemond
moment can be quite accurate. Given the difficulties of calculating the GOPagproxi-
mations were sometimes used to simplify the optimization problem of finding the portfolio
with the highest geometric mean, see for instance léatamd Tuttle (1967). Moreover, the
empirical results of Section 5. indicate that it can be difficult to tell whetheGO® is in
fact mean-variance efficient or not.

In the literature, it has been suggested to construct different trdsié&etiveen growth
and security in order for investors with varying degrees of risk aversyoinvest more
conservatively. These ideas have the same intuitive content as the aréamee efficient
portfolios. One chooses a portfolio which has a desired risk level aichwiraximizes the
growth rate given this restriction. Versions of this trade-off include thapmund return
mean-variance model, which is in a sense a multi-period version of the oragiegberiod
mean-variance model. In this model, the GOP is the only efficient portfolio in thg lo
run. More direct trade-offs between growth and security include mogeée security
is measured as the probability of falling short of a certain level, the probabfiitgiling
below a certain path, the probability of losing before winning etc.

Interpreted in the context of general equilibrium, the mean-varianc@agpiphas been
further developed into the well-known CAPM, postulating that the marketqiaris mean-
variance efficient. A similar theory was developed for the capital grovitbrirm by Budd
and Litzenberger (1971) and Kraus and Litzenberger (1975). Hgehts are assumed to
maximize the expected logarithm of wealth, then the GOP becomes the markeliparifl
from this an equilibrium asset pricing model appears. This is not diftérem what could
be done with any other utility function, but the conclusions of the analysigge@mpiri-
cally testable predictions and are therefore of some interest. At the Hid¢lagtequilibrium
model appearing from assuming log-utility is the martingale or @naine condition. Recall
that R?(¢) denotes the return on asgedetween time — 1 and timet and R is the return
process for the GOP. Then the equilibrium condition is

(9)

I—¢ [1—|—Ri(t)} ’

1+ RO(t)
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which is simply the first order conditions for a logarithmic investor. Assumetangeavith
a finite number of states, that i9, = {w1,...,w,}, and definey; = P({w;}). Then, if
S()(t) is an Arrow-Debreu security, paying off one unit of wealth at timel, substituting
into equation (9) provides

j 1 W=wj
SO@) =& [H;mil)] (10)

and consequently summing over all states provides an equilibrium conditiaghefaisk
free interest rate

Combining equations (9) and (11), definiij = R — » and performing some basic, but
lengthy manipulations, yield

E[RI(t + 1)) = BIE[RO (¢ + 1)] (12)
where s
cov(Ri(t + 1), ﬁgﬁiﬁi)
t — — RS )
cov(R(t + 1), ﬁééiﬂi)

This is similar to the CAPM, apart from thewhich in the CAPM has the form

cov(R!, R¥)

Beapm = var( i)

In some cases, the CAPM and the CAPM based on the GOP will be very simibar. F
instance, when the characteristic lines are linear or trading intervals theopwoaches are
indistinguishable and should be perceived as equivalent theoriest ihdtgs section, |
will show the continuous time version and here the GOP is always instantpeoean-
variance efficient.

Since the growth based approach to portfolio choice has some theoreticallfen-
tures compared to the mean-variance theory and the “standard” CARMman wonder
why this approach did not find more widespread use. The main reasoesisnpably the
strength of simplicity. Mean-variance based portfolio choice has an int#ppeal as it
provides a simple trade-off between expected return and variance.tratiesoff can be
parameterized in a closed form, requiring only the estimation of a varian@etance ma-
trix of returns and the ability to invert this matrix. Although choosing a portfolfach is
either a fractional Kelly strategy or logarithmic mean-variance efficientiges the same
trade-off, it is computationally much more involved. In Section 2.1. | pointedoaifact
that determining the GOP in a discrete time setting is potentially difficult and no closed
form solution is available. Although this may be viewed as a rather trivial mattieryat
certainly was a challenge to the computational power available 35 yearssagond, the
theory was attacked immediately for the lack of economic justification. Finally,ripre
ical data presented in Section 5. show that it is very hard to separate tA@angency
portfolio and the GOP in practice.
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Continuous time

The assumption that trading takes place continuously is the foundation dhihe
tertemporal CAPMof Merton (1973). Here, the price process of the risky assét
i€ {1,...,d}, is modeled as continuous time diffusions of the form

dS(t) = §0) (ai(t)dt + f: b (t)dW? (t))

J=1

whereW is anm-dimensional standard Wiener process. The proa&gs can be inter-
preted as the instantaneous mean return@’ﬂ_ﬂl(bivﬂ' (t))? is the instantaneous variance.
One may define the instantaneous mean-variance efficient portfoliodud®s® to the
problem

suPseo(s) @° (t)
S.t.b0(t) < k(t),

wherek(t) is some non-negative adapted process. To characterize such pertétdime
the minimal market price of riskiector,

67 = {67(t) = ((6")'(t),..., (6")™(t)) ", t € [0, TT},
by
67(1) £ b(t)(b(1)b(t) ) (t)(a(t) — r(t)1). (13)

Denote the Euclidean norm by,

1670l = (Z(Hp)j(t)) :

Jj=1

Then, instantaneously mean-variance efficient portfolios have fraotwich are solutions
to the equation

(@ (1), ..., 7 (1) Tb(t) = a(t)0(D) (14)
for some non-negative proceasand the corresponding SDE for such portfolios is given
by

m

aS0) (1) = 50 1) (<r<> IO + o) 38 ¢ ) (15)

From Example 6 it can be verified that in this case, the GOP is in fact instanisigenean-
variance efficient, corresponding to the choicexof 1. In other words, the GOP belongs
to the class of instantaneous Sharpe ratio maximizing strategies, where tipe $itéo,
59, of some strategy is defined as

SO () = a‘s(t) - ""(t)
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Heread’ (t) = 6@ (t)r(t) + 31, 6@ (¢)a’(t) and similarlyb® (t) = "7, 6@ (¢)b5 (¢).

Note that the instantaneously mean-variance efficient portfolios corfsisposition
in the GOP and the rest in the risk-free asset, in other words a fracticigl trategy.
Under certain conditions, for instance if the market price of risk and thedisiteate are
deterministic processes, it can be shown that any utility maximizing investor vaithsgh
a Sharpe ratio maximizing strategy and in such cases, fractional Kelly s¢stedl be
optimal for any investor. This result can be generalized to the case lineEhort rate
and the total market price of riskl¢”(¢)||, are adapted to the filtration generated by the
noise source that drives the GOP. It is, however, well-known that istiet rate or the
total market price of risk is driven by factors which can be hedged in th&ehasome
investors will choose to do so and consequently not choose a fradtietyaktrategy. When
jumps are added to asset prices, the GOP will again become instantaneoastyanance
inefficient except for very special cases. The conclusion is shown to depemd)ly on
the pricing of event risk and completeness of markets.

If the representative investor has logarithmic utility, then in equilibrium the G@IP w
become the market portfolio. Otherwise this will not be the case. Since thiitions
under which the GOP becomes exactly the market portfolio are thus faitticte®, some
authors have suggested that the GOP may be very similar to the market partfdéo a
set of more general assumptions. For instance, it has been shown im @83, 2005a)
that sufficiently diversified portfolios will approximate the GOP under ¢entagularity
conditions. It should be noted that the circumstances under which the G@&xanates
the market portfolio do not rely on the preferences of individual invest®@he regularity
conditions consist of a limit to the amount of volatility not mirroring that of the GUi#s
condition may be difficult to verify empirically.

In the end, whether the GOP is close to the market portfolio and whether thiy the
based on this assumption holds true remains an empirical question, which wdhisel-
ered later on. Foreshadowing these conclusions, the general agtdeone the empirical
analysis is that if anything, the GOP is more risky than the market portfolioelpedting
the hypothesis that the GOP is a proxy for the market portfolio is on the o#ret Viery
difficult.

Notes

The mean-variance portfolio technique is found in most finance textbdaksproofs
and a reasonably rigorous introduction, see Huang and Litzenb&@@8), The main re-
sults of the comparison, between mean-variance and growth optimality is iimttakans-
son (1971b, 1971a), see also Hakansson (1974). The compdundmesan-variance trade-
off was introduced in Hakansson (1971b). A critique of this model is daarMerton and
Samuelson (1974a, 1974b), but some justification is given by Luenb@g@3). Papers
discussing the growth-security trade-off include Blazenko, MacLeash Zéemba (1992),
Li (1993), Li, MacLean, and Ziemba (2005), Michaud (2003) and Mem et al. (2004).
In the gambling literature, the use of fractional Kelly strategies is widespread more
references, the reader is referred to Hakansson and Ziemba (¥29Bgrlier comparison
between mean-variance and the GOP is found in Bickel (1969). Thef®fXecommends
that the Kelly-criterion replaces the mean-variance criterion for portf@iection, due to
the sometimes improper choices made by the latter. For approximations of geamesiris
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see Trent and Young (1969) and Elton and Gruber (1974). Thesiwda that the first two
moments can provide reasonable approximations, in particular if the distritudes not
have very fat tails. In continuous time a recent discussion of a growthrigetrade-off and
the CAPM formula which appears, can be found in Bajeux-Besnaino arndif(1997a)
and Platen (2002, 2004b, 2005b). An application of the GOP for ags#tgpurposes can
be found in Ishijima (1999) and Ishima, Takano, and Taniyama (2004).

Versions of the result that in continuous time a two-fund separation reduimply
that investors choose fractional Kelly strategies have been showrietdif levels of gen-
erality in for instance Merton (1971, 1973), Khanna and Kulldorff @9MNielsen and
Vassalou (2002, 2004), Platen (2002), Ziemba and Zhao (2003) lanstéhsen and Platen
(2005). Some general arguments that the GOP will approximate or be ideatibe mar-
ket portfolio is provided in Platen (2004d, 2005a). Christensen (288&)s that when the
risky asset can be dominated, investors must stay “reasonably closeG@®iewhen the
market conditions become favorable. However, this is a relatively wegitogimnation re-
sult as | will make clear. Further results in the case where asset preeefamore general
class are treated in Platen (2004b).

In an entirely different literature, the so-calledgolutionary financéiterature, Blume
and Easley (1992) show that using the GOP will result in market domindrieeconclu-
sion is, however, not stable to more general set-ups as shown in Amir(20@#), where
market prices are determined endogenously and the market is incomplete.

3.3. How Long Does it Take for the GOP to Outperform other Portblios?

As the GOP was advocated, not as a particular utility function, but as amatiter to
utility theory relying on its ability to outperform other portfolios over time, it is impatta
to document this ability over horizons relevant to actual investors. In tloigose | will
assume that investors are interested in the GOP because they hope it valfoutpother
competing strategies. This goal may not be a “rational” investment goaltfiemoint of
view of expected utility, but it is investigated because it is the predominastneahy the
GOP was recommended as an investment strategy, as explained previously.

To get a feeling for the time it takes for the GOP to dominate other assets, eptisd
following illustrative example.

Example 10 Assume a set-up similar to Example 4. This is a two-asset Black-Scholes
model with constant parameters. By solving the differential equation a¥iags account
with a risk-free interest rate of is given by

SO (t) = exp(rt)
and solving the SDE, the stock price is given as
SW () = exp((a — %02)15 + oW (t)).
By Example 4, the GOP is given by the process

SO (1) = exp((r + %e% +O0W (1))
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wheref = “—*. Some simple calculations imply that the probability
Po(t) £ P(SO (1) > 5O (1))
of the GOP outperforming the savings account over a period of lengtial the probability
Py(t) £ P(S®(t) = 5W(1))
of the GOP outperforming the stock over a period of lengire given by
Po(t) = N(%G\/E)
Put) = N(%]@ ~ oV

Here N(-) denotes the cumulative distribution function of the standard Gaussian distribu-
tion. Clearly, these probabilities are independent of the short rate. Thisdwemain true
even if the short rate was stochastic, as long as the short rate doesfluatrioe the market
price of risk and volatility of the stock. Moreover, they are increasing innttaeket price

of risk and time horizon. The probabilities converge to one as the time hoiwoeases

to infinity, which is a manifestation of the growth properties of the GOP. The taditev
shows the time horizon needed for outperforming the savings accousrtaincconfidence
levels. Ifd is interpreted agf — o|, then the results can be interpreted as the time horizon
needed to outperform the stock.

Conf. level| 6 =0.05 | # =0.1 | §=0.25| 6 =0.5
99% 8659 2165 346 87
95% 4329 1082 173 43
90% 2628 657 105 26

The table shows that if the market price of risk is 0.25 then over a 105 pexéod the
GOP will provide a better return than the risk free asset with a 90% level ofidence.
This probability is equal to the probability of outperforming a moderately ristiogk with
a volatility of 50% per year. Figure 10 below show how the outperformamckability
depends on the time horizon.

The preliminary conclusion based on these simple results is that the longayrbe
very long indeed. A Sharpe ratio of 0.5 is a reasonably high one, for inst#rs would
be the result of a strategy, with an expected excess rate of return &evisk free rate of
20% and a volatility of 40%. Even with such a strategy, it would take almoseagsyto
beat the risk-free bond with a 90% probability.

Similar experiments have been conducted in the literature. For instancenp£a93)
considers an application of the GOP strategy to the St. Petersburg gamal@udtes the
probability of outperforming a competing strategy. It is analyzed how mamegaare nec-
essary for the GOP to outperform other strategies at a 95% confidamde leis shown
that this takes quite a number of games. For instance, if the alternative isotbimgr’,
then it takes the growth optimal betting strategy 87 games. Making the alteratxtitegy
more competitive (i.e. comparing to a conservative betting strategy) makeasrtitzen of
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Figure 1. Outperformance Likelihood.

games required grow very fast. If it takes a long time before the GOP domsialidenative
investment strategies, then the argument that one should choose the GORmizeéhe

probability of doing better than other portfolios is somewhat weakenedit &pa the dis-

cussion of whether this property is interesting or not, it requires an listieally long time

horizon to obtain any high level of confidence. In order to be reallyulseduld require
the GOP, when calibrated to market data, to outperform, say, an indexadvelatively)

short horizon - 10 or 20 years. In this case, given the absencelefidycspecified util-
ity function it might be useful to consider the GOP strategy. Hence, in dadsee how
long it will take the GOP to outperform a given alternative strategy onesecbnduct a
further systematic analysis. The analysis needs to be conducted in a ralistcenodel

calibrated to actual market data. There appears to be no available reshissdinection in

the literature.

Notes

Some papers that include studies of the wealth distribution when applying tie GO
includes Hakansson (1971a), Gressis, Hayya, and Philippatos)(Mithaud (1981) and
Thorp (1998). Somewhat related to this is the study by Jean (1980), wéiates the GOP
to n-th order stochastic dominance. He shows that if a portfdli@xhibits n-th order
stochastic dominance against a portfdlidor any givenn, thenX needs to have a higher
geometric mean thavi.

Example 10 is similar to Rubinstein (1991), who shows that to be 95 percembgu
beating an all-cash strategy will require 208 years; to be 95 percenoslreating an
all-stock strategy will require 4,700 years.

Note that the empirical evidence is mixed, see for instance the results in {18x¢p),
Hunt (2005) and the references in Section 5.. The existing attempts to apgBAR seem
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to have been very successful, but this has the character of “ankedmteance” and does
not constitute a formal proof that the period required to outperform ctmgpstrategies is
relatively short.

4. The GOP and the Pricing of Financial Assets and Derivatives

The nuneraire property of the GOP, see Theorem 4 and Theorem 4 has madal sexhors
suggest that it could be used as a convenient pricing tool for desdgaiin complete and
incomplete markets. Although different motivations and different econortecgretations
are possible for this methodology, the essence is very simple. This sectnhyigfiportant
since it motivates a large part of the analysis in later chapters. The setthijs isection
is similar to the general set-up described in Section 2.2.. A sét-pfl assets is given
as semimartingales and it is assumed that the GOP, exists as a well-defined, non-
explosive portfolio process on the intery@) 7']. | make the following assumption:

Assumption 1 For i € {0, ..., d} the process

n

)
) (t)

N

SW(t) &

U

is a local martingale.

Hence, | rule out the cases where the process is a supermartingate albcal martingale,
see Example 3. The reason why this is done will become clear shortly. Assanmip
implies that the GOP gives rise taraartingale densityin the sense that for argf?) € ©(S)

it holds that

g0 2 SOW _ SO0 SO _ SO0

S5m0 5o 5o ~ 25w

is a local martingale. So the proceg$t) = S5 () can under regularity conditions be
interpreted as the Radon-Nikodym derivative of the usual risk nenrtealsure. However,
some of these processes may be strict local martingales, not true martinggdasticular,

if the GOP denominated savings account is a true local martingale, then thiealaisk-
neutral martingale measure will not exist as will be discussed below.

Definition 6 Let H be anyFr-measurable random variable. This random variable is in-
terpreted as the pay-off of some financial asset at fimAssume that

e[

S| <

Thefair priceprocess of the pay-offf is then defined as

H(t) = SO (1) {S(fm]ft} . (16)
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The idea is to define the fair price in such a way that the @naine property of the GOP
is undisturbed. In other words, the GOP remains a GOP after the pdy-isfintroduced
in the market. There are two primary motivations for this methodology. Firstlyntudet
may not be complete, in which case there may not be a replicating portfoliogfqatyr off
H. Second, the market may be complete, but there need not exist anlequrisk neutral
measure, which is usually used for pricing. In the case of complete marketk have an
equivalent risk neutral measure the fair pricing concept is equivibepticing using the
standard method.

Lemma 2 Suppose the market has an equivalent martingale measure, that ishallity
measurel) such thatP ~ @ and discounted asset prices aielocal martingales. Then
the risk-neutral price given by

H

H(t) = SO (1) {S(O)(T)

7|

is identical to the fair price, i.eH (t) = H(t) almost surely, for alt [0, T7.

The following example illustrates why fair pricing is restricted as suggestedsay
sumption 1.

Example 11 (Example 3 continued)Recall that the market is given such that the first as-
set s risk freeS(V) (1) = 1, ¢ € {0, T} and the second asset has a log-normal distribution
log(SM(T)) ~ N (i, 0%) and S (0) = 1.

Suppose tha$(®) (t) is a strict supermartingale. What happens if the fair pricing con-
cept is applied to a zero-coupon bond? The price of the zero coupmhibhdhe market is

simplyS(©(0) = 1. The fair price on the other hand is

s (0)e [Sml(T)} <1

Hence, introducing a fairly priced zero coupon bond in this market predwan arbitrage
opportunity. More generally this problem will occur in all cases, whems@rimary assets
denoted in units of the GOP are strict supermartingales, and not localinggles.

Below | consider the remaining cases in turn. In the incomplete market cakew
how the fair price defined above is related to other pricing methodologiesiircamplete
market. Then | consider markets without a risk-neutral measure andsdibow and why
the GOP can be used in this case.

4.1. Incomplete Markets

Fair pricing as defined above was initially suggested as method for prichigatiees in
incomplete markets, see Bajeux-Besnaino and Portait (1997a) and ticesaited in the
notes. In this subsection, markets are assumed to be incomplete, but toikgeséparate,

it is assumed that the set of martingale measures is non-empty. In particalarodess

5(0) is assumed to be a true martingale. When markets are incomplete and thereiis no po
folio which replicates the pay-offf, arbitrage theory is silent on how to price this pay-off.



42 Morten Mosegaard Christensen

From the seminal work of Harrison and Pliska (1981) it is well-known thiatdbrresponds
to the case of an infinite number of candidate martingale measures. Any efrtleasures
will price financial assets in accordance with no-arbitrage and theredgniori reason for
choosing one over the other. In particular, no arbitrage considerataasnot suggest that
one might use the martingale meas@elefined byj—g = 50 (T"), which is the measure
induced by applying the GOP. One might assume that investors maximized i gave
of their investments. Then it could be argued that a “reasonable” priteegiay-off, H,
should be such that the maximum growth rate obtainable from trading thatieziand the
existing assets should not be higher than trading the existing assets albeewi®e, the
derivative would be in positive net-demand, as investors applied it to obtagher growth
rate. It can be shown that the only pricing rule which satisfies this projsettig fair pricing
rule. Of course, whether or not growth rates are interesting to inveshsrbeen a contro-
versial issue. Indeed, as outlined in the previous sections, the grotetisranly directly
relevant to an investor with logarithmic utility and the argument that the maximaltgrow
rate should not increase after the introduction of the derivative is giyraot backed by an
equilibrium argument, except for the case where the representativionve assumed to
have logarithmic utility. Although there may be no strong theoretical argumdrrdbéhe
selection of the GOP as the pricing operator in an incomplete market, its applicsafiidin
consistent with arbitrage free pricing. Consequently, it is useful to coertpés method to
a few of the pricing alternatives presented in the literature.

Utility Based Pricing: This approach to pricing assumes agents to be endowed with some
utility function U. The utility indifference priceat timet of k units of the pay-offH, is
then defined as the priggy (k, ¢) such that

sup ENUSNT)+kH)| = sup £ [U(S(‘S)(T))} .
SON(T),80) (t)=x—pr (k,t) SO(T),SO) (t)=x

This price generally depends &ni.e. on the number of units of the pay-off, in a non-linear
fashion, due to the concavity &f. Supposing that the functiopy; (k, ¢) is smooth, one
may define thenarginal priceas the limit

pH(k’t)

prlt) =i =

which is the utility indifference price for obtaining a marginal unit of the p#fywshen the
investor has none to begin with. If one uses logarithmic utility, then the margididfieirn
ence price is equal to the fair price, i.ey(t) = H(t). Of course, any reasonable utility

function could be used to define a marginal price, the logarithm is only aadjpase.

The Minimal Martingale Measure: This is a particular choice of measure, which is often
selected because it “disturbs” the model as little as possible. This is to bestowtein the
sense that a process which is independent of traded assets will hasantledistribution
under the minimal martingale measure as under the original measure. Assugrtine
martingale,S, is special such that it has locally integrable jumps and consequently has the
unique decomposition

S(t) =S(0) + A(t) + M(¢)
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whereA(0) = M (0) = 0, A is predictable and of finite variation, add is a local martin-
gale. In this case, one may write

dS(t) = Nt)d(M); + dM (t)

where\ is the market price of risk process afdll) is the predictable projection of the
guadratic variation of\/. The minimal martingale measure, if it exists, is defined by the
density

Z(T) = £(=X- M)y

where& () is the stochastic exponential. In other wordss the solution to the SDE
dZ(t) = —A(t)Z(t)dM (t).

In financial terms, the minimal martingale measure puts the market price of apgpumed

risk, that is, risk factors that cannot be hedged by trading in the maried| & zero. In

the general cas€ may not be a martingale, and it may become negative. In such cases
the minimal martingale measure is not a true probability measurgidfcontinuous, then
using the minimal martingale measure provides the same prices as the fair paooept

In the general case, when asset prices may exhibit jumps, the two methpdsiftg assets

are generally different.

Good Deal Bounds:Some authors have proposed to price claims by defining a bound on
the market prices of risk that can exist in the market. Choosing a martingatirsda an
incomplete market amounts to the choice of a specific market price of risk. Asaned,
the minimal martingale measure is obtained by putting the market price of risk dfaed
risk factors equal to zero. For this reason, the price derived frormihamal martingale
measure always lies within the good-deal bounds. Of course, giverssiuenption that the
set of prices within the good deal bound is non-empty. It follows that thiepfice lies
within the good deal bound in the case of continuous asset prices. Iretiegay case the
fair price need not lie within a particular good deal bound.

Another application of fair pricing is found in the Benchmark approaclwéier, here
the motivation was somewhat different as | will describe below.

Notes

The idea of using the GOP for pricing purposes is stated explicitly for thetiine
in the papers Bajeux-Besnaino and Portait (1997a, 1997b) and rfatgeed in Aurell
et al. (2000a, 2000b). In the latter case, the arguments for using thes€&€diPto be subject
to the criticism raised by Samuelson, but the method as such is not inconsigtemo
arbitrage. Utility based pricing is reviewed in Davis (1997) and HendeasmhHobson
(2008). The minimal martingale measure is discussed in, for instance, Ben{E995),
and the relationship with the GOP is discussed in Becherer (2001) andebisas and
Larsen (2007). Good deal bounds were introduced by Cochrah&a@Requejo (2000)
and extended to a general setting i and Slinko (2006). The later has a discussion of
the relationship to the minimal martingale measure.
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4.2. A World Without a Risk-neutral Measure

In this section | consider a complete market. To keep matters as simple as p@sshlae
there is a risk-free savings account where the shortrgiassumed to be constant. Hence,

dS©O(t) = rSO) (¢)dt.
There is only one risky asset given by the stochastic differential equatio
dSM () = SW(#) (a(t)dt + b(t)dW (1))

whereV is a standard one-dimensional Wiener process. It is assumed tdralb are
strictly positive processes such that the soluiéh is unique and well-defined, but no other
assumptions are made. The parameter processash can be general stochastic processes.
The market price of risk is then well-defined a&(t) = “(tl))(*t;‘(t) and consequently this may
also be a stochastic process. The usual approach when pricing aatidother derivatives

is to define the stochastic exponential

A(t) = exp <—; /Ot 62(s)ds — /Ote(s)dW(s)) .

If A(t) is a martingale, then the Girsanov theorem implies the existence of a méasure
such that

W) 2wt — /0 0(s)ds

is a standard Wiener process under the meagure

However, it is well-known that\ need not be a martingale. This is remarked in most
text-books, see for instance Karatzas and Shreve (1988) or Retiéoa(1991). The latter
contains examples from the class of Bessel processes.

By the It formula, A satisfies the stochastic differential equation

dA(t) = —0()A()dW (¢)

and so is a local martingale, see Karatzas and Shreve (1988). As mentidéeample 9
some additional conditions are required to ensute be a martingale. The question here
is, what happens if the proceAst) is not a martingale? The answer is given in the theorem
below:

Theorem 9 Suppose the procesgt) is not a true martingale. Then

1. If there is a stopping time < T, such thatP( [ 6*(s)ds = co) > 0, then there
is no equivalent martingale measure for the market under anyénaine and the
GOP explodes. An attempt to apply risk-neutral pricing or fair pricing witut in
Arrow-Debreu prices that are zero for events with positive probability.

2. If fOT 62(s)ds < oo almost surely, then the GOP is well-defined and the original
measureP is an equivalent martingale measure when using the GOP a&raire.
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3. If fOT 62(s)ds < oo almost surely, ther\(¢) is a strict supermartingale and there is
no risk-neutral measure when using the risk free asset as &raire. Moreover, the
risk-free asset can be outperformed over some intgtval C [0, 7.

4. The fair price is the price of the cheapest portfolio that replicates the gragroff.

The theorem shows that fair pricing is well-defined in cases where gskl pricing is
not. Although presented here in a very special case the result is indaghta very general
setting. The result may look puzzling at first because usually the existéacesk-neutral
measure is associated with the absence of arbitrage. However, comstitio@umodels
may contain certain types of “arbitrage” arising from the ability to condudtbtnite num-
ber of trade. A prime example is the so-called doubling strategy, which irvaleabling
the investment until the time when a favorable event happens and the inkesliaes a
profit. Such “arbitrage” strategies are easily ruled out as being inadieigsilDefinition 4
because they generally require an infinite debt capacity. Hence thaptaebitrage strate-
gies in the sense of Definition 3. But imagine a not-so-smart investor, wisotdrigo the
opposite thing. He may end up losing money with certainty by applying a so-Calied
cide strategy”, which is a strategy that costs money but results in zero tém@atih. A
suicide strategy could, for instance, be a short position in the doublinggyréf it where
admissible). Suicide strategies exighenever asset prices are unboundad they need
not be inadmissible. Hence, they exist in for instance the Black-Scholesl mmodi®@ther
popular models of finance. If a primary asset has a built-in suicide strategythe asset
can be outperformed, by a replicating portfolio without the suicide strafBgg suggests
the existence of an arbitrage opportunity, but that is not the case. I/astor attempts to
sell the asset and buy a (cheaper) replicating portfolio, the resultinggjres not neces-
sarily admissible. Indeed, this strategy may suffer large, temporary lbefa® maturity,
at which point of course it becomes strictly positive. It is important to notewhather or
not the temporary losses of the portfolio are bounded is strictly depeadéhé nuréraire.
This insight was developed by Delbaen and Schachermayer (199bb)owed that the
arbitrage strategy under consideratiofoiser boundedinder some nu#raire, if and only
if that nuneraire can be outperformed. Given the existence of a market pricdptfires‘ar-
bitrage” strategy is never strictly positive at all times before maturity. If this tha case,
then any investor could take an unlimited position in this arbitrage and the GOld nou
longer be a well-defined object. The important difference between havimger bounded
and an unbounded arbitrage strategy is exactly that if the strategy is lonadéd, then
by the fundamental theorem of asset pricing there can be no equivsdetihgale measure.
In particular, if the risk-free asset contains a built-in suicide strategw, tere cannot be
an EMM when the risk-free asset is applied as euasire. On the other hand, a different
numéraire may still work allowing for consistent pricing of derivatives.

Hence if one chooses a nénaire which happens to contain a built-in suicide strategy,
then one cannot have an equivalent martingale measure. This suggéstsemeeds only
take care that the right nigmaire is chosen, in order to have a consistent theory for pricing
and hedging. Indeed, the GOP is such a araire, and it works even when the standard
numéraire - the risk free savings account - can be outperformed. Mergiwe existence of
a GOP is completely nuaraire independent. In other words, the existence of a GOP is the
acid test of any model that is to be useful when pricing derivatives.
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Obviously, the usefulness of the described approach relies on two thiirgy, there
is only a theoretical advantage in the cases where risk-neutral pridlagdtherwise the
two approaches are completely equivalent, and fair pricing is merely &aspase of the
change of nureraire technique.

Remark 1 In principle, many other nuéraires could be used instead of the GOP, as long
as they do not contain suicide strategies. For instance, the portfolio chdieeutility
maximizing investor with increasing utility function will never contain a suicidetsgy
However, for theoretical reasons the GOP is more convenient. Estalgishenexistence
of a portfolio which maximizes the utility of a given investor is non-trivial. Moegothe
existence of a solution may depend on the &naine selected, whereas the existence of the
GOP does not.

In practice, usefulness requires documentation that the risk-free Gssde outper-
formed, or equivalently that the risk-free asset denominated in units @G ®r is a strict
local martingale. This is quite a hard task. The question of whether theraskakset can
be outperformed is subject to the so-called peso problem: only one santpiie pgaer ob-
served, so it is quite hard to argue that a portfolio exists which can oatpethe savings
accountalmost surelyAt the end of the day, almost surely means with probability one, not
probability 99.999%. From the earlier discussion, it is known that the GORutilerform
the risk-less asset sooner or later, so over very long horizon, tioalpifidy that the risk-
free asset is outperformed is rather high and it is more than likely that ewseifvhere
to have (or construct) a number of observations, they would all sugjggtsthe risk-free
asset could be outperformed. A better, and certainly more feasibleyaghpif one where
to document the usefulness of the fair pricing approach is to show thatd¢ldetions of
models, in which the savings account can be outperformed, are in line witlhieghpbser-
vations. Some arguments have started to appear, for instance in the literatmatinuous
time “bubbles”, cited in the notes.

Notes

In a longer sequence of papers the fair pricing concept was explerpdraiof the so-
calledbenchmark approachdvocated by Eckhard Platen and a number of co-authors, see
for instance Heath and Platen (2002b, 2002c, 2003), Miller and Plad@d)2Platen (2001,
2002, 20044, 2004c, 2004d, 2004e, 2005a), Christensen and E28t5) and Platen and
West (2005).

The proof of Theorem 9 is found in this literature, see in particular Chsstemand
Larsen (2007). Some calibrations which indicate that models without an EMN ¢
realistic are presented in Platen (2004d) and Fergusson and Plat&i. (200

Related to this approach is the recent literature on continuous assetyiides Bub-
bles are said to exist whenever an asset contains a built-in suicide stitztegyse in this
case, the current price of the asset is higher than the price of a regipatitiolio. Refer-
ences are Loewenstein and Willard (2000a, 2000b), Cassessg &@bD&ox and Hobson
(2005). In this literature, it is shown that bubbles can be compatible with equitiband
that they are in line with observed empirical observations. To some extgrietia:further
support to the relevance of fair pricing.
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5. Empirical Studies of the GOP

Empirical studies of the GOP are relatively limited in numbers. Many date bacl teth
enties and deal with comparisons to the mean-variance model. Here, the ahgbudies
will be separated into two major groups, answering to broad questions.

» How is the GOP composed? Issues that belong to this group include whatf mix o
assets constitute the GOP and, in particular, whether the GOP equals thé marke
portfolio or any other diversified portfolio.

* How does the GOP perform? Given an estimate of the GOP it is of some practica
importance to document its value as an investment strategy.

The conclusions within those areas are reasonably consistent acdieréiture and the
main ones are

* It is statistically difficult to separate the GOP from other portfolios - this tsion
appears in all studies known to the author. It appears that the GOP ig tisitie
the mean-variance tangency portfolio and the market portfolio, but thethggis
that the GOP is the market portfolio cannot be formally rejected. It may be well-
approximated by a levered position in the market. This is consistent with differe
estimates of the risk aversion coefficientof a power utility investor which different
authors have estimated to be much higher than one (corresponding to adstpi.
A problem in most studies is the lack of statistical significance and it is harddo fin
significant proof of the composition. Often, running some optimization progval
imply a GOP that only invests in a smaller subset of available assets.

» The studies that use the GOP for investment purposes generally certblatdal-
though it may be subject to large short-term fluctuations, growth maximizatien pe
forms rather well even on time horizons which are not excessively lomgcél al-
though the GOP does not maximize expected utility for a non-logarithmic investors
history shows that portfolio managers using the GOP strategy can bectiraesac-
cessful. However, the cases where the GOP is applied for investmegmuigesrare of
a somewhat anecdotal nature. Consequently, the focus of this sectidrewhk first
guestion.

Notes

For some interesting reading on the actual performance of growth optintédlfms in
various connections, see Thorp (1971, 1998), Grauer and Haika($985), Hunt (2004,
2005) and Ziemba (2005). Edward Thorp constructed a hedge-RMid, which success-
fully applied the GOP strategy to exploit prices in the market out of line with mattieaha
models, see in particular Poundstone (2005). The reader is refertteel qoioted papers in
the following subsection, since most of these have results on the perfceroathe GOP
as well. There seems to be very few formal studies, which consider tifiermpance of
growth optimal strategies.
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5.1. Composition of the GOP

Discrete Time Models: The method used for empirical testing is replicated, at least in
principle, by several authors and so is explained briefly. Assume athsiime set-up, as
described in Section 2.1.. Hence the market is givefi as(S©) (¢), S (¢),..., 5@ (1))

with the return between timeandt + 1 for asset denoted byR‘(¢) as usual. Recall from
the myopic properties of the GOP, that the GOP strategy can be found by miagjrtiiz
expected growth rate betweeandt + 1

or <s<6><t + 1))

&
Sl;p t S((S) (t)

)

for eacht € {0,...7 — 1}. From Equation (5), the first order conditions for this problem

are
1+ R'(t)]
& [1 - Ré(t)] =1 (17)

foralli € {0,...,d}. The first order conditions provide a testable implication. A test that
some given portfolio is the GOP can be carried out by forming samples ofidity

iy o L+ R()
Z'(t) = TR

wherel + R%(t) is the return of candidate GOP portfolio. The test consists of checking

whether
1 T
_— ;
Z = T t_g - Zt

is statistically different across assets. However, note that this requeadsdhorder con-
ditions to be satisfied. In theory, GOP deflated assets are supermartingalesticular
they may in discrete time be supermartingales that are not martingales, see&Raitipe
assumption implicit in the first order condition above is that optimal GOP fractoas
assumed in an inner point. A theoretically more correct approach ther¢gweuto test
whether these quantities on average are below one. As the varianderosrmay differ
across assets and independence is unrealistic, an applied approageisite Hotelling ™
statistic to test this hypothesis. This is a generalization of the student-t distribddbe
a valid test, this actually requires normality from the underlying variables,hwikiclearly
unreasonable, since if returns would have support on the entiredisgharowth optimizer
would seek the risk-free asset. The general conclusion from thigagipiis that it cannot
reject the hypothesis that the GOP equals the market portfolio.

Because this approach is somewhat dubious, alternatives have lygestad. An en-
tirely different way of solving the problem is to find the GOP in the market byingak
more specific distributional assumptions, and calculating the GOP ex antdualydits
properties. This allows a comparison between the theoretically calculateda@®Ehe
market portfolio. The evidence is somewhat mixed. Fama and Macbeth)(é8fpares
the mean-variance efficient tangent portfolio to the GOP. Perhaps thempmtant con-
clusion of this exercise is that although tBeof the historical GOP is large and deviates
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from one, the growth rate of this portfolio cannot be statistically separated fhat of
the market portfolio. This is possibly related to the fact that Fama and Ma¢b@t)
construct the time series of growth rates from relatively short periodshance the size
of growth rates is reasonably small compared to the sample variance which implies
small t-stats. Still, it suggests that the GOP could be more highly levered thamtfenty
portfolio. This does not imply, of course, that the GOP is different froenrttarket. This
would be postulating a beta of one to be the beta of the market portfolio argliiteés one
to believe that the CAPM holds.

Although the cited study finds it difficult to reject the proposition that the ngr&e-
folio is a proxy for the GOP, it suggests that the GOP can be more risky ttspdtifolio.
Note that the market portfolio itself has to be proxied. Usually this is done lizgakarge
index such as S&P 500 as a proxy for the market portfolio. Whether thiozippation is
reasonable is debatable. Indeed, this result is verified in most availablestén excep-
tion is Long (1990), who examines different proxies for the GOP. Thygested proxies
are examined using the first order conditions as described above. glthiba results of
formal statistic tests are absent, the intuition is in line with earlier empirical rdsdarthe
article, three proxies are examined

1. A market portfolio proxy
2. Alevered position in the market portfolio
3. A Quasi-Maximume-Likelihood estimate

The study concludes, that using a quasi maximum likelihood estimate of the @dite
superior performance. However, using a market portfolio proxy asenaire will yield a
time series of nui@raire adjusted returns which have a mean close to zero. A levered posi-
tion in the market portfolio, on the other hand, will increase the varianceeofitiméraire
adjusted returns and seems to be the worst option.

A general conclusion, when calibrating the market data to a CCAPM typelnsdatiat
the implied relative risk aversion for a representative agent is (muchghtbhan one, one
being the relative risk aversion of an agent with logarithmic utility. This somehqports
the conclusion that the GOP is more risky than the market portfolio.

A few other studies indicate that the GOP could be a rather narrow portfekets
ing only a few stocks. A study which deals more specifically with the questiomhait
assets to include in the GOP was conducted by Grauer (1981). Assunmingttiras on as-
sets follow a (discrete) approximate normal distribution, he compares the ragsefs in a
mean-variance efficient portfolio and a GOP, with limits on short sales. wenty stock,
the GOP and the mean-variance tangency portfolio both appeared toybendiversified
- the typical number of stocks picked by the GOP strategy was three. Fudhe there
appeared to be a significant difference between the composition of avaganee effi-
cient portfolio and the GOP. In a footnote, Grauer suggests that this ndyette the small
number of states (which makes hedging simpler) in the distribution of retutnis. dbes
not explain the phenomena for the tangency portfolio, which, if CAPM haldsuld have
the same composition as the market portfolio. It suggested that the lackeo§ifization
is caused by the imposed short sale constraint. Although the reason fexpégation is
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unclear, it is shown that if the short sale constraint is lifted, then the GORIrtadats a posi-
tion in all 20 stocks. In Grauer and Hakansson (1985) a simple modedtions is assumed
and the investor’s problem is then solved using non-linear programmiagpéars that the
growth optimal strategy is well approximated by this method and it yields a sigmifjca
higher mean geometric return than other strategies investigated in the samplgziAg
the composition of the GOP provides a somewhat mixed picture of diversificdigfore
1940, the GOP consists of a highly levered position in Government andf2depbonds,
but only few stocks. Then a switch occurs towards a highly levered positistocks un-
til the late sixties at which point the GOP almost leaves the stock market ancdtdutimes
risk-free asset to become a quit conservative strategy in the last pétioel sample which
ends in 1982. This last period of conservatism may be due to estimation moble it is
remarked by the authors that by analyzing the ex-post returns it apihedthe GOP isoo
conservative. Still, the article is not able to support the claim that the GOBiergl, is a
well-diversified portfolio.

Continuous Time Models: Only very few studies have been made in continuous time.
With the exception of Hunt (2004, 2005), who uses a geometric Brownigiomwith
one driving factor as the model for stock prices. This implies that shoekperfectly
correlated across assets and log returns are normally distributed. Cibspfidet that such
a model is rejected by the data, a GOP is constructed, and its propertiesestgated.
The formed GOP strategy in this setting also consists of only a few stockenpasing
a short sale constraintbcreaseshe level of diversification in GOP strategy, contrary to
the result mentioned above. The study is subject to high parameter unigerdaid the
assumption of one driving factor implies that the GOP strategy is far fronuenig theory
it can be formed from any two distinct assets. For this reason, the camdusbout the
composition of the GOP might be heavily influenced by the choice of model.

It appears that to answer the question of what mix of assets are reduifedn the
GOP, new studies will have to be made. In particular obtaining closer aippeiign of real
stock dynamics is warranted. This could potentially include jumps and sholddsithave
several underlying uncertainty factors driving returns. The overalblem so far seem to
have been a lack of statistical power, but certainly having a realistic lymgmodel seem
to be a natural first step. Furthermore, the standard test in equation yH)enasufficient
if the dynamics of GOP deflated assets will be that of a true supermartindeeaedt may
lead to an acceptance of the hypothesis that a given portfolio is growihalpwhen the
true portfolio is in fact more complex. Hence, tests based on the first codelition should
in principle be one-sided.

Notes

Possibly the first study to contain an extensive empirical study of the GOFRwk
(1973). Both Roll (1973) and Fama and Macbeth (1974) suggest thah#énket portfo-
lio should approximate the GOP and both use an index as a GOP candidatetaraie
unable to reject the conclusion that the GOP is well approximated by the npanitélio.
Roll (1973) use the S&P 500, whereas Fama and Macbeth (1974) ugsepla average
of returns on common stocks listed on NYSE. Using the first order condiSantast of
growth optimality is also done by Long (1990) and Hentschel and Longd(2icksler
and Thorp (1973) assume two different distributions, calculate the implield &3ed on
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different amounts of leverage and find it to be highly levered. Secondy igiwth sub-
optimal portfolios are impossible to separate from the true GOP in practice. Rotawldo a
Thorp (1992) calibrate S&P 500 data to a (truncated) normal distributiorcaiodlate the
GOP formed by the index and risk-less borrowing. This results in a leyesition in the
index of about 117 percent. Pulley (1983) also reaches the concliligibthe GOP is not
a very diversified portfolio. However, in Pulley’s study, the compositibthe GOP and
mean-variance based approximations are very similar, see Pulley (T&8B@)R]. For gen-
eral results suggesting the market portfolio to be the result of a repatiseragent with
high risk aversion see for instance the econometric literature related touttg peemium
puzzle of Mehra and Prescott (1985). Some experimental evidencesisried in Gordon,
Paradis, and Rorke (1972), showing that as individuals become maithweheir invest-
ment strategy would approximate that of the GOP. Maier, Peterson, and: \(i&d7a)
conduct simulation studies to investigate the composition of the GOP and thenpanfze
of various proxies.

6. Conclusion

The GOP has fascinated academics and practitioners for decadesteDes@rguments
made by respected economists that the growth properties of the GOP &reainteas a
theoretical foundation for portfolio choice, it appears that it is still viewedh practically
applicable criterion for investment decisions. In this debate it was emphatiae the
utility paradigm in comparison suffers from being somewhat more abstrhetaiguments
that support the choice of the GOP is based on very specific growtlepiesy and even
though the GOP is the choice of a logarithmic investor, this interpretation is ofgn ju
viewed as coincidental. The fact that over time the GOP will outperform sthategies is
an intuitively appealing property, since when the time comes to liquidate the lpoitfanly
matters how much money it is worth. Still, some misunderstandings seem to pethist in
area, and the fallacy pointed out by Samuelson probably should be stadiedcarefully

by would-be applicants of this strategy, before they make their decisiorredver, the
dominance of the GOP may require some patience. Studies show that it will take ma
years before probability that the GOP will do better than even the riskaseet becomes
high.

In recent years, it is in particular the némaire property of the GOP which is being
researched. This property relates the GOP to pricing kernels and hmekes it applicable
for pricing derivatives. Hence, it appears that the GOP may have daglay as a tool
for asset and derivative pricing. The practical applicability and use$s still needs to be
validated empirically, in particular the problem of finding a well-working GO&xgmeeds
attention. This appears to be an area for further research in the yeans&
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