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Summary: This paper gives an asymptotic analysis of the mean-variance (Marktype) port-
folio selection under mild assumptions on the market behavior. Thednetfdts show the rate of
underperformance of the risk aware Markowitz-type portfolio strategyowth rate compared to
the log-optimal portfolio strategy, which does not have explicit risk cdnBtatements are given
with and without full knowledge of the statistical properties of the underlyiracess generating
the market, under the only assumption that the market is stationary avdie@rghe experiments
show how the achieved wealth depends on the coefficient of absolutavesgion measured on
pastNYSE data.

1 Introduction

The goal of the Markowitz’s portfolio strategy is the optraiion of the asset allocation
in financial markets in order to achieve optimal trade-offlmeen the return and the risk
(variance). For thetatic modelone-period model), the classical solution of the mean-
variance optimization problem was given by Markowitz [16¢avierton [17]. Compared
to expected utility mode|é offers an intuitive explanation for diversification. ever,
most of the mean-variance analysis handles only static lnatgatrary to the expected
utility models, whose literature is rich multiperiod models

In the multiperiod models (investment strategies) thestmeis allowed to rebalance
his portfolio at the beginning of each trading period. Moreqisely, investment strate-
gies use information collected from the past of the markdtdetermine a portfolio, that
is, a way to distribute the current capital among the avkilabsets. The goal of the in-
vestor is to maximize his utility in the long run. Under theasption that the daily price
relatives form a stationary and ergodic processay@mptotic growth rate of the wealth
has a well-defined maximum which can be achieved in full kedgk of the distribution
of the entire process, see Algoet and Cover [3]. This maximmambe achieved by the
log-optimal strategywhich maximizes the conditional expectationag-utility.

AMS 1991 subject classification: 90A09, 90A10
Key words and phrases: sequential investment, kernel-less$igaiation, mean-variance investment, log-optimal
investment
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For an investor plausibly arises the following questionwhauch the loss in the
average growth rate compared to the asymptotically bestfratmean-variance portfolio
optimization is followed in each trading period.

The first theoretical result connecting the expected ytilitd mean-variance analysis
was shown by Tobin [19], for quadratic utility function. Giex [9] compared the log-
optimal strategies and the mean-variance analysis in theperiod model for various
specifications of the state return distributions and higérpents revealed that these two
portfolios have almost the same performance when the ettome from the normal
distribution. Kroll, Levy and Markowitz [15] conducted avsiar study. Merton [17] de-
veloped a continuous time mean-variance analysis and shihaélog-optimal portfolio
is instantaneously mean-variance efficient when assetgée log-normal. Hakansson
and Ziemba [13] followed another method in defining a dynaméan-variance setting,
where the log-optimal portfolio can be chosen as a risky aluftund. They considered
a finite time horizon model and the asset price behavior weerméed by a Wiener-
process.

In this paper, we follow a similar approach to [17], howevediscrete time setting
for general stationary and ergodic processes.

To determine a Markowitz-type portfolio, knowledge of tihéinite dimensional sta-
tistical characterization of the process is required. Intiast, for log-optimal portfolio
settinguniversally consistergtrategies are known, which can achieve growth rate achiev-
able in the full knowledge of distributions, however withémowing these distributions.
These strategies are universal with respect to the cladbsihdonary and ergodic pro-
cesses as it was proved by Algoet [1]. @fy and Sclafer [11], Gyrfi, Lugosi, Udina
[10] constructed a practical kernel based algorithm forstime problem.

We present a strategy achieving the same growth rate as tHeWitz-type strategy
for the general class of stationary and ergodic processeg\fer without assuming the
knowledge of the statistical characterization of the pssceThis strategy is risk averse
in the sense that in each time period it carries out the masaance optimization.

We also present an experimental performance analysisdatata sets of New York
Stock ExchangeNYSE) spanning a twenty-two-year period with thirty six stocks i
cluded, which set was presented in [10].

The rest of the paper is organized as follows. In Section 2rththematical model
is described. The investigated portfolio strategies afmee in Section 3. In the next
section a lower bound on the performance of Markowitz-tyipategy is shown. Section
5 presents the kernel-based Markowitz-type sequentiakiment strategy and its main
consistency properties. Numerical results based vsE data set are shown in Section
6. The proofs are given in Section 7.

2 Setup, the market model

The model of stock market investigated in this paper is treecamsidered, among others,
by Breiman [7], Algoet and Cover [3]. Consider a market/aissets. Amarket vector

x = (zM,...,z(9) € R? is a vector ofd nonnegative numbers representing price
relatives for a given trading period. That is, tith component:\/) > 0 of x expresses



An Asymptotic Analysis of the Mean-Variance Portfolio Seien 903

the ratio of the opening prices of asget In other wordsz) is the factor by which
capital invested in thg-th asset grows during the trading period.

The investor is allowed to diversify his capital at the begng of each trading pe-
riod according to a portfolio vectds = (b(1),...b(4). The j-th component’) of b
denotes the proportion of the investor’s capital investeasisej. Throughout the paper
we assume that the portfolio vectorhas nonnegative components WED;I=1 b)) =1.

The fact '[hatz?l:1 b)) = 1 means that the investment strategy is self financing and con-
sumption of capital is excluded. The non-negativity of tbenponents ob means that
short selling and buying stocks on margin are not permittet.S, denote the investor’'s
initial capital. Then at the end of the trading period theestor's wealth becomes

d
S1=Sp Y bWzl =S (b, x),

j=1

where(-, -) denotes inner product.

The evolution of the market in time is represented by a sezpiehmarket vectors
X1,X2,... € RZ, where thej-th componentz:ﬁr” of x; denotes the amount obtained
after investing a unit capital in thgth asset on theé-th trading period. Foj < i we
abbreviate b)x; the array of market vector;, . . ., x;) and denote by\; the simplex
of all vectorsb € Ri with nonnegative components summing up to one.ivestment
strategyis a sequencB of functions

bi: (R ™ S Ay, i=1,2,...

so thatb, (x‘~!) denotes the portfolio vector chosen by the investor onithetrading
period, upon observing the past behavior of the market. Vile Wwtx'™") = b;(x\™ 1)
to ease the notation.

Starting with an initial wealtht, aftern trading periods, the investment stratdgy
achieves the wealth

S =50 [ (p(xi7"), xi) = Spei=1 log(b(xi ™), xi) — g enWn(B),
i=1
whereW,, (B) denotes thaverage growth rate
aet 1 - i1
Wn(B)'= — > log (b(xi™"), xi) -
i=1

Obviously, maximization of,, = S,,(B) and maximization oiV,,(B) are equivalent.

In this paper we assume that the market vectors are realiwatf a random pro-
cess, and describe a statistical model. Our view is complatsmparametric in that the
only assumption we use is that the market is stationary agaodes, allowing arbitrar-
ily complex distributions. More precisely, assume tRatxs, . .. are realizations of the
random vectorX, Xo, ... drawn from the vector-valued stationary and ergodic preces
{X,.}>,. The sequential investment problem, under these condittees been consid-
ered by, e.g., Breiman [7], Algoet and Cover [3], Algoet [1,@yorfi and Schfer [11],
Gyorfi, Lugosi, Udina [10].
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3 The Markowitz-type and the log-optimal portfolio se-
lection

3.1 The Markowitz-type portfolio selection

In his seminal paper Markowitz [16] used expected utilitg &ine investigation was re-
stricted to single period investment with i.i.d returns.cbomtrary we work with a multi-
period model (investment strategy) and we assume genatarsry and ergodic model
for the market returns. Consequently it is more adequateddo use conditional ex-
pected utility. In the special case of i.i.d. returns it mplified to the standard expected
utility. For the sake of the distinction from the standardrkéavitz approach we will call
our utility function Markowitz-type utility function

Let the following formula define the conditional expectedueaof the Markowitz-
type utility function:

L E{(b(X;™), X,) X771}

— AVar {(b(X}71), X,.) X071},

E{Un((b(X}Y), X,), X7}

whereX,, is the market vector fon-th day,b(X'f‘l) € Agand\ € [0, 00) is the con-
stant coefficient of absolute risk aversion of the invesitie conditional expected value
of the Markowitz-type utility function can be expresseceaiome algebra in following
form:
E{Un ((b(X7™1), Xu) , N)|X7 71}

= (1= 20E {(b(X}™"), X) = 11X} ™"} = AE{((b(X}™"), X,) = 1)2|X] '}

+1 = A+ AE* {(b(X]71), X, ) [ X771}

Accordingly let the Markowitz-type utility function be defd as follows

Unr((b(XT71), X)), A)
=20 (X, Xp) = 1) = A(B(XTT), X)) = 1)+ 1 - A
FAE*{(b(X]7"), X,) X771
Hence the Markowitz-type portfolio strategy be defined®yy= {b}(-)}, where

B’;\(X?_l) = argmax E {UM(<b(XTf_1) , Xn> , )\)|X7f_1} .
beAy

Let 5*;; , = S,(B3) denote the capital achieved by Markowitz-type portfoliatgy
By, aftern trading periods.

3.2 The log-optimal portfolio selection

Now we briefly introduce the log-optimal portfolio selectioThe fundamental limits,
first published in [3], [1, 2] reveal that the so-callledj-optimal portfolioB* = {b*(-)}



An Asymptotic Analysis of the Mean-Variance Portfolio Seien 905

is the best possible choice for the maximizatiorbgf More precisely, on trading period
n letb*(-) be such that

b*(X}!) = arg maxE {log (b(X} ™), X,)| X} '}
beA,

If S* = 5,,(B*) denotes the capital achieved by a log-optimal portfoliategyB*, after
n trading periods, then for any other investment straiBgyith capitalS,, = S,,(B) and
for any stationary and ergodic procgss,, }>.,

1 Sh
limsup — log S <0 a.s.

n—oo 1 n
and
lim — 1og Sy a.s.,
n—oo N,
where

W* =E{log (b*(X_L,), Xo)}

is the maximal possible growth rate of any investment ggsat€hus, (almost surely) no
investment strategy can have a higher growth rate than aptigral portfolio.

3.3 Connection of the Markowitz-type and the log-optimal potfolio:
an intuitive argument

As the main tool we apply theemi-logfunction introduced by Gjrfi, Urban and Vajda
[12]. The semi-log function is the second order Taylor exgi@moflog z atz = 1

hz) 21— %(Z —1)2

The semi log-optimal portfolio strategy B* = {b*}, where

B*(X?il) %ef arg max E {h (<b(X?*1) ; Xn>> |X?71} _
beAy

Applying the semi-log approximation we get:
E {log (b(X771), >|X" "

E{h(<b<X" s X)) X

1

{(<bX"17 ) =1) -5 —}. 3.1)

According to formula (3.1) we introduce a few simplifyingtations for the conditional

expected value
for the conditional second order moment

E,(0)* “E{ (X7, X))’ X171}

(<b(X?_1) 5 Xn> - 1)2

En(b) def {<b (X7~ 1) X'n>
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and finally for the variance

Hence we get

- 1
b*(X}!) = argmax (2En(b) — —E,(b)* - 3)
beAgy 2 2
= argmax (2En(b) 1 (En(b)? — E2(b)) — 1EE, (b))
beA, 2 2
= argmax (E,(b)(4 — E, (b)) — V,,(b))
belAy
= arg max (En(b) — Vn(b)) def by (X}7h,
beAy )\n "
where )
def
An = 4 — E,(b)

is the coefficient of risk aversion of the investor, which &dna function of conditional
expected value. Note that parametgrdynamically changes in time, which means as if
the Markowitz’s investor would dynamically adjust his dogént of absolute risk aver-
sion to the past performance of the portfolio.

So far we sketched a basic relationship between the Markawie and semi-log
portfolio selection. The relationship between the logiopt and semi-log optimal ap-
proach was examined in [12]. We present formal, rigorousdyaisafor the comparison
of the investment strategies in the subsequent sections.

4 Comparison of Markowitz-type and log-optimal port-
folio selection in case of known distribution

Naturally arises the question, how much we lose in the lomgifruve are risk averse
investors compared to the log-optimal investment. Therraan this section shows
an upper bound on the loss in case of known distribution, ifrgypothetical investor is
risk averse with parameter. More precisely for an arbitrary we give the growth rate
of the Markowitz-type strategy compared to the maximal fmegrowth rate (which is
achieved by the log-optimal investment) in asymptotic sens

The only assumptions, which we use in our analysis is thatiénd&et vectorg X, } 2
come from a stationary and ergodic process, for which

. 1
a< XY <— (4.1)

S|

forallj=1,...,d, where0 < a < 1.
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Theorem 4.1 For any stationary and ergodic proce$X,, } >, for which (4.1) holds,
forall A € [0, 3)

1 _
W* > liminf —log Sy,

n—oo M

> e 220 {1+ ) - x4 pL )
T e o et (e e )}

_0 T ) axE ‘X(S"”—1’ ‘x:;o as.
302y '

Remark 4.2 Under the assumption of Theorem 4.1 with slight modificatibthe proof
one can show same result for ale (3, cc).

Remark 4.3 We have made some experiments on pairs of stockyeE. For IBM and
Coca-Cola we got the following estimates on the magnitudénefterms on the right-
hand side of the statement of Theorem 4.1 respectiM@ty, 10~%, 10~¢. Furthermore
the order ofW* is 9 - 10~*. With optimized\ one could push the difference between
W* andlim inf,, o % log S';';/\ below1% of W*,

5 Nonparametric kernel-based Markowitz-type strategy

To determine a Markowitz-type portfolio, knowledge of timdinite dimensional statis-
tical characterization of the process is required. In @stirfor log-optimal portfolio
settinguniversally consisterstrategies are known, which can achieve growth rate achiev-
able in the full knowledge of distributions, however withdémowing these distributions.
Roughly speaking, an investment stratd®ys called universally consistent with respect
to a class of stationary and ergodic proceqs€s }>°._, if for each process in the class,

lim 1 log S, (B) =W"* a.s.

n—oo N,
The surprising fact that there exists a strategy, univigrsainsistent with respect to
the class of all stationary and ergodic processes Ei{hlog X(j>|} < oo forall j =
1,...,d, was first proved by Algoet [1] and by @yfi and Sclafer [11]. Gyorfi, Lugosi,
Udina [10] introduced kernel-based strategies, here werithesa “moving-window” ver-
sion, corresponding to an uniform kernel function in oraekéep the notations simple.

Define an infinite array of experld(**) = {h(**)(.)}, wherek, ¢ are positive inte-

gers. For fixed positive integefs ¢, choose the radius; , > 0 such that for any fixed
k,

lim Tke¢ = 0.
L— 00 ’

Then, forn > k + 1, define the expeh*-*) as follows. LetJ, be the locations of
matches: 4
Jn={k<i<n:|xTL—x""L| <riel,

K3
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where|| - || denotes the Euclidean norm. Put

h(k,@)(xvlz—l) — arg max H (b, x;) , (5.1)
bEAa (e

if the product is non-void, anty = (1/d, ..., 1/d) otherwise.

These experts are mixed as follows: {e}, .} be a probability distribution over the
set of all pairg(k, ¢) of positive integers such that for &l ¢, g , > 0. If S,,(H*) is
the capital accumulated by the elementary stralddy?) aftern periods when starting
with an initial capitalSy, = 1, then, after period, the investor’s capital becomes

Z G0 S (HF)) (5.2)

Gyorfi, Lugosi and Udina [10] proved that the kernel-based fptict schemeB
is universally consistent with respect to the class of allodic processes such that
E{|log XW|} < oo, forj =1,2,...d.

Equation (5.1) can be formulated in an equivalent form:

h(kvf)( 71' 1)fargmax Z log (b, x;) .
bEAL  ricT

Next we introduce the kernel-based Markowitz-type expﬁﬁé’a = {h(k ) ()} as
follows:

B0 = angmax ((1-20) 3 ((box) =)= 4 3 (b~ 1)
beAy {i€Jn} {i€Jn}

A
v ( Z}(b, x1;>> : (5.3)

{ZeJn

The Markowitz-type kernel-based strateBy, is the mixture of the expert{:ﬂf\k’@}
according to (5.2).

Theorem 5.1 For any stationary and ergodic proce$X, } >, for which (4.1) holds,
for S,.» = S,(By) and for allx € [0, 1) we get

1
lim inf — Sn A
n—oo n

> W* + 2/\a_1E{min]E{1+10g(X0(m)) —Xém)’X71 }}

1-2\ m -
P e i - v} - (i - xeL )

a_3+1 (m) 3
L ) E ‘Xm —1‘ ’X:l as.
3(1—2X) {mﬁx { 0 .
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Remark 5.2 Under the assumption of Theorem 5.1 with slight modificatibthe proof
one can show same result for alke (3, c).

6 Simulation

The theoretical results assume stationarity and erggdi€the market. No test is known,
which could decide whether a market satisfies these pregeoti not. Therefore the
practical usefulness of these assumptions should be jumzget! on the numerical results
the investment strategies lead to.

We tested the investment strategies on a standard set of MewSYock Exchange
data used by Cover [8], Singer [18], Hembold, Schapire, &irand Warmuth [14], Blum
and Kalai [4], Borodin, El-Yaniv, and Gogan [5], and othéFeeNYSE data set includes
daily prices of 36 assets along a 22-year period (5651 tgaditys) ending in 1985.

We show the wealth achieved by the strategies by investirthenpairs ofNYSE
stocks used in Cover [8]: Iroqouis-Kin Ark, Com. Met.-Meiop., Com. Met-Kin Ark
and IBM-Coca-Cola. The results of the simulation are shawthé Table 6.1.

All the proposed strategies use an infinite array of expértgractice we take a finite
array of sizeK x L. In all cases seleck’ = 5 andL = 10. We choose the uniform
distribution{gy ¢} = 1/(K L) over the experts in use, and the radius

r2,=0.0001-d-k -/,

(k=1,...,Kand¢{ =1,...,L).

Table 6.1 shows the performance of the nonparametric keasedd Markowitz-type
strategy for different values of parameter Note that the Table 6.1 contains a row
with parameten = 0.5 which is not covered in the Theorem 5.1, however kernel-dthase
Markowitz-type strategy can be used in this case too.fard/ parameters of thbest
performing expertgiven in columns2 — 5 are different: (2,10), (3,10), (2,8) and (1,1)
respectively. The best performance of pairs of stocks wamet at different values of
parametet\ (underlined in Table 6.1). The average in Table 6.1 meanpéhfermance
of the nonparametric kernel based Markowitz-type strategiveraging through. Log-
optimal and semi-log-optimal denote the performance oftibst performing: and/
expert of the log-optimal investment and of the semi-logstment for the given pairs
of stocks.

Note that the wealth is achieved by the Markowitz-type strptwith parameter value
A = 0is not the best overall, although it does not consider thé&etaisk of stocks which
it invests in.

Note that the presence of the stock Kin Ark makes the wealtthe$e strategies
explode as it was noted in [10]. This is interesting, sineedterall growth of Kin Ark
in the reported period is quite modest. The reason is thaekom the variations of the
price relatives of this asset turn out to be well predictddylat least one expert and that
suffices to produce this explosive growth.
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Markowitz | S,(H'?) g, ') s,@FY) s,@HY)
Pairs of stocks, Iro-Kin Com-Mei Com-Kin IBM-Cok
A=0.00 2.61le+11 7.13e+03 1.75e+12 1.52e+02
0.05 2.75e+11 6.73e+03 1.73e+12 1.57e+02
0.10 2.51e+11 5.74e+03 1.76e+12 1.62e+02
0.15 2.45e+11 5.44e+03 1.61e+12 1.67e+02
0.20 2.60e+11 5.87e+03 1.56e+12 1.69e+02
0.25 2.97e+11 6.12e+03 1.54e+12 1.72e+02
0.30 3.09e+11 5.66e+03 1.57e+12 1.73e+02
0.33 3.26e+11 5.47e+03 1.75e+12 1.73e+02
0.35 3.32e+11 5.46e+03 1.67e+12 1.73e+02
0.40 3.76e+11 5.45e+03 1.70e+12 1.73e+02
0.45 3.62e+11 5.12e+03 1.85e+12 1.79e+02
0.50 3.44e+11 4.82e+03 1.92e+12 1.83e+02
0.55 3.23e+11 4.07e+03 1.74e+12 1.88e+02
0.60 2.64e+11 3.28e+03 1.49e+12 1.94e+02
0.65 2.05e+11 2.62e+03 1.12e+12 2.04e+02
0.70 1.49e+11 1.97e+03 7.40e+11 2.13e+02
0.75 7.30e+10 1.53e+03 3.65e+11 2.20e+02
0.80 1.80e+10 1.19e+03 9.15e+10 2.23e+02
0.85 1.18e+09 7.02e+02 4.17e+09 2.05e+02
0.90 8.68e+06 3.30e+02 2.01e+07 1.70e+02
0.95 1.73e+04 1.38e+02 5.83e+04 7.59e+01

Average 2.22e+11 4040 1.24e+12 177
Log-optimal | S, (H®Z10) 5, (HG10) g (HE®) g, (HOY)
3.6e+11 4765 1.9e+12 182/4
Semi-log-opt. | S,(H®19) 5, (HG) 5 (HZ®) s, HLD)
3.6e+11 4685 1.9e+12 182/6
Table 6.1 Wealth achieved by the strategies by investing in the pdirsvsE stocks used in
Cover [8].
7 Proofs

The proof of Theorem 4.1 uses the following two auxiliaryulesand four other lemmas.
The first is known as Breiman’s generalized ergodic theorem.

Lemma 7.1 (BREIMAN [6]). Let Z = {Z;}>, be a stationary and ergodic pro-
cess. For each positive integér let 77 denote the operator that shifts any sequence
{...,2-1,20,21,...} byi digits to the left. Letf,, f2,... be a sequence of real-valued
functions such thdim,, .. f,(Z) = f(Z) almost surely for some functioh Assume
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thatE {sup,, | f(Z)|} < co. Then
lm LN A(TZ) =E(f(2))  as.
i=1

The next lemma is a slight modifications of the results duelgpét and Cover [3,
Theorems 3 and 4]. The modified statements are iartgyJrban and Vajda [12].

Lemma 7.2 LetQ,,cnu o) be afamily of regular probability distributions over thetse
Ri of all market vectors such that< Uy < % for any coordinate of a random market

vector where) < a < 1andU,, = ( ,(11),..., ,(Ld)) distributed according tdQ,,.
Leth,g € Cyla, %], whereC\ denotes the set of continuous functions. In addition, let
B*(Q,,) be the set of all Markowitz-type portfolios with respec@g, that is, the set of

all portfolios b that attainmaxpea,{Eq, {h (b, Un)} +E {g (b, U,)}}. Consider

an arbitrary sequence,, € B*(Q,,). If

Q. — Q. weakly asn — oo
then, forQ..-almost allu,
lim (b, , u) — (b*, u)

where the right-hand side is constantlasranges oveB*(Q. ).

For the proof of Theorem 4.1 we need the following lemmas:

Lemma 7.3 For any stationary and ergodic proce$X,, }>._, for which (4.1) holds and
p € Cola, 1], we get

1 n . . .
lim — ZmaXE {p (Xi(j)) ‘Xll_l} =E {maXE {p (Xéj)) ’X:},C}} a.s.
Proof. Let us introduce notations
o maxE {p(X{) | X))
J

wheren = 1,2,... and

9(X,) & (p(Xff)), - 7p(X7§d))) :

Note that

max E{(b(XZ,,1), 9(Xo)) | XZ5 11} = wn (7.1)

andw,, is measurable with respectK):}L 1
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First we show thafw,, } is a sub-martingale, that i, {w,+1 | X_),,} > w,. Ifa
portfolio is X~ , ;-measurable, then it is al$6_,-measurable, therefore we obtain

Wy, = max]E{ , 9(X0)) | X}

be
= tI]réEZXE{E{ agXO) |X n} ‘X—rH—l
SE{tI)réaxE{ (b, g(Xo)) | X} Xn+1}
= IE{wn-kl ‘X—n+1

where in the last equation we applied formula (7.1). Thusis a submartingale and
E|w,|4+ < oo, because op € Cy [a,1]. Then we can apply convergence theorem of
submartingales and we conclude that there exists a randoabha&w.,, such that

lim w,, = W a.s.
n—oo

We apply Lemma 7.1 witf; (X) def w;(X) parameter, then we get

Tlim. % il max E {p(X§j>)|X§—1} —E {m]axIE {p(X(()j))X:})O}} as.

because of _ _ ‘ '
Fi(TX) = @;(TX) = max E (p(X(()])) | X’;—l) .
J
andE {sup, |f;(X)|} < oo. The latter one follows from that(-) is bounded. B
Lemma 7.4 LetZy,..., Z, a sequence of random variables then we get the following

upper and lower bound for the logarithmic functionf if 0 < A <

Uri(Zn, N) + 9(Zn, A) = NEH Z,| Z7 7'} + 555 (2, — 1)°
1—2\
< Un(Zny A) + 9(Zny A) — )\EQ{ZTJZ{L_l} + %(Z’n - 1)3
= 1— 2\

<log Z,

where )
9(Zn,A) = <2/\ - 2> (Z, — 1)2 -1+

Proof. To show the relationship between the log- and the Markowiiiity function we
use the Taylor expansion of the logarithmic function

Uni(Zo, N)—(1 — 2)) log Zy,

1
- (2 - 2>\> (Zn =1+ 1= X+ AE{Z,|Z] "'} + Rey (7.2)
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whereRy; = (32(,}:23 (Z) € [min{Z,,1},max {Z,, 1}]) is the Lagrange remainder.

Then using

1
373
we obtain the statement of the lemma. n

(Zn - 1)d S R2 S (Zn - l)d

Wl =

Lemma 7.5 Let X a random market vector satisfying (4.1). Then for asiyand b”’
portfolios

/ _ 3
W — (", X) = 1)3| < (a3 + 1) max | X ™ — 1.
Proof. First we show
/ _ 3
W — (", X) = 1)3 > —(a™® + 1) max | X ™ — 13, (7.3)

If (b, X) < (b”, X) then
((b’, X) —1)°
(b', X)?

_ LX) - 1)?

e xy?

/ 43
—|<b<l;,X>X>3l| —|(b”, X) — 1
—max {6, X) = 11°,|b", X) = 1P (0, X) 1) (7.4)

- ((b", X) —1)°

— (b, X) - 1)

3

Y

Let bound the terms in the maximum by Jensen'’s inequality,

d 3

Z b (X (M) 1)

m=1

3

)

(b, X) ~ 1" =

d
3
<3 pm ‘X“”) . 1’ < max ’XW —1
m=1

(7.5)
use(b’, X)* < a3 and plug these bounds into (7.4) we obtain (7.3).

If <b’ , X> > <b” , x> then

(b, X) - 1)°

b, X® (b7, X) = 1)* = (B, %) = 1) (b, X) = 1)?

=~ |0, )7 [ X) - 1

Y

- |a_3 — 1|max‘X(m) - 1'3

Y

- (a_3 + 1) maX‘X(m) - 1‘3.
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With similarly argument we obtain

M — (", X) —1)* < (a® + 1) max ‘X(m) -1

3
(b, X)° m ‘

Corollary 7.6 (of Lemma 7.5) Let {X,,}*>°,. be a stationary and ergodic process, sat-
isfying (4.1). Then for anp’ andb” portfolios
X?l}

E{‘W _ (<b//7 Xn> _ 1)3
< (a*3 +1) Inn%X]E {|Xr(lm) _ 1|3‘X?_1} '

(b, X,)°

Proof. In the proof of Lemma 7.5 instead of equation (7.5) use thieviahg

d 3

Z b (X M) — 1)

m=1

n—1
Xl

E{Ib, Xa) =11 X771} = E{

IN

d 3
3 b<m>E{‘X,§m> - 1) ‘X’f‘l}

m=1

3
maXE{’XT(Lm) — 1‘ ‘X?_l} .

IN

Corollary 7.7 (of Lemma 7.5) Let X be a random market vector satisfying (4.1). Then
for anyb’ andb” portfolios

/ _1)\3 3
M S(a_g—kl)maX‘X(m)—l’ )

B X))

Proof. In the proof of Lemma 7.5 instead of considering cades X) < (b”, X) and
(b, X) > (b”, X), we split according tqb’, X) < E{(b”, X)} and(b’, X) >
E {(b”, X)}. The proof of the two cases goes on the same way as in Lemma 7.j.

Lemma 7.8 Let{X,,}*>°,, be a stationary and ergodic process then
E{(b"(X{™"), X,) — (b, X,) | X'} = minE {1+ log(X[™) -~ X" | X771},
m

whereb* (X~ !) is the log-optimal portfolio andh € A is an arbitrary portfolio.
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Proof. Let us bound from below the first term of the statement
E{(b"(X{™1), X, ) | X{~ 1} > Hlosr OG0 0P (7.6)
> E{loa(b(X] ™) . X, )X} "} (7.7)

d
>1+ > bmE {1ogX | X 1}, (7.8)
m=1

where (7.6) follows from the Jensen inequality, (7.7) cofna® the definition ob* and
(7.8) because af* > 1 + . Plug this into the left side of the statement we get

E{(b*(X{™"), Xa) = (b(X{ ™), X, [ X] ')

d
> Z b(m)E {1 + logXT(L’m) _ X7(17n) | X'{L*l}
m=1
> minE {1 +log X (M) — x(m) | X?il}

m

because of {1 +1log X\™ — x (™ ’X’f‘l} <0. i

We are now ready to prove Theorem 4.1. For convenience inrthed pf both theo-
rems we use the notatiobsinstead ofb, h(**) instead oih B instead ofB, and
S,, instead ofS,, .

Proof of Theorem 4.1.The )\ parameter is fixed. Use Lemma 7.4 with def
whereb* (X" 1) is the Markowitz-type portfolio, then we get

<B* (lev/—l) , X">,

(1= 2))E {log (b*(X7 ™), X,,) | X771} = E {g((b*(X}71), X}, A) | Xj7'}
FAE?{(b* (X}, X,,) | X771} - % (E{
E{Un((b* (X771, X,), A) | X7}

(b (X4 X)) 1) X?_1}>
E{UM<b*X”1 X)) X0

(b*(X77Y), X,,)°
> (1—20E {log (b"(X]71), X,.) | X7~} — B {g((b"(X77), X,.), A) | X7~}

vV 1V

1
FAEP{(b*(X{ ™), X ) | X)) = gE{((b"(X] ), Xu) = D[ X{ '
After rearranging the above inequalities, we get
(1 —2)ME {log (b*(X771), X,,) | X7}
> (1—20E {log (b*(X{ ™), Xn) | X77'}
AA(EH{(b*(XTTY), X ) | X771 - EXH{(B*(XT7Y), Xa) | X771
+E {g((b*(XT71), X)), A) — g((b* (X771, X)), A) [ XTI}

L BT X)) =10
+3E{ o, Xyt (DX =

X’fl} .(7.9)
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Taking the arithmetic average on both sides of the inequaiér trading periods, . . ., n,
then

3B {log (b (XE), X0) | X1
> %ZE{log (b (X1, Xi) | X1}

1= A (BB (X)), Xa) [ XU - E2{(b* (X1 ), Xi) | X'}
+ﬁ; 1-—2\

1= E{g((b*(X571), X;),A) — g((b*(X57H), X)), 0) | X7}
+EZ 1—2X\

=1

(<B*(Xi_1)7xi>71)3 _ " i1 N

3n “ 1—2X

Xi_l} . (7.10)

We derive simple bounds for the last three additive parthefabove inequality. First,
because of < 1

EX{(b*(Xi1), Xi) | X771} = E*{(b* (X[, Xi) | X'}
= E{(b*(X{™"), X;) + (b*(X{™"), X;) | X7}
E{(b*(X{™"), X;) — (b* (X)), X;) | X7}
E{(b*(Xi7), X;) + (b*(X771), Xq) [ Xi7'}

minE {1 +log(X™)y — x ™ | X’fl}

v

> 20~ minE {1+ log(X"™) - x™ | X{'}. (7.12)
Second,
g((b* (X1, Xi), A) — g((b* (XY, Xi) )| gims
E Xt
1-2)
2\ — 1 ,
> _ 2 (m) _ 1y2 i—1
’1—2/\ (mn?XE{(Xl DEERS }

~ (minE {jx(™ - 1|’x:}>0})2) (7.12)

for all value of A. And finally, we use Corollary 7.6,
X’;—l}
-3

1 ((b*(X{h), X;) — 1) o nrim1
3(1— 2A)E{ B X, X' Xy
> gy B X 1P} (.3)
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Consider the following decomposition

where

Vo= 3 (log (B (X471, Xi) — E {log (B*(X{ ™), X} 1X{™1})

3

and
1 — o ;
= ZIE {log <b*(Xzfl) , Xi) |Xl171} .
i=1

It can be shown that,, — 0 a.s., since itis an average of bounded martingale diff@gnc
So

liminf V,, = lim mf — log S (7.14)

n—oo n—0oo

Similarly, consider the following decomposmon
1 *
- logSn = YTL + Vﬂ?
n
where
1 - * 17— * 7— 71—
gz log (b*(X:71), X;) — E {log (b*(Xi™1), X;) [Xi71})
=1
and
1 - * 71— 71—
- 5Z]E{log@) (X, X)X
i=1
Again, it can be shown thaf, — 0 a.s. Therefore
lim V, = lim —logS* (7.15)

n—oo n—oo N

Taking the limes inferior of both sides of (7.10).agoes to infinity and applying equal-
ities (7.11), (7.12), (7.13), (7.14), (7.15) and Lemma W& obtain

1 _
W* > liminf —log S}

n—oo N

> Wt _A2A2a*1E {minE {1+ 1og(x{"™) - x{™|x=L } |
[T e o ey

a3 +1 (m) 3
_* T g E (X’” —1‘ X!
st {maee -l pes )
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as desired.
|

For the proof of Theorem 5.1 we need following two lemmas. Titst is a simple
modification of Theorem 1 in [10].

Lemma 7.9 Under the conditions of Theorem 5.1, for day integers and for any fixed
A

,,}LH;C%Z”:UM ((B"9(X{™), X}, 2) = E{Un ((Bjo(XT}), Xo),A)}

whereb,’; (XZ ) is the Markowitz-type portfolio with respect to the limisttibution

Pk,
X7k

Proof. Let the integersk, ¢ and the vectos = s~ € R be fixed. LetIE”(k ) denote

the (random) measure concentrated{® : 1 —j +k < i < 0,[|X."; — s|| < rge}
defined by
> - a(Xs)
]P’EZZ)(A) . {i:1—j+k<i<0, HXl w—slI<re, z} AcC Ri

ik <i<O[IXTE - s < rwedl

wherel 4 denotes the indicator function of the sét If the above set 0X;'s is empty,

then IetIP’( ) = 6(1,...,1) be the probability measure concentrated on the véttor ., 1).
Gyorfi, Lu905| Udina [10] proved that for adl, with probability one,

-1
IP;’;’[) N ]P’:(“) _ { Px0||\x— —s|| <rg,e if P([|XZ, —sll < 7rke) >0, (7.16)

d(1,...,1) if P(|| X" —s| <rge) =0
weakly asj — oo where}P’X X~ —s] <r denotes the distribution of the vect3r,
conditioned on the everfitX ~, — s|| < rk_[.

By definition, b9 (X ! s) is the Markowitz-type portfolio with respect to the
probability measuré’g.f"s’z). LetB;yg(s) denote the Markowitz-type portfolio with respect

to the limit distribution[P:(k’Z). Then, using Lemma 7.2, we infer from (7.16) that;jas
tends to infinity, we have the almost sure convergence

lim <B(k’é)(X111j7S), X0> = <152;e(s) ) X0>

Jj—00
for P;‘('“’Z)-almost allxy and hence folPx,-almost allxy. Sinces was arbitrary, we
obtain

lim <b<k DXL, XL, x > (b} (X~L), xo) as. (7.17)

Next we apply Lemma 7.1 for the utility function

fi(x=) Uy, (<h<”>( 1, x0> >\> — Uy (<b<“>(x1 1,x_,1€),x0>,)\)
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defined onx>, = (...,x_1,%¢,x1,...). Because of f;(X>,,)| < oo and
Jim fi(X%,) = Un((bi4(X7}), Xo),A) - as.
by (7.17). Asn — oo, Lemma 7.1 yields
1o :
— (X (k,0) (yi—1 )
n;fZ(T X ZUM ((R*Ix, X))
- E{UM ((bie(Xx), Xo), A)}

as desired. -

Lemma 7.10 Under the conditions of Theorem 5.1 there exists a portfblidor all
¢ € C for which

E? {(b., Xo)} =,

2 2
whereC ! [(minmE(Xf{”))) , (Inaxm IE(X(()’”))) ] and furthermore

R B (k,0) (xci—1 i-1
hnnigéf;;E {<h (X ),xi>yx1 }gc.

Proof. The proof has two steps. First we show, that there existstfofiorfor all ¢ € C
whose expected valueds Letc € C andE? {(b., X()} = cthen

d 2 d 2
E? {(b.(XZ}), Xo)} = (Z bBE {X(()m)}> def (Z b((:m)em> .
m=1 m=1

Denotem’ = argmin,, e,, andm’” = arg max,, e,, then letb.. portfolio is the follow-
ing 5™ + 5™ = 1 for all otherm 5™ = 0. So for allc € C there exist$.™ ) and

" 7 17 2
b that (60 e, + b )emu) = ¢ because of the continuity. As the second step
we have to prove that

imint | S (000, %) i <

Itis easy to show from Lemma 7.9 and Lemma 7.1 that as co

,ZE{< (k) (X i1y | Xi>|Xi’_1}HE{<BZ,Z(X:11@)7X0>}7

from which the statement of the lemma follows with argumedrdamtradiction. ]
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Proof of Theorem 5.1.Without loss of generality we may assurfig= 1, so

lim inf W,,(B) = lim mf log S,,(B)

n—oo n—oo N

n—oo N

1
= liminf — log g Gk, 0Sn H(k Z)
k.l

v

1
liminf — log (sup k050 ( )
k.6

n—oo N

= lim 1nf — sup (log ke +1og Sy ( H® e)

n—oo N k}@
10%%,@)

= liminf sup (W,L(H(k,e)) 4
n

n—oo Ly

= 1
> sup lim inf (Wn(Hw,e)) + W)

kg Moo n

= sup lim inf W, (H*:9), . (7.18)

k,é n—oo

Because of Lemma 7.4, we can write

W (HEO) = Zlog< ROX{™), X;)
1—2>\< ZUM (<h(w) X, Xi>’A)
A= ZE2{<h(”) (Xi-1, ,->|X§*1}
(e x) )

=1

1 & ((hkO (X1 X»>—1)3>

Y

(7.19)

b3 g

= (RIXIT), X,)

First, we calculate the limes of the first term, because ofani.9, we get
lim 1 iUM ((R®OX, Xi),A) = E{Un ((bjo(XTh) . Xo),A)}
n—oo P 1 9 1/ k£ —k/» )

= €k (7.20)

whereB;Z(X:,lc) is a Markowitz-type portfolio with respect to the limit digtution
IP’;(;E) Let b;;_[(Xj,lﬂ) denote a log-optimal portfolio with respect to the limitteilsu-
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tion P**9 Then
X7,

ére = E{Un ((b3(XZ}), Xo), A) }
> E{Un (b} o(XZ3), Xo> Ay
> (1 —2\)E {log (b} ((X~}), Xo)} + AE? {(b} ,(X7}), Xo)}
—E{g(( ;7@(X:,1€),X0>,)\)}—7E{(< 1o (XTh) s Xo) = 1) }(7.22)

where last inequality follows from Lemma 7.4. Letqsg “E {log <bz (X0, X0>}
Combine (7.19), (7.20) and (7.21), then we obtain

liiriigf Wn(ﬂ(kﬁ))
» iy Z CAROCD 0] 2 WRRGT) ) 0
s (o (a0, X)) ~ B {g (b, (Xh) . Xo) ) })
i =
n h(k-¢ i—1 3 . s
+hminfzi_1(<<rz<(;:;§ X (bt xh). Xo) - )})
e 3n(1 —2))

Now bound the three additive terms separately. First,

E® {<bz,£(X:;1€) ) X0>} — hnngf % iﬂ? {<fl(k’£)(Xi_1) ’ X1‘> | Xzi—l}

= E* {(b} ,(XZ}), Xo)} —E*{ b’ , Xo)} (7.22)
= ]E{<bZe ~1) Xo) + (b, Xo) FE {(b; ,(XZ}), Xo) — (b', Xo)}
> E{(b;,(X2}), Xo) +(b', Xo)}

E {mwilnE {1+108(x™) = x{™ | x2L}} (7.23)

> 2a72E{minE{1+log( (m)) ém)‘X:;o}}’

where (7.22) is true because of Lemma 7.k0i$ a fix portfolio vector). (7.23) follows
from Lemma 7.8.

For the second and third term we use (7.12) and Corollary Zafrha 7.5 and also
stationarity then we get,

2 -1
lim inf W, (H*9) > ¢, , + 1)\_(12)\E{minE{1+log(Xém)) —Xém)‘X:})o}}
2\ — 3
(m) 2‘ -1
‘1—2)\ E{n33XE{(X0 1) X*w}}

a —|—1 (m) 3 1
_2 T g E ‘X —1‘ ‘X_ . 7.24
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Gyorfi, Lugosi and Udina [10] proved that

sup ey = W7,
k.6

therefore, by (7.18) and (7.24) the proof of the theorem istied.
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