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Summary: This paper gives an asymptotic analysis of the mean-variance (Markowitz-type) port-
folio selection under mild assumptions on the market behavior. Theoretical results show the rate of
underperformance of the risk aware Markowitz-type portfolio strategyin growth rate compared to
the log-optimal portfolio strategy, which does not have explicit risk control. Statements are given
with and without full knowledge of the statistical properties of the underlyingprocess generating
the market, under the only assumption that the market is stationary and ergodic. The experiments
show how the achieved wealth depends on the coefficient of absolute riskaversion measured on
pastNYSE data.

1 Introduction
The goal of the Markowitz’s portfolio strategy is the optimization of the asset allocation
in financial markets in order to achieve optimal trade-off between the return and the risk
(variance). For thestatic model(one-period model), the classical solution of the mean-
variance optimization problem was given by Markowitz [16] and Merton [17]. Compared
to expected utility models, it offers an intuitive explanation for diversification. However,
most of the mean-variance analysis handles only static models contrary to the expected
utility models, whose literature is rich inmultiperiod models.

In the multiperiod models (investment strategies) the investor is allowed to rebalance
his portfolio at the beginning of each trading period. More precisely, investment strate-
gies use information collected from the past of the market and determine a portfolio, that
is, a way to distribute the current capital among the available assets. The goal of the in-
vestor is to maximize his utility in the long run. Under the assumption that the daily price
relatives form a stationary and ergodic process theasymptotic growth rate of the wealth
has a well-defined maximum which can be achieved in full knowledge of the distribution
of the entire process, see Algoet and Cover [3]. This maximumcan be achieved by the
log-optimal strategy, which maximizes the conditional expectation oflog-utility.

AMS 1991 subject classification: 90A09, 90A10
Key words and phrases: sequential investment, kernel-basedestimation, mean-variance investment, log-optimal
investment



902 Ottucśak – Vajda

For an investor plausibly arises the following question: how much the loss in the
average growth rate compared to the asymptotically best rate if a mean-variance portfolio
optimization is followed in each trading period.

The first theoretical result connecting the expected utility and mean-variance analysis
was shown by Tobin [19], for quadratic utility function. Grauer [9] compared the log-
optimal strategies and the mean-variance analysis in the one-period model for various
specifications of the state return distributions and his experiments revealed that these two
portfolios have almost the same performance when the returns come from the normal
distribution. Kroll, Levy and Markowitz [15] conducted a similar study. Merton [17] de-
veloped a continuous time mean-variance analysis and showed that log-optimal portfolio
is instantaneously mean-variance efficient when asset prices are log-normal. Hakansson
and Ziemba [13] followed another method in defining a dynamicmean-variance setting,
where the log-optimal portfolio can be chosen as a risky mutual fund. They considered
a finite time horizon model and the asset price behavior was determined by a Wiener-
process.

In this paper, we follow a similar approach to [17], however in discrete time setting
for general stationary and ergodic processes.

To determine a Markowitz-type portfolio, knowledge of the infinite dimensional sta-
tistical characterization of the process is required. In contrast, for log-optimal portfolio
settinguniversally consistentstrategies are known, which can achieve growth rate achiev-
able in the full knowledge of distributions, however without knowing these distributions.
These strategies are universal with respect to the class of all stationary and ergodic pro-
cesses as it was proved by Algoet [1]. Györfi and Scḧafer [11], Gÿorfi, Lugosi, Udina
[10] constructed a practical kernel based algorithm for thesame problem.

We present a strategy achieving the same growth rate as the Markowitz-type strategy
for the general class of stationary and ergodic processes, however without assuming the
knowledge of the statistical characterization of the process. This strategy is risk averse
in the sense that in each time period it carries out the mean-variance optimization.

We also present an experimental performance analysis for the data sets of New York
Stock Exchange (NYSE) spanning a twenty-two-year period with thirty six stocks in-
cluded, which set was presented in [10].

The rest of the paper is organized as follows. In Section 2 themathematical model
is described. The investigated portfolio strategies are defined in Section 3. In the next
section a lower bound on the performance of Markowitz-type strategy is shown. Section
5 presents the kernel-based Markowitz-type sequential investment strategy and its main
consistency properties. Numerical results based onNYSE data set are shown in Section
6. The proofs are given in Section 7.

2 Setup, the market model
The model of stock market investigated in this paper is the one considered, among others,
by Breiman [7], Algoet and Cover [3]. Consider a market ofd assets. Amarket vector
x = (x(1), . . . , x(d)) ∈ R

d
+ is a vector ofd nonnegative numbers representing price

relatives for a given trading period. That is, thej-th componentx(j) ≥ 0 of x expresses
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the ratio of the opening prices of assetj. In other words,x(j) is the factor by which
capital invested in thej-th asset grows during the trading period.

The investor is allowed to diversify his capital at the beginning of each trading pe-
riod according to a portfolio vectorb = (b(1), . . . b(d)). Thej-th componentb(j) of b

denotes the proportion of the investor’s capital invested in assetj. Throughout the paper
we assume that the portfolio vectorb has nonnegative components with

∑d
j=1 b(j) = 1.

The fact that
∑d

j=1 b(j) = 1 means that the investment strategy is self financing and con-
sumption of capital is excluded. The non-negativity of the components ofb means that
short selling and buying stocks on margin are not permitted.Let S0 denote the investor’s
initial capital. Then at the end of the trading period the investor’s wealth becomes

S1 = S0

d
∑

j=1

b(j)x(j) = S0 〈b , x〉 ,

where〈· , ·〉 denotes inner product.
The evolution of the market in time is represented by a sequence of market vectors

x1,x2, . . . ∈ R
d
+, where thej-th componentx(j)

i of xi denotes the amount obtained
after investing a unit capital in thej-th asset on thei-th trading period. Forj ≤ i we
abbreviate byxi

j the array of market vectors(xj , . . . ,xi) and denote by∆d the simplex
of all vectorsb ∈ R

d
+ with nonnegative components summing up to one. Aninvestment

strategyis a sequenceB of functions

bi :
(

R
d
+

)i−1
→ ∆d , i = 1, 2, . . .

so thatbi(x
i−1
1 ) denotes the portfolio vector chosen by the investor on thei-th trading

period, upon observing the past behavior of the market. We write b(xi−1
1 ) = bi(x

i−1
1 )

to ease the notation.
Starting with an initial wealthS0, aftern trading periods, the investment strategyB

achieves the wealth

Sn = S0

n
∏

i=1

〈

b(xi−1
1 ) , xi

〉

= S0e
Pn

i=1 log〈b(xi−1
1 ) , xi〉 = S0e

nWn(B).

whereWn(B) denotes theaverage growth rate

Wn(B)
def
=

1

n

n
∑

i=1

log
〈

b(xi−1
1 ) , xi

〉

.

Obviously, maximization ofSn = Sn(B) and maximization ofWn(B) are equivalent.
In this paper we assume that the market vectors are realizations of a random pro-

cess, and describe a statistical model. Our view is completely nonparametric in that the
only assumption we use is that the market is stationary and ergodic, allowing arbitrar-
ily complex distributions. More precisely, assume thatx1,x2, . . . are realizations of the
random vectorsX1,X2, . . . drawn from the vector-valued stationary and ergodic process
{Xn}

∞
−∞. The sequential investment problem, under these conditions, has been consid-

ered by, e.g., Breiman [7], Algoet and Cover [3], Algoet [1, 2], Györfi and Scḧafer [11],
Györfi, Lugosi, Udina [10].
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3 The Markowitz-type and the log-optimal portfolio se-
lection

3.1 The Markowitz-type portfolio selection
In his seminal paper Markowitz [16] used expected utility and the investigation was re-
stricted to single period investment with i.i.d returns. Incontrary we work with a multi-
period model (investment strategy) and we assume general stationary and ergodic model
for the market returns. Consequently it is more adequate forus to use conditional ex-
pected utility. In the special case of i.i.d. returns it is simplified to the standard expected
utility. For the sake of the distinction from the standard Markowitz approach we will call
our utility functionMarkowitz-type utility function.

Let the following formula define the conditional expected value of the Markowitz-
type utility function:

E
{

UM (
〈

b(Xn−1
1 ) , Xn

〉

, λ)|Xn−1
1

} def
= E{

〈

b(Xn−1
1 ) , Xn

〉

|Xn−1
1 }

− λVar
{〈

b(Xn−1
1 ) , Xn

〉

|Xn−1
1

}

,

whereXn is the market vector forn-th day,b(Xn−1
1 ) ∈ ∆d andλ ∈ [0,∞) is the con-

stant coefficient of absolute risk aversion of the investor.The conditional expected value
of the Markowitz-type utility function can be expressed after some algebra in following
form:

E{UM (
〈

b(Xn−1
1 ) , Xn

〉

, λ)|Xn−1
1 }

= (1 − 2λ)E
{〈

b(Xn−1
1 ) , Xn

〉

− 1|Xn−1
1

}

− λE{(
〈

b(Xn−1
1 ) , Xn

〉

− 1)2|Xn−1
1 }

+1 − λ + λE
2
{〈

b(Xn−1
1 ) , Xn

〉

|Xn−1
1

}

.

Accordingly let the Markowitz-type utility function be defined as follows

UM (
〈

b(Xn−1
1 ) , Xn

〉

, λ)

def
= (1 − 2λ)(

〈

b(Xn−1
1 ) , Xn

〉

− 1) − λ(
〈

b(Xn−1
1 ) , Xn

〉

− 1)2 + 1 − λ

+λE
2{
〈

b(Xn−1
1 ) , Xn

〉

|Xn−1
1 }.

Hence the Markowitz-type portfolio strategy be defined byB̄∗
λ = {b̄∗

λ(·)}, where

b̄∗
λ(Xn−1

1 ) = arg max
b∈∆d

E
{

UM (
〈

b(Xn−1
1 ) , Xn

〉

, λ)|Xn−1
1

}

.

Let S̄∗
n,λ = Sn(B̄∗

λ) denote the capital achieved by Markowitz-type portfolio strategy
B̄∗

λ, aftern trading periods.

3.2 The log-optimal portfolio selection
Now we briefly introduce the log-optimal portfolio selection. The fundamental limits,
first published in [3], [1, 2] reveal that the so-calledlog-optimal portfolioB∗ = {b∗(·)}
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is the best possible choice for the maximization ofSn. More precisely, on trading period
n let b∗(·) be such that

b∗(Xn−1
1 ) = arg max

b∈∆d

E
{

log
〈

b(Xn−1
1 ) , Xn

〉∣

∣Xn−1
1

}

.

If S∗
n = Sn(B∗) denotes the capital achieved by a log-optimal portfolio strategyB∗, after

n trading periods, then for any other investment strategyB with capitalSn = Sn(B) and
for any stationary and ergodic process{Xn}

∞
−∞,

lim sup
n→∞

1

n
log

Sn

S∗
n

≤ 0 a.s.

and

lim
n→∞

1

n
log S∗

n = W ∗ a.s.,

where
W ∗ = E

{

log
〈

b∗(X−1
−∞) , X0

〉}

is the maximal possible growth rate of any investment strategy. Thus, (almost surely) no
investment strategy can have a higher growth rate than a log-optimal portfolio.

3.3 Connection of the Markowitz-type and the log-optimal portfolio:
an intuitive argument

As the main tool we apply thesemi-logfunction introduced by Gÿorfi, Urbán and Vajda
[12]. The semi-log function is the second order Taylor expansion oflog z atz = 1

h(z)
def
= z − 1 −

1

2
(z − 1)2.

The semi log-optimal portfolio strategy is̃B∗ = {b̃∗}, where

b̃∗(Xn−1
1 )

def
= arg max

b∈∆d

E
{

h
(〈

b(Xn−1
1 ) , Xn

〉)

|Xn−1
1

}

.

Applying the semi-log approximation we get:

E
{

log
〈

b(Xn−1
1 ) , Xn

〉∣

∣Xn−1
1

}

≈ E
{

h
(〈

b(Xn−1
1 ) , Xn

〉)

|Xn−1
1

}

= E

{

(〈

b(Xn−1
1 ) , Xn

〉

− 1
)

−
1

2

(〈

b(Xn−1
1 ) , Xn

〉

− 1
)2
∣

∣

∣

∣

Xn−1
1

}

. (3.1)

According to formula (3.1) we introduce a few simplifying notations for the conditional
expected value

En(b)
def
= E

{

〈

b(Xn−1
1 ) , Xn

〉

∣

∣

∣X
n−1
1

}

,

for the conditional second order moment

En(b)2
def
= E

{

(〈

b(Xn−1
1 ) , Xn

〉)2
∣

∣

∣
Xn−1

1

}

,
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and finally for the variance

Vn(b)
def
= En(b)2 − E2

n(b).

Hence we get

b̃∗(Xn−1
1 ) = arg max

b∈∆d

(

2En(b) −
1

2
En(b)2 −

3

2

)

= arg max
b∈∆d

(

2En(b) −
1

2

(

En(b)2 − E2
n(b)

)

−
1

2
E2

n(b)

)

= arg max
b∈∆d

(En(b)(4 − En(b)) − Vn(b))

= arg max
b∈∆d

(

En(b)

λn

− Vn(b)

)

def
= b̄∗

λn
(Xn−1

1 ),

where

λn
def
=

1

4 − En(b)

is the coefficient of risk aversion of the investor, which is here a function of conditional
expected value. Note that parameterλn dynamically changes in time, which means as if
the Markowitz’s investor would dynamically adjust his coefficient of absolute risk aver-
sion to the past performance of the portfolio.

So far we sketched a basic relationship between the Markowitz-type and semi-log
portfolio selection. The relationship between the log-optimal and semi-log optimal ap-
proach was examined in [12]. We present formal, rigorous analysis for the comparison
of the investment strategies in the subsequent sections.

4 Comparison of Markowitz-type and log-optimal port-
folio selection in case of known distribution

Naturally arises the question, how much we lose in the long run if we are risk averse
investors compared to the log-optimal investment. The theorem in this section shows
an upper bound on the loss in case of known distribution, if our hypothetical investor is
risk averse with parameterλ. More precisely for an arbitraryλ we give the growth rate
of the Markowitz-type strategy compared to the maximal possible growth rate (which is
achieved by the log-optimal investment) in asymptotic sense.

The only assumptions, which we use in our analysis is that themarket vectors{Xn}
∞
−∞

come from a stationary and ergodic process, for which

a ≤ X(j)
n ≤

1

a
(4.1)

for all j = 1, . . . , d, where0 < a < 1.
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Theorem 4.1 For any stationary and ergodic process{Xn}
∞
−∞, for which (4.1) holds,

for all λ ∈
[

0, 1
2

)

W ∗ ≥ lim inf
n→∞

1

n
log S̄∗

n,λ

≥ W ∗ +
2λa−1

1 − 2λ
E

{

min
m

E

{

1 + log(X
(m)
0 ) − X

(m)
0

∣

∣

∣X
−1
−∞

}}

−

∣

∣

∣

∣

2λ − 1
2

1 − 2λ

∣

∣

∣

∣

E

{

max
m

E

{

(X
(m)
0 − 1)2

∣

∣

∣X
−1
−∞

}

−
(

min
m

E

{

|X
(m)
0 − 1|

∣

∣

∣X
−1
−∞

})2
}

−
a−3 + 1

3(1 − 2λ)
E

{

max
m

E

{

∣

∣

∣X
(m)
0 − 1

∣

∣

∣

3 ∣
∣

∣X
−1
−∞

}}

a.s.

Remark 4.2 Under the assumption of Theorem 4.1 with slight modificationof the proof
one can show same result for allλ ∈

(

1
2 ,∞

)

.

Remark 4.3 We have made some experiments on pairs of stocks ofNYSE. For IBM and
Coca-Cola we got the following estimates on the magnitude ofthe terms on the right-
hand side of the statement of Theorem 4.1 respectively10−5, 10−4, 10−6. Furthermore
the order ofW ∗ is 9 · 10−4. With optimizedλ one could push the difference between
W ∗ andlim infn→∞

1
n

log S̄∗
n,λ below1% of W ∗.

5 Nonparametric kernel-based Markowitz-type strategy
To determine a Markowitz-type portfolio, knowledge of the infinite dimensional statis-
tical characterization of the process is required. In contrast, for log-optimal portfolio
settinguniversally consistentstrategies are known, which can achieve growth rate achiev-
able in the full knowledge of distributions, however without knowing these distributions.
Roughly speaking, an investment strategyB is called universally consistent with respect
to a class of stationary and ergodic processes{Xn}

∞
−∞, if for each process in the class,

lim
n→∞

1

n
log Sn(B) = W ∗ a.s.

The surprising fact that there exists a strategy, universally consistent with respect to
the class of all stationary and ergodic processes withE

{

| log X(j)|
}

< ∞ for all j =
1, . . . , d, was first proved by Algoet [1] and by Györfi and Scḧafer [11]. Gÿorfi, Lugosi,
Udina [10] introduced kernel-based strategies, here we describe a “moving-window” ver-
sion, corresponding to an uniform kernel function in order to keep the notations simple.

Define an infinite array of expertsH(k,ℓ) = {h(k,ℓ)(·)}, wherek, ℓ are positive inte-
gers. For fixed positive integersk, ℓ, choose the radiusrk,ℓ > 0 such that for any fixed
k,

lim
ℓ→∞

rk,ℓ = 0 .

Then, forn > k + 1, define the experth(k,ℓ) as follows. LetJn be the locations of
matches:

Jn =
{

k < i < n : ‖xi−1
i−k − xn−1

n−k‖ ≤ rk,ℓ

}

,
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where‖ · ‖ denotes the Euclidean norm. Put

h(k,ℓ)(xn−1
1 ) = arg max

b∈∆d

∏

{i∈Jn}

〈b , xi〉 , (5.1)

if the product is non-void, andb0 = (1/d, . . . , 1/d) otherwise.
These experts are mixed as follows: let{qk,ℓ} be a probability distribution over the

set of all pairs(k, ℓ) of positive integers such that for allk, ℓ, qk,ℓ > 0. If Sn(H(k,ℓ)) is
the capital accumulated by the elementary strategyH(k,ℓ) aftern periods when starting
with an initial capitalS0 = 1, then, after periodn, the investor’s capital becomes

Sn(B) =
∑

k,ℓ

qk,ℓSn(H(k,ℓ)) . (5.2)

Györfi, Lugosi and Udina [10] proved that the kernel-based portfolio schemeB
is universally consistent with respect to the class of all ergodic processes such that
E{| log X(j)|} < ∞, for j = 1, 2, . . . d.

Equation (5.1) can be formulated in an equivalent form:

h(k,ℓ)(xn−1
1 ) = arg max

b∈∆d

∑

{i∈Jn}

log 〈b , xi〉 .

Next we introduce the kernel-based Markowitz-type expertsH̄
(k,ℓ)
λ = {h̄

(k,ℓ)
λ (·)} as

follows:

h̄
(k,ℓ)
λ (xn−1

1 ) = arg max
b∈∆d



(1 − 2λ)
∑

{i∈Jn}

(〈b , xi〉 − 1) − λ
∑

{i∈Jn}

(〈b , xi〉 − 1)2

+
λ

|Jn|





∑

{i∈Jn}

〈b , xi〉





2





. (5.3)

The Markowitz-type kernel-based strategyB̄λ is the mixture of the experts{H̄(k,ℓ)
λ }

according to (5.2).

Theorem 5.1 For any stationary and ergodic process{Xn}
∞
−∞, for which (4.1) holds,

for S̄n,λ = Sn(B̄λ) and for allλ ∈
[

0, 1
2

)

we get

lim inf
n→∞

1

n
S̄n,λ

≥ W ∗ +
2λa−1

1 − 2λ
E

{

min
m

E

{

1 + log(X
(m)
0 ) − X

(m)
0

∣

∣

∣
X−1

−∞

}}

−

∣

∣

∣

∣

2λ − 1
2

1 − 2λ

∣

∣

∣

∣

E

{

max
m

E

{

(X
(m)
0 − 1)2

∣

∣

∣
X−1

−∞

}

−
(

min
m

E

{

|X
(m)
0 − 1|

∣

∣

∣
X−1

−∞

})2
}

−
a−3 + 1

3(1 − 2λ)
E

{

max
m

E

{

∣

∣

∣X
(m)
0 − 1

∣

∣

∣

3 ∣
∣

∣X
−1
−∞

}}

a.s.
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Remark 5.2 Under the assumption of Theorem 5.1 with slight modificationof the proof
one can show same result for allλ ∈

(

1
2 ,∞

)

.

6 Simulation
The theoretical results assume stationarity and ergodicity of the market. No test is known,
which could decide whether a market satisfies these properties or not. Therefore the
practical usefulness of these assumptions should be judgedbased on the numerical results
the investment strategies lead to.

We tested the investment strategies on a standard set of New York Stock Exchange
data used by Cover [8], Singer [18], Hembold, Schapire, Singer, and Warmuth [14], Blum
and Kalai [4], Borodin, El-Yaniv, and Gogan [5], and others.TheNYSE data set includes
daily prices of 36 assets along a 22-year period (5651 trading days) ending in 1985.

We show the wealth achieved by the strategies by investing inthe pairs ofNYSE

stocks used in Cover [8]: Iroqouis-Kin Ark, Com. Met.-Mei. Corp., Com. Met-Kin Ark
and IBM-Coca-Cola. The results of the simulation are shown in the Table 6.1.

All the proposed strategies use an infinite array of experts.In practice we take a finite
array of sizeK × L. In all cases selectK = 5 andL = 10. We choose the uniform
distribution{qk,ℓ} = 1/(KL) over the experts in use, and the radius

r2
k,ℓ = 0.0001 · d · k · ℓ,

(k = 1, . . . ,K andℓ = 1, . . . , L).
Table 6.1 shows the performance of the nonparametric kernelbased Markowitz-type

strategy for different values of parameterλ. Note that the Table 6.1 contains a row
with parameterλ = 0.5 which is not covered in the Theorem 5.1, however kernel-based
Markowitz-type strategy can be used in this case too. Thek andℓ parameters of thebest
performing expertsgiven in columns2 − 5 are different: (2,10), (3,10), (2,8) and (1,1)
respectively. The best performance of pairs of stocks was attained at different values of
parameterλ (underlined in Table 6.1). The average in Table 6.1 means theperformance
of the nonparametric kernel based Markowitz-type strategies averaging throughλ. Log-
optimal and semi-log-optimal denote the performance of thebest performingk and ℓ
expert of the log-optimal investment and of the semi-log investment for the given pairs
of stocks.

Note that the wealth is achieved by the Markowitz-type strategy with parameter value
λ = 0 is not the best overall, although it does not consider the market risk of stocks which
it invests in.

Note that the presence of the stock Kin Ark makes the wealth ofthese strategies
explode as it was noted in [10]. This is interesting, since the overall growth of Kin Ark
in the reported period is quite modest. The reason is that somehow the variations of the
price relatives of this asset turn out to be well predictableby at least one expert and that
suffices to produce this explosive growth.
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Markowitz Sn(H̄
(2,10)
λ ) Sn(H̄

(3,10)
λ ) Sn(H̄

(2,8)
λ ) Sn(H̄

(1,1)
λ )

Pairs of stocks. Iro-Kin Com-Mei Com-Kin IBM-Cok
λ=0.00 2.61e+11 7.13e+03 1.75e+12 1.52e+02

0.05 2.75e+11 6.73e+03 1.73e+12 1.57e+02
0.10 2.51e+11 5.74e+03 1.76e+12 1.62e+02
0.15 2.45e+11 5.44e+03 1.61e+12 1.67e+02
0.20 2.60e+11 5.87e+03 1.56e+12 1.69e+02
0.25 2.97e+11 6.12e+03 1.54e+12 1.72e+02
0.30 3.09e+11 5.66e+03 1.57e+12 1.73e+02
0.33 3.26e+11 5.47e+03 1.75e+12 1.73e+02
0.35 3.32e+11 5.46e+03 1.67e+12 1.73e+02
0.40 3.76e+11 5.45e+03 1.70e+12 1.73e+02
0.45 3.62e+11 5.12e+03 1.85e+12 1.79e+02
0.50 3.44e+11 4.82e+03 1.92e+12 1.83e+02
0.55 3.23e+11 4.07e+03 1.74e+12 1.88e+02
0.60 2.64e+11 3.28e+03 1.49e+12 1.94e+02
0.65 2.05e+11 2.62e+03 1.12e+12 2.04e+02
0.70 1.49e+11 1.97e+03 7.40e+11 2.13e+02
0.75 7.30e+10 1.53e+03 3.65e+11 2.20e+02
0.80 1.80e+10 1.19e+03 9.15e+10 2.23e+02
0.85 1.18e+09 7.02e+02 4.17e+09 2.05e+02
0.90 8.68e+06 3.30e+02 2.01e+07 1.70e+02
0.95 1.73e+04 1.38e+02 5.83e+04 7.59e+01

Average 2.22e+11 4040 1.24e+12 177

Log-optimal Sn(H(2,10)) Sn(H(3,10)) Sn(H(2,8)) Sn(H(1,1))

3.6e+11 4765 1.9e+12 182.4

Semi-log-opt. Sn(H̃(2,10)) Sn(H̃(3,10)) Sn(H̃(2,8)) Sn(H̃(1,1))

3.6e+11 4685 1.9e+12 182.6

Table 6.1Wealth achieved by the strategies by investing in the pairs of NYSE stocks used in
Cover [8].

7 Proofs

The proof of Theorem 4.1 uses the following two auxiliary results and four other lemmas.
The first is known as Breiman’s generalized ergodic theorem.

Lemma 7.1 (BREIMAN [6]). Let Z = {Zi}
∞
−∞ be a stationary and ergodic pro-

cess. For each positive integeri, let T i denote the operator that shifts any sequence
{. . . , z−1, z0, z1, . . .} by i digits to the left. Letf1, f2, . . . be a sequence of real-valued
functions such thatlimn→∞ fn(Z) = f(Z) almost surely for some functionf . Assume
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thatE {supn |fn(Z)|} < ∞. Then

lim
n→∞

1

n

n
∑

i=1

fi(T
iZ) = E {f(Z)} a.s.

The next lemma is a slight modifications of the results due to Algoet and Cover [3,
Theorems 3 and 4]. The modified statements are in Györfi, Urbán and Vajda [12].

Lemma 7.2 LetQn∈N∪{∞} be a family of regular probability distributions over the set

R
d
+ of all market vectors such thata ≤ U

(j)
n ≤ 1

a
for any coordinate of a random market

vector where0 < a < 1 and Un = (U
(1)
n , . . . , U

(d)
n ) distributed according toQn.

Let h, g ∈ C0[a, 1
a
], whereC0 denotes the set of continuous functions. In addition, let

B̄∗(Qn) be the set of all Markowitz-type portfolios with respect toQn, that is, the set of
all portfoliosb that attainmaxb∈∆d

{EQn
{h 〈b , Un〉}+E

2
Qn

{g 〈b , Un〉}}. Consider
an arbitrary sequencebn ∈ B̄∗(Qn). If

Qn → Q∞ weakly asn → ∞

then, forQ∞-almost allu,

lim
n→∞

〈bn , u〉 →
〈

b̄∗ , u
〉

where the right-hand side is constant asb̄∗ ranges over̄B∗(Q∞).

For the proof of Theorem 4.1 we need the following lemmas:

Lemma 7.3 For any stationary and ergodic process{Xn}
∞
−∞, for which (4.1) holds and

p ∈ C0[a, 1
a
], we get

lim
n→∞

1

n

n
∑

i=1

max
j

E

{

p
(

X
(j)
i

) ∣

∣

∣X
i−1
1

}

= E

{

max
j

E

{

p
(

X
(j)
0

) ∣

∣

∣X
−1
−∞

}

}

a.s.

Proof. Let us introduce notations

w̄n
def
= max

j
E

{

p(X
(j)
0 ) | X−1

−n+1

}

wheren = 1, 2, . . . and

g(Xn)
def
=
(

p(X(1)
n ), . . . , p(X(d)

n )
)

.

Note that
max
b∈∆d

E
{〈

b(X−1
−n+1) , g(X0)

〉

| X−1
−n+1

}

= w̄n (7.1)

andw̄n is measurable with respect toX−1
−n+1.
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First we show that{w̄n} is a sub-martingale, that is,E
{

w̄n+1 | X−1
−n+1

}

≥ w̄n. If a
portfolio isX−1

−n+1-measurable, then it is alsoX−1
−n-measurable, therefore we obtain

w̄n = max
b∈∆d

E
{

〈b , g(X0)〉 | X
−1
−n+1

}

= max
b∈∆d

E
{

E
{

〈b , g(X0)〉 | X
−1
−n

}

| X−1
−n+1

}

≤ E

{

max
b∈∆d

E
{

〈b , g(X0)〉 | X
−1
−n

}

| X−1
−n+1

}

= E
{

w̄n+1 | X−1
−n+1

}

,

where in the last equation we applied formula (7.1). Thusw̄n is a submartingale and
E|w̄n|+ ≤ ∞, because ofp ∈ C0

[

a, 1
a

]

. Then we can apply convergence theorem of
submartingales and we conclude that there exists a random variablew̄∞ such that

lim
n→∞

w̄n = w̄∞ a.s.

We apply Lemma 7.1 withfi(X)
def
= w̄i(X) parameter, then we get

lim
n→∞

1

n

n
∑

i=1

max
j

E

{

p(X
(j)
i )|Xi−1

1

}

= E

{

max
j

E

{

p(X
(j)
0 )|X−1

−∞

}

}

a.s.

because of
fi(T

iX) = w̄i(T
iX) = max

j
E
(

p(X
(j)
0 ) | Xi−1

1

)

.

andE {supi |fi(X)|} < ∞. The latter one follows from thatp(·) is bounded.

Lemma 7.4 Let Z1, . . . , Zn a sequence of random variables then we get the following
upper and lower bound for the logarithmic function ofZn if 0 ≤ λ < 1

2

UM (Zn, λ) + g(Zn, λ) − λE
2{Zn|Z

n−1
1 } + 1

3Z3
n
(Zn − 1)3

1 − 2λ
≤ log Zn

≤
UM (Zn, λ) + g(Zn, λ) − λE

2{Zn|Z
n−1
1 } + 1

3 (Zn − 1)3

1 − 2λ

where

g(Zn, λ) =

(

2λ −
1

2

)

(Zn − 1)2 − 1 + λ.

Proof. To show the relationship between the log- and the Markowitz-utility function we
use the Taylor expansion of the logarithmic function

UM (Zn, λ)−(1 − 2λ) log Zn

=

(

1

2
− 2λ

)

(Zn − 1)2 + 1 − λ + λE
2{Zn|Z

n−1
1 } + R2, (7.2)
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whereR2 = (Zn−1)3

3(Z∗)3 (Z∗
n ∈ [min {Zn, 1},max {Zn, 1}]) is the Lagrange remainder.

Then using
1

3Z3
n

(Zn − 1)3 ≤ R2 ≤
1

3
(Zn − 1)3

we obtain the statement of the lemma.

Lemma 7.5 Let X a random market vector satisfying (4.1). Then for anyb′ and b′′

portfolios
∣

∣

∣

∣

∣

(〈b′ , X〉 − 1)3

〈b′ , X〉
3 − (〈b′′ , X〉 − 1)3

∣

∣

∣

∣

∣

≤ (a−3 + 1)max
m

|X(m) − 1|3.

Proof. First we show

(〈b′ , X〉 − 1)3

〈b′ , X〉
3 − (〈b′′ , X〉 − 1)3 ≥ −(a−3 + 1)max

m
|X(m) − 1|3. (7.3)

If 〈b′ , X〉 < 〈b′′ , X〉 then

(〈b′ , X〉 − 1)3

〈b′ , X〉
3 − (〈b′′ , X〉 − 1)3

= −

∣

∣

∣

∣

∣

(〈b′ , X〉 − 1)3

〈b′ , X〉
3 − (〈b′′ , X〉 − 1)3

∣

∣

∣

∣

∣

≥ −
|〈b′ , X〉 − 1|

3

〈b′ , X〉
3 − |〈b′′ , X〉 − 1|

3

≥ −max
{

|〈b′ , X〉 − 1|
3
, |〈b′′ , X〉 − 1|

3
}

(〈b′ , X〉
−3

+ 1). (7.4)

Let bound the terms in the maximum by Jensen’s inequality,

|〈b , X〉 − 1|
3

=

∣

∣

∣

∣

∣

d
∑

m=1

b(m)(X(m) − 1)

∣

∣

∣

∣

∣

3

≤

d
∑

m=1

b(m)
∣

∣

∣X(m) − 1
∣

∣

∣

3

≤ max
m

∣

∣

∣X(m) − 1
∣

∣

∣

3

,

(7.5)
use〈b′ , X〉

−3
≤ a−3 and plug these bounds into (7.4) we obtain (7.3).

If
〈

b
′

, X
〉

≥
〈

b
′′

, X
〉

then

(〈b′ , X〉 − 1)3

〈b′ , X〉
3 − (〈b′′ , X〉 − 1)3 ≥

(

〈b′ , X〉
−3

− 1
)

(〈b′ , X〉 − 1)3

= −
∣

∣

∣
〈b′ , X〉

−3
− 1
∣

∣

∣
| 〈b′ , X〉 − 1|3

≥ −
∣

∣a−3 − 1
∣

∣max
m

∣

∣

∣
X(m) − 1

∣

∣

∣

3

≥ −
(

a−3 + 1
)

max
m

∣

∣

∣X(m) − 1
∣

∣

∣

3

.
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With similarly argument we obtain

(〈b′ , X〉 − 1)3

〈b′ , X〉
3 − (〈b′′ , X〉 − 1)3 ≤ (a−3 + 1)max

m

∣

∣

∣X(m) − 1
∣

∣

∣

3

.

Corollary 7.6 (of Lemma 7.5) Let {Xn}
∞
−∞ be a stationary and ergodic process, sat-

isfying (4.1). Then for anyb′ andb′′ portfolios

E

{∣

∣

∣

∣

∣

(〈b′ , Xn〉 − 1)3

〈b′ , Xn〉
3 − (〈b′′ , Xn〉 − 1)3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Xn−1
1

}

≤ (a−3 + 1)max
m

E

{

|X(m)
n − 1|3

∣

∣Xn−1
1

}

.

Proof. In the proof of Lemma 7.5 instead of equation (7.5) use the following

E

{

|〈b , Xn〉 − 1|
3
|Xn−1

1

}

= E







∣

∣

∣

∣

∣

d
∑

m=1

b(m)(X(m)
n − 1)

∣

∣

∣

∣

∣

3 ∣
∣

∣

∣

∣

Xn−1
1







≤
d
∑

m=1

b(m)
E

{

∣

∣

∣
X(m)

n − 1
∣

∣

∣

3
∣

∣

∣

∣

Xn−1
1

}

≤ max
m

E

{

∣

∣

∣X(m)
n − 1

∣

∣

∣

3
∣

∣

∣

∣

Xn−1
1

}

.

Corollary 7.7 (of Lemma 7.5) LetX be a random market vector satisfying (4.1). Then
for anyb′ andb′′ portfolios

∣

∣

∣

∣

∣

(〈b′ , X〉 − 1)3

〈b′ , X〉
3 − E

{

(〈b′′ , X〉 − 1)3
}

∣

∣

∣

∣

∣

≤ (a−3 + 1)max
m

∣

∣

∣X(m) − 1
∣

∣

∣

3

.

Proof. In the proof of Lemma 7.5 instead of considering cases〈b′ , X〉 < 〈b′′ , X〉 and
〈b′ , X〉 ≥ 〈b′′ , X〉, we split according to〈b′ , X〉 < E {〈b′′ , X〉} and〈b′ , X〉 ≥
E {〈b′′ , X〉}. The proof of the two cases goes on the same way as in Lemma 7.5.

Lemma 7.8 Let{Xn}
∞
−∞ be a stationary and ergodic process then

E
{〈

b∗(Xn−1
1 ) , Xn

〉

− 〈b , Xn〉 | X
n−1
1

}

≥ min
m

E

{

1 + log(X(m)
n ) − X(m)

n | Xn−1
1

}

,

whereb∗(Xn−1
1 ) is the log-optimal portfolio andb ∈ ∆d is an arbitrary portfolio.
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Proof. Let us bound from below the first term of the statement

E
{〈

b∗(Xn−1
1 ) , Xn

〉

| Xn−1
1

}

≥ eE{log〈b∗(Xn−1
1 ) , Xn〉|Xn−1

1 } (7.6)

≥ eE{log〈b(Xn−1
1 ) , Xn〉|Xn−1

1 } (7.7)

≥ 1 +
d
∑

m=1

b(m)
E

{

log X(m)
n | Xn−1

1

}

, (7.8)

where (7.6) follows from the Jensen inequality, (7.7) comesfrom the definition ofb∗ and
(7.8) because ofex ≥ 1 + x. Plug this into the left side of the statement we get

E
{〈

b∗(Xn−1
1 ) , Xn

〉

−
〈

b(Xn−1
1 ) , Xn

〉

| Xn−1
1

}

≥

d
∑

m=1

b(m)
E

{

1 + log X(m)
n − X(m)

n | Xn−1
1

}

≥ min
m

E

{

1 + log X(m)
n − X(m)

n | Xn−1
1

}

because ofE
{

1 + log X
(m)
n − X

(m)
n

∣

∣

∣X
n−1
1

}

≤ 0.

We are now ready to prove Theorem 4.1. For convenience in the proof of both theo-
rems we use the notations̄b instead of̄bλ, h̄(k,ℓ) instead of̄h(k,ℓ)

λ , B̄ instead ofB̄λ and
S̄n instead ofS̄n,λ.

Proof of Theorem 4.1.Theλ parameter is fixed. Use Lemma 7.4 withZn
def
=
〈

b̄∗(Xn−1
1 ) , Xn

〉

,
whereb̄∗(Xn−1

1 ) is the Markowitz-type portfolio, then we get

(1 − 2λ)E
{

log
〈

b̄∗(Xn−1
1 ) , Xn

〉

| Xn−1
1

}

− E
{

g(
〈

b̄∗(Xn−1
1 ) , Xn

〉

, λ) | Xn−1
1

}

+λE
2{
〈

b̄∗(Xn−1
1 ) , Xn

〉

| Xn−1
1 } −

1

3

(

E

{

(〈

b̄∗(Xn−1
1 ) , Xn

〉

− 1
)3

〈

b̄∗(Xn−1
1 ) , Xn

〉3

∣

∣

∣

∣

∣

Xn−1
1

})

≥ E
{

UM (
〈

b̄∗(Xn−1
1 ) , Xn

〉

, λ) | Xn−1
1

}

≥ E
{

UM (
〈

b∗(Xn−1
1 ) , Xn

〉

, λ) | Xn−1
1

}

≥ (1 − 2λ)E
{

log
〈

b∗(Xn−1
1 ) , Xn

〉

| Xn−1
1

}

− E
{

g(
〈

b∗(Xn−1
1 ) , Xn

〉

, λ) | Xn−1
1

}

+λE
2{
〈

b∗(Xn−1
1 ) , Xn

〉

| Xn−1
1 } −

1

3
E
{

(
〈

b∗(Xn−1
1 ) , Xn

〉

− 1)3 | Xn−1
1

}

.

After rearranging the above inequalities, we get

(1 − 2λ)E
{

log
〈

b̄∗(Xn−1
1 ) , Xn

〉

| Xn−1
1

}

≥ (1 − 2λ)E
{

log
〈

b∗(Xn−1
1 ) , Xn

〉

| Xn−1
1

}

+λ
(

E
2{
〈

b∗(Xn−1
1 ) , Xn

〉

| Xn−1
1 } − E

2{
〈

b̄∗(Xn−1
1 ) , Xn

〉

| Xn−1
1 }

)

+E
{

g(
〈

b̄∗(Xn−1
1 ) , Xn

〉

, λ) − g(
〈

b∗(Xn−1
1 ) , Xn

〉

, λ) | Xn−1
1

}

+
1

3
E

{

(
〈

b̄∗(Xn−1
1 ) , Xn

〉

− 1)3

〈

b̄∗(Xn−1
1 ) , Xn

〉3 − (
〈

b∗(Xn−1
1 ) , Xn

〉

− 1)3

∣

∣

∣

∣

∣

Xn−1
1

}

. (7.9)
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Taking the arithmetic average on both sides of the inequality over trading periods1, . . . , n,
then

1

n

n
∑

i=1

E
{

log
〈

b̄∗(Xi−1
1 ) , Xi

〉

| Xi−1
1

}

≥
1

n

n
∑

i=1

E
{

log
〈

b∗(Xi−1
1 ) , Xi

〉

| Xi−1
1

}

+
1

n

n
∑

i=1

λ
(

E
2{
〈

b∗(Xi−1
1 ) , Xi

〉

| Xi−1
1 } − E

2{
〈

b̄∗(Xi−1
1 ) , Xi

〉

| Xi−1
1 }

)

1 − 2λ

+
1

n

n
∑

i=1

E
{

g(
〈

b̄∗(Xi−1
1 ) , Xi

〉

, λ) − g(
〈

b∗(Xi−1
1 ) , Xi

〉

, λ) | Xi−1
1

}

1 − 2λ

+
1

3n

n
∑

i=1

E

{

(〈b̄∗(Xi−1
1 ) , Xi〉−1)

3

〈b̄∗(Xi−1
1 ) , Xi〉

3 − (
〈

b∗(Xi−1
1 ) , Xi

〉

− 1)3
∣

∣

∣

∣

Xi−1
1

}

1 − 2λ
. (7.10)

We derive simple bounds for the last three additive parts of the above inequality. First,
because ofλ < 1

2

E
2{
〈

b∗(Xi−1
1 ) , Xi

〉

| Xi−1
1 } − E

2{
〈

b̄∗(Xi−1
1 ) , Xi

〉

| Xi−1
1 }

= E{
〈

b∗(Xi−1
1 ) , Xi

〉

+
〈

b̄∗(Xi−1
1 ) , Xi

〉

| Xi−1
1 }

·E{
〈

b∗(Xi−1
1 ) , Xi

〉

−
〈

b̄∗(Xi−1
1 ) , Xi

〉

| Xi−1
1 }

≥ E{
〈

b∗(Xi−1
1 ) , Xi

〉

+
〈

b̄∗(Xi−1
1 ) , Xi

〉

| Xi−1
1 }

·min
m

E

{

1 + log(X
(m)
i ) − X

(m)
i | Xi−1

1

}

≥ 2a−1 min
m

E

{

1 + log(X
(m)
i ) − X

(m)
i | Xi−1

1

}

. (7.11)

Second,

E

{

g(
〈

b̄∗(Xi−1
1 ) , Xi

〉

, λ) − g(
〈

b∗(Xi−1
1 ) , Xi

〉

, λ)

1 − 2λ

∣

∣

∣

∣

Xi−1
1

}

≥ −

∣

∣

∣

∣

2λ − 1
2

1 − 2λ

∣

∣

∣

∣

(

max
m

E

{

(X
(m)
i − 1)2 | Xi−1

1

}

−
(

min
m

E

{

|X
(m)
i − 1|

∣

∣

∣
X−1

−∞

})2
)

(7.12)

for all value ofλ. And finally, we use Corollary 7.6,

1

3(1 − 2λ)
E

{

(
〈

b̄∗(Xi−1
1 ) , Xi

〉

− 1)3

〈

b̄∗(Xi−1
1 ) , Xi

〉3 − (
〈

b∗(Xi−1
1 ) , Xi

〉

− 1)3
∣

∣

∣

∣

Xi−1
1

}

≥ −
a−3 + 1

3(1 − 2λ)
max

m
E

{

|X(m)
n − 1|3|Xi−1

1

}

. (7.13)
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Consider the following decomposition

1

n
log S̄∗

n = Ȳn + V̄n,

where

Ȳn =
1

n

n
∑

i=1

(

log
〈

b̄∗(Xi−1
1 ) , Xi

〉

− E
{

log
〈

b̄∗(Xi−1
1 ) , Xi

〉

|Xi−1
1

})

and

V̄n =
1

n

n
∑

i=1

E
{

log
〈

b̄∗(Xi−1
1 ) , Xi

〉

|Xi−1
1

}

.

It can be shown that̄Yn → 0 a.s., since it is an average of bounded martingale differences.
So

lim inf
n→∞

V̄n = lim inf
n→∞

1

n
log S̄∗

n. (7.14)

Similarly, consider the following decomposition

1

n
log S∗

n = Yn + Vn,

where

Yn =
1

n

n
∑

i=1

(

log
〈

b∗(Xi−1
1 ) , Xi

〉

− E
{

log
〈

b∗(Xi−1
1 ) , Xi

〉

|Xi−1
1

})

and

Vn =
1

n

n
∑

i=1

E
{

log
〈

b∗(Xi−1
1 ) , Xi

〉

|Xi−1
1

}

.

Again, it can be shown thatYn → 0 a.s. Therefore

lim
n→∞

Vn = lim
n→∞

1

n
log S∗

n. (7.15)

Taking the limes inferior of both sides of (7.10) asn goes to infinity and applying equal-
ities (7.11), (7.12), (7.13), (7.14), (7.15) and Lemma 7.3,we obtain

W ∗ ≥ lim inf
n→∞

1

n
log S̄∗

n

≥ W ∗ +
λ

1 − 2λ
2a−1

E

{

min
m

E

{

1 + log(X
(m)
0 ) − X

(m)
0

∣

∣

∣X
−1
−∞

}}

−

∣

∣

∣

∣

2λ − 1
2

1 − 2λ

∣

∣

∣

∣

E

{

max
m

E

{

(X
(m)
0 − 1)2

∣

∣

∣X
−1
−∞

}}

−
a−3 + 1

3(1 − 2λ)
E

{

max
m

E

{

∣

∣

∣X
(m)
0 − 1

∣

∣

∣

3
∣

∣

∣

∣

X−1
−∞

}}
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as desired.

For the proof of Theorem 5.1 we need following two lemmas. Thefirst is a simple
modification of Theorem 1 in [10].

Lemma 7.9 Under the conditions of Theorem 5.1, for anyk, ℓ integers and for any fixed
λ

lim
n→∞

1

n

n
∑

i=1

UM

(〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

, λ
)

= E
{

UM

(〈

b̄∗
k,ℓ(X

−1
−k) , X0

〉

, λ
)}

whereb̄∗
k,ℓ(X

−1
−k) is the Markowitz-type portfolio with respect to the limit distribution

P
∗(k,ℓ)

X
−1
−k

.

Proof. Let the integersk, ℓ and the vectors = s−1
−k ∈ R

dk
+ be fixed. LetP(k,ℓ)

j,s denote

the (random) measure concentrated on{Xi : 1 − j + k ≤ i ≤ 0, ‖Xi−1
i−k − s‖ ≤ rk,ℓ}

defined by

P
(k,ℓ)
j,s (A) =

∑

{i:1−j+k≤i≤0,‖Xi−1
i−k

−s‖≤rk,ℓ}
IA(Xi)

|{i : 1 − j + k ≤ i ≤ 0, ‖Xi−1
i−k − s‖ ≤ rk,ℓ}|

, A ⊂ R
d
+

whereIA denotes the indicator function of the setA. If the above set ofXi’s is empty,
then letP(k,ℓ)

j,s = δ(1,...,1) be the probability measure concentrated on the vector(1, . . . , 1).
Györfi, Lugosi, Udina [10] proved that for alls, with probability one,

P
(k,ℓ)
j,s → P

∗(k,ℓ)
s =

{

P
X0|‖X−1

−k
−s‖≤rk,ℓ

if P(‖X−1
−k − s‖ ≤ rk,ℓ) > 0,

δ(1,...,1) if P(‖X−1
−k − s‖ ≤ rk,ℓ) = 0

(7.16)

weakly asj → ∞ whereP
X0|‖X−1

−k
−s‖≤rk,ℓ

denotes the distribution of the vectorX0

conditioned on the event‖X−1
−k − s‖ ≤ rk,ℓ.

By definition, b̄(k,ℓ)(X−1
1−j , s) is the Markowitz-type portfolio with respect to the

probability measureP(k,ℓ)
j,s . Let b̄∗

k,ℓ(s) denote the Markowitz-type portfolio with respect

to the limit distributionP
∗(k,ℓ)
s . Then, using Lemma 7.2, we infer from (7.16) that, asj

tends to infinity, we have the almost sure convergence

lim
j→∞

〈

b̄(k,ℓ)(X−1
1−j , s) , x0

〉

=
〈

b̄∗
k,ℓ(s) , x0

〉

for P
∗(k,ℓ)
s -almost allx0 and hence forPX0

-almost allx0. Sinces was arbitrary, we
obtain

lim
j→∞

〈

b̄(k,ℓ)(X−1
1−j ,X

−1
−k) , x0

〉

=
〈

b̄∗
k,ℓ(X

−1
−k) , x0

〉

a.s. (7.17)

Next we apply Lemma 7.1 for the utility function

fi(x
∞
−∞)

def
= UM

(〈

h̄(k,ℓ)(x−1
1−i) , x0

〉

, λ
)

= UM

(〈

b̄(k,ℓ)(x−1
1−i,x

−1
−k) , x0

〉

, λ
)
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defined onx∞
−∞ = (. . . ,x−1,x0,x1, . . .). Because of

∣

∣fi(X
∞
−∞)

∣

∣ < ∞ and

lim
i→∞

fi(X
∞
−∞) = UM (

〈

b̄∗
k,ℓ(X

−1
−k) , X0

〉

, λ) a.s.

by (7.17). Asn → ∞, Lemma 7.1 yields

1

n

n
∑

i=1

fi(T
iX∞

−∞) =
1

n

n
∑

i=1

UM

(〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

, λ
)

→ E
{

UM

(〈

b̄∗
k,ℓ(X

−1
−k) , X0

〉

, λ
)}

as desired.

Lemma 7.10 Under the conditions of Theorem 5.1 there exists a portfoliobc for all
c ∈ C for which

E
2 {〈bc , X0〉} = c,

whereC
def
=

[

(

minm E(X
(m)
0 )

)2

,
(

maxm E(X
(m)
0 )

)2
]

and furthermore

lim inf
n→∞

1

n

n
∑

i=1

E
2
{〈

h(k,ℓ)(Xi−1
1 ) , Xi

〉

∣

∣Xi−1
1

}

⊆ C.

Proof. The proof has two steps. First we show, that there exists a portfolio for all c ∈ C
whose expected value isc. Let c ∈ C andE

2 {〈bc , X0〉} = c then

E
2
{〈

bc(X
−1
−k) , X0

〉}

=

(

d
∑

m=1

b(m)
c E

{

X
(m)
0

}

)2

def
=

(

d
∑

m=1

b(m)
c em

)2

.

Denotem′ = arg minm em andm′′ = arg maxm em then letbc portfolio is the follow-

ing b
(m′)
c + b

(m′′)
c = 1 for all otherm b

(m)
c = 0. So for allc ∈ C there existsb(m′)

c and

b
(m′′)
c that

(

b
(m′)
c em′ + b

(m′′)
c em′′

)2

= c because of the continuity. As the second step

we have to prove that

lim inf
n→∞

1

n

n
∑

i=1

E
2
{〈

h(k,ℓ)(Xi−1
1 ) , Xi

〉

∣

∣Xi−1
1

}

⊆ C.

It is easy to show from Lemma 7.9 and Lemma 7.1 that asn → ∞

1

n

n
∑

i=1

E

{〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

|Xi−1
1

}

→ E
{〈

b̄∗
k,ℓ(X

−1
−k) , X0

〉}

,

from which the statement of the lemma follows with argument of contradiction.
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Proof of Theorem 5.1.Without loss of generality we may assumeS0 = 1, so

lim inf
n→∞

Wn(B̄) = lim inf
n→∞

1

n
log Sn(B̄)

= lim inf
n→∞

1

n
log





∑

k,ℓ

qk,ℓSn(H̄(k,ℓ))





≥ lim inf
n→∞

1

n
log

(

sup
k,ℓ

qk,ℓSn(H̄(k,ℓ))

)

= lim inf
n→∞

1

n
sup
k,ℓ

(

log qk,ℓ + log Sn(H̄(k,ℓ))
)

= lim inf
n→∞

sup
k,ℓ

(

Wn(H̄(k,ℓ)) +
log qk,ℓ

n

)

≥ sup
k,ℓ

lim inf
n→∞

(

Wn(H̄(k,ℓ)) +
log qk,ℓ

n

)

= sup
k,ℓ

lim inf
n→∞

Wn(H̄(k,ℓ)), . (7.18)

Because of Lemma 7.4, we can write

Wn(H̄(k,ℓ)) =
1

n

n
∑

i=1

log
〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

≥
1

1 − 2λ

(

1

n

n
∑

i=1

UM

(〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

, λ
)

−λ
1

n

n
∑

i=1

E
2
{〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

| Xi−1
1

}

+
1

n

n
∑

i=1

g
(〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

, λ
)

+
1

3n

n
∑

i=1

(〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

− 1
)3

〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉3

)

(7.19)

First, we calculate the limes of the first term, because of Lemma 7.9, we get

lim
n→∞

1

n

n
∑

i=1

UM

(〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

, λ
)

= E
{

UM

(〈

b̄∗
k,ℓ(X

−1
−k) , X0

〉

, λ
)}

def
= ǭk,ℓ (7.20)

where b̄∗
k,ℓ(X

−1
−k) is a Markowitz-type portfolio with respect to the limit distribution

P
∗(k,ℓ)

X
−1
−k

. Let b∗
k,ℓ(X

−1
−k) denote a log-optimal portfolio with respect to the limit distribu-
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tion P
∗(k,ℓ)

X
−1
−k

. Then

ǭk,ℓ = E
{

UM

(〈

b̄∗
k,ℓ(X

−1
−k) , X0

〉

, λ
)}

≥ E
{

UM

(〈

b∗
k,ℓ(X

−1
−k) , X0

〉

, λ
)}

≥ (1 − 2λ)E
{

log
〈

b∗
k,ℓ(X

−1
−k) , X0

〉}

+ λE
2
{〈

b∗
k,ℓ(X

−1
−k) , X0

〉}

−E
{

g
(〈

b∗
k,ℓ(X

−1
−k) , X0

〉

, λ
)}

−
1

3
E

{

(〈

b∗
k,ℓ(X

−1
−k) , X0

〉

− 1
)3
}

(7.21)

where last inequality follows from Lemma 7.4. Let usǫk,ℓ
def
= E

{

log
〈

b∗
k,ℓ(X

−1
−k) , X0

〉}

.

Combine (7.19), (7.20) and (7.21), then we obtain

lim inf
n→∞

Wn(H̄(k,ℓ))

≥ ǫk,ℓ + lim inf
n→∞

λ
∑n

i=1

(

E
2
{〈

b∗
k,ℓ(X

−1
−k) , X0

〉

− E
2
{〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

| Xi−1
1

}

})

n(1 − 2λ)

+ lim inf
n→∞

∑n

i=1

(

g
(〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

, λ
)

− E

{

g
(〈

b∗
k,ℓ(X

−1
−k) , X0

〉

, λ
)})

n(1 − 2λ)

+ lim inf
n→∞

∑n

i=1

(

(〈h̄(k,ℓ)(Xi−1
1 ) , Xi〉−1)

3

〈h̄(k,ℓ)(Xi−1
1 ) , Xi〉

3 − E

{

(〈

b∗
k,ℓ(X

−1
−k) , X0

〉

− 1
)3
})

3n(1 − 2λ)
.

Now bound the three additive terms separately. First,

E
2
{〈

b∗
k,ℓ(X

−1
−k) , X0

〉}

− lim inf
n→∞

1

n

n
∑

i=1

E
2
{〈

h̄(k,ℓ)(Xi−1
1 ) , Xi

〉

| Xi−1
1

}

= E
2
{〈

b∗
k,ℓ(X

−1
−k) , X0

〉}

− E
2 {〈b′ , X0〉} (7.22)

= E
{〈

b∗
k,ℓ(X

−1
−k) , X0

〉

+ 〈b′ , X0〉
}

E
{〈

b∗
k,ℓ(X

−1
−k) , X0

〉

− 〈b′ , X0〉
}

≥ E
{〈

b∗
k,ℓ(X

−1
−k) , X0

〉

+ 〈b′ , X0〉
}

·E
{

min
m

E

{

1 + log(X
(m)
0 ) − X

(m)
0 | X−1

−∞

}}

(7.23)

≥ 2a−2
E

{

min
m

E

{

1 + log(X
(m)
0 ) − X

(m)
0

∣

∣

∣
X−1

−∞

}}

,

where (7.22) is true because of Lemma 7.10 (b′ is a fix portfolio vector). (7.23) follows
from Lemma 7.8.

For the second and third term we use (7.12) and Corollary 2 of Lemma 7.5 and also
stationarity then we get,

lim inf
n→∞

Wn(H̄(k,ℓ)) ≥ ǫk,ℓ +
2λa−1

1 − 2λ
E

{

min
m

E

{

1 + log(X
(m)
0 ) − X

(m)
0

∣

∣

∣X
−1
−∞

}}

−

∣

∣

∣

∣

2λ − 1
2

1 − 2λ

∣

∣

∣

∣

E

{

max
m

E

{

(X
(m)
0 − 1)2

∣

∣

∣X
−1
−∞

}}

−
a−3 + 1

3(1 − 2λ)
E

{

max
m

E

{

∣

∣

∣X
(m)
0 − 1

∣

∣

∣

3 ∣
∣

∣X
−1
−∞

}}

. (7.24)
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Györfi, Lugosi and Udina [10] proved that

sup
k,ℓ

ǫk,ℓ = W ∗,

therefore, by (7.18) and (7.24) the proof of the theorem is finished.
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Department of Computer Science and
Information Theory
Budapest University of Technology
and Economics
Magyar Tud́osok k̈orútja 2
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