
Chapter 16

Nonparametric Prediction

László Györfi and Dominik Schäfer

Abstract. In this chapter we consider the prediction of stationary time series for

various loss functions: squared loss (as it arises in the regression problem), 0− 1

loss (pattern recognition) and log utility (portfolio selection). The focus is on

the construction of universal prediction rules, which are consistent for all possible

stationary processes. Such rules can be obtained by combining elementary rules

(experts) in a data dependent way.
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16.1 Introduction

The problem of prediction of stationary time series arises in numerous fields. It is
particularly desirable to construct universal prediction rules for the next output of
a stationary time series given past observations. These are prediction rules which are
asymptotically optimal, but do not require a priori knowledge about the underlying
distribution of the time series (Haussler, Kivinen, Warmuth [18], Merhav, Feder [21]).

Depending upon the context of the prediction problem different loss functions are
appropriate. The three most important loss functions are the squared loss (for real
valued time series, i.e., the regression problem), the 0−1 loss (for time series taking on
values in a finite set, i.e., pattern recognition) and logarithmic utility (for time series
of asset returns in portfolio selection).

Prediction rules that are asymptotically optimal can be constructed by combining
elementary rules (experts) in a data dependent way. The key idea is simple: Roughly
speaking, the worse an expert predicted in the past, the less credible he is, i.e., the
less weight he is assigned in current decision taking (Cesa-Bianchi et al. [7], Little-
stone, Warmuth [20], Vovk [26], [27], [28], Weinberger, Merhav and Feder [29]). The
main purpose of this chapter is to present universal prediction rules with data depen-
dent combination of experts in the three prototypical fields of regression, of pattern
recognition and of portfolio selection.

16.2 Prediction for Squared Error

This section is devoted to the problem of sequential prediction of a real valued sequence.
Let y1, y2, . . . be a sequence of real numbers, and let x1, x2, . . . be a sequence of d-
dimensional vectors. At each time instant i = 1, 2, . . ., the predictor is asked to guess
the value of the next outcome yi with knowledge of the past (x1, . . . , xi, y1, . . . yi−1) =
(xi

1, y
i−1
1 ). Thus, the predictor’s estimate, at time i, is based on the value of (xi

1, y
i−1
1 ).

Formally, the strategy of the predictor is a sequence g = {gi}∞i=1 of decision functions,
and the prediction formed at time i is gi(x

i
1, y

i−1
1 ). After n time instants, the normalized

cumulative prediction error on the string xn
1 , y

n
1 is

Ln(g) =
1

n

n∑

i=1

(gi(x
i
1, y

i−1
1 ) − yi)

2.

The main aim is to make Ln(g) small (Haussler, Kivinen, Warmuth [18], Merhav, Feder
[21]).

One possible means of prediction is to combine several predictors which will be
called experts. Assume there are K experts: h(1), . . . , h(K) and the prediction error
Ln(h(k)) of expert k is available from observation. At time instant n + 1 we combine
the experts according to their past performances. For this, a probability distribution
on the set of experts is generated, where a good expert has relatively large weight,
then the average of the experts’ predictions is taken with respect to this distribution
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(Cesa-Bianchi et al. [7], Littlestone, Warmuth [20], Vovk [26], Weinberger, Merhav
and Feder [29]).

A “static” variant of this problem is regression estimation. Let Y be a real valued
random variable and let X be a d dimensional random vector (observation). The aim
of regression analysis is to approximate Y for given X, i.e., to find a function g such
that g(X) is ”close” to Y . In particular, regression analysis aims to minimize the mean
squared error

min
g

E{(g(X) − Y )2}.

It is well known that the solution of this minimization problem is given by the regression
function

m(x) = E{Y |X = x},
since for any function g

E{(g(X) − Y )2} = E{(m(X) − Y )2} + E{(m(X) − g(X))2}.

The second term on the right hand side is the L2 error of g and will be denoted by
J(g):

J(g) = E{(m(X) − g(X))2}.
Obviously, the mean square error is close to its minimum if the L2 error J(g) is close
to 0.

For the regression estimation problem we are given data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

which are i.i.d. copies of (X,Y ). On the basis of this data, we want to construct
estimates of m(x) of the form

mn(x) = mn(x,Dn)

such that J(mn) is small, i.e., mn tends to m for all distributions of (X,Y ) with
E{Y 2} < ∞ (cf. Györfi, Kohler, Krzyżak, Walk [14]).

Stone [24] showed that there are universally consistent regression estimates. He
considered local averaging estimates:

mn(x) =
n∑

i=1

Wni(x; X1, . . . , Xn)Yi,

where the weights Wni are usually nonnegative and sum up to 1, moreover Wni is
“large”, if x and Xi are “close” to each other, otherwise Wni is “small”. Common local
averaging estimators comprise nearest neighbor, partitioning and kernel estimators.

For the k nearest neighbor estimate, Wni(x; X1, . . . , Xn) = 1/k, if Xi is one the
k nearest neighbors of x from X1, . . . , Xn, otherwise Wni = 0. If

kn → ∞, kn/n → 0,
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then there are various consistency results.
For the partitioning estimate we are given a partition Pn = {An,1, An,2 . . . } of

Rd, and set

mn(x) =

∑n
i=1 YiKn(x,Xi)∑n
i=1 Kn(x,Xi)

,

where Kn(x, u) =
∑∞

j=1 I[x∈An,j ,u∈An,j ] (IA is the indicator of the set A).
The kernel estimate is given by

mn(x) =

∑n
i=1 YiKh(x − Xi)∑n
i=1 Kh(x − Xi)

,

where h = hn > 0 is the bandwidth and K is an integrable function, called kernel, and
Kh(x) = K(x/h).

The other important concept for estimating regression functions is the least squares
principle. It is based on the simple idea to estimate the L2 risk of f

E
{
(f(X) − Y )2

}

by the empirical L2 risk

1

n

n∑

j=1

|f(Xj) − Yj|2, (16.1)

and to choose as a regression function estimate a function which minimizes the empirical
L2 risk. More precisely, for least squares estimates one first chooses a “suitable”
class of functions Fn (maybe depending on the data, but at least depending on the
sample size n) and then selects a function from this class which minimizes the empirical
L2 risk, i.e. one defines the estimate mn by

mn ∈ Fn with
1

n

n∑

j=1

|mn(Xj) − Yj|2 = min
f∈Fn

1

n

n∑

j=1

|f(Xj) − Yj|2. (16.2)

The class of candidate functions grows as the sample-size n grows. Examples of possible
choices of the set Fn are sets of piecewise polynomials with respect to a partition Pn

of Rd, or sets of smooth piecewise polynomials (splines).

The other framework in which the need for universal prediction arises is the case
of time series where the data Dn = {(X1, Y1), . . . , (Xn, Yn)} are dependent. Here we
assume long-range dependence, i.e., we assume that the data form a stationary and
ergodic process with unknown autocovariance structure.

For given n, the problem is the following minimization:

min
g

E{(g(Xn+1, Dn) − Yn+1)
2}.

¿From this one easily verifies that the best predictor is the conditional expectation

E{Yn+1|Xn+1, Dn}.
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This, however, cannot be learned from data, i.e., there is no prediction sequence with

lim
n→∞

(gn(Xn+1, Dn) − E{Yn+1|Xn+1, Dn}) = 0

a.s. for all stationary and ergodic sequence (cf., e.g., Györfi et al. [17]).
In general, our aim is to achieve the optimum

L∗ = lim
n→∞

min
g

E{(g(Xn+1, Dn) − Yn+1)
2},

which again is impossible. However, there are universal Cesáro consistent prediction
sequence gn, i.e.,

lim
n→∞

1

n

n∑

i=1

(gi(Xi+1, Di) − Yi+1)
2 = L∗

a.s. for all stationary and ergodic sequence. Such prediction sequences are called
universally consistent. We show how to construct universally consistent predictors
by combination of predictor experts.

One of the main ingredients of the construction is the following lemma, whose proof
is a straightforward extension of standard arguments in prediction theory of individual
sequences, see, for example, Kivinen and Warmuth [19], Singer and Feder [23].

Lemma 1 Let h̃1, h̃2, . . . be a sequence of prediction strategies (experts), and let {qk} be

a probability distribution on the set of positive integers. Assume that h̃i(y
n−1
1 ) ∈ [−B,B]

and yn
1 ∈ [−B,B]n. Define

wt,k = qke
−(t−1)Lt−1(ehk)/c

with c ≥ 8B2, and the experts’ weights by

vt,k =
wt,k∑∞
i=1 wt,i

.

Then the prediction strategy g̃ defined by

g̃t(y
t−1
1 ) =

∞∑

k=1

vt,kh̃k(y
t−1
1 ) (t = 1, 2, . . .)

has the property that for every n ≥ 1,

Ln(g̃) ≤ inf
k

(
Ln(h̃k) −

clnqk

n

)
.

Here −ln0 is treated as ∞.

We return to the problem of stationary and ergodic data (X1, Y1), . . . , (Xn, Yn).
Assume that |Y0| ≤ B. The elementary predictors (experts) will be denoted by h(k,`),
k, ` = 1, 2, . . .. Each of the h(k,`) works as follows: Let G` be a quantizer of Rd and H`



344 L. Györfi, D. Schäfer

be a quantizer of R. For given k, `, let In be the set of time instants k < i < n, for
which a match of the k-length quantized sequences

G`(x
i
i−k) = G`(x

n
n−k)

and
H`(y

i−1
i−k) = H`(y

n−1
n−k)

occurs. Then the prediction of expert h(k,`) is the average of the yi’s for which i ∈ In:

h(k,`)
n (xn

1 , y
n−1
1 ) :=

∑
i∈In

yi

|In|
.

These elementary predictors are not universally consistent since for small k the bias
tends to be large and for large k the variance grows considerably because of the few
matchings. The same is true for the quantizers. The problem is how to choose k, ` in a
data dependent way such as to obtain a universally consistent predictor. The solution
is the combination of experts.

The combination of predictors can be derived according to the previous lemma. Let
{qk,`} be a probability distribution on the set of all pairs (k, `) of positive integers, and
for c = 8B2 put

wt,k,` = qk,`e
−(t−1)Lt−1(h(k,`))/c

and
vt,k,` =

wt,k,`∑∞
i,j=1 wt,i,j

.

Then for the combined prediction rule

gt(x
t
1, y

t−1
1 ) =

∞∑

k,`=1

vt,k,`h
(k,`)(xt

1, y
t−1
1 )

the following universal consistency result holds:

Theorem 1 (Györfi, Lugosi [15]). If the quantizers G` and H` ”are asymptotically
fine”, and P{Yi ∈ [−B,B]} = 1, then the combined predictor g is universally consis-
tent.

16.3 Prediction for 0− 1 Loss: Pattern Recognition

In pattern recognition yi takes on values in the finite set {1, 2, . . . M}. At time instant
i the classifier (predictor) decides on yi based on the past observation (xi

1, y
i−1
1 ).

After n rounds the empirical error for xn
1 , y

n
1 is

Ln(g) =
1

n

n∑

i=1

I{g(xi
1,yi−1

1 ) 6=yi}
.

The natural loss is given by the 0−1 loss, and Ln(g) is the relative frequency of errors.
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In the “static” version of pattern recognition the random variable Y takes on values
in {1, 2, . . . M}, and based on the random observation vector X one has to decide on
Y . The decision rule (classifier) is defined by a decision function

g : Rd → {1, 2, . . . M}.
The classifier has an error probability

L(g) = P{g(X) 6= Y }.
As is well known, the error probability is minimized by the Bayes decision,

g∗(x) = i, if P{Y = i|X = x} = max
j

P{Y = j|X = x}.

In pattern recognition we want to approach the Bayes decision if data Dn = {(X1, Y1),
. . . , (Xn, Yn)} are given, which are i.i.d. copies of (X,Y ). It is of considerable interest
to find a pattern recognition rule

gn(x) = gn(x,Dn)

such that
L(gn) = P{gn(X) 6= Y |Dn}

is close to L(g∗) for all possible distributions of (X,Y ). Similarly to the regression
estimation problem, this may be achieved (cf. Devroye, Györfi and Lugosi [12]).

Clearly, this should be generalized to the case of dependent data Dn = {(X1, Y1),
. . . , (Xn, Yn)}, where the data form a stationary and ergodic process. For given n, the
problem is the following minimization:

min
g

P{g(Xn+1, Dn) 6= Yn+1},

which –as in the general regression estimation case– cannot be learned from data. Nor
can there be a strategy achieving the optimum

R∗ = lim
n→∞

min
g

P{g(Xn+1, Dn) 6= Yn+1}.

However, there are universal Cesáro consistent classifier sequences g = {gn}, i.e., for
the notation

Ln(g) =
1

n

n∑

i=1

I{gi(Xi+1,Di) 6=Yi+1}

there exists g such that
lim

n→∞
Ln(g) = R∗

a.s. for all stationary and ergodic sequence. Such classifier sequences are called uni-

versally consistent. Györfi, Lugosi and Morvai [16] have constructed universally
consistent classifiers by randomized combination of classifiers (experts).

The main ingredient of the proof is a beautiful result of Cesa-Bianchi et al. [7]. It
states that, given a set of N experts, and a sequence of fixed length n, there exists a
randomized predictor whose number of mistakes is not greater than that of the best
classifier plus

√
(n/2)lnN for all possible sequences yn

1 . The simpler algorithm and
statement cited below is due to Cesa-Bianchi [6]:
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Lemma 2 Let h̃(1), . . . , h̃(N) be a finite collection of classifier strategies (experts). The
classifier strategy g̃ is defined by

g̃t(y
t−1
1 , xt

1, u) =





0 if u >

∑N
k=1 I{eh(k)(yt−1

1 ,xt
1)=1}w̃t(k)

∑N
k=1 w̃t(k)

1 otherwise,

(t = 1, 2, . . . , n), where for all k = 1, . . . , N and t > 1

w̃1(k) = 1 and w̃t(k) = e−
√

8lnN/nLt−1(eh(k)).

Let U1, U2, . . . be i.i.d. uniformly distributed random variables on [0, 1]. Then at time
moment t the randomized classification is

g̃t(y
t−1
1 , xt

1, Ut)

and for any yn
1 ∈ {0, 1}n and xn

1 ∈ Rnd

ELn(g̃) ≤ min
k=1,...,N

Ln(h̃(k)) +

√
lnN

2n
.

16.4 Prediction for Log Utility: Portfolio Selection

Consider investment in the stock market. We follow Breiman [5], Algoet and Cover
[3], Cover [9] and Cover and Thomas [11]. The market consists of d stocks, and during
one investment period (e.g., one day), it will be described by a return vector x =
(x(1), . . . x(d)), where the j-th component x(j) is the factor by which capital invested in
stock j grows during the market period. The investor is allowed to diversify his capital
at the beginning of each day of trading according to a portfolio vector b = (b(1), . . . b(d)),
the j-th component b(j) of which gives the proportion of the investor’s capital invested in
stock j. Assume that the portfolio vector b = (b(1), . . . b(d)) is a probability distribution,
i.e. consumption of capital and short selling of stocks are excluded. If S0 denotes the
initial capital, then at the end of the day the investor will be left with a wealth of

S1 = S0

d∑

j=1

b(j)x(j) = S0(b, x),

where (·, ·) stands for the inner product.

For long term investment, assume the investor starts with an initial capital S0 and
let xi be the return vector on day i. If b = b1 is the portfolio vector the investor chooses
for the first day of trading, he will accumulate a wealth of

S1 = S0 · (b1, x1)

by the end of this day. For the second day, S1 becomes his new initial capital and the
portfolio vector for day two, b2, may depend on x1: b2 = b(x1). Then

S2 = S0 · (b1, x1) · (b2, x2) = S0 · (b, x1) · (b(x1), x2).
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In general, after the nth day of trading using a nonanticipating portfolio strategy
bi = b(xi−1

1 ) (i = 1, ..., n) the investor achieves

Sn = S0

n∏

i=1

(b(xi−1
1 ), xi) = S0e

Pn
i=1 log(b(xi−1

1 ),xi) = S0e
nWn(B).

The portfolio strategy B = {b(xi−1
1 )} is a sequence of functions, the quality of which

is characterized by the average growth rate

Wn(B) =
1

n

n∑

i=1

log(b(xi−1
1 ), xi).

Obviously, the maximization of Sn = Sn(B) and the maximization of Wn(B) are equiv-
alent.

Throughout, we assume that x1, x2, . . . are realizations of the random vectors X1,
X2, . . . drawn from the vector valued stationary and ergodic process {Xn}∞−∞ (note
that by Kolmogorov’s Theorem any stationary and ergodic process {Xn}∞1 can be
extended to a bi-infinite stationary process on some probability space (Ω,F ,P), such
that ergodicity holds for both, n → ∞ and n → −∞).

The fundamental limits for investment are delineated by results of Algoet and Cover
[3], Algoet [1, 2], who showed that the so called log-optimum portfolio B∗ = {b∗(·)} is
the best possible choice. More precisely, on day n let b∗(·) be such that

E{log(b∗(Xn−1
1 ), Xn)|Xn−1

1 } = E{max
b(·)

log(b(Xn−1
1 ), Xn)|Xn−1

1 }.

If S∗
n = Sn(B∗) denotes the capital after day n achieved by a log-optimum portfolio

strategy B∗, then for any portfolio strategy B with capital Sn = Sn(B) and for any
stationary ergodic process {Xn}∞−∞,

lim sup
n→∞

1

n
log

Sn

S∗
n

≤ 0 almost surely

and

lim
n→∞

1

n
log S∗

n = W ∗ almost surely,

where

W ∗ = E

{
max
b(·)

E{log(b(X−1
−∞), X0)|X−1

−∞}
}

is the maximal growth rate of any portfolio.
These limit relations give rise to the following definition:

Definition 1 A portfolio strategy B is called universal with respect to a class C
of stationary and ergodic processes {Xn}∞−∞, if for each process in the class,

lim
n→∞

1

n
log Sn(B) = W ∗ almost surely.
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Universal strategies asymptotically achieve the best possible growth rate for all
ergodic processes in the class. Algoet [1] introduced two portfolio strategies, and proved
that the more complicated one is universal. The purpose of this section is to prove the
universality of a strategy B similar to his second portfolio.

B is constructed as follows. We first define an infinite array of elementary portfolios
H(k,`) = {h(k,`)(·)}, k, ` = 1, 2, . . . To this end, let P` = {A`,j, j = 1, 2, . . . ,m`} be a
sequence of finite partitions of the feature space Rd, and let G` be the corresponding
quantizer:

G`(x) = j, if x ∈ A`,j.

With some abuse of notation, for any n and xn
1 ∈ Rdn, we write G`(x

n
1 ) for the sequence

G`(x1), . . . , G`(xn). Now, fix positive integers k, `, and for each k-long string s of
positive integers, define the partitioning portfolio

b(k,`)(xn−1
1 , s) = arg max

b

∏

{k<i<n:G`(x
i−1
i−k

)=s}

(b, xi), n > k + 1,

if the product is nonvoid, and uniform b otherwise. If the product is nonvoid then

b(k,`)(xn−1
1 , s) = arg max

b

∑
{k<i<n:G`(x

i−1
i−k

)=s} log(b, xi)
∣∣{k < i < n : G`(x

i−1
i−k) = s}

∣∣ , n > k + 1.

¿From this we define the elementary portfolio h(k,`) by

h(k,`)(xn−1
1 ) = b(k,`)(xn−1

1 , G`(x
n−1
n−k)), n = 1, 2, . . .

That is, h
(k,`)
n quantizes the sequence xn−1

1 according to the partition P`, and browses
through all past appearances of the last seen quantized string G`(x

n−1
n−k) of length k.

Then it designs a fixed portfolio vector according to the returns on the days following
the occurence of the string.

Finally, let {qk,`} be a probability distribution on the set of all pairs (k, `) of positive
integers such that for all k, `, qk,` > 0. The strategy B then arises from weighing the
elementary portfolio strategies H(k,`) according to their past performances and {qk,`}:

b(xn−1
1 ) :=

∑
k,` qklSn−1(H

(k,`))h(k,`)(xn−1
1 )

∑
k,` qklSn−1(H(k,`))

,

where Sn(H(k,`)) is the capital accumulated after n days when using the portfolio
strategy H(k,`) with initial capital S0. Thus, after day n, the investor’s capital becomes

Sn(B) =
∑

k,`

qk,`Sn(H(k,`)).

The strategy B asymptotically achieves the best possible growth rate of wealth:

Theorem 2 Assume that

(a) the sequence of partitions is nested, that is, any cell of P`+1 is a subset of a cell
of P`, ` = 1, 2, . . .;
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(b) if diam(A) = supx,y∈A ‖x− y‖ denotes the diameter of a set, then for any sphere
S centered at the origin

lim
`→∞

max
j:A`,j∩S 6=∅

diam(A`,j) = 0 .

Then the portfolio scheme B defined above is universal with respect to the class of all
ergodic processes such that E{| log X(j)|} < ∞, for j = 1, 2, . . . d.

The first tool in the proof of Theorem 2 is known as Breiman’s generalized ergodic
theorem [4, 5], see also Algoet [2].

Lemma 3 (Breiman, [4]). Let Z = {Zi}∞−∞ be a stationary and ergodic process. Let
T denote the left shift operator, shifting any sequence {..., z−1, z0, z1, ...} one digit to
the left. Let fi be a sequence of real-valued functions such that for some function f ,
fi(Z) → f(Z) almost surely. Assume that E supi |fi(Z)| < ∞. Then

lim
t→∞

1

n

n∑

i=1

fi(T
iZ) = Ef(Z) a.s.

The second tool is a theorem due to Algoet and Cover ([3], Theorems 3 and 4).

Theorem 3 (Algoet and Cover, [3]).
(a) Let Qn∈N∪{∞} be a family of regular probability distributions on (0,∞)d such that

E{| log U
(j)
n |} < ∞ for any coordinate of a return vector Un = (U

(1)
n , ..., U

(d)
n ) distributed

according to Qn. In addition, let B∗(Qn) be the set of all log-optimal portfolios w.r.t.
Qn, i.e. of all portfolios b that attain maxb E{log(b, Un)}. Consider an arbitrary se-
quence bn ∈ B∗(Qn). If

Qn → Q∞ weakly as n → ∞

then, for Q∞-almost all u,

(bn, u) → (b∗, u) (n → ∞)

where the right hand side is constant as b∗ ranges over B∗(Q∞).

(b) Let X be a return vector on a probability space (Ω,F ,P) satisfying E{| log X(j)|} <
∞. If Fk is an increasing sequence of sub-σ-fields of F ,

Fk ↗ F∞ ⊆ F ,

then

E

{
max

b Fk−measurable

E[log(b,X)|Fk]

}
↗ E

{
max

b F∞−measurable

E[log(b,X)|F∞]

}

as k → ∞.
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Proof of Theorem 2. We have to prove that

lim inf
n→∞

Wn(B) = lim inf
n→∞

1

n
log Sn(B) ≥ W ∗ a.s.

W.l.o.g. we may assume S0 = 1, so that

Wn(B) =
1

n
log Sn(B)

=
1

n
log




∑

k,`

qk,`Sn(H(k,`))




≥ 1

n
log

(
sup
k,`

qk,`Sn(H(k,`))

)

=
1

n
sup
k,`

(
log qk,` + log Sn(H(k,`))

)

= sup
k,`

(
Wn(H(k,`)) +

log qk,`

n

)
.

Thus

lim inf
n→∞

Wn(H) ≥ lim inf
n→∞

sup
k,`

(
Wn(H(k,`)) +

log qk,`

n

)

≥ sup
k,`

lim inf
n→∞

(
Wn(H(k,`)) +

log qk,`

n

)

≥ sup
k,`

lim inf
n→∞

Wn(H(k,`)). (16.3)

In order to evaluate the lim inf on the right hand side we investigate the performance of the
b(k,`)(·, ·) on the stationary and ergodic sequence X0, X−1, X−2, ... First let k, ` and s be fixed.

P
(k,`)
j,s denotes the (random) measure concentrated on {Xi : 1− j + k ≤ i ≤ 0, G`(X

i−1
i−k) = s}

with

P
(k,`)
j,s (A) :=

∑
i:1−j+k≤i≤0,G`(X

i−1
i−k

)=s IA(Xi)

|{i : 1 − j + k ≤ i ≤ 0, G`(X
i−1
i−k) = s}|

.

If the above set of Xi’s is void, then let P
(k,`)
j,s := δ(1,...,1) be the probability measure concen-

trated on (1, ..., 1).
Observe that for all s with probability one

P
(k,`)
j,s →

{
PX0|G`(X

−1
−k

)=s if P(G`(X
−1
−k) = s) > 0,

δ(1,...,1) if P(G`(X
−1
−k) = s) = 0

(16.4)

weakly as j → ∞. Indeed, let f be a bounded continuous function. By the ergodic theorem:

∫
f(x)P

(k,`)
j,s (dx) =

1
|1−j+k|

∑
i:1−j+k≤i≤0,G`(X

i−1
i−k

)=s f(Xi)

1
|1−j+k| |{i : 1 − j + k ≤ i ≤ 0, G`(X

i−1
i−k) = s}|

→
E{f(X0)I{G`(X

−1
−k

)=s}}
P{G`(X

−1
−k) = s}

= E{f(X0)|G`(X
−1
−k) = s}

=

∫
f(x)PX0|G`(X

−1
−k

)=s(dx) a.s.,
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if P(G`(X
−1
−k) = s) > 0. If P(G`(X

−1
−k) = s) = 0, then with probability one P

(k,`)
j,s is

concentrated on (1, ..., 1) for all j, and

∫
f(x)P

(k,`)
j,s (dx) = f(1, ..., 1).

By definition, b(k,`)(X−1
1−j , s) is a log-optimal portfolio w.r.t. P

(k,`)
j,s . Let b∗k,`(s) be a log-

optimal portfolio w.r.t. the limit distribution of P
(k,`)
j,s . Then, using Theorem 3(a), we infer

from (16.4) that as j tends to infinity the almost surely the following convergence holds:

(b(k,`)(X−1
1−j , s), x0) → (b∗k,`(s), x0))

for PX0|G`(X
−1
−k

)=s- and hence PX0-almost all values of x0. Here and in the following we

exploit the fact that there are only finitely many values of s to be considered. In particular,
we obtain

(b(k,`)(X−1
1−j , G`(X

−1
−k)), X0) → (b∗k,`(G`(X

−1
−k)), X0) a.s. (16.5)

as j → ∞.

We are now in a position to apply Lemma 3. For x = (..., x−1, x0, x1, ...), set

fi(x) := log(h(k,`)(x−1
1−i), X0) = log(b(k,`)(x−1

1−i, G`(X
−1
−k)), X0).

Note that

fi(X) = | log(h(k,`)(X−1
1−i), X0)| ≤

d∑

j=1

| log X
(j)
0 |,

the right hand side of which has finite expectation, and

fi(X) → (b∗k,`(G`(X
−1
−k)), X0) a.s. as i → ∞

from (16.5). As n → ∞, Lemma 3 yields

Wn(H(k,`)) =
1

n

n∑

i=1

log(h(k,`)(Xi−1
1 ), Xi)

→ E{log(b∗k,`(G`(X
−1
−k)), X0)}

= E{max
b(·)

E{log(b(G`(X
−1
−k)), X0)|G`(X

−1
−k)}}

= εk,` a.s.

Therefore, by virtue of (16.3)

lim inf
n→∞

Wn(B) ≥ sup
k,`

εk,` a.s.

Since the partitions P` are nested, we have σ(G`(X
−1
−k)) ⊆ σ(G`′(X

−1
−k′)) for all `′ ≥ `, k′ ≥

k, and the sequence

max
b(·)

E{log(b(G`(X
−1
−k)), X0)|G`(X

−1
−k)}

= max
b is σ(G`(X

−1
−k

))−measurable

E{log(b, X0)|G`(X
−1
−k)}
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becomes a sub-martingale indexed by the pair (k, `). This sequence is bounded by

max
b(·)

E{log(b(X−1
−∞), X0))|X−1

−∞},

which has finite expectation. The sub-martingale convergence theorem (see, e.g., Stout (1974)
implies that this sub-martingale is convergent a.s., and supk,` εk,` is finite. In particular, by
the submartingale property, εk,` is a bounded double sequence increasing in k and `, so that

sup
k,`

εk,` = lim
k→∞

lim
`→∞

εk,`.

Assumption (b) for the sequence of partitions implies that for fixed k

σ(G`(X
−1
−k)) ↗ σ(X−1

−k)

as ` → ∞. Hence, by Theorem 3(b)

lim
l→∞

εk,` = lim
l→∞

E

{
max

b is σ(G`(X
−1
−k

))−measurable

E{log(b, X0)|G`(X
−1
−k)}

}

= E

{
max

b is σ(X−1
−k

)−measurable

E{log(b, X0)|X−1
−k}

}
.

Applying Theorem 3(b) again with

σ(X−1
−k) ↗ σ(X−1

−∞) as k → ∞

finally yields

sup
k,`

εk,` = lim
k→∞

E

{
max

b is σ(X−1
−k

)−measurable

E{log(b, X0)|X−1
−k}

}

= E

{
max

b is σ(X−1
−∞

)−measurable

E{log(b, X0)|X−1
−∞}

}

= E

{
max
b(·)

E{log(b(X−1
−∞), X0)|X−1

−∞}
}

= W ∗

and the proof of the theorem is finished. ¤
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