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ABBREVIATIONS

| · | absolute value of a number, cardinality of a set

< ·, · > Euclidean scalar product

‖ · ‖∞ supremum norm

‖ · ‖q q-norm (on IRd or Lq)

‖ · ‖ other norm

IN positive integers 1, 2, 3, ...

IN0 nonnegative integers 0, 1, 2, 3, ...

IR real numbers

IR+ real numbers > 0

IR+
0 real numbers ≥ 0

bxc integer part of x

bxcN the smallest kN(k ∈ IN) such that kN ≥ x ≥ 0.

dxe x rounded toward infinity

·T transpose of a vector or matrix

spr(·) spectrum of a matrix

exp exponential to the base e

log logarithm to the base e

lb logarithm to the base 2

an = o(bn) Landau symbol for: an/bn → 0

an = O(bn) Landau symbol for: an/bn is a bounded sequence

AC complement of the set A

Ā closure of the set A

conv(A) convex hull of the set A



4 Abbreviations

1A characteristic function of the set A

diam(A) Euclidean diameter supa,b∈A ‖a− b‖∞ of the set A

ρ(x,A) Euclidean distance infa∈A ‖x− a‖∞ from x to the set A

H(A,B) Hausdorff distance max{supa∈A ρ(a,B), supb∈B ρ(b, A)}
between the sets A and B

B(S) Borelian σ−algebra on the topological space S

f(x)|x=y f evaluated in y

f+, f+ positive part of f , i.e., max{f, 0}
f−, f− negative part of f , i.e., max{−f, 0}
supp f support {x : f(x) > 0} of the function f

argmax f solution of a maximization problem (in some contexts

set-valued, i.e. {x : f(x) = supy f(y)}, in others a

measurably selected solution x with f(x) = supy f(y))

P probability measure

PX distribution of X

PY |X=x conditional distribution of Y given X = x

fX(·) a density of PX w.r.t. the Lebesgue measure

fY |X(·|x) a density of PY |X=x w.r.t. the Lebesgue measure

Q1 � Q2 Q1 is absolutely continuous w.r.t. Q2

D(Q1||Q2) Kullback-Leibler distance of Q2 and Q1

a.s. P-almost surely, with probability one

P-a.a. P-almost all

E mathematical expectation

E[Y |X ] conditional expectation of Y given X

E[Y |X = x] conditional expectation of Y given X = x

Var Variance

Cov Covariance

N(µ; Σ) normal distribution with mean µ and variance-

covariance matrix Σ

L1(P) space of Lebesgue integrable functions w.r.t. P

Lq(P) qth order Lebesgue integrable functions w.r.t. P
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const. a suitable constant

GSM geometrically strongly mixing

hot. higher order terms of an expansion

i.i.d. independent, identically distributed

p.a. per annum

w.r.t. with respect to

2 end of proof

All non-standard notation is explained when it occurs for the first time. The

random variables in this thesis are understood to be defined on a common

probability space (Ω,A,P). IRd-valued random variables are implicitly assumed

to be measurable w.r.t. the Borelian σ-algebra B(IRd). If not stated otherwise,

measurability of functions f : IRd → IRd′ means measurability w.r.t. B(IRd) and

B(IRd′).
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SUMMARY

In this thesis we aim to plead for the application of nonparametric statistical

forecasting and regression estimation methods to financial investment problems.

In six chapters we explore applications of nonparametric techniques to portfolio

selection for financial investment. Clearly, this cannot be more than a crude

and somewhat arbitrary selection of topics within this vast area, so we decided

to concentrate on some typical situations. Our hope is to be able to illustrate

the benefits of nonparametric estimation methods in portfolio selection.

Chapter 1

Introduction: investment and nonparametric statistics

Investment is the strategic allocation of resources, typically of monetary re-

sources, in an environment, typically a market of assets, whose future evolution

is uncertain. Investment problems arise in a huge variety of contexts beyond the

financial one. Resources may also take the form of energy, of data-processing

resources, etc. Strategic investment planning helps to run many processes with

higher benefit. In this thesis we focus our attention on financial investment,

which we think is the “prototypical” example of a resource allocation process.

The three ingredients of financial investment are the market, the actions the

investor may take and his investment goal (discussed in detail in Sections 1.1-

1.3):

– As to the market: We assume that there arem assets in our financial market.

The jth asset yields a return Xi,n on an investment of 1 unit of money

during market period n (lasting from “time” n− 1 to n, time being mea-

sured, e.g., in days of trading). The ensemble of returns on the nth day

of trading is given by

Xn = (X1,n, ..., Xm,n)
T ∈ IRm

+ .
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To the investor, the return process {Xn}∞n=1 appears to be a stochastic

process which, in many real markets, is stationary and ergodic (Definition

1.1.1). In some chapters we impose additional (but realistic) conditions

on the distribution of the process. The key point is, however, that

we use nonparametric models, i.e. models that do not assume a para-

metric evolution equations such as ARMA, ARCH and GARCH equa-

tion to hold.

These models guarantee highest flexibility in real applications.

– As to the investment actions: We are concerned with an investor who neither

consumes nor deposits new money into his portfolio. At the beginning of

each market period n, our investor uses all his current wealth to acquire

a portfolio bn of the stocks. It will be convenient to describe the portfolio

bn by the proportion bj,n of the investor’s current wealth invested in asset

j (j = 1, ..., m) during market period n. Thus, bn is chosen at time n− 1

from the set S of all portfolios, consisting of the vectors (portfolios)

bn = (b1,n, ..., bm,n)
T

satisfying bj,n ≥ 0 and
∑m

j=1 bj,n = 1. In some situations the set of in-

vestment actions S may be further narrowed down by the occurence of

transaction costs.

– As to the investment goal: If W0 is his initial wealth, an investor using

the portfolio strategy {bi}n−1
i=0 manages to accumulate the wealth Wn =

∏n
i=1 < bi, Xi > W0 during n market periods (< ·, · > is the Euclidean

scalar product). Naturally, the investor aims to maximizeWn. It is known

from literature that there is no essential conflict between short run (n

finite) and long term (n → ∞) investment. In both cases investment

according to the conditional log-optimal portfolio

b∗n := argmax
b∈S

E [ log < b,Xn >|Xn−1, ...X1]

at time n is optimal, outperforming any other strategy because of

E
Wn

W ∗
n

≤ 1 and lim sup
n→∞

1

n
log

Wn

W ∗
n

≤ 0 with probability 1
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(Cover and Thomas, 1991, Theorem 15.5.2). Here, W ∗
n is the wealth at

time n resulting from a series of conditionally log-optimal investments,

Wn the wealth from any other non-anticipating portfolio strategy. We

argue that

this is sufficient reason for the investor to use a logarithmic utility

function, i.e. to maximize the expected future logarithmic return given

the past return vectors.

The conditional log-optimal portfolio depends upon the distribution of the re-

turn process {Xn}n. Realistically, the true distribution of the market returns

and hence the log-optimal strategy is not known to the investor. This makes

statistics the natural partner of investment. Statistics is needed to solve the

key problem,

to find a non-anticipating portfolio selection scheme {b̂n}n (working with his-

torical return data only, without knowing the true return distribution) such

that for any stationary ergodic return process {Xn}n, the investor’s wealth

Ŵn :=
∏n

i=1 < b̂i, Xi > grows –on the average– as fast as with the log-optimum

strategy {b∗n}n. More formally, {b̂n}n should give

lim sup
n→∞

1

n
log

W ∗
n

Ŵn

≤ 0

with probability 1.

Such portfolio selection schemes are known to exist (Algoet, 1992). The dis-

advantage is that they are fairly complicated and, even worse, they require

an enormous amount of past return data to yield practically relevant results.

It is the aim of this thesis to provide simplified, yet efficient portfolio selec-

tion algorithms based on nonparametric forecasting and estimation techniques.

Particular emphasis is put on making the algorithms applicable in considerably

large classes of markets.

Chapter 2

Portfolio benchmarking: rates and dimensionality

The performance of a portfolio selection rule is usually compared with that

of a benchmark portfolio selection rule. Our benchmark is the log-optimal

portfolio selection rule, and as we have seen in Chapter 1, this is the optimal

rule. An investor will typically find his own rule underperforming. He can only
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hope that underperformance vanishes sufficiently fast when – with increasing

number of market periods – his estimates for the distribution of the return

process and hence his idea of the market become more and more complete.

Now, if the investor evaluates the historical returns X1, ..., Xn leading to the

portfolio choice b̂n+1 at time n, he will achieve a return R̂n =< b̂n+1, Xn+1 > on

his investment during the next market period. This should be compared with

the return R∗
n =< b∗n+1, Xn+1 > of the conditional log-optimal portfolio.

From our log-utility point of view we suggest to measure underperfor-

mance of b̂n+1 in terms of the positivity of E log R∗
n

R̂n

. The smaller this

expectation becomes, the better is the selection rule b̂n+1.

Assuming that the return data arises from a process of independent and iden-

tically distributed (i.i.d.) random variables, it is important to know at what

rate the underperformance E log R∗
n

R̂n

vanishes for typical portfolio selection rules.

Using notions from information theory we prove a lower bound on this rate in

Section 2.1. Even in the simplest of all markets, a market with only finitely

many possible return outcomes,

no empirical portfolio selection rule can make underperformance van-

ish in every market faster than 1
n tends to 0, i.e. there is always a

market for which the inequality E log R∗
n

R̂n

≥ const. · 1
n holds (Theorem

2.1.1).

There are empirical portfolio selection rules that achieve this rate. In particular,

the empirical log-optimal portfolio

b̂n+1 := argmax
b∈S

1

n

n
∑

i=1

log < b,Xi > (0.0.1)

proves to be rate optimal in as far as

the empirical log-optimal portfolio selection rule (0.0.1) attains the

lower bound for the rate at which underperformance vanishes, whatever

the number of stocks in the market (Theorem 2.1.3).

Loosely speaking, it compensates for wrong investment decisions as fast as pos-

sible. Interesting enough, the findings are largely unaffected by the number
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of stocks in the market, which is a rather untypical feature in nonparamet-

ric estimation (Theorem 2.1.4 shows that this phenomenon perseveres in more

complicated market settings).

This is why we discuss the effects of “dimensionality” on the portfolio selection

process in more detail in Section 2.2. We argue that a reduction of the whole

stock market to some pre-selected stocks is inevitable, e.g., because of compu-

tational restrictions. In other words, the investor can only handle a smallish

subset of all stocks in the market for investment strategy planning. These stocks

have to be selected in the planning phase, even before investment starts. Hence,

criteria for the pre-selection of stocks from the market are needed. A common

way to do this is to pick the stocks whose chart promises high growth rates. It

will turn out, however, that this is fallacious:

any selection algorithm that assesses the single stocks seperately, e.g.

on the basis of single stock expected returns, is sure to pick the “bad”

stocks in some realistic market (Theorem 2.2.1).

This is a somewhat negative result, but it warns us that reasonable selection

schemes have to include further information about the market. We will show

that the variance-covariance structure of the stock returns provides sufficient

information in many markets (more precisely, in markets with log-normal re-

turns). Section 2.3 illustrates the results with simulations and examples, demon-

strating their practical relevance.

Chapter 3

Predicted stock returns and portfolio selection

Having gained the insight that variance-covariance information about the mar-

ket (inter-stock correlations as well as temporal correlations) are integral to

successful investment decisions, we move on to particular investment strate-

gies. In Section 3.1 we consider a strategy which is particularly popular among

investors.

The strategy works in two steps, with the past logarithmic returns Yn, Yn−1, ..., Y0
(Yi := logXi) as input data for the investment decision at time n:

1. Produce forecasts of the market future. It is established that forecasts

should be based on conditional expectations of future log-returns given
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the observed past, i.e. on

Ŷn+1 := E[Yn+1|Yn, Yn−1, ...].

2. Invest in those stocks whose forecast Ŷn+1 promises to beat a riskless

investment in a bond with return rate r, i.e. invest in a stock iff

exp(Ŷn+1) ≥ r.

We will call this strategy a “greedy strategy”, because it tries to single out

the best possible stocks only. As we shall see, this provides us with a natural

strategy which can be applied in markets with low log-return variance (Section

3.1).

The major problem in implementing the greedy strategy is the fact that the

forecasts Ŷn+1 can only be calculated if the distribution of the return process

is known to the investor. Hence, we need to derive an estimate Ê(Yn, ..., Y0)

for the conditional expectation Ŷn+1 = E[Yn+1|Yn, Yn−1, ...] from the market

observations Yn, ..., Y0. It is known from literature that no such forecaster can

be strongly consistent in the sense of

lim
n→∞

∣

∣

∣

∣

Ê(Yn, ..., Y0)−E[Yn+1|Yn, Yn−1, ...]

∣

∣

∣

∣

= 0 (0.0.2)

with probability 1 for any stationary and ergodic process {Yn}n (Bailey, 1976).

This result is discouraging, but it does not rule out the existence of strongly

consistent forecasting rules for log-return processes as they arise in real financial

markets. In particular, Gaussian log-return processes have been proven to be

a good approximation for real log-return processes, but so far no answer has

been found to the question whether there exist forecasters that are strongly

consistent in any stationary and ergodic Gaussian process. In Section 3.2 we

prove that the answer is indeed affirmative. Under weak extra conditions on

the Wold coefficients of the process

we present a forecaster Ê(Yn, ..., Y0) for stationary and ergodic Gaus-

sian processes which satisfies the strong consistency relation (0.0.2)

and which is remarkably easy to compute (Lemma 3.2.1 and Corollary

3.2.3).
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This results provides us with the necessary tools to implement the greedy strat-

egy in Gaussian log-return processes. However, the algorithm is of interest very

much in its own right, forecasting problems for Gaussian processes arising in

many areas.

Section 3.3 proves the convergence properties of the algorithm. Application

examples with simulated and real data in Section 3.4 are promising –when the

algorithm is run as a mere forecasting algorithm as well as when the algorithm

is run as a subroutine for the greedy strategy.

Chapter 4

A Markov model with transaction costs: probabilistic view

In simple markets where returns arise as i.i.d. data, the investor should invest

in a constant log-optimal portfolio strategy. This requires him not to change

the proportion of wealth held in each stock during the investment process. The

proportions remain constant, however, the prices of the assets change relatively

to each other during each market period, so that the actual quantities of the

single stocks in the portfolio vary from market period to market period. Thus,

a large number of transactions are needed to follow a constant log-optimal

strategy. In practice, this is a huge drawback: Much of the wealth accumulated

by a log-optimal strategy has to be spent to settle transaction costs such as

brokerage fees, administrative and telecommunication expenses. The conclusion

for the investor must be to adapt his strategy to meet two requirements: to

make as few costly transactions as possible, but to make as many as necessary

to boost his wealth. The aim of Chapters 4 and 5 is to investigate how these

two conflicting requirements can be balanced in one strategy.

To this end we shall assume that the returns arise from a d-stage Markov pro-

cess. In Chapter 4 the distribution of the return process is known, an unrealistic

assumption which we will drop in Chapter 5. Section 4.1 generalizes the mar-

ket model from Chapter 1 to include transaction costs proportional to the total

value of the purchased shares. Not surprisingly, the investor can only afford

a limited range of portfolio choices in presence of transaction costs, and as we

shall see,

in d-stage Markovian return processes it suffices to consider strategies

based on portfolio selection functions, i.e. portfolio selection schemes

of the form bi = c(bi−1, Xi−d, ..., Xi−1) with an appropriate function c

(Definition 4.1.2).
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Hence, the next portfolio is a function of the last portfolio and the last d ob-

served return vectors. The investor aims to maximize his expected mean loga-

rithmic return as before by choosing an optimal selection function c.

In Section 4.2 we tackle the problem how to obtain an optimal selection function

c – if the distribution of the return process were known. The main result

demonstrates that

an optimal portfolio selection function c can be obtained from a solu-

tion of the Bellman equation (Theorem 4.2.1, equation 4.2.2).

The Bellman equation is known from the theory of dynamic programming,

but fundamental differences between classical dynamical programming and the

portfolio selection problem will become evident. Further properties of solutions

of the Bellman equation will be derived in Section 4.3, results that will be

needed for the arguments in Chapter 5.

Chapter 5

A Markov model with transaction costs: statistical view

The Bellman equation considered in Chapter 4 heavily depends upon the distri-

bution of the return process {Xn}n through a peculiar conditional expectation.

Hence, the results of Chapter 4 are valid only under the assumption that the in-

vestor knows the distribution of the stock return process. Of course, in practice

this is illusory. At best, the investor has an estimate of the return distribution

at his disposal. This, in turn, allows him to produce an estimate of the con-

ditional expectation in question and hence gives him an approximate Bellman

equation involving the observed empirical return data. Using nonparametric

regression estimation techniques

we will show in Section 5.1 how a natural empirical counterpart of the

Bellman equation from Chapter 4 can be found (equation 5.1.2).

With similar techniques as in Chapter 4 we will establish that this empirical

equation can be solved under realistic conditions.

This will lead us to a strategy that merely relies on observational data

but has the same optimality properties as the (theoretical) optimal port-

folio selection rule in presence of transaction costs (Theorems 5.1.1

and 5.1.2).
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For this, we will fall back on generalizations of existing uniform consistency

results in regression estimation, which will be provided in Section 5.2. In par-

ticular, if {Xn}n is a stationary geometrically strongly mixing process and g is

taken from a class G of Lipschitz continuous functions we estimate the condi-

tional expectation

R(g, b, x) := E[g(X1, b)|X0 = x] (b ∈ S)

by a kernel regression estimator Rn(g, b, x). Depending on the smoothness of a

density of X0 (which we assume to exist) we determine the rate of convergence

of

sup
g∈G

E sup
x∈X ,b∈S

|Rn(g, b, x)− R(g, b, x)| → 0 (n→ ∞),

i.e. of the expected uniform estimation error, uniformly in G (Corollary 5.2.2).

This result is of interest in other areas of nonparametric statistics as well.

Finally, Section 5.3 is devoted to the proof of optimality and combines the

results from Chapter 4 with uniform consistent regression estimation techniques.

Chapter 6

Portfolio selection functions in stationary return processes

Considering the fact that the investor may have reason to believe that the his-

torical return data does not follow a d-stage Markov process in some cases,

we should move on to even more general market models than in the previous

chapters. Ignoring transaction costs, we consider a market whose returns are

merely stationary and ergodic. It is natural for the investor to take his invest-

ment decisions on the basis of recently observed returns, say on the basis of the

returns during the last d ∈ IN market periods (d fixed). This leads us to the

notion of log-optimal portfolio selection functions.

We make this more concrete in Section 6.1, where we take our familiar log-

utility approach again. The investor tries to find a log-optimal portfolio selection

function, i.e. a measurable function

b∗ : IRdm
+ −→ S

such that (< ·, · > denoting the Euclidean scalar product)

E (log < b∗(X0, ..., Xd−1), Xd >) ≥ E (log < f(X0, ..., Xd−1), Xd >)
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for all measurable f : IRdm
+ −→ S. For the (n + 1)st day of trading, b∗ advises

the investor to acquire the portfolio b∗(Xn−d+1, ..., Xn).

Clearly, the concept of log-optimal portfolio selection functions does not reach

the same degree of generality as the concept of a conditional log-optimal port-

folio (where d is such that the whole observed past is included in the portfolio

decision). In spite of being a simplification, this approach nevertheless gives us

several advantages over the log-optimal strategy as far as computation, estima-

tion and interpretation are concerned.

With log-optimal portfolio selection functions we face the same problem as with

log-optimal portfolios. Both can only be calculated if the true distribution of the

return process happens to be known. A practitioner, however, needs to have an

estimation procedure that evaluates observed past return data to approximate

the true log-optimal device.

In Section 6.2 we therefore develop an algorithm to produce estimates

b̂n of a log-optimal portfolio selection function b∗ from past return data.

We require very mild conditions beyond stationarity and ergodicity. More pre-

cisely, we assume that the return process {Xn}∞n=0 is an [a, b]m-valued station-

ary and ergodic process (0 < a ≤ b < ∞ need not be known) and that a

Lipschitz condition on the conditional return ratio E[Xd / < s,Xd > |Xd−1 =

xd−1, ..., X0 = x0] holds. The Lipschitz constant L is taken as a known market

constant.

Using a stochastic gradient algorithm and combining it with nonparametric

regression estimators,

we establish the strong convergence of the estimates b̂n to the true

log-optimal portfolio selection function b∗, avoiding the usual mixing

conditions (Theorem 6.2.2).

What is even more important in practical applications:

Selecting portfolios on the basis of the estimated log-optimal portfolio

selection functions yields optimal growth of wealth among all other

strategies that take their investment decisions on the basis of the last

d observations.
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Indeed, let Ŝn be the wealth accumulated during n market periods when on

the (i + 1)st day of trading the portfolio b̂i(Xi−d+1, ..., Xi) is selected using the

most recent estimate b̂i of a log-optimal portfolio selection function. Then, if

Sn is the wealth accumulated during the same period using any other portfolio

selection function of the last d observed return vectors,

lim sup
n→∞

1

n
log

Sn

Ŝn

≤ 0

with probability 1 (Corollary 6.2.3).

After an appropriate modification, the algorithms and the results remain valid

even if the market constant L is unknown in real market applications (Theorem

6.2.4). Section 6.3 proves the findings, and the chapter is rounded off with

several realistic examples in Section 6.4.

Chapters 2, 3 and 6 can be read independently from each other, they are self-

contained. Chapters 4 and 5 are closely linked, however. Notation that goes

beyond common mathematical style is explained where it occurs for the first

time. We also refer the reader to the list of abbreviations at the beginning

of the thesis. The calculations and plots for the examples were generated us-

ing Matlab 4.0 and 6.0.0.88, Minitab 11.2 and R 1.1.1 with historical stock

quotes (daily closing prices) from the New York Stock Exchange provided by

www.wallstreetcity.com.
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ZUSAMMENFASSUNG

Diese Arbeit soll ein Plädoyer sein für die Anwendung nichtparametrischer

statistischer Vorhersage- und Schätzmethoden auf Probleme, wie sie bei der

Planung von Finanzanlagen und Investitionen auftreten.

In sechs Kapiteln werden verschiedene Anwendungsmöglichkeiten nichtparamet-

rischer Techniken bei der Portfolioauswahl an Finanzmärkten analysiert. Dies

kann natürlich nur einen groben und zugegebenermaßen willkürlichen Aus-

schnitt aus diesem weiten Gebiet widerspiegeln –wir hoffen jedoch, dadurch die

Vorzüge nichtparametrischer Schätzmethoden bei der Portfolioauswahl aufzeigen

zu können.

Kapitel 1

Einführung: Investment und nichtparametrische Statistik

Investment ist der strategisch geplante Einsatz von Ressourcen (üblicherweise

von finanziellen Ressourcen) in einer Umgebung (üblicherweise in einem Fi-

nanzmarkt), deren zukünftige Entwicklung zufälligen Fluktuationen unterliegt.

Investitionsprobleme treten in einer Vielzahl von Gebieten auch über den fi-

nanziellen Kontext hinaus auf. Dabei können Ressourcen u. A. die Form

von Energie, von Datenverarbeitungskapazitäten, etc. annehmen. Die strate-

gische Planung von Investitionen hilft, viele Prozesse mit höherem Nutzen zu

betreiben. Diese Arbeit konzentriert sich auf finanzielle Investitionen, welche

gleichsam den“Prototyp” für verschiedenste Prozesse bilden, bei denen System-

ressourcen gewinnbringend einzusetzen sind.

Bei Investitionen finanzieller Natur spielen drei Komponenten eine Rolle: der

Markt, die Handlungsmöglichkeiten des Investors und sein Investitionsziel. Diese

Bausteine werden in den Abschnitten 1.1-1.3 im Detail diskutiert.

– Zum Markt: Wir gehen von einem Finanzmarkt mit m Anlagemöglichkeiten

(Aktien, festverzinsliche Wertpapiere, ...) aus. Die i. Anlagemöglichkeit

erzielt in der Marktperiode n eine Rendite Xi,n auf eine Investition von
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einer Geldeinheit. Die n. Marktperiode dauere vom “Zeitpunkt”n− 1 bis

zum Zeitpunkt n, wobei die Zeit z.B. in Handelstagen gemessen wird. Die

Renditen der einzelnen Anlagemöglichkeiten am n. Handelstag werden im

Renditevektor

Xn = (X1,n, ..., Xm,n)
T ∈ IRm

+

zusammengefasst. In den Augen des Investors ist {Xn}∞n=1 ein stochasti-

scher Prozess, welcher in vielen realen Märkten stationär und ergodisch

ist (Definition 1.1.1). In manchen Kapiteln dieser Arbeit werden (re-

alistische) Zusatzannahmen über die Verteilung des Prozesses getroffen.

Entscheidend ist dabei jedoch,

dass wir nichtparametrische Modelle betrachten –Modelle also, die

nicht von der Existenz einer parametrischen Entwicklungsgleichung

ausgehen, wie sie z.B. ARMA-, ARCH- und GARCH-Prozesse be-

sitzen.

Diese Modelle garantieren höchste Flexibilität bei der Anwendung in realen

Finanzmärkten.

– Zu den Handlungsmöglichkeiten: Wir betrachten einen Investor, der weder

Teile seines Vermögens auf persönlichen Konsum verwendet, noch seinem

Portfolio im Verlauf des Investitionsprozesses neues Geld zufließen lässt.

Am Beginn jeder Marktperiode n verwendet der Investor sein gesamtes

Vermögen darauf, ein Aktienportfolio bn zu erwerben. Ein solches Portfolio

bn wird durch die Anteile bj,n am aktuellen Gesamtvermögen des Investors

beschrieben, welche in der n. Marktperiode in die Anlegemöglichkeit j =

1, ..., m investiert werden. Die Wahl von bn erfolgt dann aus der Menge S

aller Portfolios, welche aus den Vektoren (Portfolios)

bn = (b1,n, ..., bm,n)
T

besteht, für die bj,n ≥ 0 und
∑m

j=1 bj,n = 1. In manchen Situationen wird

S weiter durch das Auftreten von Transaktionskosten eingeschränkt.

– Zum Investitionsziel: W0 sei das anfängliche Vermögen des Investors. Ver-

wendet er die Portfoliostrategie {bi}n−1
i=0 , wird er nach n Marktperioden

über das Vermögen Wn =
∏n

i=1 < bi, Xi > W0 verfügen (< ·, · > be-

zeichnet das Euklidische Skalarprodukt). Ziel des Investors ist es, für Wn
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einen möglichst großen Wert zu erzielen. Aus der Literatur ist bekannt,

dass dabei kein grundlegender Konflikt zwischen nahen (n endlich) und

fernen (n → ∞) Investitionshorizonten besteht. In beiden Fällen ist eine

Investition zum Zeitpunkt n gemäß dem bedingt log-optimalen Portfolio

b∗n := argmax
b∈S

E [ log < b,Xn >|Xn−1, ...X1]

optimal. Es übertrifft jede andere Strategie indem

E
Wn

W ∗
n

≤ 1 und lim sup
n→∞

1

n
log

Wn

W ∗
n

≤ 0 mit Wahrscheinlichkeit 1

(Cover and Thomas, 1991, Theorem 15.5.2). W ∗
n ist dabei das Vermö-

gen zum Zeitpunkt n, das der Investor durch eine Serie von bedingt log-

optimalen Investitionen erzielt,Wn das Vermögen mit einer beliebigen an-

deren Portfoliostrategie, die nicht über mehr Information verfügt als aus

vergangenen Marktbeobachtungen ableitbar (eine sogenannte “kausale”

Strategie).

Dies sollte für den Investor Grund genug sein, eine logarithmische

Nutzenfunktion zu verwenden, d.h. mit dem Wissen um die in der

Vergangenheit beobachteten Renditevektoren die Maximierung der er-

warteten zukünftigen logarithmierten Rendite zu betreiben.

Das bedingt log-optimale Portfolio leitet sich aus der Verteilung des Rendite-

prozesses {Xn}n ab. In der Realität ist die wahre Verteilung der Renditen und

damit auch die bedingt log-optimale Strategie dem Investor nicht bekannt. An

diesem Punkt bedarf die Finanzplanung der Statistik als Partner. Die Statistik

dient dem Investor zur Lösung des Problems,

eine Methode zu finden, die nur anhand historischer Renditedaten und ohne

Kenntnis der wahren Renditeverteilung eine optimale kausale Portfoliostrategie

{b̂n}n erzeugt. Optimalität wird hier in dem Sinn verwendet, dass die Strate-

gie für jeden stationären und ergodischen Renditeprozess {Xn}n das Vermö-

gen Ŵn :=
∏n

i=1 < b̂i, Xi > des Investors im Mittel genauso schnell wach-

sen lässt wie die log-optimalen Strategie {b∗n}n. Formal ausgedrückt soll {b̂n}n
garantieren, dass mit Wahrscheinlichkeit 1

lim sup
n→∞

1

n
log

W ∗
n

Ŵn

≤ 0.
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Es ist bekannt, dass solche Methoden existieren (Algoet, 1992). Diese brin-

gen jedoch den Nachteil mit sich, höchst komplex zu sein und zur Erzeugung

praktisch verwertbarer Ergebnisse eine Unmenge historischer Daten zu benöti-

gen. Ein Ziel dieser Arbeit ist es, vereinfachte, aber effiziente Algorithmen zur

Portfolioauswahl zu entwickeln, die auf nichtparametrischen Vorhersage- und

Schätzverfahren basieren. Die Algorithmen sollen so gestaltet sein, dass sie für

möglichst große Klassen von Märkten anwendbar sind.

Kapitel 2

Der Vergleich von Portfolios: Konvergenzraten und Dimension

Die Güte einer Methode zur Portfolioauswahl wird in der Regel durch den

Vergleich mit einer Referenzstrategie beurteilt. Unsere Referenzstrategie ist

die log-optimale Portfolioauswahl, die –wie wir in Kapitel 1 gesehen haben–

eine optimale Verhaltensregel darstellt. Dem Investor wird es nicht gelin-

gen, letztere zu übertreffen. Natürlich wird er hoffen, dass der Mangel an

Leistungsfähigkeit seiner eigenen Strategie im Verlauf des Investitionsprozesses

verschwindet, wenn nämlich seine Schätzungen für die Verteilung des Ren-

diteprozesses mit zunehmender Menge verfügbarer historischer Daten immer

besser werden. Wählt der Investor zum Zeitpunkt n anhand der Beobachtun-

gen X1, ..., Xn sein Portfolio, wird er in der nächsten Marktperiode eine Rendite

von R̂n =< b̂n+1, Xn+1 > erwirtschaften, während die log-optimale Strategie

R∗
n =< b∗n+1, Xn+1 > liefert. Der Vergleich beider Werte ermöglicht die Ein-

schätzung, um wieviel b̂n+1 der log-optimalen Strategie b∗n+1 unterlegen ist.

Vom Standpunkt einer logarithmischen Nutzenfunktion ist es daher

angebracht, die Unterlegenheit der Strategie b̂n+1 an der Positivität

der erwarteten Differenz der log-Renditen, an E log R∗
n

R̂n

zu messen. Je

kleiner dieser Wert, desto besser ist die Strategie b̂n+1.

Zur Beurteilung der Qualität der Strategie b̂n+1 ist also insbesondere zu analysie-

ren, mit welcher Geschwindigkeit E log R∗
n

R̂n

gegen Null strebt. Dabei wird davon

ausgegangen, dass die Renditen in einem Prozess von unabhängigen, identisch

verteilten Zufallsvariablen auftreten. Unter Verwendung von Konzepten der

Informationstheorie wird in Abschnitt 2.1 eine untere Schranke für diese Kon-

vergenzgeschwindigkeit abgeleitet. Diese besagt, dass selbst im einfachsten aller

Märkte, einem Markt mit nur endlich vielen möglichen Renditekonstellationen

gilt:
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Es gibt keine Portfolioauswahlregel, die ihre Unterlegenheit im Ver-

gleich zur log-optimalen Strategie in jedem Markt schneller kompen-

siert als 1
n gegen Null strebt, d.h. es gibt stets einen Markt, für den

E log R∗
n

R̂n

≥ const. · 1
n (Theorem 2.1.1).

Es gibt jedoch Portfolioauswahlregeln, die diese Rate erreichen. Insbesondere

das empirisch log-optimale Portfolio

b̂n+1 := argmax
b∈S

1

n

n
∑

i=1

log < b,Xi > (0.0.3)

erweist sich hier als günstig:

Das empirische log-optimale Portfolio (0.0.3) erreicht die untere

Schranke für die Konvergenzrate von E log R∗
n

R̂n

(Theorem 2.1.3).

Etwas leger ausgedrückt könnte man sagen, dass das empirisch log-optimale

Portfolio seine Defizite mit optimaler Geschwindigkeit wettzumachen vermag.

Die Ergebnisse gelten weitestgehend unabhängig von der Anzahl der Aktien

am betrachteten Markt. Dies ist untypisch für nichtparametrische Schätzver-

fahren und bedarf daher genauerer Diskussion (Theorem 2.1.4 zeigt, dass dieses

Phänomen auch in komplizierter gearteten Märkten auftritt).

Aus diesem Grund schließen wir in Abschnitt 2.2 eine detailliertere Diskus-

sion der Auswirkungen der Dimension des Marktes auf die Portfolioauswahl an.

Beschränkte rechnerische Kapazitäten werden den Investor bei seiner Investi-

tionsplanung dazu zwingen, sich auf eine kleinere Teilmenge aller Aktien am

Markt zu beschränken. Diese Teilmenge muss bereits in der Planungsphase,

also vor dem eigentlichen Investitionsprozess ausgewählt werden. Es werden

Kriterien für diese Vorauswahl benötigt. Üblicherweise würde man vorgehen,

indem man einzelne Aktien auswählt, deren Chart hohe Wachstumspotentiale

versprechen. Es wird gezeigt werden, dass dieser Weg mit substantiellen Un-

zulänglichkeiten behaftet ist:

Jedes Auswahlverfahren, das die einzelnen Aktien getrennt, z.B. an-

hand ihrer erwarteten logarithmierten Rendite, beurteilt, wird mit

Sicherheit in einem realistischen Markt die falsche Auswahl treffen

(Theorem 2.2.1).
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Dieses negative Resultat zeigt, dass Portfolioauswahlverfahren über die einzel-

nen erwarteten log-Renditen hinausgehende Information benötigen. Die Vari-

anz-Kovarianz-Struktur der Renditen wird in Märkten mit log-normal verteilten

Renditen hinreichend viel Information vermitteln. In Abschnitt 2.3 werden die

Resultate anhand von Simulationen und realen Beispielen illustriert und ihre

praktische Relevanz aufgezeigt.

Kapitel 3

Renditevorhersagen und Portfolioauswahl

Mit der Erkenntnis, dass erfolgreiche Portfolioauswahl Information über die

Varianz-Kovarianz-Struktur der Aktien am Markt bedarf (es spielen sowohl

zeitliche Korrelationen als auch Korrelationen zwischen den einzelnen Aktien

eine Rolle), wird in Abschnitt 3.1 eine Investmentstrategie vorgestellt, die sich

unter den Investoren großer Beliebtheit erfreut.

Die Strategie ist zweistufig und verwendet dabei die historischen log-Renditen

Yn,Yn−1, ..., Y0 (Yi := logXi) als Eingangsdaten für die Investitionsentscheidung

zur Zeit n:

1. Erstelle eine Schätzung für die Zukunft des Marktes. Es wird gezeigt

werden, dass Vorhersagen für den Markt auf bedingten Erwartungen für

zukünftige log-Renditen bei gegebener Vergangenheit basieren sollten,

d.h. auf

Ŷn+1 := E[Yn+1|Yn, Yn−1, ...].

2. Investiere ausschließlich in die Aktien, deren Vorhersagen Ŷn+1 eine bessere

Rendite verheißen als ein festverzinsliches Wertpapier mit Rendite r. In

eine Aktie wird also investiert genau dann, wenn

exp(Ŷn+1) ≥ r.

Wir nennen diese Strategie eine Strategie für den “gierigen Investor”, da sie da-

rauf ausgerichtet ist, nur die bestmöglichen Anlagemöglichkeiten herauszupicken.

Die Einfachheit der Strategie besticht, und in Märkten mit geringer Varianz der

log-Renditen führt sie zu sinnvollen Ergebnissen (Abschnitt 3.1).

Bei der Implementierung der Strategie sieht sich der Investor der Schwierigkeit

gegenüber, dass die Vorhersagewerte Ŷn+1 nur unter Kenntnis der wahren Vertei-

lung des Prozesses berechnet werden können. Daher wird man sich auf die
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Berechnung einer Schätzung Ê(Yn, ..., Y0) für den bedingten Erwartungswert

E[Yn+1|Yn, Yn−1, ...] aus den Marktbeobachtungen Yn, ..., Y0 beschränken müssen.

Aus der Literatur ist bekannt, dass keine auf solche Weise gewonnene Schätzung

stark konsistent sein kann in dem Sinne, dass

lim
n→∞

∣

∣

∣

∣

Ê(Yn, ..., Y0)−E[Yn+1|Yn, Yn−1, ...]

∣

∣

∣

∣

= 0 (0.0.4)

mit Wahrscheinlichkeit 1 für jeden stationären und ergodischen Prozess {Yn}n
gilt (Bailey, 1976). Dieses Resultat ist einerseits entmutigend, andererseits

schließt es nicht aus, dass stark konsistente Vorhersagemechanismen für loga-

rithmierte Renditeprozesse existieren, wie sie in realen Finanzmärkten auftreten.

Dabei ist insbesondere an Gaußsche log-Renditeprozesse zu denken, die eine

gute Approximation für reale log-Renditeprozesse liefern. Bis jetzt jedoch war

die Frage unbeantwortet, ob für stationäre und ergodische Gaußsche Prozesse

stark konsistente Vorhersagealgorithmen existieren. Abschnitt 3.2 wird nun

eine positive Antwort darauf geben können. Unter schwachen Zusatzvorausset-

zungen an die Wold-Koeffizienten des Prozesses

wird ein Vorhersagealgorithmus Ê(Yn, ..., Y0) für stationäre und er-

godische Gaußsche Prozesse entwickelt, der stark konsistent gemäß

(0.0.4) ist und der bemerkenswert einfach zu implementieren ist

(Corollary 3.2.3).

Diese Ergebnisse geben uns die Subroutinen an die Hand, um die Strategie für

den “gierigen” Investor in Gaußschen log-Renditeprozessen umzusetzen. Der

Algorithmus selbst ist jedoch auch unabhängig von seiner hier gegebenen An-

wendung von Interesse, treten Vorhersageprobleme für Gaußsche Prozesse doch

in einer Vielzahl von Gebieten auf.

Der Beweis der Konvergenzeigenschaften wird in Abschnitt 3.3 geführt. Anwen-

dungsbeispiele mit realen und simulierten Daten schließen sich in Abschnitt 3.4

an und zeigen vielversprechende Ergebnisse, wenn der Algorithmus zur reinen

Vorhersage, aber auch als Subroutine für die “gierige” Strategie dient.

Kapitel 4

Ein Markov-Modell mit Transaktionskosten: stochastische Aspekte

In den einfachsten Märkten, in denen die Renditen als unabhängige, iden-

tisch verteilte Zufallsvariablen auftreten, sollte in ein zeitlich konstantes log-
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optimales Portfolio investiert werden. Bei Verwendung eines zeitlich konstan-

ten Portfolios verwendet man auf jede Aktie einen gleichbleibenden Anteil des

aktuellen Gesamtvermögens. Der Anteil bleibt somit derselbe, bedingt durch

die Änderung der Aktienpreise zueinander ändert sich jedoch die tatsächliche

Anzahl an gehaltenen Aktien von Marktperiode zu Marktperiode. Zur Durch-

führung einer log-optimalen Strategie wird somit eine große Anzahl an Transak-

tionen notwendig. In der Realität stellt dies einen nicht zu unterschätzenden

Nachteil dar. Was immer an Vermögen anwächst, ein Großteil der Gewinne wird

zur Begleichung von Transaktionskosten wie Maklerprovisionen, Verwaltungs-

und Kommunikationskosten wieder abfließen. Folglich muss der Investor seine

Strategie diesen Gegebenheiten anpassen: Er muss so wenige kostenintensive

Transaktionen wie möglich machen, aber doch so viele, um ein gutes Wertwachs-

tum zu erzielen. Kapitel 4 und 5 widmen sich der Frage, wie diese beiden

Anforderungen in einer Strategie miteinander vereinbart werden können.

Zu diesem Zweck nehmen wir an, dass die Renditen sich gemäß einem d-stufigen

Markovschen Prozess entwickeln. In Kapitel 4 arbeiten wir unter der Prämisse,

dass die Verteilung des Renditeprozesses bekannt ist, eine unrealistische An-

nahme, die wir in Kapitel 5 fallen lassen werden. Zunächst wird in Abschnitt

4.1 das Marktmodell aus Kapitel 1 um Transaktionskosten erweitert, die pro-

portional zum Volumen gekaufter Aktien anfallen. Es ist nicht überraschend,

dass sich der Investor in einer solchen Situation nur eine eingeschränkte Menge

von Portfoliozusammenstellungen leisten kann, ohne bankrott zu gehen. Es

wird deutlich werden,

dass es in d-stufigen Markovschen Renditeprozessen ausreicht, Strate-

gien zu betrachten, die auf Portfolioauswahlfunktionen beruhen, d.h.

Strategien der Form bi = φ(bi−1, Xi−d, ..., Xi−1) mit einer geeigneten

Funktion φ (Definition 4.1.2).

Das nächste zu wählende Portfolio ist somit eine Funktion des letzten gewählten

Portfolios und der letzten d am Markt beobachteten Renditevektoren. Wie

zuvor strebt der Investor danach, sein zu erwartendes logarithmiertes Vermö-

genswachstum zu maximieren, hier nun indem er eine optimale Portfolioaus-

wahlfunktion φ wählt.

Abschnitt 4.2 legt dar, wie eine optimale Auswahlfunktion c konstruiert werden

kann – alles unter der Prämisse, dass die wahre Verteilung der Renditen bekannt

wäre. Das Hauptresultat wird zeigen,
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dass eine optimale Portfolioauswahlfunktion φ aus einer Lösung der

Bellman-Gleichung konstruiert werden kann (Theorem 4.2.1, Glei-

chung 4.2.2).

Die Bellman-Gleichung ist aus der Theorie der dynamischen Optimierung wohl-

bekannt, dennoch werden sich fundamentale Unterschiede zwischen klassischer

dynamischer Optimierung und dem Portfolioauswahl-Problem zeigen. Zur Vor-

bereitung auf Kapitel 5 werden in Abschnitt 4.3 schließlich weitere analytische

Eigenschaften der Lösung der Bellman-Gleichung abgeleitet.

Kapitel 5

Ein Markov-Modell mit Transaktionskosten: statistische Aspekte

Die Bellman-Gleichung, wie sie in Kapitel 4 aufgestellt wurde, hängt entschei-

dend von der Verteilung des Renditeprozesses {Xn}n ab. Diese Abhängigkeit

besteht in Form eines zu evaluierenden bedingten Erwartungswertes. Aus diesem

Grund sind die Ergebnisse von Kapitel 4 nur unter der Prämisse gültig, dass

der Investor die wahre Verteilung des Renditeprozesses kennt, was in der Praxis

natürlich illusorisch ist. Bestenfalls verfügt der Investor über eine Schätzung der

Verteilung der Renditen. Diese ermöglicht es ihm, eine Schätzung für bewussten

bedingten Erwartungswert zu berechnen, welche ihm dann eine Näherung der

Bellman-Gleichung liefert. Mit Hilfe von Techniken aus der nichtparametrischen

Regressionsschätzung

wird in Abschnitt 5.1 gezeigt, dass zur Bellman-Gleichung aus Kapi-

tel 4 eine natürliche empirische Entsprechung basierend auf Markt-

beobachtungen existiert (Gleichung 5.1.2).

Ähnliche Schlussweisen wie in Kapitel 4 werden es uns ermöglichen, diese em-

pirische Bellman-Gleichung unter realistischen Bedingungen zu lösen.

Das wird zu einer Strategie führen, die ausschließlich auf historischen

Renditen basiert, dabei jedoch dieselben Optimalitätseigenschaften wie

die (theoretisch) optimale Portfolioauswahlstrategie unter Transak-

tionskosten hat (Theoreme 5.1.1 und 5.1.2).

In den Betrachtungen von Kapitel 5 werden wir auf Verallgemeinerungen von

bekannten Resultaten über die gleichmäßige Konvergenz von Regressionsschät-

zern zurückgreifen. Diese Verallgemeinerungen werden in Abschnitt 5.2 her-

geleitet. Ist z.B. {Xn}n ein stationärer Prozess, welcher die geometrischen
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Mischungseigenschaft hat, und ist g aus einer Klasse G lipschitzstetiger Funk-

tionen gewählt, schätzen wir den bedingten Erwartungswert

R(g, b, x) := E[g(X1, b)|X0 = x] (b ∈ S)

durch einen Kernschätzer Rn(g, b, x). In Abhängigkeit von der Glattheit einer

Dichte von X0 (wir nehmen an, dass eine solche existiert) wird die Konvergenz-

geschwindigkeit in der Limesrelation

sup
g∈G

E sup
x∈X ,b∈S

|Rn(g, b, x)−R(g, b, x)| → 0 (n→ ∞)

bestimmt. Dabei wird der zu erwartende maximale Schätzfehler gleichmäßig in

der Klasse G betrachtet (Corollary 5.2.2). Das erhaltene Resultat ist nicht nur

im Hinblick auf unsere Anwendung von Interesse, sondern auch darüber hinaus

als unabhängiges Resultat in der nichtparametrischen Regressionsschätzung.

Abschnitt 5.3 schließlich widmet sich dem Beweis der Optimalitätseigenschaften

des Algorithmus und kombiniert dabei die Ergebnisse aus Kapitel 4 mit den

Ergebnissen zur gleichmäßig konsistenten Regressionsschätzung.

Kapitel 6

Portfolioauswahlfunktionen in stationären Renditeprozessen

An realen Finanzmärkten beobachtet man unter Umständen eine Abweichung

des Renditeprozesses {Xn}n von einem d-stufigen Markov-Prozess. Deshalb

werden in diesem Kapitel noch allgemeinere Marktmodelle zu betrachten sein.

Transaktionskosten werden dabei ignoriert, dafür aber Renditeprozesse betrach-

tet, für die im Wesentlichen nur Stationarität und Ergodizität vorausgesetzt

wird. Für den Investor ist es naheliegend, seine Investitionsentscheidungen an-

hand der letzten d am Markt beobachteten Renditevektoren (d fest) zu treffen.

Dies führt zum Konzept von log-optimalen Portfolioauswahlfunktionen.

Dieses Konzept wird in Abschnitt 6.1 eingeführt. Der Investor verwendet wieder

eine logarithmische Nutzenfunktion und versucht daher, eine log-optimale Port-

folioauswahlfunktion zu ermitteln, d.h. eine messbare Funktion

b∗ : IRdm
+ −→ S,

so dass (< ·, · > bezeichnet das euklidische Skalarprodukt)

E (log < b∗(X0, ..., Xd−1), Xd >) ≥ E (log < f(X0, ..., Xd−1), Xd >)
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für alle messbaren Funktionen f : IRdm
+ −→ S. Für die (n + 1). Marktperiode

legt b∗ dem Investor nahe, das Portfolio b∗(Xn−d+1, ..., Xn) zu erwerben.

Das Konzept log-optimaler Portfolioauswahlfunktionen bleibt in seiner Allge-

meinheit hinter dem Konzept des bedingt log-optimalen Portfolios zurück (dieses

wählt den Parameter d so, dass die ganze Vergangenheit des Prozesses in die

Portfolioauswahl einbezogen wird). Obwohl es sich in diesem Sinn um eine

Vereinfachung handelt, vereinigen log-optimale Portfolioauswahlfunktionen im

Vergleich zum log-optimalen Portfolio einige Vorteile auf sich, insbesondere was

Berechnung, Schätzung und Interpretation angeht.

Bei log-optimalen Portfolioauswahlfunktionen sieht sich der Investor demselben

Problem gegenüber wie bei der Verwendung log-optimaler Portfolios. Beide

können nur berechnet werden, wenn die wahre Verteilung des Renditeprozesses

bekannt sein sollte. In der Praxis ist dies nicht der Fall, undman benötigt wieder

eine Schätzprozedur, die eine log-optimale Portfolioauswahlfunktion anhand in

der Vergangenheit beobachteten Renditedaten annähert.

In Abschnitt 6.2 wird deshalb ein Algorithmus entwickelt, der

Schätzungen b̂n für eine log-optimale Portfolioauswahlfunktion b∗ aus

historischen Renditedaten berechnet.

Über Stationarität und Ergodizität hinaus werden dabei sehr milde Zusatzvo-

raussetzungen getroffen, konkret wird davon ausgegangen, dass der Renditepro-

zess {Xn}∞n=0 ein [a, b]m-wertiger stationärer und ergodischer stochastischer Pro-

zess ist (0 < a ≤ b < ∞ brauchen nicht bekannt zu sein) und dass eine

Lipschitzbedingung für den bedingten Renditequotienten E[Xd / < s,Xd >

|Xd−1 = xd−1, ..., X0 = x0] gilt. Die Lipschitzkonstante L sei dabei eine bekan-

nte Marktkonstante.

Mit Hilfe eines stochastischen Gradientenverfahrens und Methoden der nicht-

parametrischen Regressionsschätzung wird gezeigt,

dass die Schätzungen b̂n mit Wahrscheinlichkeit 1 gegen die wahre

log-optimale Portfolioauswahlfunktion b∗ konvergieren, wobei die in

der Literatur typischerweise vorausgesetzten Mixing-Bedingungen ver-

mieden werden (Theorem 6.2.2).

In der praktischen Anwendung spielt das folgende Resultat eine noch wichtigere

Rolle:
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Eine Portfolioauswahl anhand der geschätzten log-optimalen Portfolio-

auswahlfunktionen liefert ein optimales Vermögenswachstum unter

allen Strategien, die ihre Investitionsentscheidungen anhand der letz-

ten d am Markt beobachteten Renditen treffen.

Sei Ŝn das Vermögen, das man nach n Marktperioden erzielt hat, wenn man

am (i + 1). Handelstag die aktuelle Schätzung b̂i verwendet, um das Portfo-

lio b̂i(Xi−d+1, ..., Xi) zu wählen. Wenn Sn das Vermögen angibt, das man in

derselben Zeit mit einer beliebigen anderen Auswahlstrategie basierend auf den

jeweils letzten d beobachteten Renditen erwirtschaftet, so ist

lim sup
n→∞

1

n
log

Sn

Ŝn

≤ 0

mit Wahrscheinlichkeit 1 (Corollary 6.2.3).

Nach einer geeigneten Modifikation behalten die Algorithmen und die Resultate

ihre Gültigkeit, selbst wenn –wie in der Anwendungspraxis– die Marktkonstante

L dem Investor unbekannt ist (Theorem 6.2.4). Abschnitt 6.3 beweist die Resul-

tate, und das Kapitel wird mit mehreren realistischen Beispielen in Abschnitt

6.4 abgerundet.

Die Kapitel 2, 3 und 6 können unabhängig voneinander gelesen werden, sie sind

in sich abgeschlossen. Kapitel 4 und 5 sind jedoch eng verzahnt. Notationen,

die über die mathematische Standardnotation hinausgehen, werden bei ihrem

ersten Auftreten erklärt. Der Leser sei auch auf das Abkürzungsverzeichnis am

Anfang dieser Arbeit verwiesen. Berechnungen und Schaubilder für die Beispiele

wurden mit Matlab 4.0 und 6.0.0.88, Minitab 11.2 sowie R 1.1.1 erzeugt, wobei

die historischen Kursnotierungen (tägliche Schlusskurse) der New Yorker Börse

von www.wallstreetcity.com Verwendung fanden.
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CHAPTER 1

Introduction: investment and nonpara-
metric statistics

Investment is the strategic allocation of resources, typically of monetary re-

sources, in an environment, typically a market of assets, whose future evolution

is uncertain. This definition leaves much room for subjective interpretation. In

particular, the following points have to be made more precise:

– What market is under consideration? This involves specifying and stan-

dardizing the assets traded in the market (e.g. stocks, bonds, options,

futures, currencies, gold, oil, ...) as well as setting up a reference system

for pricing the assets (e.g. closing or opening prices at the New York

Stock Exchange, world market price for raw materials, ...).

– What actions and instruments may be applied by the investor? Possible

actions may be restricted by exogenous terms and regulations of trade

(e.g. transaction costs, brokerage fees, trading limitations) or personal

preferences (e.g. to rule out borrowing money or short positions in stocks).

– What investment goal is pursued by the investor? Traditionally, the goal

is the maximisation of a personal utility function of the returns on the

allocated resources. The market being chancy, individual risk aversion

preferences may enter the form of the utility function, or restrictions are

imposed on the set of possible investment actions.

Thus, “investment” becomes a highly subjective term, including investment as

it is understood in this thesis. In the following we set up the specific invest-

ment scenario as we shall consider it in this thesis. We believe this scenario

is broadly accepted as the typical setting for investment analysis, although we
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do not deny that particular investment situations require further adaptation

and modification. It should also be pointed out that, as future asset prices are

subject to random fluctuations, “investment” is a good deal about decision tak-

ing under uncertainty, which makes mathematical statistics the natural partner

of investment (an observation that may be attributed to the groundbreaking

work of Bachelier, 1900, who used statistics to compare his theoretical model

with real market data). An economist will find the economic side of this thesis

to be lacking. There are excellent books on investment science from a more

economic point of view (e.g. Francis, 1980; Luenberger, 1998), but most of

them are lacking in statistical depth. This thesis is about investment from a

decisively statistical point of view – we can therefore only superficially touch

upon economic issues.

1.1 The market model

We consider a market in which m assets (which we will think of as stocks and

bonds) are traded. Taking a macroeconomic point of view, the prices of the

assets (stock quotes, bond values) are generated under the authority of the

market as a whole, i.e. by the large ensemble of investors. We assume that for

the individual investor there is no way to influence the prices by launching spe-

cific investment actions or distributing insider or side information of whatever

kind. In this situation, let P1,n, ..., Pm,n > 0 be the prices of the assets 1, ..., m

at the beginning of market period n (market period n lasts from “time” n − 1

to n, time being measured, e.g., in days of trading). To the “powerless” individ-

ual investor described above, the asset prices present themselves as a random

process on a common probability space (Ω,A,P).

The return of an investment of 1 unit of money in asset i at time n − 1 yields

a return

Xi,n :=
Pi,n

Pi,n−1

during the subsequent market period. We collect the returns of the single assets

in a return vector

Xn := (X1,n, ..., Xm,n)
T .

We will often work with the log-returns

logXn := (logX1,n, ..., logXm,n)
T .
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The return process {Xn}∞n=1 and the log-return process {logXn}∞n=1 are

stochastic processes on (Ω,A,P).

In most of our investigations we will assume that the return process {Xn}n is

stationary and ergodic in the sense of the following definition (Stout, 1974, Sec.

3.5; Shiryayev, 1984, V §3):

Definition 1.1.1. Let {Xn}∞n=1 be an IRm-valued stochastic process on a prob-

ability space (Ω,A,P).

1. {Xn}∞n=1 is called stationary, if

P(Xi,...,Xj) = P(Xi+t,...,Xj+t)

for all integers i, j, t with i ≤ j.

2. A ∈ A is called an invariant event of {Xn}∞n=1, if there exists a B ∈
B((IRm)∞) such that

A = {Xi, Xi+1, ...}−1(B)

for all i ∈ IN.

3. A stationary process {Xn}∞n=1 is called ergodic, if the probability of any

invariant event of {Xi}∞i=1 is either 0 or 1.

Stationarity preserves the stochastic regime over time, ergodicity is the setting

where time averages along trajectories of the process converge almost surely to

expected values under the process distribution:

Theorem 1.1.2. (Birkhoff Ergodic Theorem, Stout, 1974, Sec. 3.5) Let

{Xn}∞n=1 be an IRm-valued stationary and ergodic stochastic process on a prob-

ability space (Ω,A,P) with E|X1| <∞. Then

1

n

n
∑

i=1

Xi −→ EX1

P-almost surely (P-a.s.), i.e. for all ω ∈ Ω from a set of probability 1.

Stationarity and ergodicity are the basic assumptions for most statistical inves-

tigations. The stationarity of stock returns is a thoroughly investigated field,
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both by economists (e.g. Francis, 1980, A24-1) and statisticians (e.g. Franke et

al., 2001, Sec. 10.6). It is natural to assume that there is short term stationar-

ity in most stock returns, some authors (Francis, 1980) even claim that return

data may be treated as stationary if the time horizon comprises at least one

complete business cycle. There is no conclusive answer that proves or disproves

stationarity for the majority of stock markets, and it seems as though this has

to be decided from case to case. We accept stationarity as a working hypothesis,

accounting for the fact that it is common practice to assess and compare the

performance of statistical methods in the stationary setting.

Not much is known about the ergodic properties of stock quotes or stock re-

turns, neither from the theoretical economist’s point of view, nor from empirical

studies. There are indications that the ergodic properties of a market depend

very much upon the flow of information in the market and on the microeconomic

price generation (Donowitz and El-Gamal, 1997). These are difficult to assess,

and so the typical approach has become to derive algorithms under ergodic

hypotheses and then let the success of the algorithm justify the hypotheses.

Throughout this thesis we consider nonparametric models for {Xn}n, i.e.
models that do not require a parametrized evolution equation (in contrast to

MA, AR, ARMA, ARIMA, ARCH and GARCH models, cf. Brockwell and

Davis, 1991, Franke et al., 2001). The nonparametric approach guarantees

highest flexibility in modelling, skipping model parameters which otherwise

require extensive diagnostic model testing. To be more precise, the following

models will be investigated in this thesis:

1. {Xn}n is a sequence of independent identically distributed (i.i.d.) random

variables (e.g. with finitely many outcomes) – Chapter 2.1.

2. The conditional distribution of Xn+1 given Xn, ..., X1 (which we will de-

note by PXn+1|Xn,...,X1
) is log-normally distributed (i.e. PlogXn+1|Xn,...,X1

has

a normal distribution) – Chapter 2.2.

3. {logXn}n is a stationary Gaussian time series (i.e. (logXT
n+k, ..., logX

T
n ))

follows a multivariate normal distribution which depends upon k but not

upon n) – Chapter 3.

4. {Xn}n is a Markov process of order d (i.e., we assume PXn+1|Xn,...,X1
=

PXn+1|Xn,...,Xn−d+1
) – Chapters 4 and 5.
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5. {Xn}n is a stationary and ergodic time series – Chapter 6.

Each of these models has been found useful for describing asset return data in

real financial markets. Model 1 is the Cox-Ross-Rubinstein model (Cox et al.,

1979; Francis, 1980, A24-1 and A24-2; Luenberger, 1998, Ch. 11; Franke et al.,

2001, Ch. 7). Models 2 and 3 are models with log-normal returns (Francis, 1980,

A24-1; Luenberger, 1998, Ch. 11) which arise, e.g., from a discretisation of the

Black-Scholes model (Luenberger, 1998, Ch. 11; Korn and Korn, 1999, Kap.

II). In contrast to the classical Black-Scholes model we allow for autocorrelated

log-returns in Chapter 3 (i.e. Cov(logXn, logXn+k) 6= 0 for some k > 0). In

practice, autocorrelation of the log-returns manifests itself for small time lags

k (Franke et al., 2001, Ch. 10) as well as large k (long range dependence, Ding

et al., 1993; Peters, 1997). Many studies have indicated that the logarithms

of stock returns slightly depart from a Gaussian distribution (e.g. by heavy

tails, Mittnik and Rachev, 1993; McCulloch, 1996; Franke et al., 2001, Ch. 10

and the references there). It is therefore advisable to drop the assumption of

log-normality of the stock returns wherever possible. This is done in models 4

and 5, model 4 capturing the autocorrelation of stock returns by the Markov

property.

We will assume that the asset returns correspond to one of the models 1-5.

However, we do not assume the exact form of the true return distribution to be

known to the investor (with the exception of Chapter 4). Hence, the investor has

to apply statistical estimation and forecasting techniques for strategy planning.

Clearly, nonparametric models require nonparametric statistical methods and

arguments are usually more involved than in the parametric setting (for an

introduction to nonparametric estimation as we will use it see Györfi et al.

1989, 2002). Unfortunately, nonparametric methods are not yet common in

econometrics and financial mathematics (Pagan and Ullah, 1999, and Franke

et al., 2001, being two of the few notable exceptions). In this thesis we aim to

demonstrate what powerful impetus nonparamtric statistical estimation may

give to investment strategy planning.

1.2 Portfolios and investment strategies

Having chosen a market model, we turn to the actions that may be taken by
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the investor. Throughout the investment process, the investor holds varying

portfolios of the m assets. Taking a discrete time trading point of view, we

assume that the investor is only allowed to rebalance his portfolio at the be-

ginning but not in the course of each market period. The portfolio held at the

beginning of market period n (i.e. from time n − 1 to n) can be given by the

quantities q1,n−1, ..., qm,n−1 of the single assets owned by the investor (qi,n−1 < 0

corresponds to borrowed assets, so-called short positions). The investor then

enters the nth market period with a portfolio value of

W+
n−1 :=

m
∑

i=1

Pi,n−1qi,n−1.

The remaining value at the end of the market period is

W−
n :=

m
∑

i=1

Pi,nqi,n−1 =
m
∑

i=1

Xi,nPi,n−1qi,n−1.

Hence, if W+
n−1 6= 0, the portfolio achieved a return of

W−
n

W+
n−1

=

m
∑

i=1

Xi,nbi,n (1.2.1)

with

bi,n :=
Pi,n−1qi,n−1

∑m
j=1 Pj,n−1qj,n−1

.

Note that
∑m

i=1 bi,n = 1, and we will find it more convenient to denote a portfolio

by the portfolio vector

bn := (b1,n, ..., bm,n)
T

rather than listing q1,n−1, ..., qm,n−1. If the investor is allowed to consume an

amount cn before changing his portfolio bn for bn+1 and entering market period

n + 1, then W+
n is given by

W+
n = W−

n − cn. (1.2.2)

(1.2.1) and (1.2.2) are the equations governing general discrete time investment.

Throughout this thesis we are concerned with an investor who neither consumes

nor deposits new money into his portfolio but reinvests his current portfolio



1.2 Portfolios and investment strategies 39

time
end of   th day of trading

n

= n

0 1 n-1 n n+1

X1 Xn-1 Xn Xn+1

b1 bn-1 bn bn+1

return

time

portfolio

wealth

}market
period n

W0 W1 Wn-1 Wn Wn+1

Figure 1.1: Setting for the return and portfolio processes.

value in each market period. Hence, cn = 0 for all n and (1.2.1) and (1.2.2) boil

down to

Wn := W+
n = W−

n = W0

n
∏

i=1

< bi, Xi >, (1.2.3)

where Wn is the current wealth of the investor at time n. Moreover, the factor

< bn, Xn >:= bTnXn can be interpreted as the portfolio return during the nth

market period.

Moreover, we assume that the investor never enters short positions, i.e. bi,n ≥ 0.

Then bi,n is the proportion of the current wealth Wn invested in asset i at time

n− 1. The portfolio vector bn chosen at time n is a member of the simplex

S :=

{

(s1, ..., sm)
T

∣

∣

∣

∣

∣

m
∑

i=1

si = 1, si ≥ 0

}

.

The choice of bn depends on the information In which the investor can access at

time n and which he deems relevant. Thus bn = bn(In) where In typically com-

prises a number of past observed asset returns (a substring of X1, ..., Xn−1), in

some cases additional side or insider information about the market and external

economic factors. For specific choices of In, this is the setting for Chapters 2, 3

and 6 (Figure 1.1).

In reality, the range of portfolio choices is further narrowed by the occurrence of

transaction costs. Each transaction in a real market (purchase, sale of assets)

generates costs (brokerage fees, commission, administrative and communication

expenses). The total amount of these fees is withdrawn from the investor’s

wealth. Thus, the range of portfolios the investor may choose is restricted to
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those portfolios whose acquisition generates no more transaction costs than

the investor’s current wealth. Then, roughly speaking, the investor is caught

between making as few costly transactions as possible on the one hand and

making as many transactions as necessary to boost his wealth on the other

hand. No wonder that strategic planning under transaction costs requires much

deeper arguments and has received considerable attention in literature for both,

discrete and continuous time models (see e.g. Blum and Kalai, 1999; Bobryk

and Stettner, 1999; Cadenillas, 2000; Bielecki and Pliska, 2000). We shall return

to a typical case of transaction costs in more detail in Chapters 4 and 5.

1.3 Pleading for logarithmic utility

As can be seen from (1.2.3), invested money grows multiplicatively, as a product

of daily returns. Suppose the investor wants to maximize the expected value

of his terminal wealth. If the daily returns {Xi}i are stationary, maximization

of the single expected daily returns is not appropriate. It does not capture

autocorrelation in the returns, since, in general,

E

n
∏

i=1

< bi, Xi > 6=
n
∏

i=1

E < bi, Xi > .

The expectation is rather determined by the expectation of the logarithmic daily

returns, since by Taylor expansion (hot. denoting terms of order 2 and higher)

E
n
∏

i=1

< bi, Xi >= 1+E log
n
∏

i=1

< bi, Xi > +hot. = 1+
n
∑

i=1

E log < bi, Xi > +hot.

It is widely accepted that for returns below 10% and high frequency data (e.g.

daily returns) the logarithmic approximation is convincing (Franke et al., 2001,

Sec. 10.1). This leads to the notion of log-optimal portfolios, i.e. portfo-

lios that maximize the expected logarithmic utility of the investors’s growth

of wealth. The log-optimal portfolio of a process {Xn}n of independent and

identically distributed (i.i.d.) returns Xn is defined as

b∗ := argmax
b∈S

E(log < b,X1 >). (1.3.1)

Log-optimal portfolios have been suggested first by Kelly (1956), Latané (1959)

and Breiman (1961) as diversification strategy for investment in a speculative
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market given by a process {Xn}∞n=1 of i.i.d. return vectors. Since then, nu-

merous investigations, notably by Cover (e.g. Cover, 1980, 1984; Cover and

Thomas, 1991) and Algoet (e.g. Algoet and Cover, 1988) have explored the

theoretical aspects of this strategy, establishing that investment in log-optimal

portfolios yields optimal asymptotic growth rates for the invested wealth. An

introduction, various results and sources of reference can be found in Cover and

Thomas (1991, Chapter 15). There, for stationary and ergodic return processes

{Xn}n, (1.3.1) is generalized by the conditional log-optimal portfolio (for

the nth investment step)

b∗n := argmax
b∈S

E[log < b,Xn > |Xn−1, ..., X1]

in stationary ergodic return processes (conditioning being void for n = 1). The

conditional log-optimal portfolio is the log-optimal portfolio under the condi-

tional distribution PXn|Xn−1,...,X1
and hence a random variable. The log-optimal

investment strategy b∗1, b
∗
2, ... is a member of the class of non-anticipating

strategies, i.e. sequences of S-valued random variables b1, b2, ... with the prop-

erty that each bn is measurable w.r.t. the σ-algebra generated by X1, ..., Xn−1

(hence the strategy requires no more information than available at time n).

The technical aspects of conditional log-optimal portfolios (we will often drop

“conditional” for brevity) are well explored:

Existence and uniqueness of the log-optimal portfolio has been investigated in

Österreicher and Vajda (1993) and Vajda and Österreicher (1994), correcting a

wrong criterion used in Algoet and Cover (1988). The main result is

Theorem 1.3.1. (Vajda and Österreicher, 1994) Let X = (X1, ..., Xm) be

a stock market return vector with distribution PX . Then there exists a log-

optimal portfolio b∗ ∈ S with |E log < b∗, X > | <∞ if and only if

E

∣

∣

∣

∣

∣

log
m
∑

i=1

Xi

∣

∣

∣

∣

∣

<∞.

b∗ is unique if PX is not confined to a hyperplane in IRm containing the diagonal

{(d, ..., d) ∈ IRm|d ∈ IR}.

A good algorithm for the calculation of a log-optimal portfolio from the (known)

distribution PX of the return vector X was given by Cover (1984).
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Theorem 1.3.2. (Cover, 1984) Assume the support of PX is of full dimension

in [0,∞)m and choose some b0 ∈ S with non-zero entries. Then the recursively

generated portfolio vectors bk = (bk1, ..., b
k
m) with

bk+1
i = bki · E

Xi

< bk, X >

converge to the log-optimal portfolio b∗ as k → ∞.

This is closely linked with the following, the Kuhn-Tucker conditions for a log-

optimal portfolio.

Theorem 1.3.3. (Cover and Thomas, 1991, Theorem 15.2.1) A portfolio

vector b∗ = (b∗1, ..., b
∗
m) ∈ S is a log-optimal portfolio for the return vector

X = (X1, ..., Xm) if and only if it satisfies the conditions

E
Xi

< b∗, X >

{

= 1 if b∗i > 0,

≤ 1 if b∗i = 0.

The superiority of investment according to conditionally log-optimal portfolios

rests upon the following theorem (Algoet and Cover, 1988; Cover and Thomas,

1991, Theorem 15.5.2).

Theorem 1.3.4. (Algoet and Cover, 1988) Assume the return vectors {Xi}∞i=1

form a stationary and ergodic process. Let S∗
n :=

∏n
i=1 < b∗i , Xi > be the wealth

at time n resulting from a series of conditionally log-optimal investements, Sn

the wealth from any other non-anticipating portfolio strategy (both starting

with 1 unit of money). Then

E
Sn

S∗
n

≤ 1 for all n and lim sup
n→∞

1

n
log

Sn

S∗
n

≤ 0 with probability 1. (1.3.2)

The second part of (1.3.2) can be interpreted in various ways:

– It proves that, eventually for large n, Sn < exp(nε)S∗
n whatever ε > 0,

which means that no non-anticipating strategy can infinitely often exceed
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the log-optimal strategy by an amount that grows exponentially fast (i.e.

an amount that couldn’t be compensated for by investment in a fixed

interest rate bank account).

– It proves that the log-optimal portfolio will do at least as well as any other

non-anticipating strategy to first order in the exponent of capital growth,

i.e. it guarantees S∗
n = exp (nW + o(n)) with highest possible rate W .

From the first part of (1.3.2) Bell and Cover (1988) conclude that

– there is no essential conflict between good short-term and long-run per-

formance. Both are achieved by maximizing the conditional expected

log-return.

The log-optimality criterion has not been undisputed, however. In his criticism,

Samuelson (1971, also discussed in Markowitz, 1976) considers a market with

i.i.d. returns X1, X2, ... and compares the expected wealth ES∗
n from a series of

log-optimal investments with the expected wealth ES∗∗
n from investment in the

fixed portfolio

b∗∗ := argmax
b∈S

E < b,X1 >

(maximization of expected return). Using the independence and the identical

distribution of the returns he finds that

ES∗∗
n

ES∗
n

=
E
∏n

i=1 < b∗∗, Xi >

E
∏n

i=1 < b∗i , Xi >
=

(

maxb∈SE < b,X1 >

E < b∗1, X1 >

)n

→ ∞ (n→ ∞).

Hence there are strategies that outperform log-optimal strategies in terms of

expected terminal wealth for long run investment. However, when comparing

the investor’s strategy with a competing strategy we think that the ratio of

wealths considered (1.3.2) is more instructive than two seperate expectations

for the investor’s strategy and the competing strategy. This is a typical example

of criticism offered by classical economists who favour the Markowitz mean-

variance approach to portfolio optimization (Markowitz, 1959; Luenberger,

1998, Ch.6.4ff.). There, the investor seeks to maximize the portfolio perfor-

mance E < b,X > under the constraint of not exceeding a certain threshold

for the risk Var < b,X > (or for the value-at-risk, i.e., quantiles of the return

distribution, in more modern versions of the mean-variance approach).



44 Chapter 1. Introduction: investment and nonparametric statistics

We would like to emphasize that it is not a question of taste whether or not

to use the log-optimal approach. We strongly plead for investment under loga-

rithmic utility because of the following facts:

– In their spirited defence of the log-optimal criterion Algoet and Cover

(1988) come to the conclusion that the mean-variance approach lacks

generality (e.g. for non-log-normally distributed returns, see Samuelson,

1967, and for multiperiod investment, see Luenberger, 1998, Ch. 8.8).

– It is doubtful whether investment analysis should be founded on expecta-

tions (where typically Sn deviates much more from ESn than logSn from

E logSn, stabilizing effect of the log-transform). Pathwise results as the

second part of (1.3.2) are more instructive than results on averages.

Realistically, the true distribution of market returns and hence the log-optimal

strategy is not revealed to the investor. Then the key problem is (as Algoet,

1992, put it):

Find a non-anticipating portfolio selection scheme {b̂n}n (a so-called universal

portfolio selection scheme) such that for any stationary ergodic market process

{Xn}n, the compounded capital Ŝn :=
∏n

i=1 < b̂i, Xi > will grow exponentially

fast almost surely (i.e. with probability 1) with the same maximum rate as under

the log-optimum strategy {b∗n}n, that is, limn→∞ log Ŝn/n = limn→∞ logS∗
n/n

almost surely.

To obtain a universal portfolio selection scheme, under weak conditions on the

market one may choose the log-optimal portfolio with respect to some appro-

priately consistent estimate of PXn|X1,...,Xn−1
in the nth investment step (more

precisely, distribution estimates that almost surely exhibit weak convergence to

the true distribution). This was demonstrated by Algoet (1992, Theorem 7). He

also provides an appropriate, yet complicated estimation scheme (Algoet, 1992,

Theorem 9). Instead, we can also use the more transparent scheme of Morvai et

al. (1996). Algoet points out that there are universal portfolio selection schemes

that do not require an explicit distribution estimation scheme as a subroutine

(Algoet, 1992, Sec. 4.3). But still, all existing algorithms seem to require an

enormous amount of past data, making their feasibility in practical situations

doubtful (as noted, e.g., in Yakowitz, Györfi et al., 1999). More practicable

results have been obtained in the case of independent, identically distributed

return vectors. For instance, Morvai (1991, 1992) and Österreicher and Vajda
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MARKET MODEL

INVESTMENT GOAL

INVESTMENT
ACTIONS

• assets 1
• stationary, ergodic stochastic

return process  { }

i=  , ..., m

Xn naþ+

m

• portfolio process
{   }

• transaction costs (occasionally)
• no consumption
• no short positions

b Sn na
• log-utility: maximisation

of expected log-returns
• good for both short term

and long run investment

investment
strategy

Figure 1.2: Our approach to investment strategy planning.

(1993) propose portfolio strategies which are based on selecting the log-optimal

portfolio with respect to the empirical distribution of the data (the so-called

empirical log-optimal portfolio, more on that in Chapter 2). Those esti-

mators can be computed with reasonable effort. Repeated investment following

their strategies asymptotically yields the optimal growth rate of wealth with

probability one. However, in merely stationary and ergodic return processes

they produce suboptimal results.

This thesis aims to provide simplified, yet efficient portfolio selection algorithms

if the log-returns follow a Gaussian process (Chapters 2 and 3), a Markov pro-

cess (Chapters 4 and 5) or, more general, a stationary and ergodic process

(Chapter 6). Our approach is summarized in Figures 1.1 and 1.2.

For the sake of completeness, it should be noted that in recent years, the log-

optimality criterion has been generalized in several ways. In particular, re-

searchers tried

– to make the log-optimality criterion risk sensitive, i.e. to introduce de-

vices which allow the investor to adjust the log-optimal strategy to his

individual risk aversion level. This may be achieved in two different ways:

Either, as in the Markowitz mean-variance model, the investor seeks to

maximize the expected log-return under variance constraints (Ye and Li,

1999), or the log-utility is extended by the variance, e.g. when maximiz-

ing −(2/θ) logE exp(−(θ/2) logSn) = E logSn− (θ/4)Var logSn+O(θ
2),

where θ > 0 is a risk aversion parameter (Bielecki and Pliska, 1999,
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and Stettner, 1999, for continuous time models; Bielecki, Hernández and

Pliska, 1999, for a discrete time model).

– to rid the log-optimality criterion of its stochastic setting, making it appli-

cable to markets with doubtful stochastic properties (Cover, 1991; Cover

and Ordentlich, 1996, including side information; Helmbold et al., 1998,

investigating algorithmic issues and Blum and Kalai, 1999, for the trans-

action cost case).

It is left for future research to generalize the results of this thesis to these

extended models.
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CHAPTER 2

Portfolio benchmarking: rates and di-
mensionality

Based on market observations, the investor can follow many different empirical

portfolio selection rules (“empirical” being synonymous with “based on histor-

ical return data”). Not all of these necessarily turn out to be a good choice

in view of the investor’s goal. Discriminating between “good” and “bad” port-

folios requires the investor to compare the performance of his portfolio with

the given investment goal. Naturally, “good” empirical portfolio selection rules

should approach the investment goal. It is of serious interest to determine how

fast the investor approaches his goal as more and more information about the

market is gathered. This is the primary task of what we might call “portfolio

benchmarking”. Portfolio benchmarking analyses how well a given portfo-

lio b or a given portfolio selection rule b = b(X1, ..., Xn) of the past returns

X1, ..., Xn performs with respect to a fixed benchmark, in our case with re-

spect to the expected logarithmic portfolio return in the next market period,

E log bXn+1 (to keep notation simple we write log bXn+1 rather than log bTXn+1

or log < b,Xn+1 > in the sequel). This, of course, requires a standardized way

to assess to what extent an empirical portfolio selection rule underperforms in

comparison with the log-optimal rule.

In this chapter we analyse how seriously a log-optimal portfolio selection rule

based on an estimate for the true return distribution may underperform. To this

end, we propose a specific measure of underperformance (cf. (2.1.2)). Establish-

ing a lower bound result on this measure, it will be seen that underperformance

cannot vanish at arbitrarily high rate as the investor gathers more and more

knowledge about the market (Theorem 2.1.1). All investors are subject to a

universally limited rate at which investment rules can succeed in exploiting

historical market data.
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In fact, the empirical log-optimal portfolio of Chapter 1 turns out to be a se-

lection rule that achieves the optimal rate (Theorem 2.1.3). It is particularly

striking that this rate does not depend upon the numbers of stocks included

in the portfolio selection process (Theorem 2.1.4). One is tempted to think

that arbitrarily large portfolios can be handled successfully without extra pre-

cautions. Reasons will be given why this is fallacious and does not obviate the

necessity of trying to keep the dimension of the portfolio at reasonably low level

by pre-selecting a “good” subset of all possible stocks.

However, the pre-selection of stocks is far from being an easy going thing: As we

shall see, there is no way of pre-selecting the stocks on the basis of the perfor-

mance of the single stocks only (Theorem 2.2.1). To find the optimal portfolio

configuration, the investor has to evaluate the log-optimal portfolios of all pos-

sible subsets of stocks and compare the resulting expected logarithmic portfolio

returns, a huge though necessary computational effort in high dimensions.

2.1 Rates of convergence in i.i.d. models

Suppose them-dimensional stock return vectorsX1, X2, ... constitute a sequence

of independent, identically distributed (i.i.d.) random variables with distribu-

tion Q := PX1
. Q is not disclosed to the investor, who, after n market periods,

may exploit the observations X1, ..., Xn to obtain a distribution estimate Q̂n of

Q. Let F and F̂n = F̂n(·, X1, ..., Xn) denote the cumulative distribution func-

tions associated with Q and Q̂n, respectively. We shall restrict our analysis to

estimators Q̂n whose sensitivity to outliers is such that

∣

∣

∣

∣

F̂n(x,X1, ..., Xi−1, Xi, Xi+1, ..., Xn)

−F̂n(x,X1, ..., Xi−1, X
′
i, Xi+1, ..., Xn)

∣

∣

∣

∣

≤ c(x,Xi, X
′
i)

n
(2.1.1)

for some function c : IR3m
+ → IR+, whatever i ∈ IN, x,X1, ..., Xn, X

′
1, ...X

′
n ∈ IRm

+

may be. Most of the standard distribution estimates share this property, such

as the empirical distribution

Q̂n(A) =
1

n

n
∑

i=1

1A(Xi) (A ∈ B(IRm))
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and kernel estimates

Q̂n(A) =

∫

A

1

nhdn

n
∑

i=1

K

(

x−Xi

hn

)

dx (A ∈ B(IRm)),

hn being a sequence of nonnegative bandwidths and K : IRm → IR+
0 a kernel

function.

Having thus learned a “picture” of the market, Q̂n, the investor allocates his

wealth according to the corresponding log-optimal portfolio

b̂n+1 = b̂n+1(X1, ..., Xn) = argmax
b∈S

E log bY,

where the expectation is calculated for Y ∼ Q̂n. This choice yields the random

return R̂n = b̂n+1Xn+1 during the next market period. In order to determine

how well b̂n reproduces the true log-optimal portfolio b∗ = argmaxb∈S E log bX1

with return R∗
n = b∗Xn+1, we first observe that

E logR∗
n −E log R̂n = E log b∗Xn+1 − E

(

E[log b̂n(X1, ..., Xn)Xn+1|X1, ..., Xn]

)

≥ E log b∗Xn+1 −E

(

E[log b∗Xn+1|X1, ..., Xn]

)

= E log b∗Xn+1 − E log b∗Xn+1 = 0,

using the independence of X1, ..., Xn+1. Hence

∆(Q̂n,Q) := E log
R∗

n

R̂n

≥ 0 (2.1.2)

with equality if Q̂n = Q. On the other hand, from Theorem 1.3.4,

lim inf
n→∞

1

n

n
∑

i=1

log
R∗

i

R̂i

≥ 0.

Taking expectations and using Fatou’s lemma we obtain

0 ≤ E lim inf
n→∞

1

n

n
∑

i=1

log
R∗

i

R̂i

≤ lim inf
n→∞

1

n

n
∑

i=1

E log
R∗

i

R̂i

.

Therefore, {b̂n}n is a good portfolio selection rule if

∆(Q̂n,Q) = E log
R∗

n

R̂n

→ 0
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with high rate as n tends to ∞.

∆(Q̂n,Q) measures underperformance of b̂n w.r.t. the benchmark portfolio b∗.

In the sequel we will derive asymptotic properties of ∆(Q̂n,Q). The following

theorem shows that the limit cannot be achieved at arbitrarily high speed of

convergence:

Theorem 2.1.1. For any sequence of distribution estimates Q̂n satisfying

(2.1.1), there exists a market distribution Q and a market constant c for which

∆(Q̂n,Q) ≥ c

n
(2.1.3)

for infinitely many n.

As will be seen in the proof, (2.1.1) is not needed when considering unbiased

estimators Q̂n, i.e., estimators for which EQ̂n(A) = Q(A) for all A ∈ B(IRm
+).

Proof. Consider a 2 stock market with return vector (X (1), X (2)) ∈ IR2
+ and

portfolios (b, 1− b), b ∈ [0, 1]. We can expand

E log(bX (1) + (1− b)X (2)) = E log((Z − 1)b + 1) + E logX (2) (2.1.4)

with the return ratio Z := X (1)/X (2). Thus, in a 2 stock market, the log-

optimal portfolio only depends upon the distribution of the return ratio Z. For

simplicity, let Z be of the form

Z =

{

A with probability p,

B with probability 1− p
(2.1.5)

with p ∈ (0, 1), A, B > 0 to be chosen later.

We first consider the classical parameter estimation problem of estimating p,

which will be linked with the portfolio selection problem at a later stage. Q̂n

allows the investor to derive an estimate of p,

p̂n = p̂n(z
n) := Q̂n

({

(x(1), x(2)) : x(1)/x(2) = A
})

,

zn ∈ {A,B}n being the observed realisations of the i.i.d. return ratios Z1, ..., Zn

(independent of Z). If k(zn) denotes the number of A’s in zn and Bn
i (p) =

(

n
i

)

pi(1−p)n−i denotes the ith Bernstein polynomial of order n, we can identify

fn(p) := Ep̂n(Z1, ..., Zn) =

n
∑

i=0







(

n

i

)−1
∑

zn:k(zn)=i

p̂n(z
n)







Bn
i (p) =:

n
∑

i=0

bi,nB
n
i (p)
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as a Bézier curve. For reasons to become clear later it is important to study its

derivative

f ′n(p) =
n−1
∑

i=0

n(bi+1,n − bi,n)B
n−1
i (p).

Combinatorial arguments given at the end of this proof and relation (2.1.1)

yield

n|bi+1,n − bi,n| ≤ const. (2.1.6)

independently of i and n. Using
n−1
∑

i=0

Bn−1
i (p) = 1 we obtain

|f ′n(p)| ≤ const. (2.1.7)

for all n and p.

We now choose the true parameter p of the model (2.1.5), which we will denote

by p∗:

– If fn(p) 6→ p as n → ∞ for some p ∈ (0, 1), we fix this p to be the true

parameter p∗ of the distribution of Z.

– If fn(p) → p as n→ ∞ for all p ∈ (0, 1), we have

p
∫

p/2

f ′n(q)dq = fn(p)− fn(p/2) → p/2 (2.1.8)

as n → ∞. From this there exists a p ∈ (0, 1) with f ′n(p) 6→ 0 (otherwise

(2.1.7) and the Lebesgue dominated convergence theorem lead to a con-

tradiction in (2.1.8). This p is taken to be the true parameter p∗ of the

distribution of Z.

The mean squared error MSE(p̂n) = E(p∗ − p̂n)
2
+ +E(p∗ − p̂n)

2
− satisfies

E(p∗ − p̂n)
2
+ ≥ 1

2
MSE(p̂n) (2.1.9)

or

E(p∗ − p̂n)
2
− ≥ 1

2
MSE(p̂n) (2.1.10)

for infinetly many n. In either case the Cramér-Rao lower bound yields (for

infinitely many n)

E(p∗ − p̂n)
2
± ≥ 1

2

{

f ′n(p
∗)2

In(p∗)
+ (fn(p

∗)− p∗)2
}
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with Fisher information In(p
∗) = np∗(1− p∗). (Lehmann, 1983, Theorem 6.4).

By the choice of p∗, the proof is finished if we can adjust A,B such that

∆(Q̂n,Q) ≥ const. · E(p∗ − p̂n)
2
+

if (2.1.9) applies or

∆(Q̂n,Q) ≥ const. · E(p∗ − p̂n)
2
−

if (2.1.10) applies. This is done in the following.

If Z is distributed according to the general form (2.1.5), simple calculations

yield that (2.1.4) is maximized by

b = b(p) = T

(

−p(A−B) + B − 1

(A− 1)(B − 1)

)

where

T (x) =











1 if x > 1,

x if 0 ≤ x ≤ 1,

0 if x < 0.

Suppose (2.1.9) holds for infinitely many n. Set A := p∗ and B := 1+ p∗. Then

b(p∗) = 0 and R∗
n = X (2). In this case

E

[

log
R∗

n

R̂n

∣

∣

∣

∣

X1, ..., Xn

]

= −E[log((Z − 1)b(p̂n) + 1)|X1, ..., Xn]

= −
(

p∗ log((p∗ − 1)b(p̂n) + 1) + (1− p∗) log(p∗b(p̂n) + 1)

)

.

More precisely,

b(p̂n) =











0 if p̂n > p∗,
p∗−p̂n

p∗(1−p∗) if p∗2 ≤ p̂n ≤ p∗,

1 if p̂n < p∗2

and

E

[

log
R∗

n

R̂n

∣

∣

∣

∣

X1, ..., Xn

]

=











0 if p̂n > p∗,
D(p∗||p̂n) if p∗2 ≤ p̂n ≤ p∗,

D(p∗||p∗2) if p̂n < p∗2

with the Kullback-Leibler distances (relative entropies)

D(p∗||p̂n) = p∗ log
p∗

p̂n
+ (1− p∗) log

1− p∗

1− p̂n
,

D(p∗||p∗2) = −(p∗ log p∗ + (1− p∗) log(1 + p∗)).
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The L1-bound on the Kullback-Leibler distance (Cover and Thomas, 1991,

Lemma 12.6.1, eq. 12.139) yields

D(p∗||p̂n) ≥
2

log 2
(p∗ − p̂n)

2

so that

∆(Q̂n,Q) = E

(

E

[

log
R∗

n

R̂n

∣

∣

∣

∣

X1, ..., Xn

])

= E
(

D(p∗||p̂n)1[p∗2,p∗](p̂n) +D(p∗||p∗2)1[0,p∗2](p̂n)
)

≥ E

(

2

log 2
(p∗ − p̂n)

21[p∗2,p∗](p̂n) +D(p∗||p∗2)1[0,p∗2](p̂n)

)

≥ min

{

2

log 2
,
D(p∗||p∗2)

p∗2

}

E(p∗ − p̂n)
2
+.

This is what we wanted to show in case (2.1.9) holds. If (2.1.10) applies, we set

A := 2− p∗ and B := 1− p∗ and argue similarly.

It remains to prove (2.1.6). For our specific model we can assume

X =

{

(A, 1) with probability p,

(1, 1/B) with probability 1− p.

If the observed return ratios zn and z′n ∈ {A,B}n differ in one digit only, so do

the sequences of realisations x1, ..., xn and x′1, ..., x
′
n of X that generate zn and

z′n, respectively. Hence, using (2.1.1),

∣

∣

∣

∣

p̂n(z
n)− p̂n(z

′n)

∣

∣

∣

∣

= lim
ε→0+

∣

∣

∣

∣

(

Fn((A+ ε, 1 + ε), x1, ..., xn)− Fn((A, 1), x1, ..., xn)

)

−
(

Fn((A+ ε, 1 + ε), x′1, ..., x
′
n)− Fn((A, 1), x

′
1, ..., x

′
n)

)∣

∣

∣

∣

≤ lim
ε→0+

∣

∣

∣

∣

Fn((A+ ε, 1 + ε), x1, ..., xn)− Fn((A+ ε, 1 + ε), x′1, ..., x
′
n)

∣

∣

∣

∣

+

∣

∣

∣

∣

Fn((A, 1), x1, ..., xn)− Fn((A, 1), x
′
1, ..., x

′
n)

∣

∣

∣

∣

≤ max
(x,y)∈{(A,1),(1,1/B)}

{

limε→0+ c((A+ ε, 1 + ε), x, y)

n
+
c((A, 1), x, y)

n

}

=:
c

n
.

Let F(zn) consist of all elements of {A,B}n which can be generated by changing

exactly one of the digits B in zn to A, and let G(zn) consist of all elements of



54 Chapter 2. Portfolio benchmarking: rates and dimensionality

{A,B}n which can be generated by changing exactly one of the A′s in zn to B.

Clearly |F(zn)| = n− k(zn) and |G(zn)| = k(zn). From this

bi,n =

(

n

i

)−1
∑

zn:k(zn)=i

p̂n(z
n) = (n− i)−1

(

n

i

)−1
∑

zn:k(zn)=i

(n− i)p̂n(z
n)

= (n− i)−1

(

n

i

)−1
∑

zn:k(zn)=i

∑

z′n∈F(zn)

p̂n(z
n)

= (i+ 1)−1

(

n

i + 1

)−1
∑

z′n:k(z′n)=i+1

∑

zn∈G(z′n)
p̂n(z

′n)

+(i+ 1)−1

(

n

i+ 1

)−1
∑

z′n:k(z′n)=i+1

∑

zn∈G(z′n)
(p̂n(z

n)− p̂n(z
′n))

=

(

n

i + 1

)−1
∑

z′n:k(z′n)=i+1

p̂n(z
′n) ·





1

i + 1

∑

zn∈G(z′n)
1





+(i+ 1)−1

(

n

i+ 1

)−1
∑

z′n:k(z′n)=i+1

∑

zn∈G(z′n)
(p̂n(z

n)− p̂n(z
′n))

= bi+1,n +







(i + 1)−1

(

n

i+ 1

)−1
∑

z′n:k(z′n)=i+1

∑

zn∈G(z′n)
(p̂n(z

n)− p̂n(z
′n))







.

The latter bracket {...} is an average with constituents bounded from above in

absolute value by c/n. Hence |bi+1,n − bi,n| ≤ c/n and the proof is finished. 2

Remark. If the analysis is restricted to unbiased estimators in the sense that

EQ̂n(A) = Q(A) for all A ∈ B(IRm
+), in particular fn(p) = p, then we can

choose p∗ = 1/2 to obtain

E

[

log
R∗

n

R̂n

∣

∣

∣

∣

X1, ..., Xn

]

≥ 2

log 2
E(

1

2
− p̂n)

2
+ ≥ 1

In(1/2) log 2
=

4

n log 2

without having to impose (2.1.1).

It is interesting to note that we can bound ∆(Q̂n,Q) in terms of the Kullback-

Leibler distance between Q̂n and Q not only from below but also from above.

This was obtained by Barron and Cover (1988, Theorem 1, see also Cover and

Thomas, 1991, Theorem 15.4.1):
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Theorem 2.1.2. (Cover and Thomas, 1991) Let Q be the true return distribu-

tion and Q̂n a sequence of distribution estimates, both having densities q and

q̂n, respectively, w.r.t. some common dominating measure. Then

∆(Q̂n,Q) ≤ ED(Q||Q̂n)

with the Kullback-Leibler distance

D(Q||Q̂n) =

∫

log
q(x)

q̂n(x)
Q(dx).

Remark. As a consequence of Theorem 2.1.2, consistent distribution estimates,

i.e., estimates for which ED(Q||Q̂n) → 0, generate consistent portfolio selection

rules. The results of Györfi et al. (1994), however, show that convergence in

Kullback-Leibler distance is a considerably strong requirement. There is no

distribution estimate, for example, that is Kullback-Leibler consistent for any

return distribution on a non-finite countable set. The results of Algoet and

Cover (1988) demonstrate that almost sure weak convergence of Q̂n toQ suffices

to obtain consistent portfolio selection rules.

Proof. It suffices to show

E

[

log
R∗

n

R̂n

∣

∣

∣

∣

X1, ..., Xn

]

≤ D(Q||Q̂n), (2.1.11)

the assertion follows taking expectations. If D(Q||Q̂n) = ∞ there is nothing to

prove. So, assume D(Q||Q̂n) <∞, which implies absolute continuity ofQ w.r.t.

Q̂n, i.e., Q � Q̂n. Set A := {x : R̂n = b̂nx > 0, q(x) > 0, q̂n(x) > 0}. From the

Kuhn-Tucker conditions (Theorem 1.3.3) it is clear that Q̂n({x : R̂n > 0}) = 1

and, by Q � Q̂n, also Q({x : R̂n > 0}) = 1. From this and using Q � Q̂n

again, Q(A) = 1. Thus

E

[

log
R∗

n

R̂n

∣

∣

∣

∣

X1, ..., Xn

]

=

∫

A

log
b∗x

b̂nx
Q(dx)

=

∫

A

log

(

b∗x

b̂nx
· q̂n(x)
q(x)

· q(x)
q̂n(x)

)

Q(dx)
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=

∫

A

log

(

b∗x

b̂nx
· q̂n(x)
q(x)

)

Q(dx) +D(Q||Q̂n)

≤ log

∫

A

b∗x

b̂nx
Q̂n(dx) +D(Q||Q̂n) ≤ D(Q||Q̂n),

the latter inequality by the Kuhn-Tucker conditions again. 2

From this theorem we can easily infer that the lower bound on ∆(Q̂n,Q) given

in (2.1.3) is sharp, and that there are estimators attaining the optimal rate of

decay, O(1/n). In particular, the log-optimal portfolio based on the empirical

distribution does so.

Theorem 2.1.3. Assume the return distributionQ is supported on a finite set

M. Let Q̂n be the empirical distribution on M after n observations and

b̂n+1 := argmax
b∈S

1

n

n
∑

i=1

log bXi

the associated log-optimal portfolio, then

∆(Q̂n,Q) ≤ |M|
n
. (2.1.12)

Proof. Let Γn := {µ|µ empirical distribution of n data on M, D(µ||Q) > ε}.
Then according to Sanov’s theorem (Cover and Thomas, 1991, Ch. 12)

Q

(

D(Q||Q̂n) > ε

)

= Q
(

Q̂n ∈ Γn

)

≤ |M| exp
(

−nmin
µ∈Γn

D(Q||µ)
)

≤ |M| exp(−nε).

From this we calculate

ED(Q||Q̂n) =

∞
∫

0

Q

(

D(Q||Q̂n) > ε

)

dε ≤ |M|
∞
∫

0

exp(−nε) = |M|
n
.

Application of Theorem 2.1.2 proves the theorem. 2

It is an interesting feature of inequality (2.1.12) that the rate itself does not

deteriorate when the number m of stocks in the market model grows. This is
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rather untypical of nonparametric estimation problems. Of course, the number

of stocks in the market influences the constant in ∆(Q̂n,Q) = O(1/n): We have

proven that for the empirical log-optimal strategy

E log
R∗

i

R̂i

∼ c(i)

i

with c(i) = O(1). To see how c(i) depends on m we allow ourselves some

heuristics: Móri (1982) proved that for a (slight) modification of the empiri-

cal log-optimal strategy, n(m−1)/2Ŝn/S
∗
n converges to a non-degenerate random

variable Z,

n(m−1)/2 Ŝn

S∗
n

→ Z in distribution.

This can be rewritten as

n
∑

i=1

(

m− 1

2
· 1
i
− log

R∗
i

R̂i

)

→ logZ in distribution.

Taking expectations, the left hand side becomes

n
∑

i=1

m− 1

2
· 1
i
−

n
∑

i=1

E log
R∗

i

R̂i

∼
n
∑

i=1

m− 1

2
· 1
i
−

n
∑

i=1

c(i)

i
,

both sums being of logarithmic growth. To obtain convergence we infer c(i) ∼
m−1
2 , the constant possibly growing linearly with the number of stocks.

Up to a logarithmic factor, the phenomenon of the rate being insensitive to

m carries over to more sophisticated settings where the return vector is not

necessarily restricted to finitely many outcomes. In particular, we have the

following theorem for the empirical log-optimal portfolio.

Theorem 2.1.4. Assume the return distribution Q is concentrated on a cube

[A,B]m with 0 < A ≤ B <∞). Let

b̂n+1 := argmax
b∈S

1

n

n
∑

i=1

log bXi

be the empirical log-optimal portfolio, then

∆(Q̂n,Q) = o

(

logq n

n1/2

)
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for any q > max{(m− 1)/2, 1}.

Up to the logarithmic factor, the rate coincides with the classical rate n−1/2 of

stochastic parameter estimators – regardless of the portfolio dimension m.

Proof. For the proof we can assume m > 2: If m = 2 we artificially produce

a market with 3 assets from the original 2 stocks and a bond returning A/2

in each market period. In this setting, we never invest in the bond, i.e., log-

optimal investment is the same as in the original 2 stock market. A rate result

for the 3 stock market carries over to the 2 stock market.

First we make some preliminary observations on the covering of the simplex

S := {b ∈ IRm|bi ≥ 0,
∑m

i=1 bi = 1}.
Let S′

m := {b ∈ IRm|bi ≥ 0,
∑m

i=1 bi ≤ 1} and define the mapping F : S′
m−1 →

S : (x1, ..., xm−1) 7→ (x1, ..., xm−1, 1−
∑m−1

i=1 xi). Fix some ε > 0. Clearly, we can

cover S′
m−1 ⊆ [0, 1]m−1 with N ≤ d1/δem−1 ‖ · ‖∞-balls of radius δ := ε/(m− 1)

centered at c(1), ..., c(N) ∈ S′
m−1. For any x ∈ S

inf
i=1,...,N

∥

∥

∥

∥

(x1, ..., xm)− F (c(i))

∥

∥

∥

∥

∞

= inf
i=1,...,N

max

{

∥

∥

∥

∥

(x1, ..., xm−1)− c(i)
∥

∥

∥

∥

∞
,

∣

∣

∣

∣

m−1
∑

j=1

(c
(i)
j − xj)

∣

∣

∣

∣

}

≤ inf
i=1,...,N

(m− 1)

∥

∥

∥

∥

(x1, ..., xm−1)− c(i)
∥

∥

∥

∥

∞
≤ ε.

It follows that S can be covered by at most d(m− 1)/εem−1 ‖·‖∞-balls of radius

ε.

Let X1, ..., Xn denote independent return data and augment this family by a

random variable X independent of X1, ..., Xn with the same distribution as X1.

Introduce the following abbreviations:

Φn := max
b∈S

1

n

n
∑

i=1

log bXi =
1

n

n
∑

i=1

log b̂nXi,

Ln := E[log b̂nX |X1, ..., Xn]

and

L∗ := max
b∈S

E log bX = E log b∗X.
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Clearly,

Ln ≤ max
b∈S

E[log bX |X1, ..., Xn] = max
b∈S

E log bX = L∗.

To bound the tail probability of L∗−Ln ≥ 0 we use the following decomposition

P(L∗ − Ln > ε) = P(L∗ − Φn + Φn − Ln > ε)

≤ P(L∗ − Φn ≥ ε− δ) +P(Φn − Ln ≥ δ)

=: K1 +K2,

where δ > 0 is chosen later.

Bounding K1: We start with

L∗−Φn = max
b

E log bX −max
b

1

n

n
∑

i=1

log bXi ≤ max
b

∣

∣

∣

∣

∣

E log bX − 1

n

n
∑

i=1

log bXi

∣

∣

∣

∣

∣

.

For τ > 0 to be chosen later, cover S by N ≤ d(m− 1)/τem−1 ‖ · ‖∞-balls of

radius τ centered at b(1), ..., b(N). Choosing c1 such that | log bX − log b̃X | ≤
c1|b− b̃| for all X ∈ [A,B]m we obtain

max
b

∣

∣

∣

∣

∣

E log bX − 1

n

n
∑

i=1

log bXi

∣

∣

∣

∣

∣

≤ max
j=1,...,N

∣

∣

∣

∣

∣

E log b(j)X − 1

n

n
∑

i=1

log b(j)Xi

∣

∣

∣

∣

∣

+ 2c1τ.

Under the condition ε − δ − 2c1τ > 0, the Hoeffding inequality (Petrov, 1995,

2.6.2, note that | log bX | ≤ max{| logA|, | logB|} =: c2 <∞) yields

K1 ≤
N
∑

j=1

P

(∣

∣

∣

∣

∣

E log b(j)X − 1

n

n
∑

i=1

log b(j)Xi

∣

∣

∣

∣

∣

≥ ε− δ − 2c1τ

)

≤ 2N exp

(

−n(ε− δ − 2c1τ)
2

2c22

)

≤ 2

⌈

m− 1

τ

⌉m−1

exp

(

−n(ε− δ − 2c1τ)
2

2c22

)

. (2.1.13)

Bounding K2:

Φn − Ln =
1

n

n
∑

i=1

log b̂nXi − E[log b̂nX |X1, ..., Xn]

≤ max
j=1,...,N

(

log b(j)Xi − E log b(j)X
)

+ 2c1τ,
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and under the condition δ − 2c1τ > 0 we apply Hoeffding’s inequality again to

obtain

K2 ≤ N exp

(

−n(δ − 2c1τ)
2

2c22

)

≤
⌈

m− 1

τ

⌉m−1

exp

(

−n(δ − 2c1τ)
2

2c22

)

.

(2.1.14)

Combining (2.1.13) and (2.1.14) for δ := ε/2, τ := ε/(8c1) yields

P(L∗ − Ln > ε) ≤ 3

⌈

8c1(m− 1)

ε

⌉m−1

exp

(

− nε2

32c22

)

.

This in turn implies

∆(Q̂n,Q) = E(L∗ − Ln) =

∞
∫

0

P(L∗ − Ln > ε) dε

≤ an + 3

∞
∫

an

⌈

8c1(m− 1)

ε

⌉m−1

exp

(

− nε2

32c22

)

dε

= an






1 + 24c1(m− 1)

∞
∫

(8c1(m−1))−1

⌈

1

anz

⌉m−1

exp
(

−c3na2nz
)

dz







with c3 := 2c21(m− 1)2/c22 and an > 0 still to be adjusted.

We now have to bound integrals of the latter type: For a > 0, m > 2 and

an := cn−1/2 logq n (arbitrary c > 0, q > (m− 1)/2) we find that

∞
∫

a

⌈

1

anz

⌉m−1

exp(−c3na2nz) dz ≤ 2m−2

∞
∫

a

(

1

(anz)m−1
+ 1

)

exp(−c3na2nz) dz

where we have used the inequalities dxe ≤ x + 1 and Jensen’s inequality to

obtain (x+1)m−1 = 2m−1((x+1)/2)m−1 ≤ 2m−1(xm−1+1)/2 = 2m−2(xm−1+1).

Bounding the last integral yields
∞
∫

a

⌈

1

anz

⌉m−1

exp(−c3na2nz) dz

≤ 2m−2 exp(−ac3na2n)
1

am−1
n

∞
∫

a

1

zm−1
dz + 2m−2

∞
∫

0

exp(−c3na2nz) dz

=

(

2

a

)m−2
exp(−ac3na2n)
(m− 2)am−1

n

+ 2m−3

(

π

c3

)1/2
1

n1/2an
.



2.2 Dimensionality in portfolio selection 61

For n sufficiently large

exp(−ac3na2n) = exp(−ac3c2 log2q n) ≤ exp

(

−m− 1

2
logn

)

=

(

1

n

)(m−1)/2

,

and thus
exp(−ac3na2n)

am−1
n

≤
(

1

c logq n

)m−1

≤ 1

c logq n
.

By the choice of an, 1/(n
1/2an) = 1/(c logq n), and we end up with

∆(Q̂n,Q) ≤ an

(

1 +
const.

c logq n

)

=
c logq n

n1/2
+
const.

n1/2

for all n greater than some integer that depends on m, a, c3 and c. Hence,

lim sup
n→∞

n1/2

logq n
∆(Q̂n,Q) ≤ c

and from c > 0 being arbitrary, we infer

lim sup
n→∞

n1/2

logq n
∆(Q̂n,Q) = 0,

the assertion for the case m > 2. 2

2.2 Dimensionality in portfolio selection

Let the investor operate in a market of M stocks with random one day re-

turns X (i) (i = 1, ...,M). Typically, M is large, e.g., M = 30 for the DAX

(Frankfurt) or Dow Jones IA (New York) stocks, M = 100 for the FTSE100

(London). Common wisdom tells us “don’t put all your eggs in one basket”, the

economist’s version of this saying (as Samuelson, 1967, put it) goes “diversifi-

cation pays”. One is tempted to think the more diversified the portfolio, i.e.,

the more stocks we include in via log-optimal portfolio selection, the better.

The results of the last section, where we have seen that the number of stocks

does not affect the rate at which empirical log-optimal portfolios approach the

optimal performance, make us particularly optimistic. However, we should not

forget that there are also several reasons to avoid selection from a huge set of

stocks:
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1. M very much affects the scale of finite sample underperformance via the

constants in the rate results (recall what we infered from Móri, 1982).

2. Standard optimisation methods are computationally demanding in high

dimension.

3. If the log-optimal portfolio is calculated with, e.g., Cover’s algorithm

(Cover, 1984), then at each iteration step an M -dimensional integration

has to be carried out, which requires considerable computational effort.

Also, Cover’s algorithm requires exact knowledge of the M -dimensional

return distribution. In practice, such information must be gathered by

statistical distribution estimation which faces substantial difficulties for

high dimension M (curse of dimensionality, see e.g. Scott, 1992, Chapter

7).

For these reasons, the investor should work with a medium size range of stocks

at a time only. In other words, he will have to pre-select m < M stocks from

the whole market. These pre-selected stocks are the assets he includes in a

log-optimal portfolio. For illustrative purposes, we restrict ourselves to M = 3.

In this case, the investor may compose a log-optimal portfolio out of 6 possible

combinations of 1 or 2 stocks.

V ∗
{n} := E logX (n)

is the maximal expected log-return when the portfolio is composed of stock n

only. If two different stocks n and m are considered, the maximal expected

log-return is

V ∗
{n,m} := max

0≤b≤1
E log

(

(1− b)X (n) + bX (m)
)

.

A natural (and in fact a frequently used) way for pre-selection is to start with

a first “draught-horse” stock (say stock A) for our portfolio, i.e., a stock such

that V ∗
{A} is large. From the two remaining contenders (say stocks B and C) the

investor then includes the one with good single performance, e.g. B if V ∗
{B} >

V ∗
{C}. The hope is to attain the optimum V ∗

{A,B} = max{n,m}⊆{A,B,C} V
∗
{n,m}.

The following result gives conditions under which this method is doomed to

failure in the realistic market model of log-normally distributed returns. More

precisely, markets with log-normal returns are characterised for which V ∗
{1} <

V ∗
{2} < V ∗

{3} and V ∗
{2,3} < V ∗

{1,2} at the same time, the two best single stocks
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forming a poorer portfolio than the two worst stocks in the market. As a

consequence, in order to select the optimal 2 stock combination from the market,

the investor has to evaluate all
(

M
m

)

possible choices, a huge computational effort

in high dimensions – a effort though that cannot be avoided. This is in contrast

to the Markowitz mean-variance approach, where a portfolio built of stock 1

and 2 may be superior to a portfolio built of stock 2 and 3 in terms of risk

(i.e., variance of portfolio return), never though in terms of performance (i.e.,

expected portfolio return).

Theorem 2.2.1. Consider a given variance-covariance matrix

Σ =







σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3






.

Then the condition

σ2
3 − 2σ23 < σ2

1 − 2σ12 (2.2.1)

is necessary and sufficient for a three stock log-normal market

X (i) := exp(Y (i)) (i = 1, 2, 3) with
(

Y (1), Y (2), Y (3)
)

∼ N((µ1, µ2, µ3) ; Σ)

to exist such that

µ1 < µ2 := 0 < µ3 and V ∗
{2,3} < V ∗

{1,2}

simultaneously.

The assertion of Theorem 2.2.1 remains valid if a common µ ∈ IR is added to

µ1, µ2 and µ3.

The theorem implies that single stock performance is of secondary importance

in comparison with harmonious teamwork of the stocks. The deeper reason for

this is the effect of “volatility pumping” (Luenberger, 1998, Examples 15.2 and

15.3): The specific volatility structure (i.e., covariance structure) in the market

may“pump”growth from one stock to others in the portfolio. In our example, if

the covariance σ12 of stock 1 and stock 2 is sufficiently less than the covariance

of stock 1 and stock 3 – preferably sufficiently negative such that whenever 1

plunges, 2 is likely to increase – then more substantial growth can be achieved
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by balancing stocks 1 and 2 rather than stocks 1 and 3, even though stock 2

might have poorer single performance than stock 3.

Corresponding results for dimension reduction in pattern recognition have been

obtained by Touissaint (1971, also discussed in Devroye, Györfi and Lugosi,

1996, Theorem 32.2).

For the proof of the theorem, we need a number of preliminary observations.

First consider a 2 stock market with log-normally distributed returns X (i),

X (i) := exp(Y (i)) (i = 1, 2)

and
(

Y (1)

Y (2)

)

∼ N

((

µ1
µ2

)

;

(

σ2
1 σ12

σ12 σ2
2

))

.

Log-optimal investment in log-normal markets has been considered, e.g., by

Ohlson, (1972). As noted in Chapter 1, the log-optimal portfolio

(

b(1)∗, b(2)∗
)

:= arg min
b(1),b(2)≥0,b(1)+b(2)=1

E log(b(1)X (1) + b(2)X (1))

satisfies the necessary and sufficient Kuhn-Tucker conditions

E
X (i)

b(1)∗X (1) + b(2)∗X (2)

{

= 1

≤ 1
if b(i)∗

{

> 0

= 0

(Theorem 1.3.3). In other words

(1, 0) log-optimal ⇐⇒ E
X (2)

X (1)
≤ 1 (2.2.2)

(0, 1) log-optimal ⇐⇒ E
X (1)

X (2)
≤ 1 (2.2.3)

(b(1), b(2)) log-optimal ⇐⇒ E
X (1)

b(1)X (1) + b(2)X (2)

= E
X (2)

b(1)X (1) + b(2)X (2)
= 1, (2.2.4)

the latter for b(1), b(2) > 0, b(1) + b(2) = 1.

We rephrase the Kuhn-Tucker conditions in a form that will be more convenient

to use. To this end we define Z := Y (2) − Y (1) ∼ N(µ2 − µ1; σ
2
1 − 2σ12 + σ2

2)

and connect b(1), b(2) 6= 0 to r ∈ (0,∞) via r := b(2)/b(1), b(1) = 1/(1 + r) and
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b(2) = r/(1 + r). Then we can rewrite the right hand sides of (2.2.2) and (2.2.3)

as

E expZ ≤ 1, (2.2.2’)

E exp(−Z) ≤ 1. (2.2.3’)

By simple calculations, the right hand side of (2.2.4) is equivalent to the exis-

tence of

r ∈ (0,∞) such that E
expZ − 1

1 + r expZ
= 0.

(2.2.4’)

From (2.2.2’) to (2.2.4’) one can observe the following:

1. The log-optimal portfolio
(

b(1)∗, b(2)∗
)

only depends upon

µ := µ2 − µ1 and σ2 := σ2
1 − 2σ12 + σ2

2,

i.e.
(

b(1)∗, b(2)∗
)

=
(

b(1)∗(µ, σ2), b(2)∗(µ, σ2)
)

.

2. Evaluating E expZ = exp(µ + σ2/2) and E exp(−Z) = exp(−µ + σ2/2)

yields:

(1, 0) log-optimal ⇐⇒ µ ≤ −σ
2

2
, (2.2.5)

(0, 1) log-optimal ⇐⇒ µ ≥ σ2

2
. (2.2.6)

3. For µ = 0, (1/2, 1/2) is the log-optimal portfolio, since by symmetry

1√
2πσ

∞
∫

−∞

exp z − 1

exp z + 1
exp

(

− z2

2σ2

)

dz = 0.

The value of the log-optimal portfolio of stock 1 and stock 2 is

V ∗ := E log(b(1)∗X (1) + b(2)∗X (2)).

However, it will be convenient to work with the portfolio improvement

Vσ(µ) := V ∗ − µ1 = E logX (1) + E log(b(1)∗ + (1− b(1)∗) expZ)− µ1

= E log(b(1)∗(µ, σ2) + (1− b(1)∗(µ, σ2)) expZ) (2.2.7)

achieved when including stock 2 in a portfolio of stock 1. Vσ(µ) only depends

upon the distribution of

Z = Zµ,σ2 ∼ N(µ; σ2),
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i.e. again on µ and σ2 only. The following lemma summarizes basic properties

of Vσ(µ), similar to the results derived in Ohlson (1972):

Lemma 2.2.2. 1. For any fixed σ ∈ [0,∞) Vσ(µ) is a continuous function of

µ ∈ IR, strictly increasing on [−σ2/2,∞).

2. Vσ(µ) = 0 for all µ ∈ (−∞,−σ2/2] and Vσ(µ) = µ for all µ ∈ [σ2/2,∞).

3. Vσ(0) is a nonnegative, strictly increasing continuous function of σ ∈ [0,∞).

Proof. 1. On the one hand the log-optimal portfolio
(

b(1)∗(µ, σ2), b(2)∗(µ, σ2)
)

is

unique (Theorem 1.3.1), on the other hand, a continuous solution, say
(

b(1)(µ, σ2),

b(2)(µ, σ2)
)

, to the maximization problem

E log(b(1)X (1)+ b(2)X (2)) = µ1+E log(b(1)+ b(2) expZµ,σ2) −→ max
b(1),b(2)≥0,b(1)+b(2)=1

!

can be found (Aliprantis and Border, 1999, Theorem 16.31 together with Lemma

16.6). Hence, both coincide and b(1)∗(µ, σ2) is a continuous function of µ. From

the equation Vσ(µ) = E log(b(1)∗ + (1− b(1)∗) expZµ,σ2) the continuity assertion

follows.

Now, let −σ2/2 < µ < ν. Then

V = E log(b(1)∗(µ, σ2) + (1− b(1)∗(µ, σ2)) expZµ,σ2)

< E log(b(1)∗(µ, σ2) + (1− b(1)∗(µ, σ2)) expZν,σ2)

≤ E log(b(1)∗(ν, σ2) + (1− b(1)∗(ν, σ2)) expZν,σ2).

The first inequality follows from −σ2/2 < µ, i.e. b(1)∗(µ, σ2) < 1, the second

inequality holds by definition of b(1)∗ as a component of the log-optimal portfolio.

2. is a direct consequence of (2.2.5) and (2.2.6). We just check Vσ(µ) =

E logX (1) − µ1 = µ1 − µ1 = 0 for
(

b(1)∗, b(2)∗
)

= (1, 0) and calculate Vσ(µ) =

E logX (2) − µ1 = µ2 − µ1 = µ for
(

b(1)∗, b(2)∗
)

= (0, 1).

3. As noted above µ = 0 implies
(

b(1)∗, b(2)∗
)

= (1/2, 1/2). Hence we find that

Vσ(0) = log
1

2
+ E log(1 + expZ0,σ2)

= log
1

2
+

1√
2π

∞
∫

−∞

log(1 + exp(σw)) exp

(

−w
2

2

)

dw.
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From this representation we see that Vσ(0) is continuous for σ ∈ (0,∞). More-

over, using the monotone convergence theorem (Williams, 1991, 5.3) we calcu-

late

V0(0) := lim
σ→0+

Vσ(0) = log
1

2
+

1√
2π

∞
∫

−∞

log 2 exp

(

−w
2

2

)

dw = log
1

2
+ log 2 = 0.

Concerning monotonicity, we remark that in what follows the interchange of

differentiation and integration is possible by the standard theorem for integrals

depending on a parameter (see e.g. Williams, 1991, A.16.1). Thus for σ > 0

∂

∂σ
Vσ(0) =

1√
2π

∞
∫

−∞

w

1 + exp(−σw) exp
(

−w
2

2

)

dw.

Finally, since w/(1 + exp(−σw)) > w/2 for all w 6= 0,

∂

∂σ
Vσ(0) >

1√
2π

∞
∫

−∞

w

2
exp

(

−w
2

2

)

dw = 0,

and Vσ(0) is strictly increasing for σ ≥ 0. 2

We are now in the position to finish the

Proof of Theorem 2.2.1. Sufficiency: Suppose we are given σ2
L := σ2

3−2σ23+

σ2
2 < σ2

U := σ2
1 − 2σ12 + σ2

2. Then, from part 3 (combined with parts 1, 2) of

Lemma 2.2.2, we can choose a W > 0 with

VσL
(0) < W < VσU

(0). (2.2.8)

By parts 1 and 2 of the lemma and the intermediate value theorem µ1 :=

V −1
σU

(W ) and m := V −1
σL

(W ) are well-defined and – observing the strict mono-

tonicity property of VσL
and VσU

as in part 1 of the lemma – we obtain µ1 <

0 < m from (2.2.8).

This choice is illustrated in Figure 2.1, where the reduced portfolio values Vσ(µ)

were calculated by means of the Cover algorithm (Theorem 1.3.2) and numerical

integration (composite trapezoidal rule, Isaacson and Keller, 1994, Sec. 7.5)

both with an accuracy of 10−7.

Choose some µ3 with 0 < µ3 < m. Then, by part 1 again,

VσL
(µ3) < VσL

(m) = W = VσU
(µ1).
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Figure 2.1: An example of the situation as in the proof of Theorem 2.2.1.

Combining this with the definition of the reduced portfolio value Vσ(µi− µj) =

V ∗
{i,j}−µj in (2.2.7) for a portfolio of stocks {i = 1, j = 2} (set σ2 = σ2

1−2σ12+σ
2
2)

and of stocks {j = 2, i = 3} (set σ2 = σ2
3 − 2σ23 + σ2

2), we obtain V ∗
{2,3} =

VσL
(µ3) + 0 < VσU

(µ1) + 0 = V ∗
{1,2}.

Necessity: If instead of (2.2.1) we assume σ2
3−2σ23 ≥ σ2

1−2σ12, then µ1 < µ2 :=

0 < µ3 implies V ∗
{1,2} = VσU

(µ1) + 0 ≤ VσU
(0) ≤ VσL

(0) < VσL
(µ3) + 0 = V ∗

{2,3}
(Lemma 2.2.2, parts 1 and 2 for the first and third inequality, part 3 for the

second). 2

2.3 Examples

We conclude this chapter with examples of a real market where a situation as in

Theorem 2.2.1 is set up by empirical market data. We assume that the distribu-

tion of the returns is log-normal with the parameters provided by the standard
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estimates of mean and variance (thus admittedly oversimplifying things). Fig-

ure 2.2 a-c) shows some diagnostic checks run on American Express Co. (AXP)

daily log-return data from the closing prices at the New York Stock Exchange

2/1/1998 - 30/11/2000 (data from www.wallstreetcity.com).

Comparing the histogram of the data in Figure 2.2 a) and the normal density

with estimated mean and variance, it should be possible to approximately ex-

plain the data by assuming a log-normal return distribution. This is supported

by the normal probability plots of the log-return data in 2.2 b): lines a,b and

c correspond to the normal probability plots from 245 consecutive data each,

plot b being moved to the right by 0.05, c by 0.1. 95% confidence bands are

shown. The lines a,b and c being roughly parallel there is no alarming sign that

the return distribution loses stationarity during the period under investigation.

The sample autocovariance function in 2.2 c) (95% confidence bands around

zero) suggests approximately uncorrelated (in the Gaussian case independent)

day to day data.

Example 2.1: The following 3 stocks are chosen from the range of the Dow

Jones Industrial Average.

i stock estim.: µi − µ2 σ2
i − 2σi2 + σ2

2

1 American Express Co. (AXP) −0.4503008 · 10−4 5.1832410 · 10−4

2 Citigroup Inc. (C) 0.0000000 0.0000000

3 United Technologies Corp. (UTX) 0.1215608 · 10−4 8.4458413 · 10−4

The third column reports estimates based on the empirical mean and variance

of the difference Y (i) − Y (2) of the log-returns of stock i and stock 2.

Suppose we want to enhance a portfolio of C by either AXP or UTX. Since

σ2
1 − 2σ12 + σ2

2 < σ2
3 − 2σ23+ σ2

2 we conclude that there is no indication that we

should prefer AXP to UTX.

Example 2.2: Next, consider the following stocks from the Dow Jones Trans-

portation Average:

i stock estim.: µi − µ2 σ2
i − 2σi2 + σ2

2

1 J.B. Hunt Transp. Serv. (JBHT) −0.4207553 · 10−4 17.5748915 · 10−4

2 Yellow Corp. (YELL) 0.0000000 0.0000000

3 Union Pacific Corp. (UNP) 0.3721663 · 10−4 10.7871249 · 10−4



70 Chapter 2. Portfolio benchmarking: rates and dimensionality

data

re
la

ti
v

e
fr

eq
u

en
cy

[%
]

-0.10 -0.05 0.00 0.05 0.10

0
5

1
0

1
5

2.2 a) Histogram and estimated normal density.

-0.10 -0.05 0.00 0.05 0.10 0.15

1

5
10

20
30
40
50
60
70
80

90
95

99

a b c

data

p
er

ce
n
ta

g
e

2.2 b) Normal probability plot.



2.3 Examples 71

50403020100

7.5

5.0

2.5

0.0

lag

au
to

co
v

ar
ia

n
ce

[
1

0
]

-4

2.2 c) Sample autocovariance function.

Figure 2.2: Diagnostic plots for American Express Co. (AXP) log-returns from

closing prices NYSE, 2/1/1998-30/11/2000.

If we want to include either JBHT or UNP in a portfolio of YELL shares, we

observe that σ2
1−2σ12+σ

2
2 > σ2

3−2σ23+σ
2
2. Hence it may be advisable to choose

JBHT as an additional stock in spite of its apparently poorer performance.

Indeed, calculating the log-optimal portfolio for the alternatives we obtain:

additional stock j weight b of YELL V ∗
{2,j} − V ∗

{2} residual value

1 (JBHT) 0.523951 1.9910 · 10−4 −1.6092 · 10−10

3 (UNP) 0.465490 1.5407 · 10−4 1.3154 · 10−10

V ∗
{2,j} − V ∗

{2} is the improvement of the portfolio value achieved under inclusion

of stock j. As can be seen our suspicion was justified: Choosing JBHT yields

(slightly) greater portfolio improvement than UNP. The residual value in the

fourth column is 1 − EX (2)/(bX (2) + (1 − b)Xj) and indicates that the Kuhn-

Tucker condition (2.2.4) for log-optimality of the stated portfolio weight b is
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satisfied. The values in the third and fourth column were computed with an

error of at most 10−9 using the composite trapezoidal rule.
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CHAPTER 3

Predicted stock returns and portfolio se-
lection

In the last chapter we have seen that portfolio selection on the basis of single-

stock performances alone is problematic. Information about the variance-cova-

riance structure of the stock returns in the market is indispensable. Of course,

there are several ways to incorporate such information. For example, in a

log-normal market, an investor might simply use an estimate of the variance-

covariance matrix of the return distribution (conditioned on the past) and run

Cover’s algorithm (Theorem 1.3.2). Another investor might first try to use

market observations to get an idea how the stock returns in the market are

correlated and what temporal correlation prevails. Given this knowledge, he

then produces forecasts of the stock returns for the next market period and re-

arranges his portfolio according to these forecasts – typically in a “greedy”way,

i.e. trying to pick out the return maximal stock for the next market period.

Clearly, the conditional log-optimal portfolio depends on much more than mere

forecasts of the returns in the next market period. Therefore, an investor follow-

ing the “greedy” strategy is bound to lose out in comparison with the investor

using conditional log-optimal portfolios. But still, the greedy strategy is pop-

ular among investors (the forecasting bit typically being much of a heuristics)

and should therefore be analysed thoroughly. This is the task of this chapter.

In Section 3.1 we formalize the greedy strategy, which gives rise to two questions:

How suboptimal can the strategy be in comparison with log-optimal portfolio

selection, and, what is a reasonable way to manage the forecasting part? As to

the first question, we will see that suboptimality can be bounded in terms of

the variance of the logarithmic returns (cf. (3.1.4)). In view of this, the greedy

strategy is appealing in markets with sufficiently small stochastic fluctuation –

“sufficiently small” depending on how much the investor is prepared to lose out
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in investment performance.

We will embark on the second question, the forecasting problem, in Section 3.2.

Once we have seen that among the many ways of forecasting, so-called “strong”

forecasting is the method of choice for the greedy strategy, we will leave the stock

market behind and handle the problem in the general framework of Gaussian

time series forecasting. Clearly, the prediction of stationary Gaussian time series

is of interest very much in its own right, with applications arising in many fields.

Based on an approximation argument (Section 3.2.1), a forecasting algorithm

will be presented (Section 3.2.2) that – under weak regularity conditions –

is strongly consistent for huge classes of Gaussian processes (Theorem 3.2.2).

Explicit examples are given, highlighting how general the algorithm is (examples

after Corollary 3.2.3). The results are proved in Section 3.3. Simulations and

further examples in Section 3.4 conclude the chapter.

3.1 A strategy using predicted log-returns

To avoid unnecessary technicalities, we choose the simplest setting of a mar-

ket with one stock (with returns ..., X−1, X0, X1, X2, ...) and one risk-free asset

(bond with return r). Is it not hard though to develop analogous techniques

for more general markets.

The log-transform has been found to have a stabilizing effect on the return data

Xi in so far as Yi := logXi follows a symmetric distribution (around the mean)

in many real markets. For this reason, we will use Yi rather than Xi in the

following. Under full knowledge of the process past Yn, Yn−1, ..., the investor is

in principle advised to invest the log-optimal proportion

b∗ := arg max
b∈[0,1]

E[log(b exp(Yn+1) + (1− b)r)|Yn, Yn−1, ...] (3.1.1)

of his wealth in the stock. However, the non-institutional (private) investor

typically takes a different stance in two respects:

– His main interest is simply to determine whether or not he should invest a

given amount of wealth in the specific stock (rather than to determine

what proportion to invest where).

– He takes the investment decision on the basis of the predicted return of the

next market period only.
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In particular, he may try to achieve the maximum possible return max{Xn+1, r}
in the next market period with the following “greedy strategy”.

1. At each step n he produces an estimate Ŷn+1 for the next outcome Yn+1 on

the basis of the observed Yn, ..., Y1 (note that it is not possible to observe

the process to the infinite past).

2. He invests according to

b∗approx :=

{

1 if exp(Ŷn+1) ≥ r,

0 otherwise.
(3.1.2)

If the portfolio is not rearranged on a daily basis, but say, on a two month basis,

this is a typical example of a buy-and-hold strategy: Once a fixed amount of

money is invested according to the investor’s belief what the market will look

like in two month’s time, the portfolio remains unchanged. A similar “greedy”

buy-and-hold strategy (where only stocks from the CBS index are picked whose

predicted two month return exceeds a certain threshold) has been investigated

in a case study described in Franke et al. (2001, Sec. 16.4 and the references

there).

Comparing b∗approx = argmaxb∈[0,1] log(b exp(Ŷn+1) + (1 − b)r) and (3.1.1), we

see that the greedy strategy is very much in the spirit of approximating the

log-optimality principle. However, b∗ will be a function of Yn, Yn−1, ... rather

than of a single statistic Ŷn+1, and the log-optimal portfolio will be diversified

(i.e., b∗ ∈ [0, 1]), not just 0 or 1. As a consequence the investor loses out

on investment performance in comparison with the log-optimal portfolio. Two

questions arise:

– How should he construct the statistic Ŷn+1 in order not to lose out “too

much” in comparison with log-optimal portfolio performance?

– What performance loss does the particular Ŷn+1 inflict on the investor in

the worst possible case?

These are the two problems analysed in this section.

If we want to approximate the log-optimal b∗ on the basis of nothing else but

Ŷn+1, we need to find an approximation g of the target function,

E[log(b exp(Yn+1) + (1− b)r)|Yn, Yn−1, ...] ≈ g(b, Ŷn+1, r).
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Not every g and not every Ŷn+1 will be appropriate for this kind of approxima-

tion. A Taylor expansion may give us some guideline: Put

fb(y) := log(b exp(y) + (1− b)r)

and note that

0 ≤ f ′b(y) =
1

1 + (1/b− 1)r exp(−y) ≤ 1,

0 ≤ f ′′b (y) =
(1/b− 1)r exp(−y)

(1 + (1/b− 1)r exp(−y))2 ≤ 1

4
.

Now consider the expansion

fb(Yn+1) = fb(Ŷn+1) + f ′b(Ŷn+1)(Yn+1 − Ŷn+1) +
1

2
f ′′b (ξb)(Yn+1 − Ŷn+1)

2 (3.1.3)

with some random ξb from the convex hull of Yn+1 and Ŷn+1. From (3.1.3) and

the σ(Yn, Yn−1, ...)-measurability of Ŷn+1 we obtain

E[fb(Yn+1)|Yn, Yn−1, ...] = fb(Ŷn+1) + f ′b(Ŷn+1)(E[Yn+1|Yn, Yn−1, ...]− Ŷn+1)

+
1

2
E[f ′′b (ξb)(Yn+1 − Ŷn+1)

2|Yn, Yn−1, ...].

As can be seen, the choice

Ŷn+1 := E[Yn+1|Yn, Yn−1, ...]

not only makes the first order term vanish but also mimimizes the upper bound
∣

∣

∣

∣

1

2
E[f ′′b (ξb)(Yn+1 − Ŷn+1)

2|Yn, Yn−1, ...]

∣

∣

∣

∣

≤ 1

8
E[(Yn+1 − Ŷn+1)

2|Yn, Yn−1, ...]

on the second order term.

Using b∗approx (based on Ŷn+1), the investor loses at most

E[fb∗(Yn+1)− fb∗approx(Yn+1)|Yn, Yn−1, ...]

= E[fb∗(Yn+1)− fb∗approx(Ŷn+1)|Yn, Yn−1, ...]

+E[fb∗approx(Ŷn+1)− fb∗approx(Yn+1)|Yn, Yn−1, ...]

≤ E[fb∗(Yn+1)− fb∗(Ŷn+1)|Yn, Yn−1, ...]

+E[fb∗approx(Ŷn+1)− fb∗approx(Yn+1)|Yn, Yn−1, ...]

=
1

2
E[(f ′′b∗(ξb∗)− f ′′b∗approx(ξb∗approx)) · (Yn+1 − Ŷn+1)

2|Yn, Yn−1, ...]

≤ 1

8
E[(Yn+1 − Ŷn+1)

2|Yn, Yn−1, ...]

=
1

8
Var[Yn+1|Yn, Yn−1, ...].
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Hence

Efb∗(Yn+1)− Efb∗approx(Yn+1) ≤
1

8
EVar[Yn+1|Yn, Yn−1, ...]

=
1

8
(VarYn+1 −VarŶn+1) ≤

1

8
VarYn+1, (3.1.4)

and on the average the investor won’t lose more than 1
8VarYn+1. If he is prepared

to sacrifice this amount, then the greedy strategy (3.1.2) is possible. Still, this

does not obviate the necessity to estimate Ŷn+1 = E[Yn+1|Yn, Yn−1, ...], but as

we will see in the next section, for many practically relevant markets this can

be done with reasonable effort.

3.2 Prediction of Gaussian log-returns

Prediction problems as in the previous section are one of the core topics of

statistical analysis of time series. Using the distinctions of prediction problems

in Györfi, Morvai and Yakowitz (1998), the problem of estimating E[Yn+1|Fn]

for some sub-σ-algebra Fn of σ(Yn, Yn−1, ...) is a problem of dynamic forecasting,

i.e., in each market period, the target to be estimated changes (“moving target”).

Typical choices for Fn are σ(Yn, Yn−1, ...), σ(Yn, ..., Y0) or σ(Yn, ..., Yn−dn+1) for

some sequence dn ∈ IN with dn → ∞, depending on what length of the process

past should be included. It should be noted that although we consider a bi-

infinite sequence of random variables {Yi}∞i=−∞ (square-integrable and defined

on a common probability space (Ω,A,P)), we only observe realisations from

“time” i = 1 onwards.

The majority of existing algorithms for nonparametric dynamic forecasting (for

an introduction see Bosq (1996) or Györfi, Härdle et al. (1998)) rely on mix-

ing conditions which can rarely be verified from observational data. Inter-

est has turned to dynamic forecasting under weak conditions such as mere

stationarity and ergodicity, but avoiding mixing conditions. In this context,

a forecaster Ê(Yn, ..., Y0) for the conditional expectation E[Yn+1|Fn] is called

strongly (weakly) universally consistent, if

lim
n→∞

∣

∣

∣

∣

Ê(Yn, ..., Y0)− E[Yn+1|Fn]

∣

∣

∣

∣

= 0

with probability 1 (in the L1-sense) for any stationary and ergodic process

{Yi}i. By stationarity, the computation of weakly consistent estimators (Fn :=
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σ(Yn, Yn−1, ...) for the moment) can be reduced to the so-called static forecasting

problem (Györfi, Morvai and Yakowitz, 1998), to find Ê such that

lim
n→∞

E

∣

∣

∣

∣

Ê(Y0, ..., Y−n)− E[Y1|Y0, Y−1, ...]

∣

∣

∣

∣

= 0.

Based on conditional distribution estimates P̂ (dy|Y0, ..., Y−n), Morvai, Yakowitz

and Algoet (1997) obtained weakly consistent estimators for the class of bounded

stationary ergodic processes, Algoet (1999) for the class of finite-mean station-

ary ergodic processes. Here again, to obtain convergence with probability 1

instead of L1-convergence, mixing conditions were needed. Concerning strong

universal consistency, we encounter various limitations, one of the most strik-

ing derived by Bailey (1976), with Ryabko (1988) sketching an easier intu-

itional proof formalised by Györfi, Morvai and Yakowitz (1998). Their re-

sult states that for any estimator Ê(Yn, ..., Y0) of the conditional expectation

E[Yn+1|Yn, ..., Y0], there is a stationary ergodic, binary-valued process {Yi}i such
that

P

(

lim sup
n→∞

∣

∣

∣

∣

Ê(Yn, ..., Y0)−E[Yn+1|Yn, ..., Y0]
∣

∣

∣

∣

≥ 1

4

)

≥ 1

8
.

Algoet (1999) used refined techniques to show that there also exists a stationary

ergodic, binary-valued sequence {Yi}i with

E

(

lim sup
n→∞

∣

∣

∣

∣

Ê(Yn, ..., Y0)−E[Yn+1|Yn, ..., Y0]
∣

∣

∣

∣

)

≥ 1

2
.

This rules out the existence of strongly universally consistent forecasters for the

moving target E[Yn+1|Yn, ..., Y0].
This result is discouraging, but it does not rule out the existence of strongly

consistent forecasting rules for log-return processes as they arise in real financial

markets. In particular, Gaussian log-return processes have been proven to be a

good approximation for real log-return processes. Györfi, Morvai and Yakowitz

(1998) note that there has not yet been found an answer to the question whether

strongly consistent forecasters for E[Yn+1|Yn, ..., Y0] or even E[Yn+1|Yn, Yn−1, ...]

exist in case the process {Yi}i is known to be Gaussian. The results of this

section show that for notably wide classes of Gaussian processes the answer is

affirmative. It should be noted, however, that strong universal consistency is

by far not the only means of “strong” forecasting. Other methods, so-called

“universal” predictors are based on Cesàro-convergence, i.e. the average of the

errors (e.g., squared prediction errors, or the squared differences of the estimates
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and E[Yn+1|Yn, Yn−1, ...]) converges with probability one to the minimal possible

value for any (bounded) stationary and ergodic process (Algoet, 1994). Such

estimators were obtained by Algoet (1992) and Morvai et al. (1996). Based on

Györfi, Lugosi and Morvai (1999), universal predictors for bounded or Gaussian

stationary ergodic processes have been constructed by Györfi and Lugosi (2001).

Throughout, we make the following two assumptions:

1. Let {Yn}∞n=−∞ be a real-valued, purely nondeterministic (i.e., there is no

deterministic term in the representation (3.2.2) below), stationary and

ergodic Gaussian process with

EYn = 0, VarYn = σ2 > 0 (3.2.1)

and autocovariance function γ(k) := E(Yn+kYn). The assumption EYn =

0 is no restriction, it follows after differencing the original process of log-

returns. We denote the differenced process by {Yi} again.

2. From 1. and Wold’s decomposition theorem (Hida and Hitsuda, 1993,

Theorems 3.2 and 3.3; Shiryayev, 1984, VI §5 Theorem 2), a canonical

L2-representation

Yn =
∞
∑

j=0

ψjεn−j (3.2.2)

can be found with ψ0 = 1,
∑∞

j=0 |ψj |2 < ∞ and independent, identi-

cally N(0, σ2
ε )-distributed innovations εn. For z ∈ IC, |z| < 1, the series

∑∞
j=0 ψjz

j converges to the transfer function ψ(z) :=
∑∞

j=0 ψjz
j, which

never vanishes for |z| < 1 (Hida and Hitsuda, 1993, III §3 i).

We assume that

∞
∑

j=0

|ψj | <∞, (3.2.3)

ensuring that the equality (3.2.2) holds with probability 1 (Brockwell and

Davis, 1991, Prop. 3.1.1).

Statistical and theoretical aspects of second order stationary processes are

treated extensively in literature, among many others in Brockwell and Davis

(1991), Caines (1988) and Hannan and Deistler (1988). Many results on Gaus-

sian processes can be found in Neveu (1968), Ibragimov and Rozanov (1978)
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and Hida and Hitsuda (1993). Indeed, (3.2.1) and (3.2.3) are standard assump-

tions in time series analysis, and a considerable variety of sufficient conditions

for the assumptions to hold are known. We just note that if f(λ), λ ∈ [−π, π],
is the spectral density of the process {Yn}∞n=−∞, then

2πf(λ) = σ2
ε |ψ(e−iλ)|2 (3.2.4)

(Brockwell and Davis, 1991, eq. 4.4.3; Shiryayev, 1984, VI §6 eq. (16f.)), and

π
∫

−π

log f(λ)dλ > −∞ (3.2.5)

is sufficient (and in fact also necessary) for the process to be purely nondeter-

ministic (Shiryayev, 1984, VI §5 Theorem 4). The simplest setting in which

(3.2.5) holds is the case when f happens to be bounded away from 0. Then

the process is strongly mixing (Ibragimov and Linnik, 1971, Theorem 17.3.3).

However, for the purpose of our analysis, we do not require this strong property.

We divide the problem of estimating E[Yn+1|Yn, Yn−1, ...] into two steps:

1. Approximation of E[Yn+1|Yn, Yn−1, ...] by some conditional expectation

based on a fraction of the past only, say E[Yn+1|Yn, ..., Yn−d+1] with d ∈ IN.

2. Estimation of the latter quantity from the observed data.

Here and in all the following, d should be taken as d = dn ∈ IN, dn ↗ ∞, dn ≤ n,

rather than as a mere constant. For the sake of simplicity of notation however,

this will be suppressed most of the time.

3.2.1 An approximation result

As to the first step, the approximation step, note that by stationarity and

Doob’s conditional expectation continuity theorem (Doob, 1984, 2.I.5)

∣

∣

∣

∣

E[Yn+1|Yn, Yn−1, ...]− E[Yn+1|Yn, ..., Yn−dn+1]

∣

∣

∣

∣

→ 0

in L1 whenever dn → ∞. As will be seen, more stringent conditions are needed

to obtain convergence with probability 1. Similar problems arise in the context
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of on-line order selection for AR(∞) models. Here, founded on Rissanen’s

(1989) stochastic complexity for model comparison, the influence of increasing

dimensionality dn on the prediction error of the estimated “best”AR(dn) model

is discussed in depth by Gerencsér (1992). The accuracy of order selection

schemes based on least squares principles is also investigated in Davisson (1965)

and Wax (1988). In contrast to these, the approximation of E[Yn+1|Yn, Yn−1, ...]

by E[Yn+1|Yn, ..., Yn−dn+1] used in this section is not data-driven but chooses

deterministic dn according to the conditions given in the following lemma.

Lemma 3.2.1. If the Taylor coefficients of

1

ψ(z)
=

∞
∑

k=0

φkz
k (|z| < 1)

satisfy
∞
∑

k=dn+1

|φk|2 ≤
(

const.

logn

)r

(3.2.6)

for some r > 1 and sufficiently large n, then

lim
n→∞

∣

∣

∣

∣

E[Yn+1|Yn, ..., Ydn]−E[Yn+1|Yn, Yn−1, ...]

∣

∣

∣

∣

= 0

with probability 1.

The proof of this result and of the next theorems is deferred to section 3.3.

3.2.2 An estimation algorithm

If we collect the autocovariances in the matrix

Γd := (γ(i− j))i,j=1,...,d =











γ(0) γ(1) . . . γ(d− 1)

γ(1) γ(0) . . . γ(d− 2)
...

... �
...

γ(d− 1) γ(d− 2) . . . γ(0)











and

γd := (γ(d), ..., γ(1)) ,
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we can obtain an explicit formula for E[Yn+1|Yn, ..., Yn−d+1]. In fact, assumption

(3.2.3) implies

γ(k) → 0 (k → ∞) (3.2.7)

(Brockwell and Davis, 1991, Probl. 3.9), and from (3.2.1) and (3.2.7) it follows

that Γd is non-singular (Brockwell and Davis, 1991, Prop. 5.1.1). For Gaussian

processes one has (Brockwell and Davis, 1991, §5.4; Shiryayev, 1984, II §13
Theorem 2)

E[Yd+1|Yd, ..., Y1] = γd Γ
−1
d (Y1, ..., Yd)

T ,

and the autoregression function

md(yd, .., y1) := E[Yd+1|Yd = yd, ..., Y1 = y1] = γd Γ
−1
d (y1, ..., yd)

T (3.2.8)

is linear. Stationarity yields

md(yd, ..., y1) = E[Yn+1|Yn = yd, ..., Yn−d+1 = y1]

and thus

E[Yn+1|Yn, ..., Yn−d+1] = md(Yn, ...Yn−d+1). (3.2.9)

From (3.2.8) and (3.2.9) it is plausible to construct a simple estimator Êd,n for

the conditional expectation E[Yn+1|Yn, ..., Yn−d+1] by the following steps:

1. Estimate the autocovariances γ(0), ..., γ(d) by the sample autocovariances

γ̂n(k) :=
1

n

n−|k|
∑

i=1

YiYi+|k| (k = −d, ..., d). (3.2.10)

2. Set Γ̃d,n := (γ̂n(i − j))i,j=1,...,d. Posing Γ̃d,n = 1
nAA

T with the matrix A ∈
IRd×2n formed by the first d rows of the matrix











0 0 — 0 Y1 Y2 . . . Yn
0 — 0 Y1 Y2 . . . Yn 0

| � � � � |
0 Y1 Y2 . . . Yn 0 — 0











∈ IRn×2n,

it is obvious that Γ̃d,n is non-negative definite. Thus

Γ̂d,n := Γ̃d,n +
1

n
Id =

(

γ̂n(i− j) +
δi,j
n

)

i,j=1,...,d
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is non-singular. Hence, with (3.2.10) and γ̂n,d := (γ̂n(d), ..., γ̂n(1)), define

m̂d,n(yd, ..., y1) := γ̂n,d Γ̂
−1
d,n (TLn

y1, ..., TLn
yd)

T

on the analogy of (3.2.8). Here, 0 < Ln ↗ ∞ is a sequence of truncation

heights, TLy := sgn(y)min{L, |y|} being the truncation operator.

3. Plug in the last d observations,

Êd,n := m̂d,n(Yn, ..., Yn−d+1).

Remark. Even if γ̂n,d Γ̂
−1
d,n constitutes a strongly consistent estimate for the

coefficients γd Γ
−1
d of the autoregression function md, it may happen that esti-

mation errors (γ̂n,d Γ̂
−1
d,n − γd Γ

−1
d ) which are per se “acceptable”, occur together

with large values of the Yn, ..., Yn−d+1 “plugged in”. The resulting prediction

error |E[Yn+1|Yn, ..., Yn−d+1]− Êd,n| becomes considerably large. Suitable trun-

cation limits the size of the Yi’s without obscuring the information they contain.

Now, denoting the maximal absolute row sum of a real matrix A = (aij)i,j by

‖A‖∞ := maxi
∑

j |aij|, we establish the following convergence result for the

proposed estimator:

Theorem 3.2.2. Assume (3.2.1), (3.2.3), and choose dn and Ln such that for

some r ≥ 4, some δ > 0 and sufficiently large n

dn ≤ nr/(2(r−2)),

Ln‖Γ−1
dn
‖2∞d2(r+1)/r

n

(log n)2/r(log log n)2(1+δ)/r

n1/2
= O(1),

Ln‖Γ−1
dn
‖2∞dn

n
→ 0 (n→ ∞),

∞
∑

n=1

dn
Ln

exp

(

− 1

2σ2
L2
n

)

<∞. (3.2.11)

Then

lim
n→∞

∣

∣

∣

∣

E[Yn+1|Yn, ..., Yn−dn+1]− Êdn,n

∣

∣

∣

∣

= 0 (3.2.12)

with probability 1.

From (3.2.11), for the choice of dn and Ln, one needs some bound on the possible
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growth of ‖Γ−1
dn
‖∞. Based on the spectral density f and its (essential) minimum

mf ≥ 0 we distinguish the following cases:

Case 1: f is bounded away from 0, mf > 0.

Case 2: f has finitely many zeros λ1, ..., λm ∈ (−π, π] of orders p1, ..., pm, that
is, there exist constants p−j , p

+
j > 0, K ≥ 1, δ > 0 such that

1

K
<

f(λ)

|λ− λj|p
+
j

< K

for all λ ∈ (λj, λj + δ) and

1

K
<

f(λ)

|λ− λj|p
−
j

< K

for all λ ∈ (λj − δ, λj). In this case we define the order of the jth zero as

pj := max{p−j , p+j } and set p∗ := max{pj|j = 1, ..., m}.
Case 3: No restrictions are imposed on mf , apart from those already implied

by (3.2.1) and (3.2.3).

For each of the cases, upper bounds for ‖Γ−1
dn
‖∞ can easily be derived from

classical results and results recently obtained by Serra (1998, 1999, 2000) and

Böttcher and Grudsky (1998). These yield

Corollary 3.2.3. In cases 1-3 and under the assumptions (3.2.1) and (3.2.3)

the strong consistency relation (3.2.12) holds if, for n sufficiently large,

Case 1: dn ≤ ns and Ln := (log n)t (16 > s > 0, t ≥ 1).

Case 2: dn ≤ ns and Ln := (log n)t ( 1
6+4p∗ > s > 0, t ≥ 1).

Case 3: dn ≤
(

1
q log n

)s

and Ln := (log n)t (q > 4, 0 < s < 1, t ≥ 1).

Before proving the results, we give some examples to illustrate the application

of Lemma 3.2.1 and Corollary 3.2.3, such that for a suitable choice of dn and

Ln the consistency relation

lim
n→∞

∣

∣

∣

∣

Êdn,n −E[Yn+1|Yn, Yn−1, ...]

∣

∣

∣

∣

−→ 0 (3.2.13)

holds with probability 1 for all processes in large classes Gi of Gaussian pro-

cesses.
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Example 3.1: First, let the class G1 consist of all Gaussian processes satisfying

(3.2.1) and (3.2.3) with spectral density bounded away from zero. We choose

dn := bnsc (
1

4
> s > 0), Ln := log n

and obtain (3.2.13) for any element of G1.

Indeed, for every element of G1, ψ(z) has no zeros for |z| = 1 by (3.2.4). Then

ψ(z) never vanishes in the closed unit disk, and 1/ψ(z) is analytic on a disk

around 0 with radius 1 + ε for some ε > 0. Thus φk
(

1 + ε
2

)k → 0 as k → ∞,

hence |φk| ≤ c
(

1 + ε
2

)−k
with some constant c > 0. Set ρ := (1 + ε/2)−2 < 1,

then
∞
∑

k=dn+1

|φk|2 ≤ c2
∞
∑

k=dn+1

ρk = c2
ρ

1− ρ
ρdn ≤ (log n)−3

for n sufficiently large if only dn/ log logn → ∞. Lemma 3.2.1 applies and

Corollary 3.2.3 yields (3.2.13).

For G1 and the choice dn = O(logn) it should be noted that (3.2.13) is also

a consequence of An, Chen and Hannan (1982, Theorem 6). From there it

follows that the Yule-Walker estimates (φ̂1, ..., φ̂dn) of the first dn coefficients in

the AR(∞) representation satisfy the uniform convergence property

sup
1≤j≤dn

|φ̂j − φj| = O

(

(

log log n

n

)1/2
)

with probability 1. Using the estimates (φ̂1, ..., φ̂dn) and the fact that the true

coefficients of the AR(∞) representation converge to zero at an exponential

rate, one obtains (3.2.13). However, the next example illustrates that Lemma

3.2.1 and Corollary 3.2.3 are applicable in more general situations as well.

Example 3.2: Consider the class G2 of all Gaussian processes satisfying (3.2.1)

and (3.2.3) such that for all elements of G2 the following two conditions hold:

a) The corresponding spectral density f has only finitely many zeros, each

of which is of finite order in the sense of the above case 2 and

b) |φk| ≤ Φk, where {Φk}k is an eventually decreasing sequence satisfying
∞
∑

k=1

Φ2−ε
k <∞ for some ε > 0.
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Note that the orders of the zeros as well as ε may be different for each element

of G2. This class comprises G1 as well as Gaussian processes with transfer

functions such as ψ(z) = (1 − z)1/3 := 1 +
∑∞

k=1 ψkz
k, ψk = −2·5·...·(3k−4)

3·6·...·(3k) , for

which φk = 1·4·...·(3k−2)
3·6·...·(3k) and f(λ) = σ2

ε

2π

(

4 sin2 λ
2

)1/3
, the process being purely

nondeterministic by (3.2.5).

With the choice

dn := b(logn)log log nc (for n ≥ 2) and Ln := log n,

(3.2.13) holds for any process in G2.

To see this, observe that

∞
∑

k=dn+1

φ2k ≤ Φε
dn+1

∞
∑

k=dn+1

Φ2−ε
k ≤ Φε

dn+1

∞
∑

k=1

Φ2−ε
k = const. · Φε

dn+1.

From
∞
∑

k=1

Φ2
k < ∞, Olivier’s theorem (Knopp, 1956, 3.3 Theorem 1) allows us

to infer kΦ2
k −→ 0 (k → ∞), hence

∞
∑

k=dn+1

φ2k ≤
const.

(dn + 1)ε/2

for n sufficiently large. Thus (3.2.6) is fulfilled and Lemma 3.2.1 applies. On

the other hand, limn→∞(log n)log log nn−s = 0 for any s > 0, and we can use

Corollary 3.2.3 to obtain (3.2.13).

3.3 Proof of the approximation and estimation
results

We first turn to the

Proof of Lemma 3.2.1. Note that the transfer function ψ(z) never vanishes

for |z| < 1 (Hida and Hitsuda, 1993, III §3 i). Hence its reciprocal is analytic

for |z| < 1 and can be posed as

φ(z) =
1

ψ(z)
=

∞
∑

k=0

φkz
k (|z| < 1)
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with φ0 = 1. The innovations can be obtained by

εn+1 =
∞
∑

k=0

φkYn+1−k = Yn+1 +
∞
∑

k=1

φkYn+1−k

(Hida and Hitsuda, 1993, III §3 eq. 3.31). We observe that σ(εn+1) is in-

dependent of σ(Yn, Yn−1, ...), where the latter σ-algebra makes
∑∞

k=1 φkYn+1−k

measurable. Thus,

0 = E[εn+1|Yn, Yn−1, ...] = E[Yn+1|Yn, Yn−1, ...] +

∞
∑

k=1

φkYn+1−k

and

E[Yn+1|Yn, Yn−1, ...] = −
∞
∑

k=1

φkYn+1−k. (3.3.1)

Moreover,

E[Yn+1|Yn, ..., Yn−d+1] = E

[

E[Yn+1|Yn, Yn−1, ...]

∣

∣

∣

∣

Yn, ..., Yn−d+1

]

= −
d
∑

k=1

φkYn+1−k − E

[ ∞
∑

k=d+1

φkYn+1−k

∣

∣

∣

∣

Yn, ..., Yn−d+1

]

. (3.3.2)

(3.3.1) and (3.3.2) imply

E

∣

∣

∣

∣

E[Yn+1|Yn, Yn−1, ...]− E[Yn+1|Yn, ..., Yn−d+1]

∣

∣

∣

∣

2

= E

∣

∣

∣

∣

E

[ ∞
∑

k=d+1

φkYn+1−k

∣

∣

∣

∣

Yn, ..., Yn−d+1

]

−
∞
∑

k=d+1

φkYn+1−k

∣

∣

∣

∣

2

= E

∣

∣

∣

∣

∞
∑

k=d+1

φkYn+1−k

∣

∣

∣

∣

2

−E

(

E

[ ∞
∑

k=d+1

φkYn+1−k

∣

∣

∣

∣

Yn, ..., Yn−d+1

]2
)

≤ E

∣

∣

∣

∣

∞
∑

k=d+1

φkYn+1−k

∣

∣

∣

∣

2

.

Now, set

Hd(λ) :=

∞
∑

k=d+1

φk exp(−ikλ).
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Then |Hd(λ)|2f(λ) is the spectral density of the linear filter
∑∞

k=d+1 φkYn+1−k

(Brockwell and Davis, 1991, Theorem 4.10.1), and we obtain

E

∣

∣

∣

∣

∞
∑

k=d+1

φkYn+1−k

∣

∣

∣

∣

2

=

π
∫

−π

|Hd(λ)|2f(λ)dλ

≤ sup
λ∈[−π,π]

f(λ)

π
∫

−π

|Hd(λ)|2dλ = 2π sup
λ∈[−π,π]

f(λ)

∞
∑

k=d+1

|φk|2.

Since the difference E[Yn+1|Yn, Yn−1, ...]−E[Yn+1|Yn, ..., Yn−d+1] is the probability

limit of the Gaussian variables E[Yn+1|Yn, ..., Yn−k+1]−E[Yn+1|Yn, ..., Yn−d+1] as

k → ∞, it is itself Gaussian (Shiryayev, 1984, II §13.5).
We will apply the following lemma on the convergence of Gaussian random

variables that can be found in Buldygin and Dočenko (1977, Lemma 3).

Lemma 3.3.1. Let {Wn}∞n=0 be a sequence of centered Gaussian random vari-

ables Wn ∼ N(0, σ2
n) with σ

2
n → 0 (n→ ∞). If for every ε > 0

∞
∑

n=1

exp

(

− ε

σ2
n

)

<∞ (3.3.3)

then Wn → 0 with probability 1 as n → ∞.

In particular, (3.3.3) is fulfilled if

σ2
n ≤

(

const.

log n

)r

for some r > 1 and sufficiently large n.

This follows immediately from Lemma 3.3.1 if we choose 1 < r′ < r and observe

that

∞
∑

n=N

exp

(

− ε

σ2
n

)

≤
∞
∑

n=N

exp

(

−ε
(

logn

const.

)r)

≤
∞
∑

n=N

exp
(

−(log n)r
′
)

≤
∞
∑

n=N

(exp (− log n))r
′

=
∞
∑

n=N

1

nr′
<∞

for N sufficiently large.
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Now, by Lemma 3.3.1 and with Mf := 2π supλ∈[−π,π] f(λ), the inequality

Var

(

E[Yn+1|Yn, Yn−1, ...]− E[Yn+1|Yn, ..., Yn−d+1]

)

≤ Mf

∞
∑

k=dn+1

|φk|2 ≤
(

const.

log n

)r

for some r > 1 and n sufficiently large implies

∣

∣

∣

∣

E[Yn+1|Yn, Yn−1, ...]− E[Yn+1|Yn, ..., Yn−d+1]

∣

∣

∣

∣

→ 0

with probability 1, and the proof of the lemma is finished. 2

Remark. In order to obtain convergence of the Wn to zero with probability 1,

one has to impose some condition on the rate of decay of σ2
n. The conditions

of Lemma 3.3.1 cannot be substantially weakened. Indeed, if we consider any

sequence of independent random variables Wn ∼ N(0, σ2
n) with σ

2
n = (lb n)−1,

such a sequence cannot converge to zero with probability 1 (lb denoting the

logarithm for base 2): In fact, the lower bound on 1− Φ in Feller (1968, VII.1.

Lemma 2) gives

P(|Wn| ≥
1

2
) >

(

4√
lb n

− 16

lb n
√
lb n

)

1√
2π

exp

(

−1

8
lb n

)

=: qn.

The qn constitute an eventually positive, decreasing sequence. Thus,
∑

qn has

the same convergence properties as
∑

2nq2n. The latter series diverges because

of

(2nq2n)
1/n = 2

(

4√
n
− 16

n
√
n

)1/n
1

(2π)1/2n
exp

(

−1

8

)

→ 2 exp

(

−1

8

)

> 1.

Keeping this in mind, assume we had Wn → 0 with probability 1. With the

characteristic function f(y) := 1[−1/2,1/2]C (y), this yields independent random

variables f(Wn) → f(0) = 0 with probability 1. Since f(Wn) is {0, 1}-valued,
convergence to zero on a set of probability 1 implies (Shiryayev, 1984, II §10
Example 3)

∞
∑

n=1

P

(

f(Yn) = 1

)

=
∞
∑

n=1

P

(

|Wn| ≥
1

2

)

<∞,

a contradiction to the divergence of
∑

qn.
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For the proof of Theorem 3.2.2 we need some preliminary observations. First

we recall some simple facts from the theory of matrix norms. Let ‖ · ‖ be some

vector norm on IRd. By ‖ · ‖ also denote the corresponding matrix norm

‖A‖ := sup
y 6=0

‖Ay‖
‖y‖ = sup

‖y‖=1

‖Ay‖

for A ∈ IRd×d. The spectrum of A is the collection of the moduli of the eigen-

values of A,

spr(A) :=

{

|λ|
∣

∣

∣

∣

λ eigenvalue of A

}

,

and the spectral radius of A is

ρ(A) := max spr(A).

Recall the following inequalities (Isaacson and Keller, 1994, Corollaries in Sec.

1.1 and 1.3):

Lemma 3.3.2. Let A,B,C ∈ IRd×d.

1. If ‖A‖ < 1, then (I − A)−1 exists and we have

‖(I − A)−1‖ ≤ 1

1− ‖A‖ .

2. If B and C are non-singular with ‖I −B−1C‖ < 1, the following inequalities

hold:

‖C−1‖ ≤ ‖B−1‖
1− ‖I − B−1C‖,

‖C−1 −B−1‖ ≤ ‖B−1‖ ‖I −B−1C‖
1− ‖I − B−1C‖ .

Proof. 1. Existence of (I −A)−1 follows from the well known Neumann series.

(I − A)−1 = I + A(I − A)−1 implies ‖(I − A)−1‖ ≤ 1 + ‖A‖ ‖(I − A)−1‖, or
using ‖A‖ < 1

‖(I − A)−1‖ ≤ 1

1− ‖A‖ .

2. Inversion of B−1C = I + B−1C − I yields C−1B = (I + B−1C − I)−1.

Multiplying by B−1 from the right, we obtain C−1 = (I − (I − B−1C))−1B−1
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and using the first part of the lemma

‖C−1‖ ≤ ‖B−1‖ ‖(I − (I − B−1C))−1‖ ≤ ‖B−1‖
1− ‖I −B−1C‖.

Finally, pose C−1 − B−1 = (I − B−1C)C−1 and obtain

‖C−1 − B−1‖ ≤ ‖I −B−1C‖ ‖C−1‖ ≤ ‖B−1‖ ‖I −B−1C‖
1− ‖I − B−1C‖ . 2

We will use the vector norms ‖y‖2 := (
∑d

i=1 y
2
i )

1/2 or ‖y‖∞ := maxi=1,...,d |xi|,
and the corresponding matrix norms ‖A‖2 := ρ(ATA)1/2 and ‖A‖∞ := maxi=1,...,d
∑d

j=1 |aij|, respectively. For the latter norm we have

Lemma 3.3.3. For any symmetric and non-singular matrix A ∈ IRd×d

‖A‖∞ ≤ d1/2

min spr(A−1)
.

Proof. Let y = (y1, ..., yd) ∈ IRd. Then ‖y‖∞ ≤ ‖y‖2 ≤ (dmaxi y
2
i )

1/2 =

d1/2‖y‖∞ and

‖A‖∞ = sup
y 6=0

‖Ay‖∞
‖y‖∞

≤ d1/2 sup
y 6=0

‖Ay‖2
‖y‖2

= d1/2‖A‖2 = (dρ(ATA))1/2

= (dρ(A2))1/2 = (dρ(A)2)1/2 = d1/2ρ(A) = d1/2
1

min spr(A−1)
. 2

The proposed estimation procedure requires convergence of γ̂n(k) to γ(k). Doob

(1953, X §7 Theorem 7.1) gave the key result for this when proving that for

a real-valued, centered, stationary and ergodic Gaussian process γ̂n(k) → γ(k)

with probability 1 as n → ∞ is equivalent to either one of the conditions (a)
1

n+1

∑n
k=0 |γ(k)|2 → 0 as n → ∞ or (b) the spectral distribution function F is

continuous. In the present analysis, a more precise result featuring the rate of

convergence will be needed. This important result was given by An, Chen and

Hannan (1982, Theorem 1):

Lemma 3.3.4. Let {Yn}∞n=1 be a stationary ergodic process with zero mean

and finite variance, allowing for a representation

Yn =

∞
∑

j=0

ψjεn−j with ψ0 = 1,

∞
∑

j=0

|ψj | <∞
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and innovations εn satisfying

E[εn|εm, m < n] = 0,

E[ε2n|εm, m < n] = σ2
ε ,

E(|εn|r) <∞ for some r ≥ 4.

Then for any δ > 0 and dn ≤ nr/(2(r−2))

lim
n→∞

rn max
0≤k≤dn

|γn(k)− γ̂n(k)| = 0

with probability 1, where

rn :=
n1/2

(dn log n)2/r(log log n)2(1+δ)/r
.

In the “Gaussian case” considered here, the conditions on the innovations are

fulfilled, since the εn’s are independent, identically N(0, σ2
ε )-distributed, hence

E[εn|εm, m < n] = Eεn = 0 and E[ε2n|εm, m < n] = E(ε2n) = σ2
ε .

After these introductory remarks, we turn to the core of the

Proof of Theorem 3.2.2. Ȳ n
n−d+1 := is a shorthand notation for the d-past

of the process (Yn−d+1, ..., Yn)
T , and we set TLȲ

n
n−d+1 := (TLYn−d+1, ..., TLYn)

T .

The prediction error can be decomposed into
∣

∣

∣

∣

Êd,n −E[Yn+1|Yn, ..., Yn−d+1]

∣

∣

∣

∣

=

∣

∣

∣

∣

γ̂d,nΓ̂
−1
d,nTLn

Ȳ n
n−d+1 − γdΓ

−1
d Ȳ n

n−d+1

∣

∣

∣

∣

≤
∣

∣

∣

∣

(γ̂d,nΓ̂
−1
d,n − γdΓ

−1
d )TLn

Ȳ n
n−d+1

∣

∣

∣

∣

+

∣

∣

∣

∣

γdΓ
−1
d (TLn

Ȳ n
n−d+1 − Ȳ n

n−d+1)

∣

∣

∣

∣

≤ dLn‖γdΓ−1
d − γ̂d,nΓ̂

−1
d,n‖∞ + d‖γd‖∞‖Γ−1

d ‖∞‖TLn
Ȳ n
n−d+1 − Ȳ n

n−d+1‖∞. (3.3.4)

Convergence of the first term in (3.3.4): Observe that

‖I − Γ−1
d Γ̂d,n‖∞ = ‖Γ−1

d (Γd − Γ̂d,n)‖∞ ≤ ‖Γ−1
d ‖∞ ‖Γd − Γ̂d,n‖∞

= ‖Γ−1
d ‖∞ max

i=1,...,d

d
∑

k=1

∣

∣

∣

∣

γ(i− k)− γ̂d,n(i− k)− δik
n

∣

∣

∣

∣

≤ ‖Γ−1
d ‖∞

{

max
i=1,...,d

d
∑

k=1

|γ(i− k)− γ̂d,n(i− k)|+ 1

n

}

≤ ‖Γ−1
d ‖∞

{

d max
i=0,...,d−1

|γ(i)− γ̂d,n(i)|+
1

n

}

. (3.3.5)
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From the An, Chen and Hannan (1982) result (Lemma 3.3.4), this tends to 0

with probability 1, if only (recall d = dn ≤ nr/(2(r−2)))

‖Γ−1
dn
‖∞ dn

rn
= O(1) (3.3.6)

and
‖Γ−1

dn
‖∞

n
→ 0 (n→ ∞). (3.3.7)

Thus, for all ω ∈ Ω from a set of probability 1, for n sufficiently large

‖I − Γ−1
d Γ̂d,n‖∞(ω) < 1

and by the second part of Lemma 3.3.2

‖Γ̂−1
d,n‖∞ ≤ ‖Γ−1

d ‖∞
1− ‖I − Γ−1

d Γ̂d,n‖∞
,

‖Γ̂−1
d,n − Γ−1

d ‖∞ ≤ ‖Γ−1
d ‖∞ ‖I − Γ−1

d Γ̂d,n‖∞
1− ‖I − Γ−1

d Γ̂d,n‖∞
.

Using those inequalities, it follows that

‖γdΓ−1
d − γ̂d,nΓ̂

−1
d,n‖∞ ≤ ‖γdΓ−1

d − γdΓ̂
−1
d,n‖∞ + ‖γdΓ̂−1

d,n − γ̂d,nΓ̂
−1
d,n‖∞

≤ ‖γd‖∞ ‖Γ̂−1
d,n − Γ−1

d ‖∞ + ‖γd − γ̂d,n‖∞ ‖Γ̂−1
d,n‖∞

≤ ‖γd‖∞ ‖Γ−1
d ‖∞

‖I − Γ−1
d Γ̂d,n‖∞

1− ‖I − Γ−1
d Γ̂d,n‖∞

+ ‖Γ−1
d ‖∞

‖γd − γ̂d,n‖∞
1− ‖I − Γ−1

d Γ̂d,n‖∞
.

For any second order stationary process, there exists a constant cγ with

0 ≤ |γ(k)| ≤ cγ <∞ (k ∈ IN0),

hence ‖γd‖∞ ≤ cγ (this can also be seen from (3.2.7)). We set Md,n :=

maxi=0,...,d |γ(i) − γ̂n(i)|. Now, appealing to (3.3.5) again and tidying things

up, we obtain

‖γdΓ−1
d − γ̂d,nΓ̂

−1
d,n‖∞ ≤ ‖Γ−1

d ‖∞(cγ‖Γ−1
d ‖∞d + 1)Md,n + ‖Γ−1

d ‖2∞cγ/n
1− (‖Γ−1

d ‖∞dMd,n + ‖Γ−1
d ‖∞/n)

(for all ω ∈ Ω from a set of probability 1 and for n ≥ N(ω)). Finally, according

to Lemma 3.3.4, dLn‖γdΓ−1
d − γ̂d,nΓ̂

−1
d,n‖∞ → 0 with probability 1 if

Ln‖Γ−1
dn
‖2∞d2n

rn
= O(1), (3.3.8)

Ln‖Γ−1
dn
‖2∞dn

n
→ 0. (3.3.9)
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Convergence of the second term in (3.3.4): d‖γd‖∞‖Γ−1
d ‖∞‖TLn

Ȳ n
n−d+1−Ȳ n

n−d+1‖∞
is readily bounded from above by dcγ‖Γ−1

d ‖∞‖TLn
Ȳ n
n−d+1 − Ȳ n

n−d+1‖∞, so it suf-

fices to ensure that (again d = dn)

d‖Γ−1
d ‖∞‖TLn

Ȳ n
n−d+1 − Ȳ n

n−d+1‖∞ → 0

with probability 1 as n → ∞. To this end, for ε > 0,

P
(

d‖Γ−1
d ‖∞‖TLn

Ȳ n
n−d+1 − Ȳ n

n−d+1‖∞ ≥ ε
)

= P

(

d‖Γ−1
d ‖∞ max

i=0,...,d−1
|TLn

Yn−i − Yn−i| ≥ ε

)

≤ P (∃i ∈ {0, ..., d− 1} : |Yn−i| ≥ Ln) = P

(

max
i=0,...,d−1

|Yn−i| ≥ Ln

)

since |TLn
Yn−i − Yn−i| > 0 implies |Yn−i| ≥ Ln. But

P

(

max
i=0,...,d−1

|Yn−i| ≥ Ln

)

≤ dP (|Y1| ≥ Ln) = 2d

(

1− Φ

(

Ln

σ

))

.

Here Φ denotes the distribution function of the standard normal distribution.

Application of the standard bound on Φ,

1− Φ(y) <
1√
2πy

exp

(

−1

2
y2
)

(y > 0),

(Feller, 1968, VII.1. Lemma 2) yields

P
(

d‖Γ−1
d ‖∞‖TLn

Ȳ n
n−d+1 − Ȳ n

n−d+1‖∞ ≥ ε
)

≤ 2d
σ√
2πLn

exp

(

− 1

2σ2
L2
n

)

.

From this

d‖γd‖∞‖Γ−1
d ‖∞‖TLn

Ȳ n
n−d+1 − Ȳ n

n−d+1‖∞ → 0

with probability 1, if only

∞
∑

n=1

dn
Ln

exp

(

− 1

2σ2
L2
n

)

<∞. (3.3.10)

Putting things together: Apart from dn ≤ nr/(2(r−2)), the conditions to be fulfilled

are (3.3.6) – (3.3.10). From (3.2.3) and (3.2.4), the spectral density f of the

process is continuous, which yields 0 < supλ∈[−π,π] f(λ) <∞.With the standard

bound on the spectrum of Γd (Brockwell and Davis, 1991, Prop. 4.5.3), one has

‖Γ−1
d ‖∞ ≥ ρ(Γ−1

d ) =
1

min spr(Γd)
≥ 1

2π supλ∈[−π,π] f(λ)
.
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Hence (3.3.6) and (3.3.7) are implied by (3.3.8) and (3.3.9), respectively. Rewrit-

ing (3.3.8) as

Ln‖Γ−1
dn
‖2∞d2(r+1)/r

n

(log n)2/r(log log n)2(1+δ)/r

n1/2
= O(1),

we end up with the following four conditions

dn ≤ nr/(2(r−2)),

Ln‖Γ−1
dn
‖2∞d2(r+1)/r

n

·(log n)
2/r(log log n)2(1+δ)/r

n1/2
= O(1),

Ln‖Γ−1
dn
‖2∞dn

n
→ 0 (n→ ∞),

∞
∑

n=1

dn
Ln

exp

(

− 1

2σ2
L2
n

)

<∞

in order to obtain

lim
n→∞

∣

∣

∣

∣

E[Yn+1|Yn, ..., Yn−dn+1]− Êdn,n

∣

∣

∣

∣

= 0

with probability 1. 2

Finally, we prove Corollary 3.2.3.

Proof of Corollary 3.2.3. Recently, Serra Capizzano obtained the following

result (1999, Theorem 3.2; 2000, Theorem 1.2) on the “worst” rate of decay for

the minimal eigenvalue µmin
d of Toeplitz matrices

Td(f) := (γ(i− j))i,j=1,...,d

formed by the coefficients of the Fourier expansion

f(λ) =
1

2π

∞
∑

j=−∞
γ(j) exp(−ijλ) (λ ∈ [−π, π])

of some real-valued Lebesgue integrable function f . As to the situation of case

3, the following holds:

Lemma 3.3.5. Let f be a real-valued Lebesgue integrable function with es-

sential infimum mf . Suppose there exists an interval (a, b) ⊆ (−π, π), a < b,

and a number δ > 0 such that f(λ) > δ for almost all λ ∈ (a, b). Then

µmin
d ≥ K exp(−cd) +mf (3.3.11)
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with some c > 0 and some K > 0 independent of d.

The constants c and K are related to the measure of the set where f essentially

vanishes, not disclosed to the statistician. However, choosing some 0 < s < 1,

one has

K exp(−cd) +mf ≥ exp(−d1/s) (3.3.12)

for sufficiently large d. As already noted, from (3.2.3) and (3.2.4), the spectral

density f of the process under consideration is continuous. Thus the require-

ments of Lemma 3.3.5 are met for Td(f) = Γd, and Lemma 3.3.3 together with

(3.3.11) and (3.3.12) yields

‖Γ−1
d ‖∞ ≤ d1/2

µmin
d

≤ d1/2 exp(d1/s).

It remains to check the conditions (3.2.11) of Theorem 3.2.2 in the case of

q > 4, 0 < s < 1, t ≥ 1,

dn ≤
(

1

q
logn

)s

and Ln = (log n)t.

The first inequality in (3.2.11) is obvious, the second and third follow from

‖Γ−1
dn
‖2∞

n1/2
≤ dn exp(2(dn)

1/s)

n1/2
= dnn

2/q−1/2

with 2/q − 1/2 < 0. As to the fourth inequality, observe that dn/Ln → 0 as

n→ ∞ and for n sufficiently large −L2
n/(2σ

2) ≤ −2 logn, hence

exp

(

− 1

2σ2
L2
n

)

≤ 1

n2
.

The lemma for the more restrictive cases 1 and 2 follows similarly, using

µmin
d ≥ 2π inf

λ∈[−π,π]
f(λ) > 0

(Brockwell and Davis, 1991, Proposition 4.5.3) for case 1 and

µmin
d ≥ const.

dp∗

(Böttcher and Grudsky, 1998, Example 3.1 and Theorem 3.4; Serra Capizzano,

2000, Remark 1.2; less general in Serra, 1998, Theorem 2.3) for case 2. 2
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3.4 Simulations and examples

We first continue Examples 3.1 and 3.2 from Section 3.2.

Example 3.1 (continued): Consider the AR(1)-processes

Yt − ΦYt−1 = Zt Zt white noise with variance σ2

with |Φ| < 1 (Brockwell and Davis, 1991, Example 4.4.2). The processes have

the spectral densities

f(λ) =
σ2

2π
(1− 2Φ cos λ +Φ2)−1,

bounded away from zero. The autocovariance function is given by

γ(0) =
Φ2 + 1

(Φ2 − 1)2
σ2 and γ(k) =

(

2Φ

1 + Φ2

)k

γ(0),

from which we can calculate the conditional expectation E[Yn+1|Yn, ..., Y1] of the
next output given the past using (3.2.9). The latter conditional expectation acts

as an approximation of the unknown true autoregression E[Yn+1|Yn, Yn−1, ...].

Figure 3.1 a-b) shows two paths of the process (circles) for different values

of σ2 and Φ together with the corresponding autoregression (grey) and the

estimated autoregression (black). The convergence of the estimates towards

the true autoregression is clearly visible.

Example 3.2 (continued): The process from Example 3.2 in Section 3.2 has

a spectral density

f(λ) =
σ2
ε

2π

(

4 sin2
λ

2

)1/3

.

From this we calculate the autocovariances

γ(k) =

π
∫

0

f(λ) cos(kλ)dλ

(Brockwell and Davis, 1991, eq. 4.3.10) using a compound trapezoidal integra-

tion rule with an error of at most 10−7. Figure 3.2 a) shows the autocovariance

function of the process for a variance σ2
ε = 0.01 of the innovations. Again,

E[Yn+1|Yn, Yn−1, ...] is approximated by E[Yn+1|Yn, ..., Y1], which is calculated by

(3.2.9). The Gaussian process {Yn}n itself is simulated by the method described
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3.1 a) The AR(1) process from Example 3.1 with σ2 = 1,Φ = −0.3.
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3.1 b) The AR(1) process from Example 3.1 with σ2 = 1,Φ = 0.3.

Figure 3.1: “True” (grey) and predicted (black) autoregression for two Gaussian

AR(1) models.
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3.2 a) The autocovariance function of the process.
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3.2 b) “True” (grey) and predicted (black) autoregression.

Figure 3.2: The autocovariance function and a sample path of the process in

Example 3.2.
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in Brockwell and Davis (1991, Ex. 8.16, p. 271). Figure 3.2 b) shows the reali-

sations of Yn (circles), the“true”(grey) and the predicted (black) autoregression

for 50 consecutive days. Again, the convergence result is convincing.

The following two examples illustrate the performance of the greedy strategy

from Section 3.1.

Example 3.3: We run the greedy strategy from Section 3.1 in a market with

a stock whose price follows a geometrical Brownian motion (Luenberger, 1998,

Sec. 11.7; Korn and Korn, 1999, Ch. 2) with a mean return of 2% p.a. and

a volatility of σ = 10% p.a.. The bond offers a riskless return of 2% p.a. (i.e.

we set r = 2%/365). The algorithm of Section 3.2 is used to predict the log-

returns of the stocks. Figure 3.3 shows the value of an investment of $1 either

solely in the stock (grey, solid) or in the bond (grey, dashed). The value of the

greedy strategy is shown by the solid black line. In times when the share price

is likely to plummet the investor takes refuge in the bond. Thus he participates

0 20 40 60 80 100 120 140 160 180 200

0.98

1

1.02

1.04

1.06

Figure 3.3: Daily value of a $1 investment in a stock following a geometrical

Brownian motion with µ = 2%/365, σ = 10%/
√
365 (grey, solid), in a bond

with short rate 2% p.a. (grey, dashed) and in a greedy strategy (black).
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3.4 a) Yellow Corp. (YELL)
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3.4 b) SONY (SNE).
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3.4 c) Boeing Co. (BA).

Figure 3.4: Daily value of a $1 investment in some shares from Dow Jones

Indices at NYSE 24/4/1998-8/2/1999 (grey, solid), in a bond with short rate

2% p.a. (grey, dashed) or in a greedy strategy (black), respectively.

in the rise of the share price more than in its fall, increasing his annual yield

beyond 2%. As in Section 2.2 this is the phenomenon of volatility pumping

(Luenberger, 1998, Examples 15.2 and 15.3). The share’s volatility is used to

draw an above average return from the stock.

Example 3.4: We replace the geometrical Brownian motion by various real

stock price processes on 200 days of trading, using the NYSE closing prices

24/4/1998-8/2/1999 (data from www.wallstreetcity.com). Figure 3.4 a-c) shows

the corresponding charts. Although the greedy strategy does not manage to

yield a return at least as large as the bond’s return in all cases (Fig. 3.4 b),

it typically outperformed the stock, considerably reducing the investor’s risk of

financial loss from pure share investment.
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CHAPTER 4

A Markov model with transaction costs:
probabilistic view

In Chapter 1 (Theorem 1.3.4) we have seen that investment according to the

log-optimal portfolio is optimal in an asymptotic and a non-asymptotic sense.

In an m stock market with i.i.d. returns for example, the log-optimal portfolio

is a constant b∗ ∈ S. This, however, does not mean that once the investor

allocated his wealth according to b∗, he need not rebalance his portfolio in

the following market periods. On the contrary, since the price of each stock

evolves in a different way, the proportions of wealth held in the stocks will dif-

fer from b∗ already after the next market period. Thus, selling and purchasing

stocks becomes necessary after basically each market period. In a market where

transactions such as selling and buying generate transaction costs, one should

therefore adopt a more carefully chosen strategy, combining the task of maxi-

mizing the portfolio return with the task of having to pay as little transaction

fees as possible. In the setting of a Markov market model, this chapter gives an

optimal solution to this problem.

In Section 4.1 we will set up a market model with transaction costs and for-

mulate our investment goals. The chapter is devoted to probabilistic aspects

of the model, i.e. the analysis assumes the distribution of the return process

to be known. Statistical aspects, in particular what to do if the distribution

is not revealed to the investor, will be investigated in Chapter 5. In Section

4.2 we propose an optimal strategy (Theorem 4.2.1) whose optimality is proven

in the remainder of the section. Section 4.3 concludes the chapter with results

that will be needed in Chapter 5 when dealing with the statistical aspects of

the model.

Historically, the necessity of modelling investment problems including trans-

action fees arose at a time when most research dealt with continuous-time
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models, and consequently, most of the work on transaction costs concerns the

continuous-time case. Not much emphasis was put on statistical discrete-time

strategy building. A detailed overview of literature can be found in Davis and

Norman (1990), Fleming (1999), Cadenillas (2000) or Bielecki and Pliska (2000).

However, many models and strategies involved considerable computational ef-

fort, which made it necessary to use approximation techniques (see e.g. Fitz-

patrick and Fleming, 1991, and Atkinson et al., 1997). Nowadays, continuous-

time models are frequently approximated by time-discrete models (for example

in Bielecki, Hernandez and Pliska, 1999, to discretize the continuous-time model

in Bielecki and Pliska, 1999). This brought about a renaissance of discrete-time

modelling. Up to date surveys of strategy planning under transaction costs

in discrete-time markets can be found in Carassus and Jouini (2000) for a

Cox-Rubinstein type model, in Blum and Kalai (1999) for optimal constant-

rebalanced portfolios and in Bobryk and Stettner (1999) for a market with a

bond and one stock having i.i.d. returns.

4.1 Strategies in markets with transaction fees

In this section we set up a market with a bond and several stocks whose returns

form a d-stage Markov process. Markets of this kind arise when discretizing

markets driven by stochastic differential equations even beyond the famous

Black-Scholes model. Consider a market ofm stocks and a risk-free bond (which

we will think of as a bank account). Again, Xi,j denotes the return of the jth

stock from time i − 1 to time i and r ≥ 0 is the interest rate of the bond.

The return process {Xi := (Xi,1, ..., Xi,m)
T}∞i=−d+1 is assumed to be a d-stage

Markov process with continuous autoregression, i.e., if we denote the last

d observed returns by X̄i+1 = (Xi−d+1, ..., Xi), the process satisfies the following

conditions:

V1: {Xi}∞i=−d+1 is a stationary [A,B]m-valued stochastic process on a proba-

bility space (Ω,A,P) (0 < A < B <∞ need not be known),

V2: E[h(b, X̄i+1)|Fi] = E[h(b, X̄i+1)|X̄i] P− a.s.,

V3: E[h(b, X̄i+1)|X̄i = x̄] is a continuous function of (b, x̄) ∈ S × [A,B]dm,
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for all continuous functions h : S × [A,B]dm −→ IR and all i. Thus, at time

i− 1, the further evolution of the market depends upon a sub-σ-algebra σ(X̄i)

of the total information field Fi := σ(X−d+1, ..., Xi−1).

Following Blum and Kalai (1999) we assume that only purchasing shares in the

market generates transaction costs (brokerage fees, commission) proportional

to the total value of the transaction, i.e.

transaction costs = c · value of purchased shares

with a commission factor c ∈ [0, 1). Paying into and drawing money from

the risk-free account does not generate any fees. In case two commission fac-

tors apply for selling and purchasing shares, say csell and cpurchase, one may use

c := (csell + cpurchase)/(1 + cpurchase) as a compound commission factor applying to

purchases only. This approach never underestimates the capital reducing effect

of transaction costs. Indeed, with 1 unit of money in a stock one can purchase

(1 − csell)/(1 + cpurchase) = 1 − c value in another stock or pay 1 − csell ≥ 1 − c

units of money into the account. Conversely, 1 unit of money in the bond can

purchase 1/(1 + cpurchase) ≥ 1− c value in a stock.

To see how investment actions are limited by transaction fees, consider a fixed

time instant i. Then the investor’s wealthWi is used to acquire a new portfolio,

given by an enhanced portfolio vector bi+1 := (bi+1,−1, ..., bi+1,m)
T , which now is

(m+ 2)-dimensional. Here

bi+1,−1 is the proportion of Wi needed to settle the transaction costs that arise

when the portfolio is restructured,

bi+1,0 is the proportion of Wi to be held in the bond and, as usual,

bi+1,j is the proportion of Wi to be held in stock j (j = 1, ..., m).

No short selling or consumption is considered, i.e.
∑m

j=−1 bi+1,j = 1 and bi+1,j ≥
0. Thus, the portfolio vector bi+1 chosen at time i becomes a member of the

simplex S := {b = (b−1, ..., bm)
T ∈ IRm+2|bj ≥ 0 for all j,

∑m
j=−1 bj = 1}.

Now, in the market period from time i− 1 to time i the investor’s wealth Wi−1

generated a value of (1 + r)bi,0Wi−1 in the bond and of Xi,jbi,jWi−1 in the jth

stock. An amount of bi,−1Wi−1 was used to settle transaction fees and is no
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longer available. The resulting wealth at time i becomes Wi = (1+ r)bi,0Wi−1+
∑m

j=1Xi,jbi,jWi−1, or equivalently

Wi

Wi−1
= (1 + r)bi,0 +

m
∑

j=1

Xi,jbi,j. (4.1.1)

Rebalancing the portfolio bi to bi+1 generates transaction costs of total amount

c
∑m

j=1(bi+1,jWi −Xi,jbi,jWi−1)
+ which are settled using the amount bi+1,−1Wi.

Hence the investor has to observe the self-financing condition

bi+1,−1Wi = c
m
∑

j=1

(bi+1,jWi −Xi,jbi,jWi−1)
+. (4.1.2)

Using (4.1.1), (4.1.2) is equivalent to

gc(bi, X̄i+1, bi+1) := bi+1,−1

(

(1 + r)bi,0 +
m
∑

k=1

Xi,kbi,k

)

−c
m
∑

j=1

(

bi+1,j

(

(1 + r)bi,0 +
m
∑

k=1

Xi,kbi,k

)

−Xi,jbi,j

)+

= 0. (4.1.3)

If x̄ is the matrix formed from the last d observed return vectors and s denotes

the last portfolio vector, we call the collection of all portfolios satisfying the

self-financing condition,

S(s, x̄) = {b ∈ S | gc(s, x̄, b) = 0}, (4.1.4)

the admissible set corresponding to (s, x̄) ∈ S × [A,B]dm. Note that for all

(s, x̄) ∈ S × [A,B]dm

a∗ := (0, 1, 0, ..., 0)T ∈ S(s, x̄), (4.1.4a)

i.e. there is always one option open to the investor: He can pay all his wealth

into the risk-free account at any time.

The investor can only follow non-anticipating portfolio strategies which comply

with the self-financing condition:

Definition 4.1.1. A sequence {bi}∞i=0 of random variables Ω → S is called

admissible portfolio strategy if for all i ∈ IN the following holds:

1. bi ∈ S(bi−1, X̄i) P-a.s.,
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2. bi is Fi-measurable and

3. b0 = a∗.

Condition 1 enforces that an admissible strategy never generates more transac-

tion fees than affordable. Because of condition 2, investment decisions require

no more information than currently available. Finally, condition 3 provides for

a standardized setting in so far as the investor’s wealth is accumulated in the

bond at the beginning of the investment process.

As we have seen, the pair (bi−1, X̄i) carries complete information about both, the

stochastic regime of the next market period (from the d-stage Markov property)

and about the admissible set (from the self-financing condition (4.1.3)). Hence,

at time i − 1, the investment decision may be taken by applying a so-called

portfolio selection function φ : S × [A,B]dm −→ S to the pair (bi−1, X̄i). This

approach wastes no information.

Definition 4.1.2. An admissible portfolio strategy {bi}∞i=0 is based on the

portfolio selection function φ : S × [A,B]dm −→ S if φ is measurable and,

for all i,

bi = φ(bi−1, X̄i) P− a.s..

We now move on to defining the investment goal. From the previous chapters

we know that the logarithmic utility function f : S × ([A,B]m)d −→ IR,

f(b, X̄i+1) = log
(

(0, 1 + r,XT
i )b
)

is the optimal choice for long-run and short-term investment targets alike (note

that the entry 0 in the first vector of the scalar product corresponds to the

amount of transaction costs which is lost). In this chapter we therefore assume

that the investor aims to choose an admissible strategy {bi}i such that, in the

long run, the expected mean utility E( 1n
∑n−1

i=0 f(bi, X̄i+1)) is larger than for any

other strategy based on some portfolio selection function. This is formalized by

inequality (4.2.4) below.

It should be pointed out that the process {Xi}i need not contain mere return

information, but may contain additional factors and side information in

some of its coordinates as well. – Provided of course that these occur in the
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form of a d-stage Markov process with continuous autoregression function and

that the joint vector of returns and factors satisfies V1, V2 and V3. The utility

function f then simply ignores the coordinates containing the factors and side

information.

4.2 An optimal strategy

For the rest of this chapter, assume that V1, V2 and V3 hold and that a (0, 1)-

valued sequence of discount factors {δi}∞i=1 is fixed for which

δi ↘ 0 monotonic decreasing as i → ∞,

iδi −→ ∞ as i→ ∞,

δi piecewise constant: δ1 = δ2, δ3 = δ4 = δ5, δ6 = ... = δ9, ...,

(δi − δi+1)/δ
2
i+1 ≤ 1 for all i ≥ 1. (4.2.1)

Then the following theorem gives an algorithm for optimal investment based on

the so-called Bellman equation. Using stationarity, let

m(b, x̄) := E[f(b, X̄i+1)|X̄i = x̄] = E[f(b, X̄d+1)|X̄d = x̄].

Theorem 4.2.1. Let hi ∈ C(S × [A,B]dm) be a solution of the Bellman equa-

tion

hi(s, x̄) = max
b∈S(s,x̄)

{

m(b, x̄) + (1− δi)E[hi(b, X̄d+1)|X̄d = x̄]
}

. (4.2.2)

With Vi(b, x̄) := m(b, x̄)+(1−δi)E[hi(b, X̄d+1)|X̄d = x̄] we obtain an admissible

portfolio strategy by

b∗0 := a∗

b∗i := arg max
b∈S(b∗i−1,X̄i)

Vi(b, X̄i). (4.2.3)

This strategy is optimal in the sense that for any portfolio strategy {bi}i based
on a portfolio selection function

lim inf
n→∞

(

1

n

n−1
∑

i=0

Ef(b∗i , X̄i+1)−
1

n

n−1
∑

i=0

Ef(bi, X̄i+1)

)

≥ 0. (4.2.4)

Before proving the theorem we make some remarks:
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1. (4.2.4) compares the mean utility of the investment schemes {b∗i}i and
{bi}i in the worst case (lim inf) that may occur for remote time horizon.

Hence, the result of Theorem 4.2.1 is a worst case analysis. The Bellman

equation (4.2.2) penalizes the “target” function m to obtain a target that

is adjusted to loss through transaction costs. It thus balances the need to

make as many transactions as needed, but, at the same time, as few as

possible.

2. The strategy b∗i is a generalization of the log-optimal strategy in Chapter 1.

If no transaction costs occur, then c = 0 and S(s, x̄) = {(0, b0, ..., bm)|bj ≥
0,
∑

j bj = 1} independent of s. Hence, hi(s, x̄) = hi(x̄), and b∗i =

argmaxb∈S(b∗i−1,X̄i)m(b, X̄i) coincides with the classical log-optimal strat-

egy.

3. In dynamic programming, a solution hi of the Bellman equation (4.2.2)

is frequently referred to as value function. The existence of a value

function for δi = 0 can be obtained under more restrictive extra conditions

such as a finite state space of the Markov chain and certain recurrence

properties of the transition matrix (Ross, 1970, Sec. 6.7 and Bertsekas,

1976, Sec. 8.1). To avoid these extra coditions we use a variant of the

so-called vanishing discount approach (Hernández-Lerma and Lasserre,

1996, Sec. 5.3 - 5.5) where solutions of the Bellman equation (4.2.2) are

produced for a sequence of discount factors δi → 0.

4. A sequence {δi}i satisfying the above conditions can be obtained recur-

sively by

d1 ∈ (0, 1) arbitrary, dk+1 :=
1

2

(

√

1 + 4dk − 1
)

and

δ1 = δ2 := d1

δ3 = δ4 = δ5 := d2

δ6 = δ7 = δ8 = δ9 := d3

δ10 = ....

Note that dk coverges monotonically decreasing to 0, that k(k+1)dk → ∞
(k → ∞) and that (dk − dk+1)/d

2
k+1 = 1.
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The Bellman equation is closely linked with the theory of Markov control pro-

cesses and stochastic dynamic programming (SDP). These have been applied to

financial mathematics since the 1960s, e.g. by Samuelson (1969), Merton (1969)

and Bertsekas (1976, Sec. 3.3). A good introduction to SDP and Markov control

can be found in Bertsekas (1976), Bertsekas and Shreve (1978), in Hernández-

Lerma and Lasserre (1996 and 1999) or in Bather (2000). Among recent appli-

cations to discrete-time finance we only mention Hernández-Lerma and Lasserre

(1996, Example 1.3.2) and Duffie (1988, Sec. III.19) – both contain more refer-

ences. It should be pointed out, however, that none of the classical models can

properly deal with the transaction cost problem we are dealing with. Before

giving details of the proof of Theorem 4.2.1, we should briefly comment on that.

4.2.1 Some comments on Markov control

In the terminology of Hernández-Lerma and Lasserre (1996 and 1999), a discrete-

time Markov-control process is a five-tuple (X,A, {A(x)|x ∈ X}, Q, c), with
state space X and a set A of control actions. {A(x)|x ∈ X} is a class of

nonempty sets A(x) ⊆ A, where A(x) contains the admissible control actions

in state x. xt denotes the state of the system at time t. Q is the transition

probability distribution Q(dy|x, a) = Pxt+1|xt=x,at=a(dy), i.e. the distribution of

xt+1 given the system is in state xt = x at time t and control action at = a is

taken. Finally, c is the one step cost function, c(x, a) being the cost incurred

when choosing control action a in state x.

One then seeks for a sequential choice of control actions ai ∈ A(xi) such as to

minimize

lim sup
n→∞

E
1

n

n−1
∑

i=0

c(xi, ai)

or maximize

lim inf
n→∞

E
1

n

n−1
∑

i=0

(−c)(xi, ai)

(−c thus becomes the utility function). Optimal strategies can be generated

from solutions (ρ∗, h) of the Bellman equation

ρ∗ + h(x) = min
a∈A(x)

{

c(x, a) +

∫

X

h(y)Q(dy|x, a)
}
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with ρ∗ ∈ IR and continuous function h. In order to solve this equation, ei-

ther appropriate boundedness and continuity properties of the solutions of the

discounted Bellman equation

ρ∗ + h(x) = min
a∈A(x)

{

c(x, a) + δ

∫

X

h(y)Q(dy|x, a)
}

(0 < δ < 1) are needed (Hernández-Lerma and Lasserre, 1996, Theorems 5.4.3

and 5.5.4) or recurrence and irreducibility conditions for the Markov chain with

the transition probability distribution Q (Ross, 1970, Cor. 6.20 or Bertsekas,

1976, Prop. 3). Typically, most research assumes the state space X to be count-

able and the additional existence of a state x∗ with Q(x∗|x, a) ≥ const. > 0 for

all x ∈ X, a ∈ A(x). Such conditions are hard to verify from market data and

–what is even worse– they are not satisfied for the control problem of portfolio

selection under transaction costs. Indeed, we have seen that the collection of

admissible actions (portfolio choices bi) at time i − 1 depends on the last d

observed return vectors as well as on the last chosen control bi−1. Therefore,

we have no other choice than to describe the state of the system by the joint

vector (bi−1, X̄i). Then the transition dynamics under control bi is given by

(bi−1, X̄i) 7−→ (bi, X̄i+1). We thus end up with a transition probability distribu-

tion Q that clearly does not satisfy the mentioned recurrence and irreducibility

conditions. This drawback was also noted by Bielecki, Hernández and Pliska

(2000). They observe that the typical conditions imposed to ensure the ex-

istence of a solution of the Bellman equation are to rigid to be applicable in

transaction cost problems. On the other hand they found it still possible to char-

acterize optimal strategies in terms of optimality equations which correspond

to the classical Bellman equation. This is supported by the earlier findings of

Stettner (1999) and our results.

4.2.2 Proof of Theorem 4.2.1

In this section we prove the main result, Theorem 4.2.1. The proof requires

several steps. We first have to show the existence of a solution of the Bellman

equation and investigate certain properties of the solution. We then have to

show that the strategy b∗i calculated by (4.2.3) consists of portfolio choices that

are admissible. In a third step we will derive a technical tool to approximate

admissible strategies based on a portfolio selection function by simpler periodic
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strategies (Lemma 4.2.6). It is only in the fourth step that, using the technical

tools derived before, we will completely prove Theorem 4.2.1.

1st step in the proof of Theorem 4.2.1: Solving the Bellman equation.

In dynamic programming, the Bellman equation usually takes the form

λ + h(s, x̄) = max
b∈S(s,x̄)

{

m(b, x̄) + (1− δ)E[h(b, X̄d+1)|X̄d = x̄]
}

, (4.2.5)

which is to be solved for h ∈ C(S × [A,B]dm) and λ ∈ IR (see e.g. Bertsekas,

1976, Sec. 8.1 or Hernández-Lerma and Lasserre, 1996, Sec. 5.2). We first de-

rive some basic facts about the existence of solutions and their properties. The

following proposition is well known from the theory of dynamic programming,

we nonetheless outline a proof.

Proposition 4.2.2. For all δ ∈ (0, 1) there exists a solution (h, λ) ∈ C(S ×
[A,B]dm) × IR and a solution (h, 0) ∈ C(S × [A,B]dm) × {0} of the Bellman

equation (4.2.5).

Proof. In the following let g ∈ C(S × [A,B]dm), λ ∈ IR. The seminorm

‖g‖ := max
(s,x̄)∈S×[A,B]dm

g(s, x̄)− min
(s,x̄)∈S×[A,B]dm

g(s, x̄)

on C(S × [A,B]dm) makes the factor space

C∗ := C(S × [A,B]dm)�{constant functions}

a Banach space with norm ‖[g]‖ := ‖g‖, where [g] := {g(·, ·)+r|r ∈ IR} denotes

the equivalence class of g ∈ C(S × [A,B]dm).

Indeed, K := {constant functions} is a closed subspace of the space (C(S ×
[A,B]dm, ‖ · ‖∞). Then (C(S × [A,B]dm)�K, ‖ · ‖∗) with

‖ · ‖∗ : C(S × [A,B]dm)�K −→ IR+
0 :

[f ] 7−→ ‖[f ]‖∗ := inf
k∈K

‖f + k‖∞ = inf
c∈IR

‖f + c‖∞

is a Banach space (Hirzebruch and Scharlau, 1996, Lemma 5.10). The norms

‖·‖∗ and ‖·‖ are equivalent on C(S×[A,B]dm)�K because of infc∈IR ‖f+c‖∞ =
1
2‖f‖.
Note that, V3 implies that for any g ∈ C(S × [A,B]dm), the conditional expec-

tation E[g(b, X̄d+1)|X̄d = x̄] is continuous in (b, x̄) ∈ S × [A,B]dm, and S(·, ·) is
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continuous in the sense of Aliprantis and Border (1999, Definition 16.2 and The-

orems 16.20, 16.21). Now, by Berge’s Maximum Theorem (Aliprantis and Bor-

der, 1999, Theorem 16.31), maxb∈S(s,x̄){m(b, x̄) + (1 − δ)E[g(b, X̄d+1)|X̄d = x̄]}
is continuous on S × [A,B]dm. Hence we can define the operator

M : C(S × [A,B]dm) −→ C(S × [A,B]dm) :

g(s, x̄) 7−→ max
b∈S(s,x̄)

{

m(b, x̄) + (1− δ)E[g(b, X̄d+1)|X̄d = x̄]
}

.

On C∗,M operates according toM [g] := [Mg], observe that the right hand side

is independent of the chosen representative of [g]. Solving (4.2.5) thus becomes

equivalent to solving the functional equation

M [h] = [h] (4.2.6)

in C∗. This can be accomplished by an application of Banach’s Fixed Point The-

orem. According to the Banach Fixed Point Theorem (Aliprantis und Border,

1999, Theorem 3.36), (4.2.6) can be solved using the iteration [h]n+1 := M [h]n
(value iteration), if onlyM is a contraction mapping. This will be shown in the

following, using standard techniques.

For functions g, h ∈ C(S × [A,B]dm) we have

(Mh)(s, x̄) = max
b∈S(s,x̄)

{

m(b, x̄) + (1− δ)E[h(b, X̄d+1)|X̄d = x̄]
}

= m(b∗, x̄) + (1− δ)E[h(b∗, X̄d+1)|X̄d = x̄],

(Mg)(s, x̄) = max
b∈S(s,x̄)

{

m(b, x̄) + (1− δ)E[g(b, X̄d+1)|X̄d = x̄]
}

≥ m(b∗, x̄) + (1− δ)E[g(b∗, X̄d+1)|X̄d = x̄]

for some b∗ ∈ S(s, x̄). Hence, writing max(s,x̄) instead of max(s,x̄)∈S×[A,B]dm,

(Mh)(s, x̄)− (Mg)(s, x̄) ≤ (1− δ)E[h(b∗, X̄d+1)− g(b∗, X̄d+1)|X̄d = x̄]

≤ (1− δ)max
(s,x̄)

(h(s, x̄)− g(s, x̄))

for all (s, x̄) ∈ S × [A,B]dm, which yields

max
(s,x̄)

((Mh)(s, x̄)− (Mg)(s, x̄)) ≤ (1− δ)max
(s,x̄)

(h(s, x̄)− g(s, x̄)) .

From this we find that

‖Mh−Mg‖ = max
(s,x̄)

((Mh)(s, x̄)− (Mg)(s, x̄))
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−min
(s,x̄)

((Mh)(s, x̄)− (Mg)(s, x̄))

= max
(s,x̄)

((Mh)(s, x̄)− (Mg)(s, x̄))

+max
(s,x̄)

((Mg)(s, x̄)− (Mh)(s, x̄))

≤ (1− δ)max
(s,x̄)

(h(s, x̄)− g(s, x̄))

+(1− δ)max
(s,x̄)

(g(s, x̄)− h(s, x̄))

= (1− δ)‖g − h‖

for 0 < 1−δ < 1, a contraction property that implies the existence of a solution

of (4.2.5).

Finally, let (h, λ) ∈ C(S × [A,B]dm)× IR be an arbitrary solution of (4.2.5),

λ+ h(s, x̄) = max
b∈S(s,x̄)

{

m(b, x̄) + (1− δ)E[h(b, X̄d+1)|X̄d = x̄]
}

.

This is equivalent to (c ∈ IR arbitrary)

(λ− δc)+ (h+ c)(s, x̄) = max
b∈S(s,x̄)

{

m(b, x̄) + (1− δ)E[(h+ c)(b, X̄d+1)|X̄d = x̄]
}

.

In particular, choosing c := λ/δ, for h̃ := h+ c, we obtain the relation

h̃(s, x̄) = (λ− δc) + h̃(s, x̄) = max
b∈S(s,x̄)

{

m(b, x̄) + (1− δ)E[h̃(b, X̄d+1)|X̄d = x̄]
}

,

and (h̃, 0) also solves the Bellman equation. 2

The next lemma gives some technical properties of arbitrary solutions (h, 0) of

the Bellman equation.

Lemma 4.2.3. Let {δi}i be a monotonic decreasing sequence with δi ∈ (0, 1)

and (δi − δi+1)/δ
2
i+1 ≤ 1. If (hi, 0) is a solution of the Bellman equation (4.2.5,

δ = δi), then

1. δi‖hi‖∞ ≤ ‖f‖∞.

2. ‖hi+1 − hi‖∞ ≤ ‖f‖∞.

3. Along any admissible portfolio sequence {bi}i we have

Ehi(bi−1, X̄i)− Ehi(bi, X̄i+1) ≥ −2‖f‖∞. (4.2.7)
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In particular, for all j,

Ehi(bi−1, X̄i)− Ehi(a
∗, X̄j)

= Ehi(bi−1, X̄i)− Ehi(a
∗, X̄i+1) ≥ −2‖f‖∞. (4.2.8)

Proof. 1. The Bellman equation (4.2.5) with λ = 0 implies that ‖f‖∞ + (1−
δi)‖hi‖∞ ≥ ‖hi‖∞, which can be rewritten as δi‖hi‖∞ ≤ ‖f‖∞.

2. Similarly as in the proof of Proposition 4.2.2,

hi(s, x̄) = max
b∈S(s,x̄)

{

m(b, x̄) + (1− δi)E[hi(b, X̄d+1)|X̄d = x̄]
}

= m(b∗, x̄) + (1− δi)E[hi(b
∗, X̄d+1)|X̄d = x̄],

hj(s, x̄) = max
b∈S(s,x̄)

{

m(b, x̄) + (1− δj)E[hj(b, X̄d+1)|X̄d = x̄]
}

≥ m(b∗, x̄) + (1− δj)E[hj(b
∗, X̄d+1)|X̄d = x̄]

for some b∗ ∈ S(s, x̄). Taking differences yields

hi(s, x̄)− hj(s, x̄)

≤ (1− δi)E[hi(b
∗, X̄d+1)|X̄d = x̄]− (1− δj)E[hj(b

∗, X̄d+1)|X̄d = x̄]

≤ max
(s,x̄)∈S×[A,B]dm

{(1− δi)hi(s, x̄)− (1− δj)hj(s, x̄)}

≤ (1− δi)‖hi − hj‖∞ + |δj − δi|‖hj‖∞
≤ max{1− δi, 1− δj}‖hi − hj‖∞ + |δj − δi|max{‖hi‖∞, ‖hj‖∞}.

The right hand side of this chain of inequalities remains the same when swapping

i and j, therefore

‖hi − hj‖∞ ≤ max{1− δi, 1− δj}‖hi − hj‖∞ + |δj − δi|max{‖hi‖∞, ‖hj‖∞}.

Using part 1 of the lemma, we conclude that

‖hi − hj‖∞ ≤ |δj − δi| ·max{‖hi‖∞, ‖hj‖∞}
1−max{1− δi, 1− δj}

≤ |δj − δi|
min{δi, δj}2

‖f‖∞.

Monotonicity of δi and the assumption (δi − δi+1)/δ
2
i+1 ≤ 1 allows us to infer

‖hi − hi+1‖∞ ≤ δi − δi+1

δ2i+1

‖f‖∞ ≤ ‖f‖∞.
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3. The relation (4.2.8) is a direct consequence of (4.2.7) because of the station-

arity of {Xi}i and a∗ ∈ S(bi−1, X̄i) being deterministic. To prove (4.2.7) observe

that the Bellman equation implies

hi(bi−1, X̄i) ≥ m(bi, X̄i) + (1− δi)E[hi(bi, X̄i+1)|X̄i],

and

Ehi(bi−1, X̄i)−Ehi(bi, X̄i+1) ≥ Em(bi, X̄i)−δiEhi(bi, X̄i+1) ≥ −‖f‖∞−δi‖hi‖∞.

Plugging in the result from part 1 of the lemma yields

Ehi(bi−1, X̄i)− Ehi(bi, X̄i+1) ≥ −2‖f‖∞,

and the proof is finished. 2

2nd step in the proof of Theorem 4.2.1: Admissibility of {b∗i}i.
We will show that the maximization problem (4.2.3) is solved by a measurable

solution procedure b∗i = φi(b
∗
i−1, X̄i) with suitable portfolio selection functions

φi. Thus {b∗i}i becomes an admissible strategy. The argument involves some

notions from set-valued analysis.

The admissible set S(s, x̄) for (s, x̄) ∈ S × [A,B]dm is a member of the family

C = C(S) of closed subsets of S. C is equipped with the σ-algebra generated

by families of the form FK := {A ∈ C(S)|A ∩ K 6= ∅} (K ranging over all

compact K ⊆ S) (Matheron, 1975, p. 27, or Molchanov, 1993, Chapter 1).

At time i − 1, an admissible strategy {bi}i picks some element of the random

set Si := S(bi−1, X̄i) = {b ∈ S|gc(bi−1, X̄i, b) = 0} ∈ C. Si is a so-called

random closed set (RACS), a measurable mapping C : Ω → C. bi itself is a

selector, a random variable Ω → S such that bi ∈ Si with probability 1. A

short introduction to RACS and selectors can be found in Hernández-Lerma

and Lasserre (1996, Appendix D) and Bertsekas and Shreve (1978, Sec. 7.5).

Si is compact. Thus the solution of the maximization problem (4.2.3) is the

random non-empty set

arg max
b∈S(bi−1,X̄i)

Vi(b, X̄i) :=

{

b ∈ S(bi−1, X̄i)

∣

∣

∣

∣

∣

Vi(b, X̄i) = sup
c∈S(bi−1,X̄i)

Vi(c, X̄i)

}

.

We need only show that this is a RACS for which a suitable selector exists:
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Lemma 4.2.4. The mapping

Ω → C : ω 7−→ arg max
b∈S(bi−1(ω),X̄i(ω))

Vi(b, X̄i(ω))

is a RACS for which a selector of the form φi(bi−1, X̄i) exists, with a measurable

function

φi : S × [A,B]dm −→ S.

From Lemma 4.2.4 it follows that the recurrence relation (4.2.3) is solved by

b∗0 := a∗, b∗i := φi(b
∗
i−1, X̄i).

In particular, b∗i is a selector for argmaxb∈S(bi−1,X̄i) Vi(b, X̄i), henceFi-measurable,

so that {b∗i}i constitutes an admissible strategy.

Proof of Lemma 4.2.4. The proof will be given in three steps. Fix some

i ∈ IN.

First note that S(·, ·) : S × [A,B]dm → C : (s, x̄) 7→ S(s, x̄) is a measurable

mapping, so that S(bi, X̄i+1) is a RACS: The continuity of gc implies that {b ∈
S|gc(s, x̄, b) = 0} is a closed subset of S. For the measurability of S(·, ·) we

need only show that for any compact K ⊆ S

S−1(FK) ∈ B(S × [A,B]dm),

with the σ-algebra B(S × [A,B]dm) of Borelian sets on S × [A,B]dm. To this

end, choose a countable dense subset K ′ of K. Using the continuity of gc again,

it is easily verified that

S−1(FK) =
⋂

n∈IN

⋃

k∈K′

{

(s, x̄)

∣

∣

∣

∣

|gc(s, x̄, k)| <
1

n

}

,

which implies the measurability of S−1(FK).

Secondly, we will see that α : C × [A,B]dm → C : (C, x̄) 7→ argmaxa∈C Vi(a, x̄)

is measurable. This combined with S(bi, X̄i+1) being a RACS yields that

arg max
b∈S(bi−1,X̄i)

Vi(b, X̄i)
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is itself a RACS. As to the measurability of α we consider C ∈ C and a compact

subset K of S. With

α−1(FK) =
⋂

n∈IN

⋃

k∈K′

{

(C, x̄)

∣

∣

∣

∣

sup
y∈C

Vi(y, x̄) ≤ Vi(k, x̄) +
1

n

}

,

it suffices to verify that each of the sets
{

(C, x̄)

∣

∣

∣

∣

sup
y∈C

Vi(y, x̄) ≤ c

}

(c ∈ IR)

is measurable. Indeed, if S′ is a countable dense subset of S, then
{

(C, x̄)

∣

∣

∣

∣

sup
y∈C

Vi(y, x̄) > c

}

= {(C, x̄)|∃y ∈ C ∩ S′ Vi(y, x̄) > c}

=
⋃

y∈S′

{(C, x̄)|y ∈ C, Vi(y, x̄) > c} =
⋃

y∈S′

({C|y ∈ C} × {x̄|Vi(y, x̄) > c})

=
⋃

y∈S′

(

F{y} × Vi(y, ·)−1(c,∞)
)

,

and the desired measurability follows.

Thirdly, we apply Theorem 7.33 in Bertsekas and Shreve (1978) (or Alipran-

tis and Border, 1999, Theorem 17.18). From there, for the closed set D :=

{(s, x̄, b)|b ∈ S(s, x̄)}, we can find a measurable function φi : {(s, x̄)|∃b :

(s, x̄, b) ∈ D} → S with

Vi(φi(s, x̄), x̄) = max
b∈{b|(s,x̄,b)∈D}

Vi(b, x̄).

Now, the proof is finished observing that {b|(s, x̄, b) ∈ D} = S(s, x̄), {(s, x̄) | ∃b :
(s, x̄, b) ∈ D} = S × [A,B]dm (because of a∗ ∈ S(s, x̄)). Thus

φi(bi−1, X̄i) ∈ arg max
b∈S(bi−1,X̄i)

Vi(b, X̄i)

with probability 1. 2

3rd step in the proof of Theorem 4.2.1: Approximation of strategies

that are based on portfolio selection functions.

For the analysis of the strategy b∗i it will be convenient to approximate strategies

based on portfolio selection functions by members of a smaller class of strategies

which we call “periodic” strategies:
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Definition 4.2.5. An admissible strategy {bi}i is called N-periodic (N ∈ IN)

if for all k ∈ IN0

bkN = a∗ P− a.s..

For any admissible strategy {bi}i and any ε > 0 we define

N({bi}i, ε) := min

{

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ef(bi, X̄i+1)− lim sup
n→∞

1

n

n
∑

i=1

Ef(bi, X̄i+1)

∣

∣

∣

∣

≤ ε

}

.

N({bi}i, ε) measures how long it takes the strategy {bi}i to approach the long-

term optimum for the first time up to an error of ε. Note that there is some

N ∈ IN such that
∣

∣

∣

∣

∣

1

N

N
∑

i=1

Ef(bi, X̄i+1)− lim sup
n→∞

1

n

n
∑

i=1

Ef(bi, X̄i+1)

∣

∣

∣

∣

∣

≤ ε,

so that N({bi}i, ε) < ∞. Using N({bi}i, ε) one can aproximate any strategy

based on a portfolio selection function arbitrarily closely by a periodic strategy

in the following sense:

Lemma 4.2.6. Let {bi}i be an admissible strategy based on a portfolio selection

function c. Then for any ε > 0 there exists an admissible N -periodic strategy

{b̃i}i (N ∈ IN) with

lim inf
n→∞

(

1

n

n−1
∑

i=0

Ef(b̃i, X̄i+1)−
1

n

n−1
∑

i=0

Ef(bi, X̄i+1)

)

≥ −ε.

Proof. Let N := N(({bi}i, ε), µn := 1
n

n−1
∑

i=0

Ef(bi, X̄i+1) and s := lim supn→∞ µn,

i.e.

|µN − s| ≤ ε. (4.2.9)

Considering the fact that, at any stage, the investor may choose the portfolio

a∗, we define an N -periodic admissible strategy b̃i by

b̃0 := a∗, b̃1 := c(a∗, X̄1), ..., b̃N−1 := c(b̃N−2, X̄N−1),

b̃N := a∗, b̃N+1 := c(a∗, X̄N+1), ..., b̃2N−1 := c(b̃2N−2, X̄2N−1),

b̃2N := a∗, etc. ... .
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In particular, b̃0 = b0, ..., b̃N−1 = bN−1. Hence, for all k ∈ IN0 (convention
1
0

∑−1
i=0 ... = 0):

µ̃kN :=
1

kN

kN−1
∑

i=0

Ef(b̃i, X̄i+1) =
1

k

k−1
∑

j=0

1

N

(j+1)N−1
∑

i=jN

Ef(b̃i, X̄i+1) =
1

k

k−1
∑

j=0

µN = µN .

(4.2.10)

This follows from the construction of b̃i with the selection function c. Indeed, the

matrix (b̃jN , ..., b̃(j+1)N−1, X̄jN+1, ..., X̄(j+1)N) is a function of (X̄jN+1, ..., X̄(j+1)N)

and as such is distributed as (b0, ..., bN−1, X̄1, ..., X̄N) which is used to calculate

µN (by stationarity).

(4.2.9) and (4.2.10) imply that for all k ∈ IN0: |µ̃kN − s| ≤ ε. Now, let bncN be

the largest kN(k ∈ IN) with kN ≤ n. Then

|µ̃n − s| =

∣

∣

∣

∣

∣

∣

bncN
n

(

µ̃bncN − s
)

+
1

n

n−1
∑

i=bncN
Ef(b̃i, X̄i+1) +

(bncN
n

− 1

)

s

∣

∣

∣

∣

∣

∣

≤ bncN
n

∣

∣µ̃bncN − s
∣

∣+
N − 1

n
‖f‖∞ +

n− bncN
n

|s|

≤ 1 · ε+ N − 1

n
‖f‖∞ +

N − 1

n
|s|,

where we used n− bncN ≤ N − 1. It follows that lim supn→∞ |µ̃n − s| ≤ ε and

finally that

lim inf
n→∞

(

1

n

n−1
∑

i=0

Ef(b̃i, X̄i+1)−
1

n

n−1
∑

i=0

Ef(bi, X̄i+1)

)

≥ lim inf
n→∞

µ̃n − lim sup
n→∞

µn

= lim inf
n→∞

µ̃n − s ≥ lim inf
n→∞

− |µ̃n − s| = − lim sup
n→∞

|µ̃n − s| ≥ −ε,

proving Lemma 4.2.6. 2

In the proof of Theorem 4.2.1, Lemma 4.2.6 will enable us to restrict ourselves

to the class of periodic strategies competing with {b∗i}i. These will turn out to

be much more tractable. We are now in the position to turn to the

4th step in the proof of Theorem 4.2.1: Finishing the proof of Theo-

rem 4.2.1.

Consider a given admissible strategy {bi}i based on a portfolio selection func-

tion. Let ε > 0 be arbitrary but fixed. According to Lemma 4.2.6 there exists
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an N := N({bi}i, ε)-periodic admissible strategy {b̃i}i with

lim inf
n→∞

(

1

n

n−1
∑

i=0

Ef(b̃i, X̄i+1)−
1

n

n−1
∑

i=0

Ef(bi, X̄i+1)

)

≥ −ε.

We will show that

lim inf
n→∞

(

1

n

n−1
∑

i=0

Ef(b∗i , X̄i+1)−
1

n

n−1
∑

i=0

Ef(b̃i, X̄i+1)

)

≥ 0. (4.2.11)

This yields

lim inf
n→∞

(

1

n

n−1
∑

i=0

Ef(b∗i , X̄i+1)−
1

n

n−1
∑

i=0

Ef(bi, X̄i+1)

)

≥ lim inf
n→∞

(

1

n

n−1
∑

i=0

Ef(b∗i , X̄i+1)−
1

n

n−1
∑

i=0

Ef(b̃i, X̄i+1)

)

+ lim inf
n→∞

(

1

n

n−1
∑

i=0

Ef(b̃i, X̄i+1)−
1

n

n−1
∑

i=0

Ef(bi, X̄i+1)

)

≥ −ε,

and the assertion follows from ε being arbitrary.

It remains to show (4.2.11). To this end, observe that by V2

Ef(bi, X̄i+1) = E
(

E[f(bi, X̄i+1)|Fi]
)

= E
(

E[f(b, X̄i+1)|Fi]|b=bi

)

= E
(

E[f(b, X̄i+1)|X̄i]|b=bi

)

= Em(bi, X̄i).

Replacing f by m does not alter the value of E( 1n
∑n−1

i=0 f(bi, X̄i+1)), the target

function, hence we may prove (4.2.11) in the form

lim inf
n→∞

(

1

n

n−1
∑

i=0

Em(b∗i , X̄i)−
1

n

n
∑

i=1

Em(b̃i, X̄i)

)

≥ 0.

First note that the Bellman equation implies that for all admissible strategies

{bi}i

(1− δi+1)E[hi+1(bi+1, X̄i+2)|Fi+1]

= m(bi+1, X̄i+1) + (1− δi+1)E[hi+1(bi+1, X̄i+2)|Fi+1]−m(bi+1, X̄i+1)

≤ max
b∈S(bi,X̄i+1)

{

m(b, X̄i+1) + (1− δi+1)E[hi+1(b, X̄i+2)|Fi+1]
}

−m(bi+1, X̄i+1)

= hi+1(bi, X̄i+1)−m(bi+1, X̄i+1).
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Taking expectations,

(1− δi+1)Ehi+1(bi+1, X̄i+2) = (1− δi+1)E
(

E[hi+1(bi+1, X̄i+2)|Fi+1]
)

≤ Ehi+1(bi, X̄i+1)− Em(bi+1, X̄i+1),

and summing up we are left with

E

(

1

n

n−2
∑

i=−1

m(bi+1, X̄i+1)

)

≤ −E

(

1

n

n−2
∑

i=−1

(

(1− δi+1)hi+1(bi+1, X̄i+2)− hi+1(bi, X̄i+1)
)

)

.

Equality holds for the strategy {b∗i}i, i.e.

E

(

1

n

n−1
∑

i=0

m(b∗i , X̄i)

)

− E

(

1

n

n−1
∑

i=0

m(b̃i, X̄i)

)

≥ E
1

n

n−2
∑

i=−1

(

hi+1(b̃i+1, X̄i+2)− hi+1(b̃i, X̄i+1)
)

−E
1

n

n−2
∑

i=−1

(

hi+1(b
∗
i+1, X̄i+2)− hi+1(b

∗
i , X̄i+1)

)

+E
1

n

n−1
∑

i=0

δi

(

hi(b
∗
i , X̄i+1)− hi(b̃i, X̄i+1)

)

=: A− B + C. (4.2.12)

We now investigate the asymptotic behaviour of the terms on the right hand

side.

The first and the second term A and B of (4.2.12) are of the same form and

tend to 0 as n → ∞ since

lim
n→∞

E
1

n

n−2
∑

i=−1

(

hi+1(bi+1, X̄i+2)− hi+1(bi, X̄i+1)
)

= 0

for any admissible strategy {bi}i. To prove this, we set h−1 := 0 and consider

the decomposition

1

n

n−2
∑

i=−1

(

hi+1(bi+1, X̄i+2)− hi+1(bi, X̄i+1)
)

= D + E
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into

D :=
1

n

n−2
∑

i=−1

(

hi+1(bi+1, X̄i+2)− hi(bi, X̄i+1)
)

and

E :=
1

n

n−2
∑

i=−1

(

hi(bi, X̄i+1)− hi+1(bi, X̄i+1)
)

.

D is a telescopic sum, and using part 1 of Lemma 4.2.3 and the assumptions

about {δi}i, we find that

|D| =

∣

∣

∣

∣

hn−1(bn−1, X̄n)− h−1(b−1, X̄0)

n

∣

∣

∣

∣

≤ ‖hn−1‖∞
n

≤ ‖f‖∞
δn−1n

→ 0.

As to E we note that δ1 = δ2, δ3 = δ4 = δ5, δ6 = ... = δ9, etc. implies that

h1 = h2, h3 = h4 = h5, h6 = ... = h9, ... . Hence there are at most
√
2n + 1 non-

zero differences in E. By virtue of Lemma 4.2.3 these are bounded in absolute

value by maxi ‖hi+1 − hi‖∞ ≤ ‖f‖∞, which yields

|E| ≤
√
2n + 1

n
‖f‖∞ −→ 0.

The third term C of (4.2.12) is decomposed into

E
1

n

n−1
∑

i=0

δi

(

hi(b
∗
i , X̄i+1)− hi(b̃i, X̄i+1)

)

= E
1

n

n−1
∑

i=0

δi
(

hi(b
∗
i , X̄i+1)− hi+1(b

∗
i , X̄i+1)

)

+E
1

n

n−1
∑

i=0

δi
(

hi+1(b
∗
i , X̄i+1)− hi+1(a

∗, X̄bicN+1)
)

+E
1

n

n−1
∑

i=0

δi
(

hi+1(a
∗, X̄bicN+1)− hbicN+1(a

∗, X̄bicN+1)
)

+E
1

n

n−1
∑

i=0

δi

(

hbicN+1(a
∗, X̄bicN+1)− hi(b̃i, X̄i+1)

)

The absolute value of the first expectation in the decomposition is bounded

from above by

1

n

n−1
∑

i=0

δi‖f‖∞ −→ 0 (n→ ∞)
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(Lemma 4.2.3, part 2). Using Lemma 4.2.3, (4.2.8), we can bound the second

expectation from below by

−2‖f‖∞
1

n

n−1
∑

i=0

δi −→ 0 (n→ ∞).

The third expectation has a lower bound

−‖f‖∞
1

n

n−1
∑

i=0

δi(i− bicN) ≥ −‖f‖∞(N − 1)
1

n

n−1
∑

i=0

δi −→ 0 (n→ ∞)

(Lemma 4.2.3, part 2). Therefore, we need only show that the fourth expecta-

tion satisfies

lim inf
n→∞

1

n

n−1
∑

i=0

δi

(

EhbicN+1(a
∗, X̄bicN+1)−Ehi(b̃i, X̄i+1)

)

≥ 0. (4.2.13)

This will be done exploiting the periodicity of {b̃i}i. In order to prove (4.2.13)

we first assume that n = kN with k ∈ IN0:

1

kN

kN−1
∑

i=0

δi

(

EhbicN+1(a
∗, X̄bicN+1)− Ehi(b̃i, X̄i+1)

)

=
1

k

k−1
∑

j=0

1

N

(j+1)N−1
∑

i=jN

δi

(

EhbicN+1(a
∗, X̄bicN+1)−Ehi(b̃i, X̄i+1)

)

.

Here, for i ∈ {jN, ..., (j + 1)N − 1}

EhbicN+1(a
∗, X̄bicN+1)−Ehi(b̃i, X̄i+1)

= EhjN+1(b̃jN , X̄jN+1)− EhjN+1(b̃jN+1, X̄jN+2)

+EhjN+1(b̃jN+1, X̄jN+2)−EhjN+2(b̃jN+1, X̄jN+2)

+EhjN+2(b̃jN+1, X̄jN+2)− EhjN+2(b̃jN+2, X̄jN+3)

+EhjN+2(b̃jN+2, X̄jN+3)−EhjN+3(b̃jN+2, X̄jN+3)

+EhjN+3(b̃jN+2, X̄jN+3)− EhjN+3(b̃jN+3, X̄jN+4)

+ ... − ...

+Ehi−1(b̃i−1, X̄i)−Ehi(b̃i−1, X̄i)

+Ehi(b̃i−1, X̄i)−Ehi(b̃i, X̄i+1)

≥ −2‖f‖∞(i− jN)− ‖f‖∞(i− jN − 1), (4.2.14)
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where the 1st, 3rd, etc. line after the equality (the non-indented terms) can be

bounded by (4.2.7), the 2nd, 4th, etc. term (the indented terms) by Lemma

4.2.3, part 2. Consequently,

EhbicN+1(a
∗, X̄bicN+1)− Ehi(b̃i, X̄i+1) ≥ −3‖f‖∞(i− jN)

and

1

kN

kN−1
∑

i=0

δi

(

EhbicN+1(a
∗, X̄bicN+1)− Ehi(b̃i, X̄i+1)

)

≥ −3‖f‖∞
k

k−1
∑

j=0

1

N

(j+1)N−1
∑

i=jN

δi(i− jN) ≥ −3‖f‖∞
k

k−1
∑

j=0

δjN
N

(j+1)N−1
∑

i=jN

(i− jN)

= −3‖f‖∞
(

1

k

k−1
∑

j=0

δjN

)(

1

N

N−1
∑

i=0

i

)

= −3‖f‖∞
(

1

k

k−1
∑

j=0

δjN

)

N − 1

2
. (4.2.15)

For arbitrary n ∈ IN (not necessarily n = kN), we find that

1

n

n−1
∑

i=0

δi

(

EhbicN+1(a
∗, X̄bicN+1)−Ehi(b̃i, X̄i+1)

)

=







bncN
n

· 1

bncN

bncN−1
∑

i=0

δi

(

EhbicN+1(a
∗, X̄bicN+1)− Ehi(b̃i, X̄i+1)

)







+







1

n

n−1
∑

i=bncN
δi

(

EhbicN+1(a
∗, X̄bicN+1)− Ehi(b̃i, X̄i+1)

)







. (4.2.16)

Set k := bn/Nc and bound the first bracket in (4.2.16) from below by

−bncN
n

· 3‖f‖∞(N − 1)

2

(

1

k

k−1
∑

j=0

δjN

)

−→ 0 (n→ ∞)

(use (4.2.15) and note that n→ ∞ implies k → ∞). The absolute value of the

second bracket is bounded from above by

1

n

n−1
∑

i=bncN
δi
(

‖hbicN+1‖∞ + ‖hi‖∞
)

≤ 1

n

n−1
∑

i=bncN

(

δbicN‖hbicN‖∞ + δbicN‖hbicN+1 − hbicN‖∞ + δi‖hi‖∞
)
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≤ 1

n

n−1
∑

i=bncN
3‖f‖∞ = 3‖f‖∞

n− bncN
n

≤ 3‖f‖∞
N − 1

n
−→ 0 (n→ ∞),

which concludes the proof. 2

4.3 Further properties of the value function

As a preparation for the next chapter, where we will be dealing with the case

when the distribution of the return process is unknown, we prove the following

result concerning the Lipschitz continuity of the value function hi:

Proposition 4.3.1. Let (hi, 0) be a solution of the Bellman equation (4.2.5)

for δ = δi (i = 1, 2, ...), then for sufficiently small commission factor c ≥ 0 there

exists a constant K > 0 such that

|δi · hi(b1, x̄)− δi · hi(b2, x̄)| ≤ K · ‖b1 − b2‖∞

for all b1, b2 ∈ S, all x̄ ∈ [A,B]dm and all i ∈ IN.

Proof. The argument requires some less known notions from analysis, espe-

cially Clarke’s generalized derivative for Lipschitz continuous functions (Clarke,

1981). Let W ⊆ IRd′ and Z ⊆ IRd′′ be Banach spaces (whose supremum-

norms are both denoted by ‖ · ‖∞). Given a Lipschitz continuous mapping

Φ : W × Z → IR, Clarke’s generalized derivative is defined as the convex hull

of a limit set,

∂wΦ(w, z) := conv
{

lim
i→∞

∇wi
Φ(wi, z)

∣

∣

∣
wi → w

}

,

where only those sequences wi are considered for which all gradients∇wi
Φ(wi, z)

and the limit limi→∞∇wi
Φ(wi, z) exist (note that the gradients exist almost

everywhere due to Rademacher’s Theorem). H(M1,M2) denotes the Hausdorff

distance between two subsets M1 and M2 of IR
d′, defined by

H(M1,M2) := max

{

sup
w2∈M2

ρ(w2,M1), sup
w1∈M1

ρ(w1,M2)

}

with ρ(w2,M1) := infw1∈M1
‖w1 − w2‖∞.
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We will also need the following proposition by Ledyaev (1984, Theorem 1)

concerning Lipschitz continuity of implicitly defined set-valued functions:

Proposition 4.3.2. (Ledyaev, 1984, Theorem 1) Let W ⊆ IRd′ and Z ⊆ IRd′′

be Banach spaces and Φ : W × Z −→ IR a mapping such that:

1. For all z ∈ Z the function Φ(·, z) is Lipschitz continuous.

2. There exists a constant L > 0 with

|Φ(w, z1)− Φ(w, z2)| ≤ L‖z1 − z2‖∞
for all w ∈ W, z1, z2 ∈ Z.

3. There exists a constant∆ such that for all (w, z) ∈ W×Z withΦ(w, z) > 0

inf
v∈∂wΦ(w,z)

‖v‖∞ > ∆.

Then the set-valued mapping M(z) := {w ∈ W |Φ(w, z) ≤ 0} satisfies the

Lipschitz property

H(M(z1),M(z2)) ≤
L

∆
‖z1 − z2‖∞.

Finally, we need the modulus of continuity, defined for any continuous function

g : S × [A,B]dm → IR as (x̄ ∈ [A,B]dm fixed)

ω

(

g(·, x̄), ε
)

:= sup
s,t∈S,‖s−t‖∞≤ε

∣

∣

∣

∣

g(s, x̄)− g(t, x̄)

∣

∣

∣

∣

.

Combining the Hausdorff distance and the modulus of continuity it is easily

seen that
∣

∣

∣

∣

max
b∈S(s,x̄)

g(b, x̄)− max
b∈S(t,x̄)

g(b, x̄)

∣

∣

∣

∣

≤ ω

(

g(·, x̄), H(S(s, x̄), S(t, x̄))

)

. (4.3.1)

Thus, having all the tools we need at hand, we can embark on the proof of

Proposition 4.3.1.

Let b = (b−1, ..., bm) ∈ S, x̄ = (x1, ..., xm) ∈ [A,B]dm. For fixed x̄ we set

Φ : S × S → IR : (b, s) 7→ Φ(b, s) := |gc(s, x̄, b)|, recall gc from (4.1.3). Clearly,

Φ is Lipschitz continuous in the first argument. Moreover,

|Φ(b, s)− Φ(b, t)| ≤ |gc(s, x̄, b)− gc(t, x̄, b)| ≤ c · const(r, B,m) · ‖s− t‖∞
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(to see this, note that the self-financing condition forces b−1 ≤ c). Taking the

gradient for gc (under Φ(b, s) > 0) yields

∂bΦ(b, s) ⊆
(

{1} × {0} × [0, c]m
)

·
(

(1 + r)b0 +

m
∑

k=1

xkbk

)

,

so that

inf
v∈∂bΦ(b,s)

‖v‖∞ ≥ (1 + r)b0 +
m
∑

k=1

xkbk

≥ min{1 + r, A}(1− b−1) ≥ const(r, A)(1− c).

As a consequence, the conditions of Propositon 4.3.2 are fulfilled. We can choose

∆ := const(r, A) · (1− c) and L := c · const(r, B,m) to obtain

H(S(s, x̄), S(t, x̄)) ≤ L

∆
‖s− t‖∞. (4.3.2)

For c sufficiently small, L/∆ ≤ 1. Recall the function

Vi(b, x̄) = m(b, x̄) + (1− δi)E[hi(b, X̄d+1)|X̄d = x̄]

that defined hi in (4.2.2). The Bellman equation yields

∣

∣

∣

∣

hi(s, x̄)− hi(t, x̄)

∣

∣

∣

∣

=

∣

∣

∣

∣

max
b∈S(s,x̄)

Vi(b, x̄)− max
b∈S(t,x̄)

Vi(b, x̄)

∣

∣

∣

∣

≤ ω

(

Vi(·, x̄), ‖s− t‖∞
)

by (4.3.1) and (4.3.2). Hence,

ω

(

hi(·, x̄), ε
)

≤ ω

(

Vi(·, x̄), ε
)

≤ ω

(

f(·, x̄), ε
)

+ (1− δi)ω

(

hi(·, x̄), ε
)

.

The Lipschitz property of f yields ω

(

f(·, x̄), ε
)

≤ const. · ε and from the latter

chain of inequalities we obtain

ω

(

hi(·, x̄), ε
)

≤ const.

δi
· ε.

Thus δi · hi(·, x̄) is Lipschitz continuous with the same Lipschitz constant as f

(independent of x̄), and the proof is finished. 2
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CHAPTER 5

A Markov model with transaction costs:
statistical view

Chapter 4 completely remained within the probabilistic framework, i.e. the

point of view of an investor with full knowledge of the underlying return dis-

tribution. This, of course, is highly unrealistic. In practice, the investor’s view

is one of a statistician rather than a probabilist. From observations of stock

returns, factors and side information, he assembles a market “picture”, an idea

of the stochastic laws of the market. He then decides on an investment strat-

egy. In the following it will be shown how he can balance the need to avoid

transaction costs and the need to boost his wealth in his investment decisions

– without knowing the underlying return distribution. The model is the same

as in Chapter 4.

In particular, Section 5.1 sets up an empirical counterpart of the Bellman equa-

tion which we used in Theorem 4.2.1 to construct an optimal strategy. Based

on this empirical version of the Bellman equation we construct a portfolio se-

lection algorithm in Section 5.1.1 (cf. (5.1.5)). This algorithm has virtually

the same optimality properties as the algorithm in Chapter 4 (Theorems 5.1.1

and 5.1.2). To verify this, we need results on uniformly consistent regression

estimation which will be given in Section 5.2, Theorem 5.2.1 and Corollary

5.2.2 being the central results featuring the speed of uniform convergence of

kernel regression estimates. Section 5.3 finally gives the proof of the optimality

properties of the algorithm.

5.1 The empirical Bellman equation

The whole procedure described in the last chapter was founded on the Bellman
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equation. In particular, in Theorem 4.2.1, we used the Bellman equation

λi + hi(s, x̄) = max
b∈S(s,x̄)

{

m(b, x̄) + (1− δi)E[hi(b, X̄d+1)|X̄d = x̄]
}

, (5.1.1)

λi ∈ IR, hi ∈ C(S × [A,B]dm), to construct an optimal investment strategy in

a stationary d-stage Markov process {Xi}∞i=−d+1 of return vectors in a financial

market. Here,

m(b, x̄) := E[f(b, X̄i+1)|X̄i = x̄] = E[f(b, X̄d+1)|X̄d = x̄],

f being the (logarithmic) utility function and S(s, x̄) being the set of admissible

portfolio vectors when x̄ denotes the last d observed return vectors and s the

last chosen portfolio. The Bellman equation was solved by a value iteration

type of algorithm in Chapter 4, which crucially relies on the distribution of

the stationary process {X̄i}i. This distribution, in general, is unknown to the

investor. Nonetheless he may try to estimate a solution of the Bellman equation.

A natural way to obtain an estimated solution is to replace the conditional

expectations E[hi(b, X̄d+1)|X̄d = x̄] and m(b, x̄) in (5.1.1) by kernel estimates

i−1
∑

j=−d+1

hi(b, X̄j+1) ·
K

(

(x̄− X̄j)/wi

)

i−1
∑

k=−d+1

K

(

(x̄− X̄k)/wi

)

and

i−1
∑

j=−d+1

f(b, X̄j+1) ·
K

(

(x̄− X̄j)/wi

)

i−1
∑

k=−d+1

K

(

(x̄− X̄k)/wi

),

respectively. K is a bounded, Lipschitz continuous kernel function [A,B]dm −→
IR+

0 with
∫

IRdm K(x)dx = 1 and
∫

IRdm K(x)‖x‖∞dx < ∞. As we shall see,

the bandwidths can be chosen as wi ∼ i−1/(dm+2). For simplicity, we us the

shorthand notation

Ki(X̄j, x̄) :=

K

(

(x̄− X̄j)/wi

)

i−1
∑

k=−d+1

K

(

(x̄− X̄k)/wi

) with wi ∼ i−1/(dm+2).
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We thus obtain what we call the empirical Bellman equation,

λ̂i + ĥi(s, x̄) = max
b∈S(s,x̄)







i−1
∑

j=−d+1

(

f(b, X̄j+1) + (1− δi)ĥi(b, X̄j+1)
)

Ki(X̄j, x̄)







,

(5.1.2)

which is to be solved for λ̂i ∈ IR, ĥi ∈ C(S × [A,B]dm).

5.1.1 An optimal strategy

If we set up an investment strategy as in Theorem 4.2.1, however, using the

empirical Bellman equation instead of the original Bellman equation (4.2.2),

two questions arise: Is there a solution to the empirical Bellman equation and

if so, is the corresponding strategy optimal?

We first tackle the existence of solutions of (5.1.2). Using the fact thatKi(X̄j, x̄)

is a continuous function of x̄ and appealing to Berge’s Maximum Theorem

(Aliprantis and Border, 1999, Theorem 16.31) again, we can define an operator

M̂i by

M̂i : C(S × [A,B]dm) −→ C(S × [A,B]dm) :

h 7−→ max
b∈S(s,x̄)







i−1
∑

j=−d+1

(

f(b, X̄j+1) + (1− δi)h(b, X̄j+1)
)

Ki(X̄j, x̄)







.

M̂i is the empirical counterpart of the operator M in the proof of Proposition

4.2.2. Because of
i−1
∑

j=−d+1

Ki(X̄j, x̄) = 1, (5.1.3)

M̂i operates on C(S × [A,B]dm)/{constant functions} according to M̂i[h] :=

[M̂ih]. Now, arguing similarly as in the proof of Proposition 4.2.2, we find that

M̂i is a contraction mapping in the norm ‖g‖ := max g − min g. Indeed, for

functions g, h ∈ C(S × [A,B]dm) there exists a b∗ ∈ S(s, x̄) with

(M̂ih)(s, x̄) =

i−1
∑

j=−d+1

(

f(b∗, X̄j+1) + (1− δi)h(b
∗, X̄j+1)

)

Ki(X̄j, x̄),

(M̂ig)(s, x̄) ≥
i−1
∑

j=−d+1

(

f(b∗, X̄j+1) + (1− δi)g(b
∗, X̄j+1)

)

Ki(X̄j, x̄).
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Using (5.1.3), this implies

(M̂ih)(s, x̄)− (M̂ig)(s, x̄)

≤ (1− δi)

i−1
∑

j=−d+1

(

h(b∗, X̄j+1)− g(b∗, X̄j+1)
)

Ki(X̄j, x̄) ≤ (1− δi)‖h− g‖∞.

Starting from here, one can argue exactly as in the proof of Proposition 4.2.2

to obtain ‖M̂ih − M̂ig‖ ≤ (1 − δi)‖h − g‖. Hence there exists a solution ĥi, λ̂i
of the empirical Bellman equation. Due to (5.1.3) this can be normalized to

ĥi(s, x̄) = max
b∈S(s,x̄)







i−1
∑

j=−d+1

(

f(b, X̄j+1) + (1− δi)ĥi(b, X̄j+1)
)

Ki(X̄j, x̄)







.

(5.1.4)

In the sequel, ĥi denotes a solution of (5.1.4).

We are now in a position to define the strategy which will turn out to have the

same optimality properties as the strategy in Chapter 4. On the analogy of

(4.2.3) the investor follows the strategy

b̂0 := a∗ and b̂i := arg max
b∈S(b̂i−1,X̄i)

V̂i(b, X̄i) (5.1.5)

with

V̂i(b, x̄) :=

i−1
∑

j=−d+1

(

f(b, X̄j+1) + (1− δi)ĥi(b, X̄j+1)
)

Ki(X̄j, x̄).

Observe that, in contrast to b∗i from Chapter 4, this strategy can be constructed

using observed data only, we need not know the underlying distribution of the

return process.

The important feature is: This strategy is still optimal if the kernel estimates

work sufficiently well. A sufficient condition is given in the following theorem.

Theorem 5.1.1. Under the assumptions of Theorem 4.2.1, let hi be the

solutions of the Bellman equation (5.1.1, λi = 0) and define the class G :=

{δi · hi, δi · f |i = 1, 2, ...}.
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Then

lim
i→∞

1

δ2i+1

sup
g∈G

E sup
b∈S,x̄∈[A,B]dm

∣

∣

∣

∣

i
∑

j=−d+1

g(b, X̄j+1)Ki+1(X̄j, x̄) (5.1.6)

−E[g(b, X̄i+2)|X̄i+1 = x̄]

∣

∣

∣

∣

= 0

implies that

lim inf
n→∞

(

1

n

n−1
∑

i=0

Ef(b̂i, X̄i+1)−
1

n

n−1
∑

i=0

Ef(bi, X̄i+1)

)

≥ 0 (5.1.7)

for any admissible strategy {bi}i based on a portfolio selection function.

This theorem translates the investment problem into a regression estimation

problem. Of course, it is desirable to have practical sufficient conditions for the

assumptions of Theorem 5.1.1 to hold. As we shall see, choosing δi ≥ 1/ log i

suffices, for example we may choose δ1 = δ2 := d1, δ3 = δ4 = δ5 := d2, etc. with

di ∼ 1/ log i (cf. Theorem 5.1.2 below).

In the following, a stochastic process {Xi}∞i=−∞ is called a stationary GSM-

process (geometrically strongly mixing), if beyond stationarity the follow-

ing holds: There exist constants c > 0 and ρ ∈ [0, 1) such that the α-mixing

coefficients

α(k) := α(σ(Xi, i ≤ 0), σ(Xi, i ≥ k)) := sup
B∈σ(Xi,i≤0)

C∈σ(Xi,i≥k)

|P(B ∩ C)−P(B)P(C)|

satisfy

α(k) ≤ c · ρk (k ≥ 1).

The behaviour of the α-mixing coefficients α(k) mirrors how fast dependency

in the process variables decays for large time lags k. Under mild assumptions,

the class of GSM-processes comprises linear processes (Bosq, 1996, Sec. 1.3,

2.3), polynomial AR-processes (Doukhan, 1994, Sec. 2.4.1, Th. 5) such as

ARMA-processes (Doukhan, 1994, Sec. 2.4.1.2, Th. 6, Cor. 3), and Doeblin-

or Harris-recurrent Markov chains (Doukhan, 1994, Sec. 2.4, Th. 1 and 3).

Theorem 5.1.2. The assumptions of Theorem 5.1.1 are fulfilled if the following

hold:
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1. {Xi}∞i=−d+1 is a stationary [A,B]m-valued d-stage Markov process (cf. V1-

V3 in Section 4.1) and geometrically strongly mixing.

2. There exist densities fX̄0
and fX0|X̄0

of the distributions PX̄0
and PX0|X̄0

,

respectively, such that

– fX̄0
is Lipschitz continuous, i.e., for some C > 0,

|fX̄0
(x̄)− fX̄0

(ȳ)| ≤ C‖x̄− ȳ‖∞ for all x̄, ȳ ∈ [A,B]dm,

– the level sets {x̄ : fX̄0
(x̄) ≥ 1/n} of fX̄0

satisfy

H(supp fX̄0
, {x̄ : fX̄0

(x̄) ≥ 1/n}) ≤ n−k

for some k > 0, H denoting the Hausdorff distance (cf. Section 4.3),

– fX0|X̄0
is Lipschitz continuous such that for some C > 0,

|fX0|X̄0
(x, x̄)− fX0|X̄0

(x, ȳ)| ≤ C‖x̄− ȳ‖∞

for all x ∈ [A,B]m, x̄, ȳ ∈ [A,B]dm.

3. The commission factor c ist sufficiently small.

4. δi ≥ 1/ log i satisfies (4.2.1).

Hence, under the (not too restrictive) conditions of Theorem 5.1.2 we are able

to construct an admissible strategy {b̂i}i that is superior to any other admissible

strategy {bi}i based on a portfolio selection function in the sense of

lim inf
n→∞

(

1

n

n−1
∑

i=0

Ef(b̂i, X̄i+1)−
1

n

n−1
∑

i=0

Ef(bi, X̄i+1)

)

≥ 0.

It should be stressed again that this is a conservative, i.e. worst case analysis,

the lim inf giving the worst possible performance of our strategy {b̂i}i.
Remark. There are a number of sufficient conditions for {Xi}i to be a station-

ary GSM-process (see, e.g., Doukhan, 1994). For example, the GSM property

holds if there exists a continuous function r : [A,B]m → IR+
0 with

fX0|X̄0
(x0|x̄0) ≥ r(x0)
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for all x̄0 ∈ [A,B]dm, x0 ∈ [A,B]m and

∫

[A,B]m
r(x0)dx0 > 0.

To verify this, one may use the Doeblin condition in Theorem 1 of Doukhan

(1994, Sec. 2.4): The transition probabilities of the d-stage Markov process

{Xi}i are
P(x̄0, C) =

∫

C

fX0|X̄0
(x0|x̄0)dx0

for x̄0 ∈ [A,B]dm, C ∈ B([A,B]m). In particular, with the measure µ := r · λ (λ

denoting the Lebesgue-Borel-measure on [A,B]m),

P(x̄0, C) ≥
∫

C

r(x0)dx0 = µ(C)

and

µ([A,B]m) =

∫

[A,B]m
r(x0)dx0 ∈ (0, 1].

Under these circumstances, the cited theorem of Doukhan (1994) allows us to

conclude that {Xi}i is a GSM-process.

5.1.2 How to prove optimality

Before we actually prove the main results, Theorems 5.1.1 and 5.1.2, we sketch

the way in which we are going to proceed. Before we can start with the proof,

we need to establish some results on uniformly consistent regression estimation.

This will be done in the next section. Once having got results on the speed of

uniform almost sure convergence we can embark on the core of the proof of the

theorems in Section 5.3. There, we argue along the lines of the corresponding

results in Chapter 4, using uniform consistency results to pass from the solu-

tion of the empirical Bellman equation to the solution of the original Bellman

equation.

5.2 Uniformly consistent regression estimation

We start with the following curve estimation problem. Given dataX0, X1, ..., Xn
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from a stationary IRd-valued stochastic process {Xi}∞i=−∞ and a function g :

S × IRd −→ IR (S ⊆ IRd′ compact), the objective is to estimate both, the

function

φ(g, b, x) := E[g(b,X1)|X0 = x] · fX0
(x)

as well as the regression function

R(g, b, x) := E[g(b,X1)|X0 = x].

The first will be estimated uniformly in b ∈ S and x ∈ IRd by the kernel estimate

Zn(g, b, x) :=
1

nwd
n

n−1
∑

i=0

g(b,Xi+1)K

(

x−Xi

wn

)

, (5.2.1)

the latter by

Rn(g, b, x) :=
Zn(g, b, x)

Zn(1, b, x)
.

K : IRd −→ IR+
0 is assumed to be a fixed bounded, Lipschitz continuous kernel

function with
∫

IRd K(x)dx = 1 and
∫

IRd K(x)‖x‖∞dx < ∞. wn ∈ IR+ is a

sequence of bandwidths to be chosen later (such that limn→∞wn = 0). 1 denotes

the constant function (b, x) 7→ 1. Note that Zn(1, b, x) is an estimate of the

density fX0
(x).

Bosq (1996, Theorems 2.2, 3.3, 3.3) derives rates for the uniform almost sure

convergence of Zn(1, b, x) and Zn(g, b, x) for a fixed g in stationary GSM-

processes. Now, the following theorem generalizes the results of Bosq such

as to feature the rate of convergence of the expected ‖ · ‖∞-error of the es-

timate (5.2.1) in GSM-processes uniformly over a huge class of functions g.

For this, we agree on the following notation: F is the class of sequences

{c ns logt n}n∈IN (c > 0, s > 0, t ∈ IR or c > 0, s = 0, t > 1). For any set

X ⊆ IRd we denote the ‖ · ‖∞-diameter of X by diam(X ) := supx,y∈X ‖x− y‖∞.

fX0
is a density of X0, fX1|X0

a density of the conditional distribution PX1|X0
.

For the estimation of φ, we will prove the

Theorem 5.2.1. Let {Xi}∞i=0 be a stationary GSM-process of IRd-valued ran-

dom variables with a Lipschitz continuous density fX0
. Moreover, let G be a

class of functions g : S × IRd −→ IR (S ⊆ IRd′ compact) with the follow-

ing property: There exists a constant C > 0 such that for all g ∈ G and all
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a, b ∈ S, x, y ∈ IRd

‖g‖∞ ≤ C, (5.2.2)
∫

IRd

|g(a, x)|dx ≤ C, (5.2.3)

|g(a, x)− g(b, x)| ≤ C · ‖a− b‖∞, (5.2.4)

|E[g(b,X1)|X0 = x]− E[g(b,X1)|X0 = y]| ≤ C · ‖x− y‖∞. (5.2.5)

Furthermore, choose wn := n−1/(d+2). Then

sup
g∈G

E sup
x∈Xn,b∈S

|Zn(g, b, x)− φ(g, b, x)| = o

(

logβ n

n1/(d+2)

)

for any β > 1 and any sequence Xn ⊆ IRd with diam(Xn) ∈ F .

Now, if the support of fX0
, supp fX0

= {x : fX0
(x) > 0}, is a compact subset

of IRd, the theorem may be used to derive the following result concerning the

estimation of the regression function R. Recall that H denotes the Hausdorff

distance (cf. Section 4.3).

Corollary 5.2.2. Under the assumptions of Theorem 5.2.1, if fX0
has compact

support and the level sets

Xn :=

{

x : fX0
(x) ≥ 1

n

}

(5.2.6)

satisfy

H (suppfX0
,Xn) ≤

const.

nk
(0 < k ≤ ∞), (5.2.7)

then

sup
g∈G

E sup
x∈suppfX0

,b∈S
|Rn(g, b, x)− R(g, b, x)| = O

(

logβ n

nk/((d+2)(k+1))

)

for any β > 1.

Remark. The additional assumption (5.2.7) is not too restrictive. In partic-

ular, if infx∈X f(x) ≥ const. > 0, we can chose k = ∞ to obtain the “optimal”
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rate

sup
g∈G

E sup
x∈suppfX0

,b∈S
|Rn(g, b, x)−R(g, b, x)| = O

(

logβ n

n1/(d+2)

)

for any β > 1 (for the optimality of rates see, e.g., Györfi et al., 2002).

The proofs of Theorems 5.2.1 and Corollary 5.2.2 refine arguments used in the

proofs of Theorems 2.2 and 3.2 in Bosq (1996). We first give the

Proof of Theorem 5.2.1. We write supx,b instead of supx∈Xn,b∈S.The estima-

tion error can be decomposed into stochastic and deterministic error,

sup
x,b

|Zn(g, b, x)− φ(g, b, x)|

≤ sup
x,b

|Zn(g, b, x)−EZn(g, b, x)|+ sup
x,b

|EZn(g, b, x)− φ(g, b, x)|.

1st step: Analysis of the deterministic error sup |EZn − φ|.
Write EZn(g, b, x) as

EZn(g, b, x) =
1

nwd
n

n−1
∑

i=0

∫

IRd

E

[

g(b,Xi+1)K

(

x−Xi

wn

) ∣

∣

∣

∣

Xi = y

]

· fXi
(y)dy

=

∫

IRd

φ(g, b, x− zwn)K(z)dz,

so that, with
∫

K(z)dz = 1,

sup
x,b

|EZn(g, b, x)− φ(g, b, x)| ≤ sup
x,b

∫

IRd

|φ(g, b, x− zwn)− φ(g, b, x)|K(z)dz.

The integrand is bounded by

|φ(g, b, x− zwn)− φ(g, b, x)|

≤
∣

∣

∣

∣

E[g(b,X1)|X0 = x− zwn]− E[g(b,X1)|X0 = x]

∣

∣

∣

∣

· fX0
(x− zwn)

+

∣

∣

∣

∣

fX0
(x− zwn)− fX0

(x)

∣

∣

∣

∣

·E
[

|g(b,X1)|
∣

∣

∣

∣

X0 = x

]

(5.2.8)

≤ const. · ‖z‖∞wn,

where we have used (5.2.2) - (5.2.5). By assumption, the integral
∫

K(z)‖z‖∞dz
is finite, which yields

sup
x,b

|EZn(g, b, x)− φ(g, b, x)| ≤ const. · wn. (5.2.9)
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Note that the constant only depends on K, fX0
and on C in (5.2.2) - (5.2.5),

not however on the specific g ∈ G under consideration.

2nd step: Analysis of the deterministic error sup |Zn − EZn|.
We first cover Xn by dνned (νn ≥ 1) cubes

C(j, n) :=

{

x

∣

∣

∣

∣

‖x− xj,n‖∞ ≤ diam(Xn)

2 · dνne

}

with side lengths diam(Xn)/dνne and centres xj,n (j = 1, ..., dνned). Analogously,
S is covered by dνned′ cubes

S(k, n) :=

{

b ∈ S

∣

∣

∣

∣

‖b− bk,n‖∞ ≤ diam(S)

2 · dνne

}

(k = 1, ..., dνned′). From this,

sup
x,b

|Zn(g, b, x)−EZn(g, b, x)| = sup
j,k

sup
x∈C(j,n),b∈S(k,n)

|Zn(g, b, x)− EZn(g, b, x)|

≤ sup
j,k

|Zn(g, bk,n, xj,n)− EZn(g, bk,n, xj,n)|

+sup
j,k

sup
x∈C(j,n),b∈S(k,n)

|Zn(g, b, x)− Zn(g, bk,n, xj,n)|

+sup
j,k

sup
x∈C(j,n),b∈S(k,n)

|EZn(g, b, x)− EZn(g, bk,n, xj,n)|.

On the other hand, using (5.2.2) - (5.2.4),

|Zn(g, b, x)− Zn(g, bk,n, xj,n)|

≤ 1

nwd
n

n−1
∑

i=0

∣

∣

∣

∣

g(b,Xi+1)− g(bk,n, Xi+1)

∣

∣

∣

∣

·K
(

x−Xi

wn

)

+
1

nwd
n

n−1
∑

i=0

|g(bk,n, Xi+1)| ·
∣

∣

∣

∣

K

(

x−Xi

wn

)

−K

(

xj,n −Xi

wn

)∣

∣

∣

∣

≤ const. · 1

wd
n

· ‖b− bk,n‖∞ + const. · 1

wd
n

· ‖x− xj,n‖∞
wn

≤ const. · max(diam(Xn), diam(S))

wd+1
n νn

,

where without loss of generality we have assumed that wn ≤ 1. Again, the

constant does not depend on b ∈ S, x ∈ IRd and g ∈ G.
Using the same argument, we find that

|EZn(g, b, x)−EZn(g, bk,n, xj,n)| ≤ const. · max(diam(Xn), diam(S))

wd+1
n νn

,
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and hence

sup
x,b

|Zn(g, b, x)− EZn(g, b, x)|

≤ sup
j,k

|Zn(g, bk,n, xj,n)−EZn(g, bk,n, xj,n)|

+2 · const. · max(diam(Xn), diam(S))

wd+1
n νn

.

This result yields (0 < rn → ∞ will represent the desired rate of convergence

at a later stage)

rn · E sup
x,b

|Zn(g, b, x)−EZn(g, b, x)|

≤ E

(

rn · sup
j,k

|Zn(g, bk,n, xj,n)−EZn(g, bk,n, xj,n)|
)

+2 · const. · rn ·
max(diam(Xn), diam(S))

wd+1
n νn

=

2‖g‖∞‖K‖∞rn/w
d
n

∫

0

P

(

sup
j,k

|Zn(g, bk,n, xj,n)−EZn(g, bk,n, xj,n)| >
ε

rn

)

dε

+2 · const. · rn ·
max(diam(Xn), diam(S))

wd+1
n νn

≤ µ+
∑

j,k

2‖g‖∞‖K‖∞rn/w
d
n

∫

µ

P

(

|Zn(g, bk,n, xj,n)−EZn(g, bk,n, xj,n)| >
ε

rn

)

dε

+2 · const. · rn ·
max(diam(Xn), diam(S))

wd+1
n νn

, (5.2.10)

where µ > 0 is arbitrary.

3rd step: Combining the results of step 1 and step 2.

Assume for the moment that

P

(

|Zn(g, bk,n, xj,n)− EZn(g, bk,n, xj,n)| >
ε

rn

)

has an upper bound p
(1)
n (ε)+p

(2)
n (ε) independent of g, b and x with the following

four properties:

1. We have ∞
∫

µ

p(1)n (ε)dε <∞. (5.2.11)
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2. For all ε > 0:

lim
n→∞

(νn + 1)d+d′p(1)n (ε) = 0. (5.2.12)

3. For all µ > 0 there exists a N(µ) ∈ IN such that for all ε ≥ µ we have

that

(νn + 1)d+d′p(1)n (ε) is monotonic decreasing for n ≥ N(µ). (5.2.13)

4. We have

lim
n→∞

(νn + 1)d+d′

2‖g‖∞‖K‖∞rn/w
d
n

∫

µ

p(2)n (ε)dε = 0. (5.2.14)

We then infer from (5.2.9) and (5.2.10) that

lim sup
n→∞

sup
g∈G

rn · E sup
x∈Xn
b∈S

|Zn(g, b, x)− φ(g, b, x)|

≤ µ+ lim sup
n→∞

(νn + 1)d+d′

∞
∫

µ

p(1)n (ε)dε

+ lim sup
n→∞

(νn + 1)d+d′

2‖g‖∞‖K‖∞rn/w
d
n

∫

µ

p(2)n (ε)dε

+ lim sup
n→∞

const. · rn ·
(

wn +
max(diam(Xn), diam(S))

wd+1
n νn

)

.

The second term is zero using (5.2.11)-(5.2.13) and the monotone convergence

theorem, the third term is zero because of (5.2.14). µ being arbitrary we obtain

lim sup
n→∞

sup
g∈G

rn · E sup
x,b

|Zn(g, b, x)− φ(g, b, x)|

≤ lim sup
n→∞

const. · rn ·
(

wn +
max(diam(Xn), diam(S))

wd+1
n νn

)

, (5.2.15)

from which we shall determine rn.

4th step: Finding a bound p
(1)
n (ε) + p

(2)
n (ε) for the 3rd step.

To this end let

Wi,n := Wi,n(b, x) :=
1

wd
n

{

g(b,Xi+1)K

(

x−Xi

wn

)

−Eg(b,Xi+1)K

(

x−Xi

wn

)}

.
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Simple calculations yield

VarWi,n ≤ ‖K‖∞‖fX0
‖∞‖g‖2∞

wd
n

,

|Cov(Wi,n,Wj,n)| ≤ ‖fX0
‖∞‖g‖2∞

(‖K‖∞
wd

n

+ ‖fX0
‖∞
)

,

and we have

Zn(g, b, x)− EZn(g, b, x) =
1

n

n−1
∑

i=0

Wi,n. (5.2.16)

The property of {Xi}i being a stationary GSM-process is inherited by {Wi,n}i
whose kth α-mixing coefficient is less than α(k − 1), the (k − 1)st α-mixing

coefficient of {Xi}i (independent of b ∈ S, x ∈ IRd). To bound the tails of

Zn −EZn, we exploit the expansion (5.2.16). We also use Theorem 1.3 in Bosq

(1996) which states a tail inequality for empirical means of centered random

variables in terms of their α-mixing coefficients:

Proposition 5.2.3. (Bosq, 1996, Theorem 1.3) Let {Yi}∞i=−∞ be a centered

real-valued stochastic process with sup1≤i≤n ‖Yi‖∞ ≤ D. Then for any q ∈
[1, n/2] and any ε > 0

P

(∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

Yi

∣

∣

∣

∣

∣

> ε

)

≤ 4 exp

(

− ε2q

8v2

)

+ 22

(

1 +
4D

ε

)1/2

dqeα
(⌊

n

2q

⌋)

,

where

p :=
n

2q

v2 :=
2

p2
σ(q)2 +

Dε

2

σ2(q) := max
0≤j≤2dqe−1

E

((

bjpc+ 1− jp

)

Ybjpc+1 + Ybjpc+2 + ...

+Yb(j+1)pc +

(

(j + 1)p− b(j + 1)pc
)

Yb(j+1)p+1c

)2

.

The proposition will be applied to the centered GSM-process {Wi,n}i. Multiply-

ing out the sum defining σ2(q) we obtain at most (p+2)2 terms. Above variance

and covariance bounds for Wi,n then yield that for any q = qn ∈ [1, n/2]

2

p2
σ2(q) ≤ const.

wd
n

,
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where the constant depends on nothing but K, fX0
and C from (5.2.2)-(5.2.3).

Hence (set D := C · ‖K‖∞w−d
n )

P

(

|Zn(g, b, x)−EZn(g, b, x)| >
ε

rn

)

≤ p(1)n (ε) + p(2)n (ε)

with (const. being another suitable constant)

p(1)n (ε) := 4 exp

(

− ε2qnw
d
n

const. · (1 + ε)r2n

)

,

p(2)n (ε) := 22

(

1 +
const. · rn

εwd
n

)1/2

dqneα
(⌊

n

2qn

⌋

− 1

)

.

5th step: We can now move on to finding appropriate wn, rn, νn in (5.2.15).

The crux is to satisfy (5.2.11)-(5.2.14) with the above p
(1)
n and p

(2)
n . (5.2.11)

is fulfilled because of
∫∞
µ exp(−ε)dε < ∞. Elementary calculations show that

(5.2.12) and (5.2.13) are satisfied if only

qnw
d
n

r2n
∈ F and νd+d′

n ∈ F (5.2.17)

(observe that {an}, {bn} ∈ F and 0 ≤ ρ < 1 implies anρ
bn ↘ 0). As to (5.2.14)

we use

(νn + 1)d+d′

2‖g‖∞‖K‖∞rn/w
d
n

∫

µ

p(2)n (ε)dε

≤ 22 · (νn + 1)d+d′ · dqneα
(⌊

n

2qn

⌋

− 1

)

2‖g‖∞‖K‖∞rn/w
d
n

∫

0

(

1 +
const. · rn

εwd
n

)1/2

dε

≤ const. · (νn + 1)d+d′ · dqneα
(⌊

n

2qn

⌋

− 1

)

· rn
wd

n

.

Thus (5.2.14) is satisfied if only

lim
n→∞

rnν
d+d′
n

wd
n

· dqneα
(⌊

n

2qn

⌋

− 1

)

= 0. (5.2.18)

So it suffices to satisfy (5.2.17) and (5.2.18). This is done by the choice

rn :=
1

wn log
β n

(β > 1)
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νn :=
diam(S) + diam(Xn)

wd+2
n

wn :=
1

n1/(d+2)

qn :=
n

loga n
(2β − 1 > a > 1).

Indeed, from qnw
d
n/r

2
n = log2β−a n ∈ F and diam(Xn) ∈ F we have (5.2.17).

Moreover,

rnν
d+d′
n

wd
n

· dqneα
(⌊

n

2qn

⌋

− 1

)

≤ const. · (diam(S) + diam(Xn))
d+d′ · n

1+d+d′+(1+d)/(2+d)

loga+β n
· α
(⌊

loga n

2

⌋

− 1

)

,

and the GSM-property yields (5.2.18) (observe again that {an}, {bn} ∈ F and

0 ≤ ρ < 1 implies anρ
bn ↘ 0).

Finally, (5.2.15) now reads

lim sup
n→∞

sup
g∈G

rn · E sup
x,b

|Zn(g, b, x)− φ(g, b, x)| ≤ lim sup
n→∞

const. · 1

logβ n
= 0. 2

The proof of Corollary 5.2.2 is more straightforward.

Proof of Corollary 5.2.2. Set X = supp fX0
and X ′

n := Xnγ , where γ > 0 is

adjusted later. We write supx,b instead of supx∈X ,b∈S. Clearly,

sup
g∈G

E sup
x,b

|Rn(g, b, x)−R(g, b, x)|

≤ sup
g∈G

E sup
x∈X ′

n,b∈S
|Rn(g, b, x)− R(g, b, x)|

+sup
g∈G

E sup
x,b

inf
x∗∈X ′

n

|Rn(g, b, x)− Rn(g, b, x
∗)|

+sup
g∈G

E sup
x,b

inf
x∗∈X ′

n

|R(g, b, x)−R(g, b, x∗)|.

Condition (5.2.7) implies

sup
x∈X

inf
x∗∈X ′

n

‖x− x∗‖∞ ≤ const. · n−kγ.

Using (5.2.2)-(5.2.5), we can bound the second and the third term from above

by

const. · sup
x∈X

inf
x∗∈X ′

n

‖x− x∗‖∞ ≤ const. · n−kγ .
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Using Theorem 5.2.1, the first term satisfies

sup
g∈G

E sup
x∈X ′

n,b∈S
|Rn(g, b, x)− R(g, b, x)|

= sup
g∈G

E sup
x∈X ′

n,b∈S

∣

∣

∣

∣

(

Rn(g, b, x)−
Zn(g, b, x)

fX0
(x)

)

+

(

Zn(g, b, x)

fX0
(x)

− φ(g, b, x)

fX0
(x)

)∣

∣

∣

∣

≤ sup
g∈G

E
supx∈X ′

n,b∈S |Rn(g, b, x)|
infx∈X ′

n
fX0

(x)
· sup
x∈X ′

n,b∈S
|fX0

(x)− Zn(1, b, x)|

+
1

infx∈X ′
n
fX0

(x)
sup
g∈G

E sup
x∈X ′

n,b∈S
|Zn(g, b, x)− φ(g, b, x)|

≤ const. · nγ logβ n

n1/(d+2)
.

Consequently,

sup
g∈G

E sup
x,b

|Rn(g, b, x)− R(g, b, x)|

= O

(

logβ n

n1/(d+2)−γ
+

1

nkγ

)

= O

(

logβ n

nk/((d+2)(k+1))

)

,

the latter equality for the balanced choice γ = 1/((d+ 2)(k + 1)). 2

5.3 Proving the optimality of the strategy

With the results of the previous section, we are in a position to give the

Proof of Theorem 5.1.1. Analyzing the strategy {b̂i}i, our first task is to

derive an inequality as (4.2.12) for ĥi instead of hi and b̂i instead of b∗i .

From the empirical Bellman equation, we find that

ĥi+1(bi, X̄i+1)

= max
b∈S(bi,X̄i+1)

i
∑

j=−d+1

(

f(b, X̄j+1) + (1− δi+1)ĥi+1(b, X̄j+1)
)

Ki+1(X̄j, X̄i+1)

≥
i
∑

j=−d+1

(

f(bi+1, X̄j+1) + (1− δi+1)ĥi+1(bi+1, X̄j+1)
)

Ki+1(X̄j, X̄i+1)

for any admissible portfolio strategy {bi}i. Equality holds for {b̂i}i, which yields

m(b̂i+1, X̄i+1)−m(bi+1, X̄i+1) (5.3.1)
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≥ H
(1)
i (bi+1) +H

(2)
i (bi+1)− ĥi+1(bi, X̄i+1) + (1− δi+1)E[ĥi+1(bi+1, X̄i+2)|Fi+1]

−H(1)
i (b̂i+1)−H

(2)
i (b̂i+1) + ĥi+1(b̂i, X̄i+1)− (1− δi+1)E[ĥi+1(b̂i+1, X̄i+2)|Fi+1]

with

H
(1)
i (b) :=

i
∑

j=−d+1

f(b, X̄j+1)Ki+1(X̄j, X̄i+1)−m(b, X̄i+1),

and

H
(2)
i (b) := (1−δi+1)

( i
∑

j=−d+1

ĥi+1(b, X̄j+1)Ki+1(X̄j, X̄i+1)−E[ĥi+1(b, X̄i+2)|Fi+1]

)

.

Now, we investigate the asymptotics of the terms H
(1)
i and H

(2)
i in (5.3.1).

Clearly,

sup
b∈S

|H(1)
i (b)| ≤ sup

b∈S,x̄∈[A,B]dm

∣

∣

∣

∣

∣

∣

i
∑

j=−d+1

f(b, X̄j+1)Ki+1(X̄j, x̄)−m(b, x̄)

∣

∣

∣

∣

∣

∣

. (5.3.2)

To analyse H
(2)
i we define a Fi-measurable random variable ci,

ci := argmin
c∈IR

‖ĥi − hi + c‖∞,

and obtain

sup
b∈S

|H(2)
i (b)|

≤ sup
b∈S

∣

∣

∣

∣

i
∑

j=−d+1

hi+1(b, X̄j+1)Ki+1(X̄j, X̄i+1)− E[hi+1(b, X̄i+2)|Fi+1]

∣

∣

∣

∣

+

∣

∣

∣

∣

i
∑

j=−d+1

(ĥi+1(...)− hi+1(...) + ci+1)Ki+1(...)

−E[ĥi+1(...)− hi+1(...) + ci+1|Fi+1]

∣

∣

∣

∣

≤ sup
b∈S,x̄∈[A,B]dm

∣

∣

∣

∣

i
∑

j=−d+1

hi+1(b, X̄j+1)Ki+1(X̄j, x̄)

−E[hi+1(b, X̄i+2)|X̄i+1 = x̄]

∣

∣

∣

∣

+ 2‖ĥi+1 − hi+1 + ci+1‖∞

≤ sup
b∈S,x̄∈[A,B]dm

∣

∣

∣

∣

i
∑

j=−d+1

hi+1(b, X̄j+1)Ki+1(X̄j, x̄)
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−E[hi+1(b, X̄i+2)|X̄i+1 = x̄]

∣

∣

∣

∣

+ ‖ĥi+1 − hi+1‖. (5.3.3)

For this, recall the norm ‖ · ‖ = 2 infc∈IR ‖ · +c‖∞ on C(S × [A,B]dm). By the

contraction property of M̂i,

‖ĥi − hi‖ = ‖M̂iĥi −Mihi‖
≤ ‖M̂iĥi − M̂ihi‖+ ‖M̂ihi −Mihi‖
≤ (1− δi)‖ĥi − hi‖+ 2‖M̂ihi −Mihi‖∞,

and hence

‖ĥi − hi‖ ≤ 2

δi
‖M̂ihi −Mihi‖∞. (5.3.4)

It is easily established that

‖M̂ihi −Mihi‖∞ (5.3.5)

≤ sup
b∈S,x̄∈[A,B]dm

∣

∣

∣

∣

∣

∣

i−1
∑

j=−d+1

f(b, X̄j+1)Ki(X̄j, x̄)−m(b, x̄)

∣

∣

∣

∣

∣

∣

+(1− δi) sup
b∈S,x̄∈[A,B]dm

∣

∣

∣

∣

∣

∣

i−1
∑

j=−d+1

hi(b, X̄j+1)Ki(X̄j, x̄)− E[hi(b, X̄d+1)|X̄d = x̄]

∣

∣

∣

∣

∣

∣

.

As a consequence of (5.3.2)-(5.3.5) we obtain

E sup
b∈S

∣

∣

∣H
(1)
i +H

(2)
i

∣

∣

∣

≤
(

1 +
2

δi+1

)

E sup
b∈S,x̄∈[A,B]dm

∣

∣

∣

∣

∣

∣

i
∑

j=−d+1

f(b, X̄j+1)Ki+1(X̄j, x̄)−m(b, x̄)

∣

∣

∣

∣

∣

∣

+

(

1 +
2

δi+1
(1− δi+1)

)

E sup
b∈S,x̄∈[A,B]dm

∣

∣

∣

∣

i
∑

j=−d+1

hi+1(b, X̄j+1)Ki+1(X̄j, x̄)

−E[hi+1(b, X̄i+2)|X̄i+1 = x̄]

∣

∣

∣

∣

≤ const.

δ2i+1

sup
g∈G

E sup
b∈S,x̄∈[A,B]dm

∣

∣

∣

∣

i
∑

j=−d+1

g(b, X̄j+1)Ki+1(X̄j, x̄)

−E[g(b, X̄i+2)|X̄i+1 = x̄]

∣

∣

∣

∣

,
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and under the assumption (5.1.6) of the theorem we find that

E sup
b∈S

∣

∣

∣
H

(1)
i +H

(2)
i

∣

∣

∣
→ 0 (i→ ∞).

Calculating expectations, summation 1
n

∑n−2
i=−1 ... and taking lim infn→∞ in (5.3.1)

we end up with

lim inf
n→∞

E

(

1

n

n−1
∑

i=0

m(b̂i, X̄i)

)

− E

(

1

n

n−1
∑

i=0

m(b̃i, X̄i)

)

≥ lim inf
n→∞

{

E
1

n

n−2
∑

i=−1

(

ĥi+1(b̃i+1, X̄i+2)− ĥi+1(b̃i, X̄i+1)
)

−E
1

n

n−2
∑

i=−1

(

ĥi+1(b̂i+1, X̄i+2)− ĥi+1(b̂i, X̄i+1)
)

+E
1

n

n−1
∑

i=0

δi

(

ĥi(b̂i, X̄i+1)− ĥi(b̃i, X̄i+1)
)

}

(5.3.6)

=: lim inf
n→∞

{Di},

{b̃i}i being the periodic strategy from Lemma 4.2.6. This is the analogue of

(4.2.12) we were looking for.

Finally, we observe that

ĥi+1(bi+1, X̄i+2)− ĥi+1(bi, X̄i+1) =
(

hi+1(bi+1, X̄i+2)− hi+1(bi, X̄i+1)
)

+
(

ĥi+1(bi+1, X̄i+2)− hi+1(bi+1, X̄i+2) + ci+1

)

+
(

hi+1(bi, X̄i+1)− ĥi+1(bi, X̄i+1)− ci+1

)

, (5.3.7)

where the expectation of the absolute value of the sum of the last two brackets

is bounded from above by

2E‖ĥi+1 − hi+1 + ci+1‖∞ = E‖ĥi+1 − hi+1‖ → 0 (i→ ∞), (5.3.8)

using (5.3.4), (5.3.5) and the assumption (5.1.6) of the theorem. (5.3.7) and

(5.3.8) show that for the purpose of the asymptotical inference in (5.3.6), we

can replace ĥi+1 by hi+1 in the definition of Di. We can then argue exactly in

the same way as in the proof of Theorem 4.2.1 (starting from (4.2.12)) to obtain

the optimality relation

lim inf
n→∞

(

E
1

n

n−1
∑

i=0

m(b̂i, X̄i)− E
1

n

n−1
∑

i=0

m(bi, X̄i)

)

≥ 0. 2
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It remains to prove Theorem 5.1.2:

Proof of Theorem 5.1.2. This will be done by application of Corollary 5.2.2

for the process {X̄i}i. Clearly, the GSM-property of {Xi}i makes {X̄i}i a GSM-

process, too.

Set G := {δi · hi, δi · f |i = 1, 2, ...}. Lemma 4.2.3 implies that ‖g‖∞ ≤ ‖f‖∞
for all g ∈ G. By assumption 3 of the theorem the requirements of Proposition

4.3.1 are met so that we can find a constant C > 0 with

|g(s, x̄)− g(t, x̄)| ≤ C‖s− t‖∞ (5.3.9)

for all g = δi · hi ∈ G, x̄ ∈ [A,B]dm and s, t ∈ S. Increasing C to at least

the Lipschitz constant of f , (5.3.9) holds for δi · f as well. Thus, the conditions

(5.2.2)-(5.2.4) of Theorem 5.2.1 are fulfilled for the class G. (5.2.5) holds because
of fX0|X̄0

being Lipschitz continuous, and we conclude

1

δ2i+1

sup
g∈G

E sup
b∈S,x̄∈[A,B]dm

∣

∣

∣

∣

i
∑

j=−d+1

g(b, X̄j+1)Ki+1(X̄j, x̄)

−E[g(b, X̄i+2)|X̄i+1 = x̄]

∣

∣

∣

∣

≤ const. · 1

δ2i+1

· log i
iα

for some α > 0. By assumption 4 on {δi}i in Theorem 5.1.2, we find that

1

δ2i+1

· log i
iα

−→ 0 (i→ ∞),

which finally yields the assertion. 2
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CHAPTER 6

Portfolio selection functions in station-
ary return processes

In Chapter 5 we considered d-stage Markov processes in which portfolio selec-

tion could be done on the basis of the returns on the last d market days. By

the Markov property, the d-past completely characterized the stochastic regime

of the next market day. However, more general return processes {Xi}i, such as

merely stationary and ergodic processes will fail to have the Markov property.

Then, in principle, the investor is forced to evaluate the conditional log-optimal

portfolio b∗(Xn, ..., X0) given the past returns X0, ..., Xn starting from day zero.

As we will explain in Section 6.1, this is not always feasible. Choosing a port-

folio as a function of the d-past works well in Markov return processes. Hence

it is a natural modification of the conditional log-optimal strategy to consider

log-optimal portfolio selection functions fopt(·) : IRdm
0 → S in stationary ergodic

return processes as well. These choose a portfolio from the portfolio simplex S

on the basis of the asset returns during the last d market periods (Section 6.1).

Log-optimal portfolio selection functions can only be calculated if one happens

to know the underlying return distribution. Otherwise the investor has to rely

on estimates.

Section 6.2 describes an estimator ZL
n (·) for a log-optimal portfolio selection

function, with strong consistency results given in Lemma 6.2.1 and Theorem

6.2.2. The estimator works sequentially: the return data of the stocks is in-

cluded in the estimation process as it emerges. The central question is how

an investor using the estimated log-optimal portfolio selection function ZL
n (·)

competes with other investors using different portfolio selection functions. As

we will see, repeated investment according to the estimate is optimal among all

investment strategies based on portfolio selection functions of the last d mar-

ket periods. In particular, it performs no worse than the unknown log-optimal
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portfolio selection function fopt itself (Corollary 6.2.3).

In all this, L > 0 is a parameter of the underlying stock market characterizing

its regularity properties beyond stationarity and ergodicity. L is unknown to

the investor. To avoid this drawback in the cases relevant for practical applica-

tion, an adaptive estimator Zn(·) is constructed that does not require explicit

knowledge of L. This estimator features the same convergence properties as

ZL
n (·) (Theorem 6.2.4), making it most appealing for application.

In Section 6.3 we prove the results of the preceding sections, and the chapter is

concluded by several simulations and examples (Section 6.4).

6.1 Portfolio selection functions

Let T ∈ IN be fixed and {Xi}∞i=−T an [a, b]m-valued (0 < a ≤ b <∞), stationary

and ergodic process of return vectors in a market of m shares. As usual, at time

i, the return process up to and including Xi has been observed.

It is natural for the investor to choose his investment portfolio on the basis of

recently observed returns, say on the basis of the last d ∈ IN market periods

(d ≤ T fixed throughout). If investment performance is assessed on the basis

of logarithmic utility, the investor’s aim is to find a log-optimal portfolio

selection function of the d-past, i.e., a measurable function

b : [a, b]dm −→ S := {s ∈ IRm :

m
∑

j=1

sj = 1, sj ≥ 0}

such that (< ·, · > denoting the Euclidean scalar product)

E (log < b(X−d, ..., X−1), X0 >) ≥ E (log < f(X−d, ..., X−1), X0 >) (6.1.1)

for all measurable f : [a, b]dm −→ S. At time n ∈ IN0, b advises the in-

vestor to allocate his wealth to the single shares according to the portfolio

b(Xn−d+1, ..., Xn) = b(X̄n+1), where X̄n is a shorthand notation for the d-past

(Xn−d, ..., Xn−1) ∈ IRdm
+ of Xn.

In contrast to the conditional log-optimal portfolio b∗, which is a function of

all past return data, we only include the last d observations. This brings about

several advantages:
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– It is plausible that one should drop observations from the far-away past if

the stationarity of the market is not clear. Outdated observations (under

non-stationarity they appear to be drawn from a “wrong” distribution)

may endanger the performance of the conditional log-optimal portfolio.

We conjecture that portfolio selection functions are less sensitive to devi-

ations from stationarity of the return process. Finding empirical evidence

or counterevidence for this, however, is beyond the scope of this thesis.

– Each market has a specific log-optimal portfolio selection function, which

always remains the same in stationary markets. Log-optimal portfolio se-

lection functions are therefore much easier to interpret than conditional

log-optimal portfolios (which are not much of a single market character-

istic, but a sequence of functions). The shape of a log-optimal portfolio

selection function allows us to find structures in the stock quote chart

that should be interpreted as “buy”, “hold”and “sell” signals for the single

stocks. This makes log-optimal portfolio selection functions a theoreti-

cally well-founded counterpart of heuristic chart analysis (as presented,

e.g., in Möller, 1998).

– As already noted in Chapter 1, estimation of b∗ from market data is highly

problematic. As we shall see, estimation of log-optimal portfolio selection

functions, however, can exploit recent, powerful nonparametric regression

estimation algorithms in stationary ergodic processes.

In order to find a log-optimal portfolio selection function, we observe that

E (log < b(X−d, ..., X−1), X0 >) =

∫

E
[

log < b(x̄), X0 > |X̄0 = x̄
]

PX̄0
(dx̄).

Hence, it suffices to consider pointwise maximization of

R(s, x̄) := E
[

log < s,X0 > |X̄0 = x̄
]

for fixed x̄. Here and in the sequel, the quantities s and x̄ are to be implicitly

understood as s ∈ S and x̄ ∈ IRdm
+ .

Let KT (x̄) ⊆ S denote the set of Kuhn-Tucker-points (cf. Foulds, 1981), i.e.

the set of solutions of the convex maximization problem

R(s, x̄) −→ max
s∈S

! (6.1.2)



154 Chapter 6. Portfolio selection functions in stationary return processes

Because of continuity of R(·, x̄) and because of S being a compact set, KT (x̄) 6=
∅, and the existence of solutions to (6.1.2) as well as to (6.1.1) is guaranteed.

R∗(x̄) := max
s∈S

R(s, x̄)

is the maximum of the target function and

Rmax :=

∫

R∗(x̄)PX̄0
(dx̄) = max

b:[a,b]dm→S
E
(

log < b(X̄0), X0 >
)

denotes the maximal expected logarithmic return.

To solve this maximization problem with historical return data (the return

distribution being unknown), Walk and Yakowitz (1999) and Walk (2000) have

suggested recursive estimation of log-optimal portfolio selection functions. For

this, we will use a nonparametric, strongly consistent regression estimation

scheme (i.e., with probability one, the estimates converge to the true regression

function in the pointwise sense). For a detailed overview of nonparametric

regression estimation (for non-i.i.d., i.e. dependent data), we refer the reader

to Bosq (1996), Härdle (1990) and Härdle et al. (1998).

Until recently, for non-i.i.d. data, only nonparametric regression estimators

were available for which strong consistency was linked up with appropriate

mixing conditions (Györfi, Härdle et al., 1989, and Bosq, 1996). These ensure a

suitable decay of dependency in the data. Others made regularity assumptions

on conditional densities of the process variables (Laib, 1999, Laib and Ould-

Said, 1996). On the other hand, the examples in Györfi et al. (1998) show

that we actually have to impose some regularity conditions on the process in

order to be able to obtain strong consistency. Correspondingly, the consistency

proofs for the estimated log-optimal portfolio selection functions in Walk and

Yakowitz (1999) and Walk (2000) also rely on mixing conditons.

However, mixing conditions can hardly be verified from observational data us-

ing some statistcal testing procedure. Now, with the work of Yakowitz, Györfi

et al. (1999) an algorithm has been proposed that achieves strong consistency

under other conditions than mixing. The mixing requirement, ensuring a suit-

able decay of dependency in the data, was replaced by a condition on the fi-

nite dimensional (more precisely the d-dimensional) distribution of the process,

namely a Lipschitz condition on the regression function. In particular, processes

featuring long-range dependence (which must be expected in financial data, see
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e.g. Ding et al., 1993; Peters, 1997) are not precluded from consideration as

they would have been under mixing conditions.

In this chapter, the estimator of Yakowitz, Györfi et al. (1999) is combined

with a stochastic projection algorithm (Kushner and Clark, 1978) to obtain

a strongly consistent sequential estimator for a log-optimal portfolio selection

function of the d-past of the return process. The mixing conditions in Walk

and Yakowitz (1999) and Walk (2000) are replaced by a Lipschitz condition on

the gradient of the target function.

6.2 Estimation of log-optimal portfolio selection
functions

Throughout this chapter we assume that the following regularity conditions V1

and V2 hold:

V1: {Xi}∞i=−T (T ∈ IN) is an [a, b]m-valued stationary ergodic stochastic process

on a probability space (Ω,A,P) (0 < a ≤ b < ∞ need not be known

explicitly). Some d ∈ IN (d ≤ T ) is fixed.

V2: The gradient of the target function R(s, x̄),

m(s, x̄) := E

[

X0

< s,X0 >

∣

∣

∣

∣

X̄0 = x̄

]

(which we already know from the Kuhn-Tucker conditions in Theorem

1.3.3), is a Lipschitz continuous function of x̄ with Lipschitz constant

L/
√
md, i.e.

|m(s, x̄)−m(s, ȳ)| ≤ L√
md

|x̄− ȳ| for all x̄, ȳ ∈ IRdm
+ , s ∈ S.

Condition V2 is fulfilled if the conditional distribution PX0|X̄0
has a density

fX0|X̄0
(x0, x̄) with respect to some measure µ, such that

|fX0|X̄0
(x0, x̄)− fX0|X̄0

(x0, ȳ)| ≤
La

m
√
d · b µ([a, b]m)

|x̄− ȳ|

(note the similarity to the Lipschitz conditions of Theorem 5.1.2). In particular,

this holds if fX0|X̄0
is continuously differentiable. Hence, V2 is a condition on
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the variability of the return vectors and as such a condition on the risk inherent

in the market.

At time n, the investor’s task is to produce an estimate ZL
n (x̄) of the value of a

log-optimal portfolio selection function given the last d observed return vectors

are x̄ ∈ IRdm. This can be done by the following projection algorithm:

1. Before we start the estimation process, we fix a partition Pk of IRdm
+ into

cubes of volume (2−k−2)dm for each positive integer k. For x̄ ∈ IRdm
+ the

element of Pk containing x̄ is denoted by Ak(x̄). We also fix some sequence

αn > 0 (n ∈ IN).

2. Then, at time n, we calculate a partitioning regression estimate of the gra-

dient m(s, x̄) of the target function (Yakowitz, Györfi et al., 1999): More

precisely, for Nn ∈ IN with limn→∞Nn = ∞ and X̄j := (Xj−d, ..., Xj−1)

we construct the gradient estimate by

m̂n,L(s, x̄) = M̂1,n(s, x̄) +

Nn
∑

k=1

∆̂k,n,L(s, x̄),

using

M̂k,n(s, x̄) :=





n
∑

j=−M

Xj · 1Ak(x̄)(X̄j)

< s,Xj >





/





n
∑

j=−M

1Ak(x̄)(X̄j)



 , (6.2.1)

∆̂k,n,L(s, x̄) := TL2−k(M̂k,n(s, x̄)− M̂k−1,n(s, x̄)).

Here, M := T − d ∈ IN0 is the length of the training period of the algo-

rithm before the first estimate is produced. TL2−k denotes the truncation

operator, defined for z = (z1, ...zm) ∈ IRm by TL2−kz = (w1, ...wm) with

wi := sgn zi ·min{|zi|, L2−k}.

3. Having obtained an estimate of the gradient of the target function, we ap-

ply the classical projection algorithm to estimate the maximum in (6.1.2)

(Kushner and Clark, 1978, Sec. 5.3, also used in different form by Walk

and Yakowitz, 1999): From the previous estimate ZL
n−1(x̄) we calculate

an updated estimate by

ZL
n (x̄) := Π

(

ZL
n−1(x̄) + αnm̂n,L(Z

L
n−1(x̄), x̄)

)

. (6.2.2)
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Here, for x ∈ IRm, Π(x) denotes the best approximating (in the Euclidean

norm) element of x in the simplex S, i.e. the projection of x on S. To

start the iteration at time n = 0, we use an arbitrary starting estimate

ZL
−1(x̄) ∈ S.

Note that we assume L to be known. At a later stage the algorithm is modified

so as to comprise an adaptive choice of the market parameter L, which then

allows estimation without knowledge of the precise value of L.

The following lemma featuring the basic convergence properties of the estimate

will be crucial to the main results of this chapter. It shows that our estimates

approach the set KT (x̄) of Kuhn-Tucker points of (6.1.2), i.e., the collection of

values of log-optimal portfolio-selection functions at x̄.

Lemma 6.2.1. Let ρ
(

ZL
n (x̄), KT (x̄)

)

:= infy∈KT (x̄) ‖ZL
n (x̄) − y‖ denote the

Euclidean distance of ZL
n (x̄) from the set KT (x̄). Then, under the assumptions

1. V1 and V2,

2. αn −→ 0 (n→ ∞) and
∑∞

n=0 αn = ∞,

we have that for PX̄0
-a.a. x̄:

lim
n→∞

ρ
(

ZL
n (x̄), KT (x̄)

)

= 0 P− a.s..

To formulate this result more neatly, let ZL∗
n (x̄) denote the best approximating

(in the Euclidean metric) element of ZL
n (x̄) in KT (x̄) (observe that KT (x̄) is

compact). Note that ZL∗
n (x̄) is a log-optimal portfolio selection function as x̄

varies. Then Lemma 6.2.1 can be rephrased more explicitly as

Theorem 6.2.2. Under the assumptions of Lemma 6.2.1 one has

1. Pointwise strong consistency for PX̄0
-a.a. x̄:

|ZL
n (x̄)− ZL∗

n (x̄)| −→ 0 (n→ ∞) P− a.s.

and

R(ZL
n (x̄), x̄) −→ R∗(x̄) (n→ ∞) P− a.s.. (6.2.3)
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2. Strong L1-consistency:
∫

|ZL
n (x̄)− ZL∗

n (x̄)|PX̄0
(dx̄) −→ 0 (n→ ∞) P− a.s.

and
∫

R(ZL
n (x̄), x̄)PX̄0

(dx̄) −→ Rmax (n→ ∞) P− a.s., (6.2.4)

hence also in Lr(P) for any r ∈ IN .

The limit relations (6.2.3) and (6.2.4) are the central results for the proposed

estimation procedure. They demonstrate that in the long run ZL
n (x̄) almost

surely achieves the optimal expected growth of wealth among all strategies

based on portfolio selection functions of the d-past.

Remark concerning Lemma 6.2.1 and Theorem 6.2.2. The limit relations

in Lemma 6.2.1 and Theorem 6.2.2, part 1 are true even in the stronger sense

that a fixed exceptional null set of ω ∈ Ω and a fixed exceptional null set of

x̄ ∈ [a, b]dm exist, outside which for all ω and x̄

ρ
(

ZL
n (x̄), KT (x̄)

)

−→ 0,

|ZL
n (x̄)− ZL∗

n (x̄)| −→ 0 and

R(ZL
n (x̄), x̄) −→ R∗(x̄)

as n→ ∞ (cf. proof of Theorem 6.2.2).

Until now, we have merely considered the problem how to estimate a log-optimal

portfolio selection function. Of course this is not the primary task of the in-

vestor. He would like to actually use a log-optimal portfolio selection function

or – in case such a function is unknown – the estimates ZL
n to rebalance his

investment porfolio. At time i ∈ IN0, Z
L
i (x̄) is the most recent estimate of a

log-optimal portfolio selection function b(x̄) in (6.1.1). The investor therefore

takes ZL
i (X̄i+1) = ZL

i (Xi+1−d, ..., Xi) as the investment scheme to be used at

time i ∈ IN0. The accumulated investment returns up to time n ∈ IN are

Rn :=
n−1
∏

i=0

< ZL
i (X̄i+1), Xi+1 > .

The following corollary shows that, asymptotically, the investment strategy

ZL
i (X̄i+1) is superior to any other strategy using a portfolio selection function
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of the last d market periods (pathwise competitive optimality).

Corollary 6.2.3. Suppose the support of the distribution PX0
is not confined

to a hyperplane in IRm containing the diagonal {(d, ..., d)T ∈ IRm|d ∈ IR}. For

any measurable portfolio selection function f : IRdm
+ −→ S with accumulated

returns

Vn :=
n−1
∏

i=0

< f(X̄i+1), Xi+1 >

we have

lim sup
n→∞

1

n
log

Vn
Rn

≤ 0 P− a.s..

Lemma 6.2.1 and Theorem 6.2.2 are statements corresponding to Theorem 1 in

Walk and Yakowitz (1999), Corollary 6.2.3 is a generalisation of Corollary 1 in

Walk (2000). However, the statements are valid under fundamentally different

(in fact, considerably weaker) assumptions.

As already mentioned, in practical applications the exact value of L is not

disclosed to the investor. On the other hand, one can assume that, as the share

prices take on rational, i.e. countably many values only, so does the return

process {Xi}∞i=−T as a process of price ratios. In this situation an adaptive

choice of L can be carried out in the following way:

Having fixed a sequence γn ∈ IN, γn −→ ∞, for the nth investment step a

random variable

Ln := arg max
K∈{1,...,γn}

1

n +M + 1

n
∑

j=−M

log < ZK
n (X̄j), Xj > (6.2.5)

is defined, and the estimate of a log-optimal portfolio selection function b(x̄) is

Zn(x̄) := ZLn
n (x̄).

For this procedure, we have

Theorem 6.2.4. Assume the distribution PX0
is supported on a denumerable

set and the support of the distribution is not confined to a hyperplane in IRm

containing the diagonal {(d, ..., d)T ∈ IRm|d ∈ IR}. Then Lemma 6.2.1, Theo-
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rem 6.2.2 and Corollary 6.2.3 remain valid if ZL
n is replaced by Zn.

For the regression estimator of Yakowitz, Györfi et al. (1999) it is not yet known

whether there exists an adaptive rule for the choice of the Lipschitz constant L

generating a procedure that is strongly consistent for arbitrary stationary er-

godic processes with Lipschitz continuous regression function. Theorem 6.2.4 is

remarkable because it asserts that for the application of the regression estimate

to the portfolio optimization problem such adaptation can be achieved.

We finish this section with two remarks about extensions of the stated results.

Remark concerning (6.2.1). Lemma 6.2.1, the first part of Theorem 6.2.2

and Theorem 6.2.4 still hold if we use kernel estimates

M̂k,n(s, x̄) :=





n
∑

j=−M

Xj

< s,Xj >
K

(

X̄j − x̄

hk

)





/





n
∑

j=−M

K

(

X̄j − x̄

hk

)





instead of the partitioning estimates in (6.2.1). For this, we choose a continuous

kernel function K : IRdm
+ −→ IR+ having compact support, K(0) > 0, and

bandwidths hk := 2−k−2 (Yakowitz, Györfi et al., 1999, Sec. 3). However, as we

shall see, the argument in the proof of the second part of Theorem 6.2.2 breaks

down unless the distribution of X̄0 is supported on a denumerable set.

Remark concerning (6.2.5). (6.2.5) can be seen as an application of the

principle of empirical risk minimization. By (6.2.2) random classes of functions

ZL
n : [a, b]dm → S are defined, parametrized by admissible step widths α0, ..., αn

and potential Lipschitz constants L. An estimator is picked out minimizing the

empirical risk, here the negative empirical mean return. This can also be used

to choose suitable step widths. In fact, the same arguments as used in the proof

of Theorem 6.2.4 show: If Zn = Z
(k,α0,...,αn)
n is an estimator constructed with

step widths α0, ..., αn and Lipschitz parameter k such that

1

n +M + 1

n
∑

j=−M

log < Z(k,α0,...,αn)
n (X̄j), Xj > (6.2.6)

≥ 1

n+M + 1

n
∑

j=−M

log < Z(L,1,1,1/2,...,1/n)
n (X̄j), Xj >

(for sufficiently large n), then Theorem 6.2.4 remains valid for this Zn.
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6.3 Checking the properties of the estimation
algorithm

We now move on to the proof of the statements of the preceding section.

6.3.1 Proof of the convergence Lemma 6.2.1

The algorithm (6.2.2) is an application of a classical projection algorithm for

problem (6.1.2), using an estimate of the gradient of the target function,

m(s, x̄) =
∂

∂s
E
[

log < s,X0 > |X̄0 = x̄
]

= E

[

X0

< s,X0 >

∣

∣

∣

∣

X̄0 = x̄

]

,

for s ∈ S. The gradient estimate is obtained via a partitioning method in

(6.2.1). For this reason, before we can turn to the proof of the crucial conver-

gence Lemma 6.2.1, we have to formulate some preliminary results on consis-

tency properties of the gradient estimate.

The data the statistician can access at time n ∈ IN0,
(

X̄i := (Xi−d, ..., Xi−1), Y
(s)
i :=

Xi

< s,Xi >

)n

i=−M

,

are drawn from a stationary and ergodic process. Indeed, referring to Stout

(1974), Theorem 3.5.8, as {Xi}∞i=−d−M is stationary and ergodic, so is the

stochastic process {(Xi−d, ..., Xi)}∞i=−M . This follows from the cited theorem,

observing that < s,Xi >> 0 for all s ∈ S, so that fs : IR
n(d+1)
+ −→ IR

n(d+1)
+ :

(x1, ..., x1+d) 7−→ (x1, ..., xd, x1+d / < s, x1+d >) is a well-defined measurable

mapping.

Moreover, Y
(s)
i is bounded and Lipschitz continuous in s because of

∣

∣

∣

∣

Xi

< s,Xi >

∣

∣

∣

∣

=

√

∑m
j=1X

2
i,j

∑m
j=1 sjXi,j

≤
√
mb2

a
∑m

j=1 sj
=

√
m
b

a
(6.3.1)

and (applying the Cauchy-Schwarz inequality)
∣

∣

∣

∣

Xi

< s,Xi >
− Xi

< t,Xi >

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

< s,Xi >
− 1

< t,Xi >

∣

∣

∣

∣

· |Xi| =
| < t− s,Xi > |

| < s,Xi >< t,Xi > | · |Xi|
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≤ |Xi|2
| < s,Xi >< t,Xi > | · |s− t| ≤ mb2

∑m
j=1 sjXi,j ·

∑m
j=1 tjXi,j

· |s− t|

≤ mb2
∑m

j=1 sja ·
∑m

j=1 tja
· |s− t| = mb2

a2
· |s− t| (s, t ∈ S). (6.3.2)

Yakowitz, Györfi et al. (1999) propose a strongly consistent estimator for a

Lipschitz continuous regression function based on stationary ergodic data. The

gradient m(s, x̄) is the regression function of Y
(s)
i on X̄i, so that we may use

this estimator to obtain a gradient estimate. To this end, let Pk be a partition

of IRdm
+ into cubes of volume (2−k−2)dm. Ak(x̄) denotes the element of Pk in

which x̄ ∈ IRdm
+ comes to lie. Then m(s, x̄) is estimated by

m̂n,L(s, x̄) := M̂1,n(s, x̄) +

Nn
∑

k=1

∆̂k,n,L(s, x̄)

with

M̂k,n(s, x̄) :=





n
∑

j=−M

Xj

< s,Xj >
1Ak(x̄)(X̄j)





/





n
∑

j=−M

1Ak(x̄)(X̄j)



 (6.3.3)

∆̂k,n,L(s, x̄) := TL2−k(M̂k,n(s, x̄)− M̂k−1,n(s, x̄)) (6.3.4)

and some fixed sequence Nn ∈ IN satisfying limn→∞Nn = ∞.

The estimator is motivated by the telescopic expansion

m(s, x̄) = lim
k→∞

Mk(s, x̄) =M1(s, x̄) +
∞
∑

k=2

∆k(s, x̄) (6.3.5)

of the limit relation

Mk(s, x̄) := E

[

X0

< s,X0 >

∣

∣

∣

∣

X̄0 ∈ Ak(x̄)

]

−→ m(s, x̄)

for PX̄0
-a.a. x̄, where ∆k(s, x̄) := Mk(s, x̄) −Mk−1(s, x̄) (Yakowitz, Györfi et

al., 1999, eq. (4)). In addition, a truncated version of the expansion is defined

by

mL(s, x̄) :=M1(s, x̄) +

∞
∑

k=2

∆k,L(s, x̄)

with ∆k,L(s, x̄) := TL2−k∆k(s, x̄).
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The convergence of the components (6.3.3) and (6.3.4) in the definition of the

estimator to the corresponding components in expansion (6.3.5) is given by the

following

Lemma 6.3.1. Under the assumption V1 one has for PX̄0
-a.a. x̄ and any fixed

s ∈ S

1.
(

M̂1,n(s, x̄)−M1(s, x̄)
)

−→ 0 (n→ ∞) P− a.s.,

2.
(

∆̂k,n,L(s, x̄)−∆k,L(s, x̄)
)

−→ 0 (n → ∞) P− a.s..

Proof. Straightforward application of the ergodic theorem (Stout, 1974, The-

orem 3.5.7, Yakowitz, Györfi et al., 1999, eq. (16)) yields

M̂k,n(s, x̄) −→Mk(s, x̄) (n → ∞) P− a.s.,

in particular the first part of the lemma. Since the truncation operator is itself

Lipschitz continuous with Lipschitz constant 1, the second part of the lemma

is obtained by
∣

∣

∣∆̂k,n,L(s, x̄)−∆k,L(s, x̄)
∣

∣

∣

≤
∣

∣

∣TL2−k(M̂k,n(s, x̄)− M̂k−1,n(s, x̄))− TL2−k(Mk(s, x̄)−Mk−1(s, x̄))
∣

∣

∣

≤
∣

∣

∣M̂k,n(s, x̄)−Mk(s, x̄)
∣

∣

∣+
∣

∣

∣Mk−1(s, x̄)− M̂k−1,n(s, x̄)
∣

∣

∣

−→ 0 P− a.s. (n→ ∞).

2

In Yakowitz, Györfi et al. (1999) a lemma analogous to the above one is used to

obtain pointwise strong consistency of m̂n,L(s, x̄). However, the proof of Lemma

6.2.1 requires convergence to hold uniformly in S, which will be derived from

the following lemma.

Lemma 6.3.2. Let S ⊆ IRd be some compact set, K > 0 and (fn)n∈IN a class

of functions fn : S −→ IRd with |fn(s)− fn(t)| ≤ K|s− t| for all s, t ∈ S.

Then limn→∞ fn(s) = 0 for all s ∈ S implies that limn→∞ sups∈S |fn(s)| = 0.

Proof. Let δ > 0 be arbitrary but fixed. Choose a finite δ-net N in S. Then

for all s ∈ S there exists some ts ∈ N with |s− ts| ≤ δ. This yields

|fn(s)| ≤ |fn(s)− fn(ts)|+ |fn(ts)| ≤ K|s− ts|+ |fn(ts)| ≤ K · δ + |fn(ts)|
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and

sup
s∈S

|fn(s)| ≤ K · δ + sup
t∈N

|fn(t)|.

Since N is finite, one has

lim sup
n→∞

sup
s∈S

|fn(s)| ≤ K · δ + lim sup
n→∞

sup
t∈N

|fn(t)| = K · δ + 0 = K · δ.

The assertion follows from δ being arbitrary. 2

There are two consequences of Lemma 6.3.2 which we are going to need.

Consequence 1: For PX̄0
-a.a. x̄ we have

lim
n→∞

sup
s∈S

∣

∣

∣M̂1,n(s, x̄)−M1(s, x̄)
∣

∣

∣ = 0 P− a.s.. (6.3.6)

This is a consequence of Lemma 6.3.2 with fn(s) := M̂1,n(s, x̄) − M1(s, x̄).

According to Lemma 6.3.1 limn→∞ fn(s) = 0 P-a.s. and |fn(s) − fn(t)| ≤
|M̂1,n(s, x̄)− M̂1,n(t, x̄)|+ |M1(s, x̄)−M1(t, x̄)| hold for any s ∈ S and for PX̄0

-

a.a. x̄. To bound the terms in the latter expression, one uses

|M̂k,n(s, x̄)− M̂k,n(t, x̄)|

≤

∣

∣

∣

∣

∣

∣

n
∑

j=−M

(

Xj

< s,Xj >
− Xj

< t,Xj >

)

1Ak(x̄)(X̄j)

∣

∣

∣

∣

∣

∣

/





n
∑

j=−M

1Ak(x̄)(X̄j)





≤ max
−M≤j≤n

∣

∣

∣

∣

Xj

< s,Xj >
− Xj

< t,Xj >

∣

∣

∣

∣

≤ mb2

a2
|s− t| (6.3.7)

(the latter inequality from (6.3.2)) and

|Mk(s, x̄)−Mk(t, x̄)|

≤ E

[∣

∣

∣

∣

X0

< s,X0 >
− X0

< t,X0 >

∣

∣

∣

∣

∣

∣

∣

∣

X̄0 = x̄

]

≤ E

[

mb2

a2
|s− t|

∣

∣

∣

∣

X̄0 = x̄

]

=
mb2

a2
|s− t|. (6.3.8)

Altogether this yields

|fn(s)− fn(t)| ≤
mb2

a2
|s− t|+ mb2

a2
|s− t| = 2

mb2

a2
|s− t|

for all s, t ∈ S, the situation as required in Lemma 6.3.2, and (6.3.6) is valid.
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Consequence 2: Let R ∈ {2, 3, ...} be fixed. Then for PX̄0
-a.a. x̄

lim
n→∞

sup
s∈S

∣

∣

∣

∣

∣

R
∑

k=2

(

∆̂k,n,L(s, x̄)−∆k,L(s, x̄)
)

∣

∣

∣

∣

∣

= 0 P− a.s. (6.3.9)

holds.

Here, put fn(s) :=
∑R

k=2

(

∆̂k,n,L(s, x̄)−∆k,L(s, x̄)
)

. For any fixed s ∈ S and

for PX̄0
-a.a. x̄ one has limn→∞

(

∆̂k,n,L(s, x̄)−∆k,L(s, x̄)
)

= 0 P-a.s. according

to Lemma 6.3.1 and hence limn→∞ fn(s) = 0 P-a.s. for all s ∈ S. Moreover,

|fn(s)− fn(t)| ≤
R
∑

k=2

∣

∣∆̂k,n,L(s, x̄)− ∆̂k,n,L(t, x̄)
∣

∣ +

R
∑

k=2

∣

∣∆k,L(s, x̄)−∆k,L(t, x̄)
∣

∣.

The first term can be bounded using
∣

∣

∣∆̂k,n,L(s, x̄)− ∆̂k,n,L(t, x̄)
∣

∣

∣

=
∣

∣

∣TL2−k(M̂k,n(s, x̄)− M̂k−1,n(s, x̄))− TL2−k(M̂k,n(t, x̄)− M̂k−1,n(t, x̄))
∣

∣

∣

≤
∣

∣

∣M̂k,n(s, x̄)− M̂k,n(t, x̄)
∣

∣

∣+
∣

∣

∣M̂k−1,n(s, x̄)− M̂k−1,n(t, x̄)
∣

∣

∣

≤ 2
mb2

a2
|s− t|

(with (6.3.7)), and we obtain

|fn(s)− fn(t)| ≤ 2(R− 1)
mb2

a2
|s− t|

+
R
∑

k=2

|Mk(s, x̄)−Mk(t, x̄)|+
R
∑

k=2

|Mk−1(s, x̄)−Mk−1(t, x̄)|

for all s, t ∈ S. Appealing to inequality (6.3.8) this becomes

|fn(s)− fn(t)| ≤ 4(R − 1)
mb2

a2
|s− t|,

and the requirements of Lemma 6.3.2 are met. The assertion (6.3.9) follows.

Finally we establish the desired strong consistency of the gradient estimate

m̂n,L(s, x̄) uniformly in S.

Lemma 6.3.3. Under the assumption V1

lim
n→∞

sup
s∈S

|m̂n,L(s, x̄)−m(s, x̄)| = 0 P− a.s.
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holds for PX̄0
-a.a. x̄.

Proof. In view of (6.3.6) it suffices to show that for PX̄0
-a.a. x̄

lim
n→∞

sup
s∈S

∣

∣

∣

∣

∣

Nn
∑

k=2

∆̂k,n,L(s, x̄)−
∞
∑

k=2

∆k,L(s, x̄)

∣

∣

∣

∣

∣

= 0 P− a.s..

Let R ∈ {2, 3, ...} be arbitrary. For sufficiently large n we have Nn > R and as

in Yakowitz, Györfi et al. (1999), proof of Theorem 1, we obtain

∣

∣

∣

∣

∣

Nn
∑

k=2

∆̂k,n,L(s, x̄)−
∞
∑

k=2

∆k,L(s, x̄)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

R
∑

k=2

(

∆̂k,n,L(s, x̄)−∆k,L(s, x̄)
)

∣

∣

∣

∣

∣

+

Nn
∑

k=R+1

|∆̂k,n,L(s, x̄)|+
∞
∑

k=R+1

|∆k,L(s, x̄)|

The last two terms are bounded by

Nn
∑

k=R+1

|∆̂k,n,L(s, x̄)|+
∞
∑

k=R+1

|∆k,L(s, x̄)|

≤
Nn
∑

k=R+1

L · 2−k +

∞
∑

k=R+1

L · 2−k ≤ 2L

∞
∑

k=R+1

2−k = 2−(R−1) · L.

Hence

sup
s∈S

∣

∣

∣

∣

∣

Nn
∑

k=2

∆̂k,n,L(s, x̄)−
∞
∑

k=2

∆k,L(s, x̄)

∣

∣

∣

∣

∣

≤ sup
s∈S

∣

∣

∣

∣

∣

R
∑

k=2

(

∆̂k,n,L(s, x̄)−∆k,L(s, x̄)
)

∣

∣

∣

∣

∣

+ 2−(R−1) · L.

Using (6.3.9) we derive

lim sup
n→∞

sup
s∈S

∣

∣

∣

∣

∣

Nn
∑

k=2

∆̂k,n,L(s, x̄)−
∞
∑

k=2

∆k,L(s, x̄)

∣

∣

∣

∣

∣

≤ 2−(R−1) · L

P-a.s., and the assertion follows letting R→ ∞. 2

Having obtained these preliminary results, we can now move on to proving

Lemma 6.2.1. First, recall that the projection algorithm (6.2.2) is given by the
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recurrence relation (n ∈ IN0)

ZL
−1(x̄) ∈ S arbitrary and ZL

n (x̄) := Π
(

ZL
n−1(x̄) + αnm̂n,L(Z

L
n−1(x̄), x̄)

)

,

(6.3.10)

where

m̂n,L(s, x̄) = M̂1,n(s, x̄) +

Nn
∑

k=1

∆̂k,n,L(s, x̄).

Posing this as

ZL
n (x̄) = Π

(

ZL
n−1(x̄) + αnm(ZL

n−1, x̄) + αnβn(x̄)
)

with

βn(x̄) := m̂n,L(Z
L
n−1(x̄), x̄)−m(ZL

n−1(x̄), x̄), (6.3.11)

the projection algorithm (6.3.10) is a special case of the projection algorithm

Wn = Π(Wn−1 + αn (m(Wn−1) + ξn + βn))

in Kushner and Clark (1978, eq. 5.3.1) for ξn := 0. Their Theorem 5.3.1

adapted to the case ξn := 0 reads

Lemma 6.3.4. Under the assumptions

1. m(·, ·) is continuous,

2. αn > 0 with αn −→ 0 for n → ∞ and
∑∞

n=0 αn = ∞,

3. there exists a c ≥ 0 with |βn(x̄)| ≤ c <∞ for all n ∈ IN0,

4. βn(x̄) −→ 0 P-a.s. for n→ ∞

the projection algorithm converges,

lim
n→∞

ρ(ZL
n (x̄), KT (x̄)) = 0 P− a.s..

At last, this lemma allows us to give a

Proof of Lemma 6.2.1. The crucial point is to show that under the assump-

tions V1 and V2 and for PX̄0
-a.a. x̄ parts 3 and 4 of Lemma 6.3.4 hold when

we choose the βn defined by (6.3.11).
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To this end, we first note that as in Yakowitz, Györfi et al. (1999, Corollary 1)

assumption V2, i.e., the existence of a constant L with

|m(s, x̄)−m(s, ȳ)| ≤ L√
md

|x− y| for all x̄, ȳ ∈ IRdm
+ , s ∈ S,

implies

m(s, x̄) = mL(s, x̄).

Concerning part 3, one has

|m̂n,L(Z
L
n−1, x̄)−m(ZL

n−1, x̄)| = |m̂n,L(Z
L
n−1, x̄)−mL(Z

L
n−1, x̄)|

≤ |M̂1,n(Z
L
n−1, x̄)−M1(Z

L
n−1, x̄)|+

Nn
∑

k=2

∣

∣

∣∆̂k,n,L(Z
L
n−1, x̄)−∆k,L(Z

L
n−1, x̄)

∣

∣

∣

≤ |M̂1,n(Z
L
n−1, x̄)|+ |M1(Z

L
n−1, x̄)|+

∞
∑

k=2

∣

∣

∣∆̂k,n,L(Z
L
n−1, x̄)

∣

∣

∣+
∞
∑

k=2

∣

∣∆k,L(Z
L
n−1, x̄)

∣

∣

≤ |M̂1,n(Z
L
n−1, x̄)|+ |M1(Z

L
n−1, x̄)|+ 2L

∞
∑

k=2

2−k.

Combining this with the inequalites

|M̂1,n(Z
L
n−1, x̄)| =

∣

∣

∣

∣

n
∑

j=−M

Xj

< ZL
n−1, Xj >

1A1(x̄)(X̄j)

∣

∣

∣

∣

/( n
∑

j=−M

1A1(x̄)(X̄j)

)

≤ max
−M≤j≤n

∣

∣

∣

∣

Xj

< ZL
n−1, Xj >

∣

∣

∣

∣

,

|M1(Z
L
n−1, x̄)| = E

[∣

∣

∣

∣

X0

< ZL
n−1, X0 >

∣

∣

∣

∣

∣

∣

∣

∣

X̄0 ∈ A1(x̄)

]

≤ sup
ω∈Ω

∣

∣

∣

∣

X0

< ZL
n−1, X0 >

∣

∣

∣

∣

we get

|m̂n,L(Z
L
n−1, x̄)−m(ZL

n−1, x̄)|

≤ max
−M≤j≤n

∣

∣

∣

∣

Xj

< ZL
n−1, Xj >

∣

∣

∣

∣

+ sup
ω∈Ω

∣

∣

∣

∣

X0

< ZL
n−1, X0 >

∣

∣

∣

∣

+ 2 · L
2

≤ 2
√
m
b

a
+ L =: c,

the latter inequality due to (6.3.1).

Condition 4. is readily verified from

|m̂n,L(Z
L
n−1, x̄)−m(ZL

n−1, x̄)| ≤ sup
s∈S

|m̂n,L(s, x̄)−mL(s, x̄)|

and Lemma 6.3.3. This finishes the proof of Lemma 6.2.1. 2
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6.3.2 Proof of the related Theorems 6.2.2 - 6.2.4

Proof of Theorem 6.2.2. For any fixed x̄, R(·, x̄) is a continuous function on

the compact set S, thus uniformly continuous. Part 1 of the theorem directly

follows from Lemma 6.2.1.

To prove part 2, observe that (6.3.3) involves only denumerably many functions

1Ak(x̄) (for fixed k and all possible values of x̄). Thus, the exceptional set of

ω ∈ Ω in Lemma 6.3.1 can be made independent from the chosen x̄. This

continues throughout the proof of Lemma 6.2.1. Hence as n → ∞ we have for

P⊗PX̄0
-a.a. (ω, x̄)

ρ
(

ZL
n (x̄), KT (x̄)

)

−→ 0,

|ZL
n (x̄)− ZL∗

n (x̄)| −→ 0, (6.3.12)

R(ZL
n (x̄), x̄) −→ R∗(x̄).

From part 1, the Lebesgue dominated convergence theorem yields the assertions

of the second part of the theorem. The limit relation (6.3.12), now valid P-a.s.

for PX̄0
-a.a. x̄, and

|ZL
n (x̄)− ZL∗

n (x̄)| ≤ max
s,t∈S

|s− t| ≤ √
m

imply
∫

|ZL
n (x̄)− ZL∗

n (x̄)|PX̄0
(dx̄) −→ 0 (n→ ∞)

P− a.s. and in Lr(P) (r ∈ IN). The same arguments, starting from

|R(ZL
n (x̄), x̄)−R∗(x̄)|

≤ |R(ZL
n (x̄), x̄)|+ |R∗(x̄)| ≤ 2 max

s∈S,y∈[a,b]m
| log < s, y > | <∞,

yield the remaining parts of the proof. 2

Proof of Corollary 6.2.3. The assumption on the support of PX0
implies

that an essentially, i.e., PX̄0
-a.s. unique log-optimal portfolio selection function

w(x̄) := argmax
s∈S

E[log < s,X0 > |X̄0 = x̄]

exists (Algoet and Cover, 1988, p. 877, corrected in Österreicher and Vajda,

1993, and Vajda and Österreicher, 1994). The accumulated return using the
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log-optimal portfolio selection function for investment is denoted by

R∗
n :=

n−1
∏

i=0

< w(X̄i+1), Xi+1 > .

It follows that

lim sup
n→∞

1

n
log

Vn
Rn

≤ lim sup
n→∞

1

n
log

Vn
R∗

n

+ lim sup
n→∞

1

n
log

R∗
n

Rn
. (6.3.13)

For the first term on the right hand side,the ergodic theorem and the optimality

of w imply

lim sup
n→∞

1

n
log

Vn
R∗

n

= lim sup
n→∞

1

n

n−1
∑

i=0

log
< f(X̄i+1), Xi+1 >

< w(X̄i+1), Xi+1 >

= E

(

log
< f(X̄0), X0 >

< w(X̄0), X0 >

)

=

∫

(

E[log < f(x̄), X0 > |X̄0 = x̄]− E[log < w(x̄), X0 > |X̄0 = x̄]
)

PX̄0
(dx̄)

≤ 0. (6.3.14)

Arguing along the lines of Walk (2000, Corollary 1), the second term has limiting

behaviour

lim sup
n→∞

1

n
log

R∗
n

Rn

= lim sup
n→∞

1

n

n−1
∑

i=0

(

log < w(X̄i+1), Xi+1 > − log < ZL
i (X̄i+1), Xi+1 >

)

= 0. (6.3.15)

This is seen as follows: (6.3.12) combined with Egorov’s theorem shows that

for each ε > 0 we can find sets Ω̃ ⊆ Ω and Ĩ ⊆ [a, b]dm such that P(Ω̃) ≥ 1− ε,

PX̄0
(Ĩ) ≥ 1− ε and

ZL
n → w uniformly on Ω̃× Ĩ . (6.3.16)

Then
∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

(

log < w(X̄i+1), Xi+1 > − log < ZL
i (X̄i+1), Xi+1 >

)

∣

∣

∣

∣

∣
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≤ 1

n

n−1
∑

i=0

∣

∣

(

log < w(X̄i+1), Xi+1 > − log < ZL
i (X̄i+1), Xi+1 >

)∣

∣ · 1Ĩ(X̄i+1)

+
1

n

n−1
∑

i=0

∣

∣

(

log < w(X̄i+1), Xi+1 > − log < ZL
i (X̄i+1), Xi+1 >

)∣

∣ · 1Ĩc(X̄i+1)

≤ c

n

n−1
∑

i=0

∣

∣w(X̄i+1)− ZL
i (X̄i+1)

∣

∣ · 1Ĩ(X̄i+1) +
c

n

n−1
∑

i=0

1Ĩc(X̄i+1)

for some constant c > 0. The first term tends to zero by (6.3.16), the second

term to c ·PX̄0
(ĨC) ≤ c · ε. Now, let ε go to zero.

Finally, (6.3.14) and (6.3.15) plugged into (6.3.13) finish the proof. 2

Proof of Theorem 6.2.4. It suffices to prove Lemma 6.2.1 for Zn instead of

ZL
n . Without loss of generality one can set M = 0. In the following we assume

n to be sufficiently large such that γn ≥ L. Because X̄0 takes on values in

a denumerable set X , for any ε > 0 there exists a finite subset X̄ ⊆ X with

P(X̄0 ∈ X̄C) ≤ ε. As in the proof of Corollary 6.2.3, w(·) denotes the essentially
unique log-optimal portfolio selection function.

For ω ∈ Ω, x̄ ∈ X , we consider the sequence

ZLn
n (x̄) = ZLn

n (x̄, ω) ∈ S

and show that for PX̄0
-a.a. x̄ a P-a.s. limit relation ZLn

n (x̄, ω) −→ w(x̄) holds.

To establish this, we work through the following: Consider an accumulation

point fω(x̄) of the sequence, say

Z
Ln′

n′ (x̄, ω) −→ fω(x̄)

for a subsequence n′, and show that P-a.s.

fω(x̄) = w(x̄) for PX̄0
− a.a. x̄. (6.3.17)

Indeed, (6.3.17) implies the existence of a set A ∈ A, P(A) = 1, such that for

any ω ∈ A

ZLn
n (x̄, ω) −→ w(x̄) (6.3.18)

for PX̄0
-a.a. x̄. This is seen as follows: Assume we had an x̄ with PX̄0

({x̄}) > 0

and P(A(x̄)) > 0, where A(x̄) := {ω|ZLn
n (x̄, ω) 9 w(x̄)}. P(A(x̄)) > 0 implies

A(x̄)∩A 6= ∅, hence an ω ∈ A(x̄)∩A exists with ZLn
n (x̄, ω) 9 w(x̄) on the one
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hand (according to the construction of A(x̄)), and ZLn
n (x̄, ω) → w(x̄) on the

other hand (according to (6.3.18) and PX̄0
({x̄}) > 0). This is a contradiction.

Hence, for PX̄0
-a.a. x̄, we have P(A(x̄)) = 0, i.e.

ZLn
n (x̄, ω) −→ w(x̄) P-a.s..

We now tackle the proof of (6.3.17).

For any x̄ ∈ X̄ the sequence Z
Ln′

n′ (x̄, ω) takes on values in the compact set S, i.e.

there exists an accumulation point fω(x̄). Since X̄ is finite, repeatedly taking

subsequences gives an index sequence n′′ for which

Z
Ln′′

n′′ (x̄, ω) −→ fω(x̄) (6.3.19)

uniformly for all x̄ ∈ X̄ . n′′ will be denoted by n again in the following.

For any fixed ω

∣

∣

∣

1

n+ 1

n
∑

i=0

log < ZLn
n (X̄i, ω), Xi > −E

(

log < fω(X̄0), X0 >
)∣

∣

∣

≤
∣

∣

∣

1

n + 1

n
∑

i=0

log < ZLn
n (X̄i, ω), Xi > 1X̄ (X̄i)

−E
(

log < fω(X̄0), X0 > 1X̄ (X̄0)
)∣

∣

∣

+
1

n+ 1

n
∑

i=0

∣

∣

∣ log < ZLn
n (X̄i, ω), Xi >

∣

∣

∣1X̄C(X̄i)

+E
(∣

∣

∣ log < fω(X̄0), X0 >
∣

∣

∣1X̄C(X̄0)
)

≤ 1

n + 1

n
∑

i=0

∣

∣

∣ log < ZLn
n (X̄i, ω), Xi > − log < fω(X̄i), Xi >

∣

∣

∣1X̄ (X̄i)

+
∣

∣

∣

1

n+ 1

n
∑

i=0

log < fω(X̄i), Xi > 1X̄ (X̄i)

−E
(

log < fω(X̄0), X0 > 1X̄ (X̄0)
)∣

∣

∣

+c ·
( 1

n+ 1

n
∑

i=0

1X̄C(X̄i) + P(X̄0 ∈ X̄C)
)

(6.3.20)

with a constant c = c(d,m, a, b) ∈ IR+.

Because of the uniform convergence in (6.3.19) the first term of (6.3.20) satisfies

(for n sufficiently large)
∣

∣log < ZLn
n (X̄i, ω), Xi > − log < fω(X̄i), Xi >

∣

∣ 1X̄ (X̄i)
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≤ c ·
∣

∣ZLn
n (X̄i, ω)− fω(X̄i)

∣

∣1X̄ (X̄i) ≤ c · ε (6.3.21)

for all i = 0, ..., n. Without loss of generality we may use the same constant c

as above.

For the second term it will be shown at the end of this proof that in P-a.a. ω

lim sup
n→∞

∣

∣

∣

1

n+ 1

n
∑

i=0

log < fω(X̄i), Xi > 1X̄ (X̄i)

−E
(

log < fω(X̄0), X0 > 1X̄ (X̄0)
)∣

∣

∣
= 0. (6.3.22)

For the third term the ergodic theorem yields that P-a.s.

lim
n→∞

1

n + 1

n
∑

i=0

1X̄C(X̄i) = P(X̄0 ∈ X̄C) ≤ ε. (6.3.23)

(6.3.21) to (6.3.23) plugged into (6.3.20) yield

lim sup
n→∞

∣

∣

∣

∣

∣

1

n + 1

n
∑

i=0

log < ZLn
n (X̄i, ω), Xi > −E

(

log < fω(X̄0), X0 >
)

∣

∣

∣

∣

∣

≤ 3 · c · ε,

and from ε being arbitrary it follows that

1

n+ 1

n
∑

i=0

log < ZLn
n (X̄i, ω), Xi >−→ E

(

log < fω(X̄0), X0 >
)

(6.3.24)

for P-a.a. ω.

On the other hand, using the definition of the random variable Ln, we obtain

P-a.s.

1

n+ 1

n
∑

i=0

{

log < ZLn
n (X̄i, ω), Xi > − log < w(X̄i), Xi >

}

≥ 1

n + 1

n
∑

i=0

{

log < ZL
n (X̄i, ω), Xi > − log < w(X̄i), Xi >

}

−→ 0, (6.3.25)

where a limit relation analogous to (6.3.15) can be used.

Plugging (6.3.24) into the first line of (6.3.25) and observing

1

n+ 1

n
∑

i=0

log < w(X̄i), Xi >−→ E
(

log < w(X̄0), X0 >
)
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we obtain that (again for P-a.a. ω)

E
(

log < fω(X̄0), X0 >
)

− E
(

log < w(X̄0), X0 >
)

≥ 0.

Because of the essential uniqueness of the optimum w(·), for P-a.a. ω we infer

(6.3.17), namely that fω(x̄) = w(x̄) PX̄0
− a.s..

So it only remains to demonstrate (6.3.22). To this end, let C := C
(

[a, b]dm, S
)

be the space of continuous functions f : [a, b]dm −→ S, equipped with the supre-

mum norm supx̄∈[a,b]dm |f(x̄)|. For fω we can find a continuation f̄ω contained in

C, which coincides with fω on X̄ . Due to the separability of C (Megginson, 1998,

Sec. 1.12) a denumerable set G ⊆ C can be found, such that for any given ε > 0

and any fω there exists a function gω ∈ G satisfying supx̄∈X̄ |fω(x̄)− gω(x̄)| ≤ ε.

For given f : [a, b]dm −→ S use the shorthand notation Hn(ω, f) for

1

n + 1

n
∑

i=0

log < f(X̄i), Xi > 1X̄ (X̄i)− E
(

log < f(X̄0), X0 > 1X̄ (X̄0)
)

.

Then

|Hn(ω, fω)| = |Hn(ω, gω) +Hn(ω, fω)−Hn(ω, gω)|

≤ |Hn(ω, gω)|+
1

n+ 1

n
∑

i=0

∣

∣log < fω(X̄i), Xi > − log < gω(X̄i), Xi >
∣

∣ 1X̄ (X̄i)

+E
(

∣

∣log < fω(X̄0), X0 > − log < gω(X̄0), X0 >
∣

∣ 1X̄ (X̄0)
)

≤ |Hn(ω, gω)|+ 2 · c · sup
x̄∈X̄

|fω(x̄)− gω(x̄)|

≤ |Hn(ω, gω)|+ 2 · c · ε.

Because of ε being arbitrary, it suffices to convince ourselves of

H(ω, gω) := lim sup
n→∞

|Hn(ω, gω)| = 0

for P-a.a. ω. As to this, observe that (because of G being denumerable) the set

{ω|∃g ∈ G H(ω, g) > 0} =
⋃

g∈G
{ω|H(ω, g) > 0}

is measurable. Using the ergodic theorem, the left hand side is a countable

union of null sets, i.e. null set itself. Hence for P-a.a. ω

H(ω, g) = 0 for all g ∈ G

and in particular H(ω, gω) = 0, which completes the proof. 2
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6.4 Simulations and examples

We conclude this chapter by simulations and examples in which we apply the

estimated log-optimal portfolio selection functions of Section 6.2 to simulated

and real markets. Throughout we select portfolios on the basis of the last d = 5

observed return data.

Example 6.1: The market consists of a riskless bond with return of 2.6%

per market period and a share that follows a geometrical Brownian motion

(Luenberger, 1998, Sec. 11.7; Korn and Korn, 1999, Ch. 2) with a mean

return µ = 3% per market period and and a volatility σ = 15% per market

period. Investment starts after 5 market periods and ends after 50 market

periods. In this model, due to the independence of the share’s log-returns, the

log-optimal portfolio selection function coincides with the log-optimal portfolio,

which suggests to invest 67.86% of the current wealth in each market period into
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6.1 a) Proportion of wealth invested in the share (left vertical axis),

expected portfolio log-return (right vertical axis, in %). Results

for the true log-optimal strategy (dashed) and the estimated log-

optimal strategy (solid).
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0 5 10 15 20 25 30 35 40 45 50
0

1
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4

5

6

6.1 b) Value of a $1 investment in the share (grey, solid) or in the

bond (grey, dashed), respectively. We compare the value of a $1

investment in the true log-optimal strategy (upper black curve) and

the value of a $1 investment in the estimated log-optimal strategy

(lower black curve).

Figure 6.1: Sample path of an investment in a share following a geometrical

brownian motion and a bond during 50 market periods.

the share (calculated by Cover’s algorithm, Theorem 1.3.2). Figures 6.1 and 6.2

show sample paths in the market together with estimation results. Throughout

this section we use the kernel variant of the projection algorithm (6.2.2) with a

cosine kernel K(x̄) = cos(min{‖x̄‖F/100, 1}) + 1 (the Frobenius norm ‖x̄‖F of

x̄ = (xi,j)1≤i≤2,1≤j≤d being defined as the square root of the sum of the diagonal

elements of x̄T x̄) and L = 100.

Subgraphs a) of Figures 6.1 and 6.2 show the estimated log-optimal portfolio

weight for the share (solid line), i.e. the coordinate of ZL
n (Xn+1−d, ..., Xn) that

corresponds to the share. The results can be compared with the true log-

optimal portfolio (dashed line) and the expected portfolio returns per market

period given on the right vertical axis (in %).
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In subgraphs b) we follow the value of a $1 investment in the share (grey, solid)

or in the bond (grey, dashed), respectively. We compare the value of a $1

investment in the true log-optimal strategy (upper black curve) and the value

of a $1 investment in the strategy using the estimated log-optimal portfolio

weights (lower black curve). The results are convincing: As we expect from the

competitive optimality result (Corollary 6.2.3), the estimated strategy allows

to track the value evolution of the log-optimal strategy.

Example 6.2: In this example we run the projection algorithm for the estima-

tion of log-optimal portfolio selection functions on real market data from NYSE,

22/4/1998-6/7/1998 (daily closing price data from www.wallstreetcity.com).

We use the same stocks (YELL, JBHT, UNP) as in Example 2.2, Section 2.3.

Here, we do not know the true log-optimal portfolio selection function. As a

substitute reference strategy we use the strategy with the constant weights esti-

mated in Example 2.2, Section 2.3 (i.e., (0.523951, 0.476049) for (JBHT,YELL),
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6.2 a) Proportion of wealth invested in the share (left vertical axis),

expected portfolio log-return (right vertical axis, in %). Results

for the true log-optimal strategy (dashed) and the estimated log-

optimal strategy (solid).
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6.2 b) Value of a $1 investment in the share (grey, solid) or in the

bond (grey, dashed), respectively. We compare the value of a $1

investment in the true log-optimal strategy (upper black curve) and

the value of a $1 investment in the estimated log-optimal strategy

(lower black curve).

Figure 6.2: Sample path of an investment in a share following a geometrical

brownian motion and a bond during 50 market periods.

and (0.465490, 0.53451) for (UNP,YELL)). We then compare the value of a $1

investment in the strategy using the estimated log-optimal portfolio selection

function with the value of the reference strategy (Figure 6.3). Investment starts

on the 5th day of trading. The value of the estimated log-optimal portfolio

strategy virtually coincides with the value of what was believed to be the true

log-optimal strategy in Example 2.2, Section 2.3 (we therefore plotted the value

for the log-optimal portfolio selection function only). This suggests that in

either case we are close to the log-optimal portfolio selection strategy.

– One might be tempted to argue that compared with Section 2.3 not much has

been gained. This is not the case. On the contrary, in Section 2.3 we considered

a very restrictive model involving independent, log-normally distributed daily
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Figure 6.3: Value of a $1 investment in two single stocks (grey), and in the es-

timated log-optimal portfolio of the two (black, solid) at NYSE 22/4-6/7/1998.



180 L’Envoi

returns. We just sketched and, in fact, then skipped most of the huge effort that

should have been put into diagnostic testing of these assumptions in Section 2.3.

Much of this effort is superfluous here. Indeed, with the model of Chapter 6

we gained considerable flexibility with respect to the underlying market model,

assuming not much more than stationarity and ergodicity. Considering there

is no such thing as absolute certainty about what the true stochastic regime

in the market looks like, we come to appreciate nonparametric algorithms that

work well under very weak assumptions and hence may be applied in many real

markets.

L’ENVOI

Clearly, we were only able to cover a small subsample of the problems the

investor faces in real markets. In the course of this thesis we derived several al-

gorithms for these selected problems, and the reader might (and hopefully will)

find some of them helpful to decide on practical investment problems. Beyond

this algorithmics, we hope we have conveyed the key message of this thesis: The

insight that nonparametric statistical forecasting and estimation techniques are

a valuable tool in portfolio selection and, in fact, in all mathematical finance.
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