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Empirical portfolio selection strategies with
proportional transaction costs

László Györfi, Fellow, IEEE Harro Walk

Abstract—Discrete time growth optimal investment in
stock markets with proportional transactions costs is consid-
ered. The market process is modeled by a first order Markov
process. Not assuming that the distribution of the market
process is known, we show empirical investment strategies
such that, in the long run, the growth rate on trajectories
achieves the maximum with probability 1.

Index Terms—portfolio selection, log-optimal invest-
ment, proportional transaction cost, dynamic optimization.

I. Introduction

The purpose of this paper is to investigate sequential invest-
ment strategies for financial markets such that the strategies
are allowed to use information collected from the past of the
market and determine, at the beginning of a trading period,
a portfolio, that is, a way to distribute their current capital
among the available assets. The goal of the investor is to maxi-
mize his wealth on the long run. If there is no transaction cost
then under the only assumption that the daily price relatives
form a stationary and ergodic process the best strategy (called
log-optimum strategy) can be constructed in full knowledge of
the distribution of the entire process, see Algoet and Cover [1].
Moreover, Györfi and Schäfer [11], Györfi, Lugosi and Udina
[10] and Györfi, Udina and Walk [13] constructed empirical
(data driven) growth optimum strategies in case of unknown
distributions. The empirical results show that the performance
of these empirical investment strategies measured on past nyse
data is solid, and sometimes even spectacular.
Papers dealing with growth optimal investment with trans-

action costs in discrete time setting are seldom. Iyengar and
Cover [22] formulated the problem of horse race markets, where
in every market period one of the assets has positive pay off and
all the others pay nothing. Their model included proportional
transaction costs and they used a long run expected average
reward criterion. There are results for more general markets as
well. Sass and Schäl [27] investigated the numeraire portfolio in
context of bond and stock as assets. Iyengar [20], [21] investi-
gated growth optimal investment with several assets assuming
independent and identically distributed (i.i.d.) sequence of
asset returns. Bobryk and Stettner [4] considered the case
of portfolio selection with consumption, when there are two
assets, a bond and a stock. Furthermore, long run expected
discounted reward and i.i.d asset returns were assumed.
Knowing the distribution of the market process, in the case of

discrete time and finite order stationary Markov market process
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Schäfer [28] considered the maximization of the long run ex-
pected average growth rate with several assets and proportional
transaction costs. Györfi and Vajda [14], and Györfi and Walk
[15] extended the expected growth optimality mentioned above
to the almost sure (a.s.) growth optimality.
This paper considers long term optimal trading strategies on

Markovian markets when proportional transactions costs are
to be paid after each buy or sell operation. The main result
of the paper is two constructions of purely empirical strategies
that achieve the best possible rate of growth of net capital of
the investor when the market behaves as a stationary Markov
process satisfying some mild regularity conditions. For the first
trading strategy, the asymptotic optimality is proved if the
state space of the relative prices is finite (Theorem 1). For
a modification of this strategy, it is possible to extend the
optimality to general state space (Theorem 2).

II. Mathematical setup: investment with transaction
cost

Consider a market consisting of d assets. The evolution of the
market in time is represented by a sequence of market vectors
s1; s2; : : : 2 R

d
+, where

si = (s
(1)
i ; : : : ; s

(d)
i )

such that the j-th component s(j)i of si denotes the price of the
j-th asset at the end of the i-th trading period. (s(j)0 = 1.)
In order to apply the usual prediction techniques for time

series analysis one has to transform the sequence fsig into a
sequence of return vectors fxig as follows:

xi = (x
(1)
i ; : : : ; x

(d)
i )

such that

x
(j)
i =

s
(j)
i

s
(j)
i�1

:

Thus, the j-th component x(j)i of the return vector xi denotes
the amount obtained at the end of the i-th trading period after
investing a unit capital in the j-th asset.
The investor is allowed to diversify his capital at the be-

ginning of each trading period according to a portfolio vector
b = (b(1); : : : b(d))T . The j-th component b(j) of b denotes
the proportion of the investor’s capital invested in asset j.
Throughout the paper we assume that the portfolio vector
b has nonnegative components with

Pd

j=1
b(j) = 1. The fact

that
Pd

j=1
b(j) = 1 means that the investment strategy is self

financing and consumption of capital is excluded. The non-
negativity of the components of b means that short selling and
buying stocks on margin are not permitted. To make the anal-
ysis feasible, some simplifying assumptions are used that need
to be taken into account. We assume that assets are arbitrarily
divisible and all assets are available in unbounded quantities at
the current price at any given trading period. We also assume
that the behavior of the market is not affected by the actions
of the investor using the strategies under investigation.
For j � i we abbreviate by xij the array of return vectors

(xj ; : : : ;xi). Denote by �d the simplex of all vectors b 2

R
d
+ with nonnegative components summing up to one. An

investment strategy is a sequence B of functions

bi :
�
R
d
+

�i�1
! �d ; i = 1; 2; : : :
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so that bi(x
i�1
1 ) denotes the portfolio vector chosen by the

investor on the i-th trading period, upon observing the past
behavior of the market. We write b(xi�11 ) = bi(x

i�1
1 ) to ease

the notation.
The derivations in this paper can be extended to any com-

pact set �d. For example, one may allow short selling or
leverage. Under the Condition (iii) below we can create no-ruin
conditions, while for no transaction cost, the empirical results
on NYSE data show that for short selling there is no gain and
for leverage the increase of the growth rate is spectacular (cf.
Horváth and Urbán [19]).
In this section our presentation of the transaction cost prob-

lem utilizes the formulation in Kalai and Blum [23] and Schäfer
[28] and Györfi and Vajda [14]. Let Sn denote the gross wealth
at the end of trading period n, n = 0; 1; 2; � � � , i.e., it is the
wealth before paying the transaction cost, while Nn stands
for the net wealth at the end of trading period n, i.e., it is
the wealth after paying the transaction cost. Without loss of
generality we let the investor’s initial capital S0 be 1 dollar.
Using the above notations, for the trading period n, the net
wealth Nn�1 can be invested according to the portfolio bn,
therefore the gross wealth Sn at the end of trading period n is

Sn = Nn�1

dX
j=1

b(j)n x(j)n = Nn�1 hbn ; xni ;

where h� ; �i denotes inner product.
At the beginning of a new market period (day) n + 1,

the investor sets up his new portfolio, i.e. buys/sells stocks
according to the actual portfolio vector bn+1. During this
rearrangement, he has to pay transaction cost, therefore at the
beginning of a new market day n+1 the net wealth Nn in the
portfolio bn+1 is less than Sn.
The rate of proportional transaction costs (commission fac-

tors) levied on one asset are denoted by 0 < cs < 1 and
0 < cp < 1, i.e., the sale of 1 dollar worth of asset i nets only
1� cs dollars, and similarly we take into account the purchase
of an asset such that the purchase of 1 dollar’s worth of asset
i costs an extra cp dollars. We consider the special case when
the rate of costs is constant over the assets.
We describe the transaction cost to be paid when select the

portfolio bn+1. Before rearranging the capitals, at the j-th
asset there are b(j)n x

(j)
n Nn�1 dollars, while after rearranging the

investor’s wealth should be b(j)n+1Nn dollars. If b(j)n x
(j)
n Nn�1 �

b
(j)
n+1Nn then one has to sell and the transaction cost at the
j-th asset is

cs

�
b(j)n x(j)n Nn�1 � b

(j)
n+1Nn

�
;

otherwise one has to buy and the transaction cost at the j-th
asset is

cp

�
b
(j)
n+1Nn � b(j)n x(j)n Nn�1

�
:

Let x+ denote the positive part of x. Thus, the gross wealth
Sn decomposes to the sum of the net wealth and cost in the
following - self-financing - way

Nn = Sn �

dX
j=1

cs

�
b(j)n x(j)n Nn�1 � b

(j)
n+1Nn

�+

�

dX
j=1

cp

�
b
(j)
n+1Nn � b(j)n x(j)n Nn�1

�+
;

or equivalently

Sn = Nn + cs

dX
j=1

�
b(j)n x(j)n Nn�1 � b

(j)
n+1Nn

�+

+ cp

dX
j=1

�
b
(j)
n+1Nn � b(j)n x(j)n Nn�1

�+
:

Dividing both sides by Sn and introducing ratio

wn =
Nn

Sn
;

0 < wn < 1, we get

1 = wn + cs

dX
j=1

�
b
(j)
n x

(j)
n

hbn ; xni
� b

(j)
n+1wn

�+

+ cp

dX
j=1

�
b
(j)
n+1wn �

b
(j)
n x

(j)
n

hbn ; xni

�+

: (1)

For given previous return vector xn and portfolio vector bn,
there is a portfolio vector ~bn+1 = ~bn+1(bn;xn) for which there
is no trading:

~bjn+1 =
b
(j)
n x

(j)
n

hbn ; xni
(2)

such that there is no transaction cost, i.e., wn = 1.

For arbitrary fixed portfolio vectors bn, bn+1, and return
vector xn there exists a unique cost factor wn 2 [0; 1), i.e. the
portfolio is self financing. The value of cost factor wn at day n
is determined by portfolio vectors bn and bn+1 as well as by
return vector xn, i.e.,

wn = w(bn;bn+1;xn);

for some function w. If we want to rearrange our portfolio
substantially, then our net wealth decreases more considerably,
however, it remains positive. Note also, that the cost does not
restrict the set of new portfolio vectors, i.e., the optimization
algorithm searches for optimal vector bn+1 within the whole
simplex �d. The value of the cost factor ranges between

1� cs
1 + cp

� wn � 1:

For the sake of simplicity we consider the special case of
cs = cp =: c, while the general case can be treated in a similar
manner. Then

cs

�
b(j)n x(j)n Nn�1 � b

(j)
n+1Nn

�+
+ cp

�
b
(j)
n+1Nn � b(j)n x(j)n Nn�1

�+
= c
���b(j)n x(j)n Nn�1 � b

(j)
n+1Nn

��� :
Starting with an initial wealth S0 = 1 and w0 = 1, wealth

Sn at the closing time of the n-th market day becomes

Sn = Nn�1hbn ; xni

= wn�1Sn�1hbn ; xni

=

nY
i=1

[w(bi�1;bi;xi�1) hbi ; xii]:

Introduce the notation

g(bi�1;bi;xi�1;xi) = log(w(bi�1;bi;xi�1) hbi ; xii);
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then the average growth rate becomes

1

n
logSn =

1

n

nX
i=1

log(w(bi�1;bi;xi�1) hbi ; xii)

=
1

n

nX
i=1

g(bi�1;bi;xi�1;xi): (3)

Our aim is to maximize this average growth rate.
Farias et al. [5] considered a special averaged cost, where

there is no memory in the portfolios:

1

n

nX
i=1

g(bi�1;xi�1;xi):

Moreover, both the return vectors xi and the portfolio vectors
bi may take finitely many values. However, in their scheme
more generally the trading can influence the prices.

In the sequel xi will be a realization of a random variable
Xi, and we assume the following
Conditions:

(i) fXig is a homogeneous and first order Markov process,
(ii) the Markov kernel is continuous, which means that for

�(Hjx) being the Markov kernel defined by

�(Hjx) := PfX2 2 H j X1 = xg

we assume that the Markov kernel is continuous in total
variation, i.e.,

V (x;x0) := sup
H2H

j�(Hjx)� �(Hjx0)j ! 0

if x0 ! x such that H denotes the Borel �-algebra, further

V (x;x0) < 1 for all x;x0 2 [a1; a2]
d;

(iii) there exist 0 < a1 < 1 < a2 <1 such that a1 � X(j) � a2
for all j = 1; : : : ; d.

Schäfer [28] considered the scheme, where fXig is a k-th
order stationary Markov process with known k, while the
situation of unknown k can be treated via machine learning
combination of experts of degrees. However, the experiments
on 19 NYSE assets of Györfi, Ottucsák and Urbán [12] showed
that because of curse of dimensionality there is no gain for
considering k-th order Markov modeling with k > 1.
We note that Conditions (ii) and (iii) imply uniform conti-

nuity of V and thus

sup
x;x02[a1;a2]d

V (x;x0) = max
x;x02[a1;a2]d

V (x;x0) < 1: (4)

Condition (iii) implies that the bankrupt is not possible. For
the NYSE daily data, Condition (iii) is satisfied with a1 = 0:7

and with a2 = 1:2 (cf. Fernholz [7], Horváth and Urbán [19]).

From this point on assume that bi is a function of the past
return vectors: bi = bi(X

i�1
1 ). Let’s use the decomposition

1

n
logSn = In + Jn; (5)

where In is

1

n

nX
i=1

(g(bi�1;bi;Xi�1;Xi)� Efg(bi�1;bi;Xi�1;Xi)jX
i�1
1 g)

and

Jn =
1

n

nX
i=1

Efg(bi�1;bi;Xi�1;Xi)jX
i�1
1 g:

In is an average of martingale differences. Under the Condition
(iii), the random variable g(bi�1;bi;Xi�1;Xi) is bounded
(jg(bi�1;bi;Xi�1;Xi)j � c < 1 ), therefore In is an average
of bounded martingale differences, which converges to 0 almost
surely, since according to Chow’s theorem (cf. Theorem 3.3.1
in Stout [29])

1X
i=1

Efg(bi�1;bi;Xi�1;Xi)
2g

i2
�

1X
i=1

c2

i2
<1

implies that
In ! 0 (6)

almost surely. Thus, the asymptotic maximization of the aver-
age growth rate 1

n
logSn is equivalent to the maximization of

Jn.
Under the condition (i), we have that

Efg(bi�1;bi;Xi�1;Xi)jX
i�1
1 g

= Eflog(w(bi�1;bi;Xi�1) hbi ; Xii)jX
i�1
1 g

= logw(bi�1;bi;Xi�1) + Eflog hbi ; Xii jX
i�1
1 g

= logw(bi�1;bi;Xi�1) + Eflog hbi ; Xii jbi;Xi�1g
def
= v(bi�1;bi;Xi�1);

therefore the maximization of the average growth rate 1
n
logSn

is asymptotically equivalent to the maximization of

Jn =
1

n

nX
i=1

v(bi�1;bi;Xi�1): (7)

The terms in the average Jn have a memory, which transforms
the problem into a dynamic programming setup (cf. Merhav et
al. [25]).

III. Growth optimal portfolio selection algorithms

An essential tool in the definition and investigation of portfo-
lio selection algorithms under transaction costs are optimality
equations of Bellman type. First we present an informal and
heuristic way to them in our context of portfolio selection.
Later on a rigorous treatment will be given.
Let us start with a finite-horizon problem concerning JN

defined by (7): For fixed integer N > 0, maximize

EfN � JN j b0 = b;X0 = xg

= E

(
NX
i=1

v(bi�1;bi;Xi�1) j b0 = b;X0 = x

)

by suitable choice of b1; : : : ;bN . For general problems of dy-
namic programming (dynamic optimization), Bellman [3], p.
89, formulates his famous principle of optimality as follows:
"An optimality policy has the property that whatever the
initial state and initial decisions are, the remaining decisions
must constitute an optimal policy with regard to the state
resulting from the first decision."
By this principle, which for stochastic models is not so

obvious as it seems (cf. pp. 14, 15 in Hinderer [18]), one
can show: If the functions G0; G1; : : : ; GN on �d � [a1; a2]

d
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are defined by the so-called dynamic programming equations
(optimality equations, Bellman equations)

GN (b;x) := 0;

Gn(b;x) := max
b0

�
v(b;b0;x) + EfGn+1(b

0;X2) j X1 = xg
�

(n = N � 1; N � 2; : : : ; 0) with maximizer b0n = Gn(b;x).
Setting

Fn := GN�n

(n = 0; 1; : : : ; N), one can write these backward equations in
the forward form

F 0(b;x) := 0;

Fn(b;x) := max
b0

�
v(b;b0;x) + EfFn�1(b0;X2) j X1 = xg

�
(8)

(n = 1; 2; : : : ; N) with maximizer Fn(b;x) = GN�n(b;x),
where the choices bn = Fn(bn�1;Xn�1) are optimal.
For the situations, which are favorite for the investor, one has

Fn(b;x)!1 as n!1, which does not allow distinguishing
between the qualities of competing choice sequences in the
infinite-horizon case. If one considers (8) as a Value Iteration
formula, then the underlying Bellman type equation

F1(b;x) = max
b0

�
v(b;b0;x) + EfF1(b0;X2) j X1 = xg

	
has, roughly speaking, the degenerate solution F1 = 1.
Therefore one uses a discount factor 0 < � < 1 and arrives
at the discounted Bellman equation

F�(b;x) = max
b0

�
v(b;b0;x) + (1� �)EfF�(b

0;X2) j X1 = xg
	
:

(9)
Its solution allows to solve the discounted problem maximizing

E

( 1X
i=0

(1� �)iv(bi�1;bi;Xi�1) j b0 = b;X0 = x

)

=

1X
i=0

(1� �)iE fv(bi�1;bi;Xi�1) j b0 = b;X0 = xg :

The classic Hardy-Littlewood theorem (see, e.g., Theorem 97,
together with Theorem 55 in [16]) states that for a real valued
bounded sequence an, n = 1; 2; : : : ,

lim
�#0

�

1X
i=0

(1� �)iai

exists if and only if

lim
n!1

1

n

n�1X
i=0

ai

exists and that then the limits are equal. Therefore, for maxi-
mizing

lim
n!1

1

n

n�1X
i=0

E fv(bi�1;bi;Xi�1) j b0 = b;X0 = xg ;

(if it exists), it is important to solve the equation (9) for small �.
Letting � # 0, (9) with solution F �� leads to the non-discounted
Bellman equation

�+ F (b;x) = max
b0

�
v(b;b0;x) + EfF (b0;X2) j X1 = xg

	
(10)

with a real constant �. The interpretation of (8) as Value
Iteration motivates solving (9) and (10) also by Value Iterations
F�;n (see below) with discount factors � > 0. As to the
corresponding problems in Markov Control theory we refer to
Hernández-Lerma and Lasserre [17].

Let B = B(�d � [a1; a2]
d) and C = C(�d � [a1; a2]

d) be
the Banach spaces of bounded measurable and of continuous
functions F , respectively, defined on the compact set �d �

[a1; a2]
d with the sup norm k � k1. Convergence with respect

to k � k1 means uniform convergence. Let 0 < � < 1 denote a
discount factor. For such a �, let

M�
� : C ! C

be the operator which transforms each function F 2 C into a
function M�

� F 2 C defined by

(M�
� F )(b;x)

= max
b0

�
v(b;b0;x) + (1� �)EfF (b0;X2) j X1 = xg

	
((b;x) 2 �d � [a1; a2]

d). By Conditions (ii) and (iii), in fact
M�

� F 2 C. The discounted Bellman equation (9) can be written
in the form

F� = M�
� F� :

Because of 0 < � < 1, Banach’s fixed point theorem yields
that this equation has a unique solution (cf. Schäfer [28]). The
so-called Value Iteration may result in the solution: for fixed
0 < � < 1, put

F�;0 = 0

and

F�;k+1(b;x)

= max
b0

�
v(b;b0;x) + (1� �)EfF�;k(b

0;X2) j X1 = xg
	
;

k = 0; 1; : : : . Then Banach’s fixed point theorem implies that
the value iteration converges uniformly to the unique solution.

Knowing the distributions of the return vectors Schäfer [28],
and Györfi and Vajda [14] introduced portfolio f�big with
capital �Sn such that it is optimal in the sense that for any
portfolio strategy fbig with capital Sn,

lim inf
n!1

�
1

n
Eflog �Sng �

1

n
EflogSng

�
� 0:

and
lim inf
n!1

�
1

n
log �Sn �

1

n
logSn

�
� 0

a.s. Györfi and Walk [15] proved that a solution (� = W �
c ; F )

of the (non-discounted) Bellman equation (10) exists, where
W �

c 2 R is unique.W �
c is the maximum growth rate (see below).

If (W �
c ; F ) is a solution then (W �

c ; F + const) is a solution, too,
therefore we introduce a standardized solution:

F �max
b;x

F (b;x);

which is again in C and has maximum value 0.
Again, knowing the distributions of the return vectors Györfi

and Walk [15] introduced portfolio selection rules such that if
S�n denotes the wealth at period n using these portfolios then

lim
n!1

1

n
logS�n = W �

c
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a.s., while if Sn denotes the wealth at period n using any other
portfolio then

lim sup
n!1

1

n
logSn �W �

c

a.s.

Next we introduce an empirical (data driven) partitioning-
based portfolio selection rule. Without transaction cost it was
studied in Györfi and Schäfer [11]. Let Pn = fAn;j ; j = 1; 2; : : :g

be a sequence of cubic partitions of Rd with the side length of
the cubic cells hn # 0. For x 2 Rd, set

An(x) := An;j if x 2 An;j :

Choose a sequence 0 < �n < 1 such that

�n # 0; lim inf
n

n� �n > 0 for some 0 < � < 1=2;
�n+1
�n

! 1;

e.g.,
�n =

1

n�
:

Set
F1 := 0

and, with

(MnFn)(b;x)

:= max
~b

n
logw(b; ~b;x) +

Pn

i=2
log


~b ; Xi

�
IXi�12An(x)Pn

i=2
IXi�12An(x)

+(1� �n)

Pn

i=2
Fn(~b;Xi)IXi�12An(x)Pn

i=2
IXi�12An(x)

o
(11)

(with a void sum being 0 and 0=0 := 0), iterate

Fn+1 := MnFn � sup
b;x

(MnFn)(b;x) (12)

(n = 1; 2; : : : ). Put

b1 := f1=d; : : : ; 1=dg

and

bn+1 := argmax
~b

n
logw(bn; ~b;Xn)

+

Pn

i=2
log


~b ; Xi

�
IXi�12An(Xn)Pn

i=2
IXi�12An(Xn)

+(1� �n)

Pn

i=2
Fn(~b;Xi)IXi�12An(Xn)Pn

i=2
IXi�12An(Xn)

o
:

In the realistic case that the state space of the Markov
process (Xn) is a finite set D of rational vectors (components
being quotients of integer-valued $-amounts ) containing e =

(1; : : : ; 1), the second part of Condition (ii) is fulfilled under
the plausible assumption �(fegjx) > 0 for all x 2 D. Another
example for finite state Markov process is when one rounds
down the components of x to a grid applying, for example,
a grid size 0:00001. Under mild condition the Markov process
is irreducible and aperiodic, e.g., assume that asset prices (in
$) are given by natural numbers and the d-tuple s of asset
prices at the end of a trading period changes to a d-tuple s� of
asset prices at the end of the next trading period with positive
probability for all s; s�, where Condition (iii) is fulfilled. Then
the Markov process Xn is really irreducible and aperiodic, since
the state e is aperiodic because of �(fegje) > 0 and thus by
irreducibility each state is aperiodic.

Theorem 1: Assume that the Markov process Xn takes val-
ues in a finite state space D and it is irreducible and aperiodic.
Under the Conditions (i), (ii) and (iii), if Sn denotes the wealth
at period n using the portfolio fbng then

lim
n!1

1

n
logSn = W �

c

a.s.

One can comprehend a more general situation. Let the
homogeneous first order Markov process fXngn�1 on a state
space [a1; a2]

d be (Harris-)recurrent and strongly aperiodic.
According to Athreya and Ney ([2], with references) this means
the following: there exists a (measurable) set A � [a1; a2]

d, a
probability measure � on A, a number 0 < � <1 such that

PfXn 2 A for some n � 2 j X1 = xg = 1

for each x 2 [a1; a2]
d, and

�(U j x) � ��(U)

(� is the Markov kernel) for each x 2 A and each (measurable)
set U � A.
We modify the partitioning-based portfolio selection rule to

a kn-nearest neighbor (kn-NN) based rule. It is assumed that
ties occur with probability zero. Because of the possibility of
including a randomizer component into the return vector, this
tie condition is not crucial (see, e.g., Györfi et al [9], pp. 86,
87). Choose kn = bnKc, �n = n�� with 0 < � < K < 1. We
shall quantize the random variables: Choose a sequence fTng
of finite subsets of [a1; a2]d such that Tn ", [nTn is dense in
[a1; a2]

d, card(Tn) = bn�c with 0 < � < K. Let

Xn;i := argmin
x2Tn

kx�Xik:

Now set

F 01 := 0

and, with

In;i(x) := IfXi�1 is among the kn�1 NNs of x in fX1;:::;Xn�1gg;

put

(QnF )(b;x)

:= sup
~b

n
logw(b; ~b;x) +

1

kn�1

nX
i=2

log


~b ; Xn;i

�
In;i(x)

+
1� �n
kn�1

nX
i=2

F (~b;Xn;i)In;i(x)
o
;

F 2 B (with a void sum being 0 and 0=0 := 0), iterate

F 0n+1 := QnF
0
n �W 0

n; (13)

where

W 0
n = sup

b;x

(QnF
0
n)(b;x);

(n = 1; 2; : : : ). Put

b01 := f1=d; : : : ; 1=dg
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and

b0n+1 := argmax
~b

n
logw(b0n; ~b;Xn)

+
1

kn�1

nX
i=2

log


~b ; Xn;i

�
In;i(x)

+
1� �n
kn�1

nX
i=2

F 0n(~b;Xn;i)In;i(x)
o
:

Theorem 2: Assume that the Markov process Xn is recur-
rent and strongly aperiodic. Under the Conditions (i), (ii) and
(iii), if S0n denotes the wealth at period n using the portfolio
fb0ng then

lim
n!1

1

n
logS0n = W �

c

a.s.

IV. Proofs

Proof of Theorem 1.
Step 1. In general, an irreducible denumerable homogeneous
Markov chain is either transient or null-recurrent or positive-
recurrent. But here, because of finite state space, only the third
case is possible (cf. XV.6, Theorem 4 in Feller [6]). (Feller uses
the terminology "persistent" instead of "recurrent".) Then by
the ergodic theorem of Markov chains, for all fixedm = 0; 1; : : :

and x;x0 2 D,

PfXn = x0 j Xm = xg ! �(x0)

:= lim
n!1

PfXn = x0g = ( mean recurrent time of x0)�1 > 0

for n ! 1 (cf. XV.7, Theorem in Feller [6]). According to
Facts 4 and 3 in Rosenthal [26], all these convergences have an
exponential rate. This means that Xn is �-mixing with mixing
coefficients �k � c0e�c

00k for some c0 > 0; c00 > 0 (cf. Definition
2.2.1 in Györfi et al [8]). For a bounded function F : �d�D !

R we show that

sup
b2�d;x2D

���
Pn

i=2
F (b;Xi)IXi�12An(x)Pn

i=2
IXi�12An(x)

�EfF (b;X2) j X1 = xg
���

� E0
n sup

b2�d;x2D
EfjF (b;X2)j j X1 = xg

a.s. with random variables E0
n = o(n�� ) independent of F . We

note

EfF (b;X2) j X1 = xg =
X
x02D

F (b;x0)�(fx0g j x);

b 2 �d;x 2 D. Further for b 2 �d;x 2 D and n sufficiently
large (independent of F;b;x) we have

Pn

i=2
F (b;Xi)IXi�12An(x)Pn

i=2
IXi�12An(x)

=

Pn

i=2
F (b;Xi)IXi�1=xPn

i=2
IXi�1=x

=

Pn

i=2

P
x02D;�(fx0gjx)>0 F (b;x0)IXi=x0;Xi�1=xPn

i=2
IXi�1=x

=
X

x02D;�(fx0gjx)>0
F (b;x0)

�
� 1

n

Pn

i=2
(IXi=x0;Xi�1=x � PfXi = x0;Xi�1 = xg)

1
n

Pn

i=2
[(IXi�1=x � PfXi�1 = xg) + PfXi�1 = xg]

+
1
n

Pn

i=2
PfXi = x0;Xi�1 = xg

1
n

Pn

i=2
[(IXi�1=x � PfXi�1 = xg) + PfXi�1 = xg]

�

a.s., since IXi=x0;Xi�1=x = 0 a.s. in case �(fx0g j x) = 0. The
sequence (Xn�1;Xn) is �-mixing with exponential convergence
rate of mixing coefficients �0k, thus � :=

P1
k=1

�0k <1. We use
Collomb’s exponential inequality (see Theorem 2.2.1 in Györfi
et al. [8]) noticing

1

n1��
��IXi=x0;Xi�1=x � PfXi = x0;Xi�1 = xg

�� � 1

n1��

and

E

��
1

n1��
��IXi=x0;Xi�1=x � PfXi = x0;Xi�1 = xg

���2�

�
1

n2(1��)

and obtain for � > 0

P

(����� 1

n1��

nX
i=2

(IXi=x0;Xi�1=x � PfXi = x0;Xi�1 = xg)

����� > �

)

� e3
p
en�0m=m���+6�2n(1+4�)=n2(1��)

with � > 0, 1 � m � n� 1, �m=n1�� � 1=4. Choosing

m = bn�c

with � < � < 1� � and

� =
n1��

4m
;

the right-hand side for n = 2; 3; : : : is bounded from above by

e
3
p
e(n�1)�0

b(n�1)�c
=b(n�1)�c�(n�1)1�����=4+3(1+4�)n1�2�

=8

(where n�0bn�c=bn
�c ! 0), which converges to 0 exponentially

fast. Thus

1

n

nX
i=2

(IXi=x0;Xi�1=x � PfXi = x0;Xi�1 = xg) = o(n�� )
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a.s. Further, by homogeneity of the Markov chain Xn and the
exponential convergence rate of PfXn = x0g mentioned above��� 1

n

nX
i=2

PfXi = x0;Xi�1 = xg � �(fx0g j x)�(x)
���

= �(fx0g j x)
��� 1
n

nX
i=2

PfXi�1 = xg � �(x)
���

� �(fx0g j x)

 
1

n

1X
i=2

jPfXi�1 = xg � �(x)j+ �(x)=n

!

= O(1=n):

Because the state space D is finite, a.s. the rates of conver-
gence are uniform with respect to x;x0 2 D. The argument
concerning 1

n

Pn

i=2
IXi�1=x is analogous, but even simpler.Pn

i=2
F (b;Xi)IXi�12An(x)Pn

i=2
IXi�12An(x)

=
X

x02D;�(fx0gjx)>0
F (b;x0)

�(fx0g j x)�(x) + o(n�� )
�(x) + o(n�� )

=
X
x02D

F (b;x0)�(fx0g j x)(1 + o(n�� ))

= EfF (b;X2) j X1 = xg(1 + o(n�� ))

uniformly with respect to x 2 D and b 2 �d a.s., since the
o-terms depend only on x, not on b or F . This yields the
assertion.
Step 2. With B and C as in Section III and with Mn defined
by (11), we show that Fn converges in B to a set of solutions
(in C) of the Bellman equation (10) a.s., further

Wn := max
b;x

(MnFn)(b;x)!W �
c (14)

a.s. For 0 � � < 1 and for F 2 B, define the operator

(M�
� F )(b;x)

:= sup
b0

�
v(b;b0;x) + (1� �)EfF (b0;X2) j X1 = xg

	
:

(15)

By continuity assumption (ii), with restriction on C, this leads
to an operator

M�
� : C ! C:

(See Schäfer [28] p.114.) The operator M�
� : B ! B is

continuous, even Lipschitz continuous with Lipschitz constant
1� �. Indeed, for F; F 0 2 B from the representation

(M�
� F )(b;x)

= v(b;b�F (b;x);x) + (1� �)EfF (b�F (b;x);X2) j X1 = xg;

without loss of generality assuming that sup is attained, and
from the corresponding representation of (M�

� F
0)(b;x) one

obtains

(M�
� F

0)(b;x)

� v(b;b�F (b;x);x) + (1� �)EfF 0(b�F (b;x);X2) j X1 = xg

� v(b;b�F (b;x);x) + (1� �)EfF (b�F (b;x);X2) j X1 = xg

�(1� �)kF � F 0k1

= (M�
� F )(b;x)� (1� �)kF � F 0k1

for all (b;x) 2 �d � [a1; a2]
d, therefore

kM�
� F �M�

� F
0k1 � (1� �)kF � F 0k1:

It can be easily checked that

kM�
�n+1F

0
n+1 �M�

�nF
0
n+1k1 � (�n � �n+1)kF

0
n+1k1: (16)

From Step 1, noticing

L := sup
b2�d;x2D

j log hb ; xi j <1;

we obtain

kMnFn �M�
�nFnk1 � En(1 + kFnk1) (17)

a.s. with random variables

En := (2 + L)E0
n = o(n�� ):

Because of (17) it holds

jFn+1(�b; �x)� Fn+1(b;x)j

= j(MnFn)(�b; �x)� (MnFn)(b;x)j

� j(M�
�nFn)(

�b; �x)� (M�
�nFn)(b;x)j+ 2En(1 + kFnk1)

� max
b0

jv(�b;b0; �x)� v(b;b0; �x)j

+max
b0

jv(b;b0; �x)� v(b;b0;x)j

+V (x; �x)kFnk1 + 2En(1 + kFnk1) (18)

a.s. Then, because of boundedness of v,

kFn+1k1 � const+max
x;�x

V (x; �x)kFnk1 + 2En(1 + kFnk1)

a.s. Noticing En ! 0 a.s. and maxx;�x V (x; �x) < 1, one obtains

kFnk1 � E <1 (19)

a.s. with some random variable E. With

E�
n := En+1(1 + kFn+1k1) + En(1 + kFnk1)

� (En+1 + En)(1 + E) = o(n�� )

a.s. (by (19)), the Lipschitz continuity of M�
�n with Lipschitz

constant 1 � �n, (16) for Fn+1, (19) and the conditions on �n
we obtain that

kFn+2 � Fn+1k1

= kMn+1Fn+1 �MnFnk1

� kM�
�n+1Fn+1 �M�

�nFnk1 + E�
n

� kM�
�nFn+1 �M�

�nFnk1 + kM�
�n+1Fn+1 �M�

�nFn+1k1

+E�
n

� (1� �n)kFn+1 � Fnk1 + (�n � �n+1)kFn+1k1 + E�
n

� (1� �n)kFn+1 � Fnk1 +

��
1�

�n+1
�n

�
E +

E�
n

�n

�
�n

� (1� �n)kFn+1 � Fnk1 + o(1)�n

a.s., leading to
kFn+2 � Fn+1k1 ! 0 (20)

a.s. (cf. Lemma 1(c) in Walk and Zsidó [30]). Now let f�nkg
be an arbitrary subsequence of f�ng. From Condition (ii), (18)
and (19) we obtain

sup
i�j

jFi(�b; �x)� Fi(b;x)j ! 0

a.s. when (�b; �x) ! (b;x) and j ! 1, even uniformly with
respect to (b;x). This together with (19) yields existence of a
random subsequence f�nk` g and of a random function F � with
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realizations in C (bounded, where maxb;x F
�(b;x) = 0) such

that

kFnk` � F �k1 ! 0 (21)

a.s. as ` ! 1 (cf. Ascoli-Arzelá theorem and its proof, [31]).
Thus, by continuity of M�

0 ,

kM�
0Fnk` �M�

0F
�k1 ! 0 (22)

a.s. as `!1. By (12),

Fnk`+(Fnk`+1�Fnk` ) = M�
0Fnk`+(Mnk`

Fnk`�M
�
0Fnk` )�Wnk`

:

(20) implies that

kFnk`+1 � Fnk` k1 ! 0

a.s. We notice

kMnk`
Fnk` �M�

0Fnk` k1

� kMnk`
Fnk` �M�

�nk`
Fnk` k1 + kM�

�nk`
Fnk` �M�

0Fnk` k1

� Enk`
(1 + kFnk` k1) + �nk` kFnk` k1

! 0

a.s. (by (17), (16) and (19)). This together with (21) and (22)
yields a.s. convergence of Wnk`

and

lim
`
Wnk`

+ F � = M�
0F

�

a.s. This equation means that a.s. the realizations of F � solve
the Bellman equation (10) such that

lim
`
Wnk`

= W �
c

a.s. This yields the assertion.
Step 3. We show the assertion of Theorem 1. Noticing that
Fn depends on X1; : : : ;Xn�1 and that bn+1 depends on
X1; : : : ;Xn, Step 1 together with a.s. uniform boundedness of
Fn (by (19)) and the assumption that Xn is a homogeneous
first order Markov chain yieldsPn

i=2
Fn(bn+1;Xi)IXi�12An(Xn)Pn

i=2
IXi�12An(Xn)

� EfFn(bn+1;Xn+1) j X
n
1 g

! 0 (23)

a.s., further

Eflog hbn+1 ; Xn+1i j bn+1;Xng

= Eflog hbn+1 ; Xn+1i j X
n
1 g

=

Pn

i=2
log hbn+1 ; Xii IXi�12An(Xn)Pn

i=2
IXi�12An(Xn)

+ o(1) (24)

a.s. Because of (5), (6), (7) and (24) it is enough to prove

TN :=
1

N

NX
n=1

�
logw(bn;bn+1;Xn)

+

Pn

i=2
log hbn+1 ; Xii IXi�12An(Xn)Pn

i=2
IXi�12An(Xn)

�
!W �

c

(25)

a.s. Thus,

Wn + Fn+1(bn;Xn)

=
�
logw(bn;bn+1;Xn)

+

Pn

i=2
log hbn+1 ; Xii IXi�12An(Xn)Pn

i=2
IXi�12An(Xn)

�

+(1� �n)

Pn

i=2
Fn(bn+1;Xi)IXi�12An(Xn)Pn

i=2
IXi�12An(Xn)

:

Then

TN =
1

N

NX
n=1

Wn +
1

N

NX
n=1

Fn+1(bn;Xn)

�
1

N

NX
n=1

(1� �n)

Pn

i=2
Fn(bn+1;Xi)IXi�12An(Xn)Pn

i=2
IXi�12An(Xn)

:

Without loss of generality we may assume that E in (19)
is a constant. Otherwise we suitably truncate Fn having an
exceptional set of arbitrarily small probability measure. By (19)
and (23) together with �n ! 0 we obtain

TN =
1

N

NX
n=1

Wn

+
1

N

NX
n=1

(Fn+1(bn;Xn)� EfFn(bn+1;Xn+1) j X
n
1 g)

+o(1)

a.s. This together with (14), (20) and (19) implies that

TN = W �
c

+
1

N

NX
n=1

(Fn(bn+1;Xn+1)� EfFn(bn+1;Xn+1) j X
n
1 g)

+o(1)

a.s. By (19), Chow’s theorem yields that the middle term of
the right hand side a.s. converges to 0. Thus (25) is obtained.

Sketch of the proof of Theorem 2.
Step 1. Athreya and Ney state ([2], Theorem (4.1), (i)): if the
homogeneous first order Markov process fXngn�1 is recurrent
and strongly aperiodic, with invariant probability measure �
(i.e.,

R
�(� j x)�(dx) = �), then

sup
D�[a1;a2]d

jPfXn 2 D j X1 = xg � �(D)j ! 0

for each x 2 [a1; a2]
d.

In our situation

sup
D�[a1;a2]d

jPfXn 2 D j X1 = xg � PfXn 2 D j X1 = x0gj

� sup
D�[a1;a2]d

j�(D j x)� �(D j x0)j ! 0 (x0 ! x)

by Condition (ii). Therefore even

sup
x;D

jPfXn 2 D j X1 = xg � �(D)j ! 0 (26)

as n!1. Thus fXng is �-mixing. Also f(Xn;Xn�1);n � 2g

is �-mixing. Let A be the system of closed spheres S � (0;1)d

with centers in [a1; a2]
d. For each F 2 B, with

VF;n;b;S :=
1

kn�1

nX
i=2

F (b;Xn;i)IfXi�12Sg
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we have

sup
S2A

sup
b2�d

jVF;n;b;S � EfVF;n;b;Sgj � E0
nkFk1 (27)

a.s. with random variables E0
n ! 0 independent of F . This is

obtained by an application of Collomb’s exponential inequality
(cf. Györfi et al. [8], pp. 19, 20) for the �-mixing sequence
f(Xn;Xn�1)g, which yields

P

�
sup

kFk1>0

sup
S;b

1

kFk1
jVF;n;b;S � EfVF;n;b;Sgj > �

�

�
X
x2Tn

P

n
sup
S2A

�� 1
n

nX
i=2

(IfXn;i=x;Xi�12Sg

�EfIfXn;i=x;Xi�12Sgg)
�� > �kn

n � card(Tn)

o
� c1card(Tn)n

d+2e�c2�kn=card(Tn)

with c1; c2 2 (0;1) depending on �, where the factor nd+2

in the right-hand side follows from the Vapnik-Chervonenkis
theory (cf. Kohler et al. [24], p. 689). Now the Borel-Cantelli
lemma yields (27). For x 2 [a1; a2]

d, set

ĥn(x) := min

(
h > 0;

nX
i=2

IfXi�12Sx;hg � kn�1

)
:

Introduce the notation

�i(H) := PfXi 2 Hg:

For F = 1, (27) yields

1

kn�1

nX
i=2

�i�1(Sx;ĥn(x)
)! 1 (28)

uniformly with respect to x, a.s., further by

lim
n
E

(
1

n� 1

nX
i=2

IfXi�12Sg

)
= lim

n
PfXn 2 Sg = �(S); S 2 A;

we get that
sup

x2supp(�)
ĥn(x)! 0 (29)

a.s.
Step 2. We show that F 0n a.s. converges in B to the set of
solutions (2 C) of the Bellman equation (10), further

W 0
n = sup

b;x

(QnF
0
n)(b;x)!W �

c

a.s. For F 2 B, set

(R0nF )(b;x; h) :=
1

kn�1

nX
i=2

EfF (b;Xn;i)IfXi�12Sx;hgg

and
(R�nF )(b;x) := (R0nF )(b;x; ĥn(x))

and
(R0F )(b;x) := EfF (b;X2) j X1 = xg

and

(Q�
nF )(b;x) := sup

b0
flogw(b;b0;x) + (R�n log h� ; �i)(b

0;x)

+(1� �n)(R
�
nF )(b0;x)g

and

(Q0F )(b;x) := (M�
0F )(b;x)

= sup
b0
flogw(b;b0;x) + (R0 log h� ; �i)(b

0;x)

+(R0F )(b0;x)g:

For each F 2 B, with L0 := maxb;x log hb ; xi <1, we have

j(Q�
nF )(b;x)� (Q�

nF )(�b; �x)j

� sup
b0

j logw(�b;b0; �x)� logw(b;b0; �x)j

+sup
b0

j logw(b;b0; �x)� logw(b;b0;x)j

+E00
n(1 + kFk1) + (L0 + kFk1)V (x;x0) (30)

a.s. with random variables E00
n ! 0 independently of F , b, x.

To obtain this, we notice that with random variables E000
n ! 0

��(R�nF )(b0;x)�
1

kn�1

nX
i=2

EfF (b0;Xn;i) j Xi�1 = xg

��i�1(Sx;ĥn(x)
)
��

� kFk1
1

kn�1

nX
i=2

Z
Sx;ĥn(x)

V (z;x)PXi�1(dz)

� E000
n kFk1

a.s. because of Condition (i), (29) and (28), further

1

kn�1

�� nX
i=2

�
EfF (b0;Xn;i) j Xi�1 = �xg

��i�1(S�x;ĥn(�x))
��

�EfF (b0;Xn;i) j Xi�1 = xg�i�1(Sx;ĥn(x)
)
���

�
1

kn�1
kFk1V (x; �x)

nX
i=2

�i�1(Sx;ĥn(x)
)

+
1

kn�1
kFk1

1

kn�1

�� nX
i=2

�
�i�1(Sx;ĥn(x)

)

��i�1(Sx̂;ĥn(x̂)
)
���

� kFk1V (x; �x)(1 + E000
n )

a.s. because of (28), especially also for h� ; �i. (27) and (30) yield��F 0n+1(�b; �x)� F 0n+1(b;x)
��

� sup
b0

j logw(�b;b0; �x)� logw(b;b0; �x)j

+sup
b0

j logw(b;b0; �x)� logw(b;b0;x)j

+(L0 + kF 0nk1)V (x; �x) + E(4)
n (1 + kF 0nk1) (31)

a.s. with random variables E(4)
n ! 0. This corresponds to (18)

in the proof of Theorem 1. By (31) we obtain

kF 0nk1 � E0 <1 (32)

with some random variable E0, which corresponds to (19). Via

kQnF �QnF
0k1 � +(1� �n)kF � F 0k1

and

kQn+1F�QnFk1 �
2L0 + 2kFk1

kn�1
+(�n��n+1)kFk1+

kFk1
knkn�1

;

(F; F 0 2 B), by (32) we obtain

kF 0n+2 � F 0n+1k1 ! 0 (33)
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a.s., which corresponds to (20). We notice

kQ�
nF �Q�

nF
0k1 � +(1� �n)kF � F 0k1 (34)

(F; F 0 2 B). Further for each F 2 C

(R�nF )(b;x)! (R0F )(b;x) (35)

uniformly with respect to b;x, a.s., because the left hand side
equalsZ

F (b;y)�(x j dy)
1

kn�1

nX
i=2

�i�1(Sx;ĥn(x)
) + o(1)

uniformly with respect to b;x, a.s., by (28) and by Condition
(ii), (29) and once more (28). Now let f�nkg be an arbitrary
subsequence of f�ng. We argue as in Step 2 of the proof
of Theorem 1 using (31) and (32) instead of (18) and (19),
respectively, and obtain as there

kF 0nk` � F �k1 ! 0 (36)

a.s. for a random subsequence nk` of indices and a bounded
random function F � with realizations in C. We notice

F 0nk` + (F 0nk`+1 � F 0nk` ) = Q0F
� + (Qnk`

F 0nk` �Q0F
�)�W 0

nk`
;

further (36), (33) and

kQnk`
F 0nk` �Q0F

�k1

� kQnk`
F 0nk` �Q�

nk`
F 0nk` k1 + kQ�

nk`
F 0nk` �Q�

nk`
F �k1

+kQ�
nk`

F � �Q0F
�k1

� E(4)
n (1 + kF 0nk` k1) + kF 0nk` � F �k1 + o(1)

! 0

a.s. (by (27) – compare (31) –, (32), (34), (35) and (36)). This
yields

lim
`
W 0

nk`
+ F � = W �

c + F � = M�
0F

�;

and thus the assertion.
Step 3. We show the assertion of Theorem 2. By (27) and (32)
we obtain

(RnF
0
n)(bn+1;Xn) = (R�nF

0
n)(bn+1;Xn) + o(1) (37)

a.s. Further we notice that for F 0n 2 B, F � 2 C and kF 0n �
F �k1 ! 0 we have

kR�nF
0
n �R0F

0
nk1

� kR�nF
� �R0F

�k1 + kR�nF
0
n �R�nF

�k1

+kR0F
0
n �R0F

�k1

� o(1) + kF 0n � F �k1 + kF 0n � F �k1

! 0

a.s. because of (35) and (34). Thus by (36) and use of subse-
quences of subsequences we obtain

(R�nF
0
n)(bn+1;Xn) = (R0F

0
n)(bn+1;Xn) + o(1) (38)

a.s. (37), (38) and

(R0F
0
n)(bn+1;Xn) = EfF 0n(bn+1;Xn+1) j X

n
1 g

yield

(RnF
0
n)(bn+1;Xn)� EfF 0n(bn+1;Xn+1) j X

n
1 g ! 0

a.s. (compare (22)). An analogous result holds for h� ; �i instead
of F 0n (compare (23)). Now the assertion follows as in the final
part of the proof of Theorem 1.

V. Acknowledgement

The authors wish to thank the reviewers for helpful sugges-
tions which led to an improvement of the paper. We also thank
Michael Kohler and Adam Krzyzak for the valuable discussion.

References

[1] P. Algoet, and T. Cover, "Asymptotic optimality asymptotic
equipartition properties of log-optimum investments," Annals
of Probability, 16, pp. 876-898, 1988.

[2] K. B. Athreya, and P. Ney, "A new approach to the limit theory
of recurrent Markov chains," Transactions of the American
Mathematical Society, 245, pp. 493-501, 1978.

[3] R. Bellman, Dynamic Programming, Princeton: Princeton Uni-
versity Press, 1957.

[4] R. V. Bobryk, and L. Stettner, "Discrete time portfolio se-
lection with proportional transaction costs," Probability and
Mathematical Statistics, 19, pp. 235-248, 1999.

[5] V. F. Farias, C. C. Moallemi, B. Van Roy, T. Weissman,
"Universal reinforcement learning," IEEE Transactions on In-
formation Theory, 56, pp. 2441-2454, May 2010.

[6] W. Feller, An Introduction to Probability Theory and its Appli-
cations, Vol.1 , New York: John Wiley, 1968.

[7] E. R. Fernholz, Stochastic Portfolio Theory, New York:
Springer, 2000.

[8] L. Györfi, W. Härdle, P. Sarda, and Ph. Vieu, Nonparametric
Curve Estimation from Time Series, Lecture Notes in Statistics,
Berlin: Springer-Verlag, 1989.

[9] Györfi, L., Kohler, M., Krzyżak, A. and Walk, H. A
Distribution-free Theory of Nonparametric Regression, New
York: Springer-Verlag, 2002.

[10] L. Györfi, G. Lugosi, and F. Udina, "Nonparametric kernel-
based sequential investment strategies," Mathematical Finance,
16, pp. 337-357, 2006.

[11] L. Györfi, and D. Schäfer, "Nonparametric prediction," in Ad-
vances in Learning Theory: Methods, Models and Applications,
eds. J. A. K. Suykens, G. Horváth, S. Basu, C. Micchelli, and
J. Vandevalle. IOS Press, pp. 339-354, 2003.

[12] L. Györfi, G. Ottucsák and A. Urbán, "Empirical log-optimal
portfolio selections: a survey" in Machine Learning for Finan-
cial Engineering, eds. L. Györfi, G. Ottucsák, H. Walk, pp. 79-
116, Imperial College Press, 2011.

[13] L. Györfi, F. Udina, and H. Walk, "Nonparametric nearest-
neighbor-based sequential investment strategies", Statistics and
Decisions, 26, pp. 145-157, 2008.

[14] L. Györfi, and I. Vajda, "Growth optimal portfolio selection
strategies with transaction costs", in Algorithmic Learning
Theory, Freund, Y., Györfi, L., Turán, G., Zeugmann, Th.
(Eds.), Lecture Notes in Artificial Intelligence, Vol. LNAI 5254,
Springer, pp. 108-122, 2008.

[15] L. Györfi, and H. Walk, "Log-optimal portfolio selection strate-
gies with proportional transaction costs," in Machine Learning
for Financial Engineering, eds. L. Györfi, G. Ottucsák, H. Walk,
Imperial College Press, pp. 117-150, 2011.

[16] G. H. Hardy, Divergent Series, London: Oxford University
Press, 1949.

[17] O. Hernández-Lerma and J. B. Lasserre, Discrete-Time Markov
Control Processes: Basic Optimality Criteria, New York:
Springer, 1996.

[18] K. Hinderer, Foundations of Non-Stationary Dynamic Program-
ming with Discrete Time Parameter, Berlin: Springer-Verlag,
Berlin, 1970.

[19] M. Horváth and A. Urbán, "Growth optimal portfolio selection
with short selling and leverage", in Machine Learning for
Financial Engineering, eds. L. Györfi, G. Ottucsák, H. Walk,
Imperial College Press, pp. 151-176, 2011.

[20] G. Iyengar, "Discrete time growth optimal investment with
costs," Working Paper, 2002
http://www.columbia.edu/�gi10/Papers/stochastic.pdf



11

[21] G. Iyengar, "Universal investment in markets with transaction
costs," Mathematical Finance, 15, pp. 359-371, 2005.

[22] G. Iyengar, and T. Cover, "Growth optimal investment in horse
race markets with costs," IEEE Transactions on Information
Theory, 46, pp. 2675-2683, 2000.

[23] A. Kalai, and A.Blum, "Universal portfolios with and without
transaction costs," Proceedings of the 10th Annual Conference
on Learning Theory., pp. 309-313, 1997.

[24] M. Kohler, A. Krzyzak, and H. Walk, "Estimation of the
essential supremum of a regression function," Statistics and
Probability Letters, 81, pp. 685-693, 2011.

[25] N. Merhav, E. Ordentlich, G. Seroussi, and M. J. Weinberger,
"On sequential strategies for loss functions with memory,"
IEEE Transactions on Information Theory, 48, pp. 1947-1958,
2002.

[26] J. S. Rosenthal, "Convergence rates of Markov chains," SIAM
Review, 37, pp. 387-405, 1995.

[27] J. Sass, and M. Schäl, "The numeraire portfolio under propor-
tional transaction cost," Working paper, 2010.

[28] D. Schäfer, Nonparametric Estimation for Finantial Investment
under Log-Utility, PhD Dissertation, Mathematical Institute,
Universität Stuttgart, Aachen: Shaker Verlag, 2002.
http://www.szit.bme.hu/�oti/portfolio/articles/dominik.pdf

[29] W. F. Stout, Almost Sure Convergence, New York: Academic
Press, 1974.

[30] H. Walk, and L. Zsidó, "Convergence of the Robbins-Monro
method for linear problems in a Banach space," Journal of
Mathematical Analysis and Applications, 139:152–177, 1989.

[31] K. Yosida, Functional Analysis, 2nd ed. Berlin: Springer-Verlag,
1968.


