
Theory of Algorithms
Practice problem solutions

Viktória Nemkin, Márta Pintér
Lectored by: Attila Sali

2024

1. Balls are distributed in n boxes, such that in the kth box there are k balls. In one step, we can choose an
arbitrary subset of the boxes and take out the same number of balls from each. Give an optimal algorithm
that uses the smallest number of steps to empty all the boxes.

Solution:

Think of each box’s index as a binary number. During the ith step, we remove 2i balls from every box whose
index has the bit for that step set to 1.

By making iterations from i = 0 to ⌈log2 n⌉, we removed all balls from all boxes, so the number of steps needed
is O(log2 n).

We can’t have a solution with fewer steps because that would imply we could generate all numbers up to n
with just ⌈ log2 n⌉ − 1 different numbers. But with x = ⌈ log2 n⌉ − 1 numbers available, we only have 2x

combinations, which is less than n. This means we would miss at least one number between 1 and n, proving
such a solution is not possible.

2. Let M be a natural number of n bits length. Give an algorithm to determine ⌊ 3
√
M⌋ whose running time is

polynomial of n.

Solution:

To find the solution x for x3 ≤ M but (x+ 1)3 > M , we use a binary search approach:

Start with x = 0 and guess each bit of x from the most significant bit to the least significant bit. For each bit,
try setting it to 1 and check: If x3 is exactly M , we’ve found the answer. If it is greater, unset the bit back to
0 if it is less, keep the bit as 1. Proceed until all bits are checked to get x in binary.

Proof of correctness relies on maintaining the invariant property that the already determined bits of x at
each step form the correct prefix of the solution. If setting a bit makes x too big, we know that bit shouldn’t
be set because we can’t decrease x later. If it’s still too small, that bit needs to be set to reach M , since
not setting it would make it impossible to get close enough to M with the remaining bits. For a given bit
position b, the value of setting this bit, 2b, is greater than the sum of all lower bit values combined, which is
2b−1 + 2b−2 + ...+ 2 + 1 = 2b − 1.

3. We are given n chips that can test each other in the following way: if two of the chips are connected, then
both determine whether the other one is faulty or correct. A correct chip decides correctly about the other,
while a faulty chip can give an arbitrary answer. Assume that more than half of the chips are correct. Give
an algorithm that uses less than n tests of the above type to find a correct chip.

Solution:

Same as Exercise 13 from Practice session 1, the solution can be read there.

1

ThAlg 2024 ThAlg Practice session 123

4. The Russian Czar in St. Petersburg wants to send a letter to the Chinese Emperor in Beijing using carrier
pigeons. There are n cities in the route, v1(= St. Petersburg), v2, . . . , vn(= Beijing). It is known for each
pigeon from which city to which other city they can fly and how long it takes them to get there. To avoid
unnecessary detours, if a pigeon flies from city vi to city vj , then i < j. Help the Czar to plan the fastest way
to deliver the letter.

Solution:

This exercise can be modeled using graphs, the vertices of the graph represent the cities on the route and the
edges of the graph represent the pigeons. If there is an edge pointing from vi to vj, it means that a pigeon can
fly from the city of vi to the city of vj. The time it takes for the pigeon to fly is represented by the edge weight.
Then, we can use the Dijkstra algorithm to find the shortest path from v1 to all other vertices, including vn,
which takes O(n2) time.

Since the graph is a DAG and the vertices are already in topological order, we can also use Dynamic Pro-
gramming to solve the exercise. We create a DP array where DP [i] is the shortest time to reach city vi from
v1. For each city, calculate DP [i] by taking the minimum of DP [j] + wj,i for all cities vj that have an edge
pointing to vi. Initialize DP [1] = 0 because the start city’s distance to itself is zero. Fill out the DP array in
order, leveraging the topological sort that guarantees all predecessors to a city are done before the city needs
to use them. The final answer, the shortest path to the last city vn, is found in DP [n]. This solution involves
O(e) calculations for the edges and O(n) for finding minimums, where e is the number of edges, for a total of
O(n+ e) steps.

5. An array A[1 : n] contains red and green elements. We want to rearrange the elements so that all the
red elements precede the green elements, or all of them will come after the green elements. A legal step
in rearranging them is swapping the position of two adjacent elements. We count swapping two adjacent
elements as a step. Give an optimal algorithm for this.

Solution:

Same as Exercise 12 from Practice session 1, the solution can be read there.

6. In a classroom, there is a square board of size n× n, equipped with a total of n2 lightbulbs. Alongside each
row and column, there is a switch that toggles the state of all lightbulbs in that row or column (turning on
all the bulbs that are off and turning off all those that are on). Initially, all the lightbulbs were turned off.
However, during the break, students tinkered with the switches. What is the minimum number of switch
presses needed for the teacher to switch off all the lightbulbs again? What strategy should they use?

Solution:

Pressing a switch more than once is unnecessary, as two presses cancel each other out. Thus, at most, 2n
presses are sufficient.

If toggling some switches achieves the all-off state, doing the opposite (pressing all unpressed switches and not
pressing any previously pressed) will also result in all bulbs being off. This is because a bulb remains unchanged
if both or neither of its row and column are pressed and if only one (either row or column) is pressed, pressing
the other in the inverse action also results in a change. This means that n presses will be enough. If a solution
uses n+ x presses, then the inverse will use n− x.

The algorithm works as follows (calculate on paper first): We can always find a solution without toggling the
first row. Then, for any lit bulb in the first row, we must toggle its column to turn it off. This should result in
the other rows being either fully on or fully off. Finally, just turn off any rows that are fully on. If the number
of steps taken on paper is more than n, then we instead do the inverse of the steps on the board.

This is optimal, since the all-lightbulbs-on board cannot be solved with less than n toggles.

7. Give a linear running time method that finds the longest proper initial segment of the word w, which is also
a final segment of w. w is of length n and is given by a character array w[1 : n]. (A proper segment’s length

ThAlg 2024 ThAlg Practice session 123

is between 1 to n− 1.)

Solution:

The difficulty of this task exceeds the standard exam’s requirements, it is a bonus task.

Refer to the calculation of the prefix function of the Knuth-Morris-Pratt algorithm
https: // cp-algorithms. com/ string/ prefix-function. html .

The final solution is in LPS[n], where LPS[i] stores the length of the longest prefix of w[1 : i], that is also a
suffix of w[1 : i].

8. Which of the following functions are O(n2) and which are Ω(n2)?
f1(n) = 11n2 + 100000 f2(n) = 8n2 log2 n f3(n) = 1.5n+ 3

√
n

Solution:

f1(n) ≤ 12n2, if n ≥ 1000, so by choosing c = 12, n0 = 1000 we have shown that f1 ∈ O(n2).
Note: Actually n0 =

√
100000 ≈ 317 is a good choice too, but we don’t have to find the smallest possible n0.

(An alternative solution is f1(n) ≤ 100011n2, if n ≥ 1 so c = 100011, n0 = 1 is also a good choice.)

Furthermore f1(n) ≥ 11n2, so by choosing c = 11, n0 = 1, we have shown that f1(n) ∈ Ω(n2) (and so
f1(n) ∈ Θ(n2) is also true.)

f2(n) /∈ O(n2), because if f2(n) ≤ cn2 for some c constant, then 8 log n ≤ c, which is only true when n ≤ 2c/8,
not for an arbitrarily large n.

Furthermore, f2(n) ≥ 8n2, so by choosing c = 8, n0 = 1 we have shown that f2 ∈ Ω(n2).

f3(n) ≤ 1.5n + 3n = 4.5n is always true when n ≥ 1, so by choosing c = 4.5, n0 = 1, we have shown that
f3(n) ∈ O(n) ⊆ O(n2).

Furthermore, if f3(n) ≥ cn2 for some c constant, then cn2 ≤ f3(n) ≤ 4.5n is also true, so then n ≤ 4.5
c , which

is not true for an arbitrarily large n, so f3 /∈ Ω(n2).

9. Assume that in the pseudocode on the right, printing one star
counts as one step. Show that the number of steps is O(n3).

for i = 0 to n-1:
for j = i+1 to n:

print j copies of *

Solution:

The outer loop runs at most n times. Inside of it, the inner loop also runs at most n times. During each
iteration of the inner loop, the program prints up to n stars, and this action is considered to take n steps
according to the exercise. Together, these nested loops then account for at most n · n · n = n3 steps, which is
O(n3).

10. (a) Show that the running time of Bubble sort is O(n2). (This was
introduced in Prog1, the pseudocode is repeated on the right). Is
it also true that the running time is O(n3)?
(b) Further check that the number of steps is Ω(n2).
(c) Is it true that the number of steps or the running time is Θ(n2)?

for i = n to 2:
for j = 1 to (i-1):

if A[j] > A[j+1]:
swap A[j] and A[j+1]

Solution:

(a) The core of the inner loop takes a constant number of steps, and the inner loop runs at most n times
because i − 1 ≤ n − 1, making the number of steps for the inner loop O(n). The outer loop runs at most
n times, with its core being the O(n) steps inner loop, thus the outer loop (and therefore the entire code) is
O(n2).

If a function is of order O(n2), then it is also true that it is O(n3) based on the definition.

ThAlg 2024 ThAlg Practice session 123

(b) Considering the input where the numbers are in decreasing order, the execution involves n − 1 + n −
2 + . . . + 2 + 1 = n(n−1)

2 comparisons and the same number of swaps, meaning the total number of steps is
n(n− 1) ≥ n · n

2 = 0.5n2, provided that n ≥ 2.

(c) Since both O(n2) and Ω(n2) are true, Θ(n2) is also true.

11. Put the following functions in order of non-decreasing order of magnitude, i.e., if fi is immediately followed
by fj in the order, then fi(n) ∈ O(fj(n)) holds.
f1(n) = 8n3 f2(n) = 5

√
n+ 1000n f3(n) = 2(log2 n)

2
f4(n) = 1514n2 log2 n

Solution:

We provide an order and justify its correctness: f2, f4, f1, f3
f2(n) ≤ 1005n ≤ 1005n2 log n ≤ f4(n), with c = 1, n0 = 2 is good.
f4(n) ≤ 1514n3 = 1514

8 f1(n), with c = 1514
8 , n0 = 1 is good.

Notice that f3(n) = (2logn)logn = nlogn ≥ n3, if log n ≥ 3, hence c = 8, n0 = 23 = 8 is good.

12. The InsertionSort of an array A[1 : n] (using BinarySearch) consists of n − 1 loops: in the ith loop, where
1 ≤ i ≤ n − 1, we search for the position of the A[i + 1]th element in the array A[1 : i] using BinarySearch.
We then swap the A[i+ 1]th element with its neighbors until it reaches its desired position.
(a) Show that the BinarySearch algorithm done in the lecture can be modified to obtain the position of the
new element when it is not in the array.
(b) If the running time is counted in the number of comparisons and swaps, check that the running time of
such an Insertion sort is O(n2).
(c) Show that the running time is in fact Ω(n2) and hence, Θ(n2).

Solution:

(a) The BinarySearch algorithm done in the lectures will return ”not found” when the element is not in the
array. Instead of looking for an equal element, we can look for the smallest index in the array, that contains
a number larger than or equal to the searched element. (See for example the std::lower_bound function in
C++.)

(b) In InsertionSort there are at most n rounds, and in each round we perform a BinarySearch in an array of
at most n in size, and after the search, at most n swaps are done to place the current element in its correct
position. This means that the number of steps per round is O(log n+ n) = O(n), and since there are at most
n rounds, the total number of steps for the entire execution is n ·O(n) = O(n2).

(c) If the numbers in the input array are in decreasing order, then the number of swaps is 1 + 2 + . . . + n −
2 + n− 1 = n(n−1)

2 ≥ n · n
4 = 0.25n2, if n ≥ 2. By choosing c = 0.25 and n0 = 2 we have shown that Ω(n2) is

true. Since both O(n2) and Ω(n2) are true, Θ(n2) is also true, according to the definition.

13. Let f1(n) = 1.5n! and f2(n) = 200 (n− 1)!. Which of the following is true?
f1 ∈ O(f2) f2 ∈ O(f1) f1 ∈ Ω(f2) f2 ∈ Ω(f1) f1 ∈ Θ(f2) f2 ∈ Θ(f1)

Solution:

Notice that f1(n) = 1.5
200 ·n · f2(n) = c ·n · f2(n). From this, it follows that f1 ̸∈ O(f2), f2 ∈ O(f1), f1 ∈ Ω(f2),

f2 ̸∈ Ω(f1), therefore f1 ̸∈ Θ(f2) and f2 ̸∈ Θ(f1).

14. Give a bound for the following functions using the Big-O notation:
(n2 + 8)(n+ 1) (n log n+ n2)(n3 + 2) (n! + 2n)(n3 + log(n2 + 1)) (2n + n2)(n3 + 3n)

Solution:

There are many good solutions, generally we want to place a simple yet as small as possible function into O.
Now, we do it in such a way that we hardly need to calculate. For this, we provide estimates for the orders of
magnitude of the occurring sums and multiply these estimates together.

ThAlg 2024 ThAlg Practice session 123

(n2 + 8)(n+ 1) ≤ 2n2 · 2n ∈ O(n3) (the estimate is true for all n ≥ 3).
(n log n+ n2)(n3 + 2) ≤ 2n2 · 2n3 ∈ O(n5) (the estimate is true for all n > 1).
(n! + 2n)(n3 + log(n2 + 1)) ≤ 2n! · 2n3 ∈ O(n3n!) (the estimate is true for all n ≥ 4, from which n! > 2n).
(2n + n2)(n3 + 3n) ≤ 2 · 2n · 2 · 3n (the estimate is true for all n ≥ 4, because from here both 2n ≥ n2 and
3n > n3 are also satisfied).

15. There are two algorithms for the same problem, A and B. Let the functions describing their worst case
running times be fA and fB. It is known that fA(n) ∈ O(fB(n)). Does it follow that
a) A is faster on every input than B?
b) except for finitely many inputs A is faster than B?
c) for large enough inputs A is faster than B?

Solution:

The answer is no for each one, for example, in the case of fA(n) = 2n and fB(n) = n, it’s true that
fA(n) ∈ O(fB(n)), but fA(n) > fB(n) for all n.

16. Show that if f1, f2, g1, g2 are positive valued functions, and f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then
(a) f1(n) + f2(n) ∈ O(max(g1(n), g2(n))
(b) f1(n) · f2(n) ∈ O(g1(n) · g2(n)).

Solution:

∃c1, n1, such that f1(n) ≤ c1g1(n), when n ≥ n1,
∃c2, n2, such that f2(n) ≤ c2g2(n), when n ≥ n2,
then
f1(n) + f2(n) ≤ max(c1, c2)(g1(n) + g2(n)) ≤ 2max(c1, c2)max(g1(n), g2(n)), when n ≥ max(n1, n2),
and
f1(n)f2(n) ≤ c1c2g1(n)g2(n), when n ≥ max(n1, n2).

17. For which a, b > 1 natural numbers are the following true?
na ∈ O(nb) 2an ∈ O(2bn) loga n ∈ O(logb n)

Solution:

In the first case, it is required that na ≤ cnb, meaning na−b ≤ c for some constant c > 0 when n ≥ n0. In the
case of a = b, this is obviously satisfied, na ∈ O(na) (c = 1, n0 = 1).
In the case of a < b, the exponent is negative, thus na−b ≤ 1, so choosing n0 = 1 and c = 1 is sufficient.
However, if a > b, then the exponent is positive, the function is monotonically increasing, and tends to infinity,
so such constant c cannot exist.

For the second case, similar to the previous one, 2an−bn ≤ c is needed, which is satisfied for a ≤ b with the
choice of c = 1, n0 = 1, but if a > b, then no such constant c exists.

In the third case, use the fact that loga n = logb n
logb a

, thus c = 1
logb a

> 0 works, whatever a and b are. (n0 = 1)

18. Assume that n is a power of 2. Show that we can search for the two largest elements in an array of n distinct
elements with n+ log2 n− 2 comparisons.

Solution:

First idea: We determine the smallest element, and then we determine the smallest among the rest, which
requires n− 1 + n− 2 = 2n− 3 comparisons, which is too many.

Second idea: We can do better than this.

Let’s think of a single-elimination tournament. The elements are paired in each round and the bigger is
eliminated from each pair until there is only one left, the smallest elment. So far, this was done with with
n− 1 comparisons, since each comparison eliminates 1 element, until we have 1 left from the n.

ThAlg 2024 ThAlg Practice session 123

Observation: The second smallest could only have been eliminated by the smallest! No other element can defeat
it.

So the second smallest was one element that competed against the smallest in one of the rounds. Since each
round halves the number of elements, until we reach 1, we had to have had k rounds, where n

2k
= 1, so

k = log2(n).

So there are log2(n) possible choices for the second smallest element, we can find the smallest among them
with log2(n)− 1 comparisons.

Therefore, the total number of comparisons is exactly n+ log2 n− 2.

19. An array A[1 : n] contains red and green elements. We would like to rearrange the elements so that all the
red elements preceed the green elements, or all of them will come after the green elements. A legal step
in rearranging them is swapping the position of two adjacent elements. We count swapping two adjacent
elements as a step. Give an optimal (up to a constant factor) algorithm for this.

Solution:

It’s clear that it only makes sense to swap elements of different colors. If initially, the first and the last n/4
elements are red, then no matter which end we want to sort the reds to, one of the n/4 length interval of red
elements must swap places with all of the greens, so it may be necessary to take n2/8 steps (the required steps
is Ω(n2)). It can be done with O(n2) steps since any order can be achieved with fewer than n2 neighbouring
swaps, for example, by using bubble sort (where red < green, if we want to move the reds to the front of the
array).

20. We are given n chips that can test each other in the following way: if two of the chips are connected, then
both determine whether the other one is faulty or correct. A correct chip always answers properly about the
other, while a faulty chip can give an arbitrary answer. Assume, that more than half of the chips are correct.
Give an algorithm that uses less than n tests of the above type to find a correct chip.

Solution:

Depending on the two connected chips, the following outputs can be seen:

1st chip 2nd chip 1st output 2nd output
good good good good
good bad bad good/bad
bad good good/bad bad
bad bad good/bad good/bad

Prepare 3 boxes: T=tested, U=untested, G=garbage. Initially, every chip is in the U box. Take two out. If a
pair gives a good-good result, then they are the same, either good-good or bad-bad. When this happes put both
of them in the T box. If they do not give good-good, then at least one is bad, in which case throw both in the
G box.

If both the U and T boxes are not empty, then always pair one from the T box with one from the U box. If
they output good-good, then put both in the T box, otherwise in the G box. If the T box is emptied, then take
two from the U box again, if there are still two left.

Before the tests and after each test, the following two properties (so-called invariant properties) hold:

(1) In T ∪ U , there are more good chips than bad ones.

(2) In T , there are always chips of the same kind (either all good or all bad, but it can also be empty).

Because of (1), after the tests T ∪ U cannot be empty.

ThAlg 2024 ThAlg Practice session 123

We continue testing as long as there is a test that can be performed. What happens at the end when we can
no longer perform any further tests? Then, in U , there are 0 or 1 elements. If there are 0, then because of
(1) and (2) T is not empty and consists only of good chips.

If there is only one element in N , then T is empty and because of (1) U can only contain a good chip. In both
cases, it’s true that in the end, T ∪ U contains only good chips.

Initially, we removed 2 elements from U for testing and after that each subsequent test involved taking out at
least 1 element from U . Therefore, we conducted no more than n− 1 tests in total.

21. Sort the sequence 3, 12, 1, 34, 4, 6, 0 using InsertionSort. How many comparisons were used?

Solution:

There are two types of InsertionSort: using linear and using binary search. The sequences obtained per
insertion are the same, but the number of comparisons may differ.

The procedure is to insert the i-th element into the already sorted first i− 1 elements, so the sequence changes
in the following way during the steps (the sorted part is shown underlined, the next element in bold):

(3,12, 1, 34, 4, 6, 0) −→ (3, 12,1, 34, 4, 6, 0) −→ (1, 3, 12,34, 4, 6, 0) −→ (1, 3, 12, 34,4, 6, 0) −→
(1, 3, 4, 12, 34,6, 0) −→ (1, 3, 4, 6, 12, 34,0) −→ (0, 1, 3, 4, 6, 12, 34).

The number of comparisons for linear search (assuming we search from back to front) is: 1+2+1+3+3+6 = 16,
for binary search it is: 1 + 2 + 2 + 2 + 3 + 3 = 13.

22. Sort the sequence 16, 17, 2, 6, 11, 33, 28, 22 using QuickSort, so that always the first element of the array is
chosen as pivot.

Solution:

(16, 17, 2, 6, 11, 33, 28, 22) −→ (6, 11, 2 | 16 | 17, 33, 28, 22) −→ (2 | 6 | 11 | 16 | 17 | 33, 28, 22) −→
(2 | 6 | 11 | 16 | 17 | 22, 28 | 33) −→ (2 | 6 | 11 | 16 | 17 | 22 | 28 | 33)

More detailed explanation:

QuickSort sets the pivot to be the first element of the array, then initializes two pointers: left (beginning of
the remaining array) and right (end of the remaining array).

It moves the left pointer to the right until it finds an element larger than the pivot and moves the right pointer
to the left until it finds an element smaller than the pivot. When both pointers found such an element, they
stop and swap them.

When the pointers meet, everything to the left is smaller and everything to the right is bigger, so the pivot
must be swapped in-between.

At this point the pivot is in its final position and QuickSort calls itself recursively twice, once on the left and
once on right part of the array, to sort those as well.

ThAlg 2024 ThAlg Practice session 123

And we are done:

23. Sort the following list using RadixSort: abc, acb, bca, bbc, acc, bac, baa.

Solution:

bca, baa, acb, abc, bbc, acc, bac
baa, bac, abc, bbc, bca, acb, acc
abc, acb, acc, baa, bac, bbc, bca

24. Dr. Watson states to Sherlock Holmes that he knows a comparison-based sorting algorithm that sorts an array
of any size in such a way that it is guaranteed to compare each element of the array at most 2025 times. How
can Sherlock Holmes convince Watson that his algorithm must be incorrect?

Solution:

If every element appears in at most 2025 comparisons, then the algorithm performs a total of 2025n
2 comparisons

with n elements. However, we know that every comparison-based sorting algorithm requires at least log n! =
Ω(n log n) comparisons, and 2025n

2 /∈ Ω(n log n), therefore such an algorithm does not exist.

25. Give an O(n) running time algorithm that sorts a sequence of n integer numbers whose elements are from the
set
(a) {1, . . . , 3n},
(b) {1, . . . , n3 − 1}.

Solution:

(a) Use BinSort with 3n bins. In this case, the number of steps is O(n+ 3n) = O(n).
(b) Simple BinSort is not sufficient here, use RadixSort instead.

Imagine the numbers written in base n. Then each number is (at most) 3 digits long. If we use RadixSort in
this form, we need 3 rounds of BinSort, each with n bins, so the whole process indeed uses O(n) steps.

ThAlg 2024 ThAlg Practice session 123

Note: Converting to base n can also be done with O(n) arithmetic operations, since every number must be
divided by n with remainder, the remainder gives the last digit, the quotient is then divided by n again, this
time the remainder gives the next digit, and the quotient gives the first one.

26. We are given an array of n not necessarily distinct integers. Our task is to design an algorithm with running
time O(n log n) that determines the modes (most frequent elements) of the array, that is, the elements which
occur the maximum number of times in the array.

Solution:

Begin by sorting the array with MergeSort, because this is the only algorithm we have learned that has a
worst-case O(n log n) complexity. Now identical values are placed next to each other.

Next, find the longest sequence of the same number in the now-sorted array. To do this, iterate through the
array while keeping tabs on the length of the longest sequence you’ve encountered and which number(s) belong
to such sequences.

Keep track of the current sequence’s length during the iteration, when it ends, check its length: if it’s longer
than any previously recorded, update your record with this new length and reset the corresponding values to the
current one. If it matches the length of your record, just add the number to your list of values. Beyond the
sorting phase, this process takes an additional O(n) steps, bringing the overall complexity to O(n log n).

27. QuickSort is run on an array and the result after the first Partition is 4, 2, 3, 1, 6, 8, 11. Which could be the
pivot element?

Solution:

We need to find an element such that all elements before it are smaller, and all elements after it are larger.
Thus, 6, 8, and 11 are suitable, and nothing else is.

28. It is known for the array A[1 : n] that A[1] ̸= A[n]. Give an O(log n) running time algorithm that finds an
index i such that A[i] ̸= A[i+ 1].

Solution:

We use an algorithm similar to BinarySearch: Let i = ⌈n2 ⌉. If A[i] ̸= A[1], then the subarray A[1 : i] has the
same property as the original array, and it suffices to search within it. However, if A[i] = A[1], then obviously
A[i] ̸= A[n], and we can continue the search in the subarray A[i : n]. Thus, at this step, we are guaranteed to
get a smaller array if n ≥ 3.

At the end of the procedure, the array will be reduced to two adjacent, unequal elements, at which point we are
done.

The number of steps, similarly to BinarySearch, will be O(log n).

29. Let the array A[1 : n] contain integers and let integer b be given. We would like to decide whether there exist
indices i, j ∈ {1, . . . , n} such that A[i] +A[j] = b. Solve this problem in O(n log n) time.

Solution:

Notice that if we want to try every possible pair of indices, then there are
(
n
2

)
∈ Θ(n2) possibilities, which is

more than the desired number of steps. Sorting the array helps a lot here, so we do that in O(n log n) steps
using MergeSort.

After that, for each of indices i = 1, 2, . . . , n, we search the array for the value b − A[i] using BinarySearch.
If we find an index j, such that A[j] = b−A[i], then a good pair of indices in the sorted array is (i, j).

We must report however where the indices were in the original array, before sorting. We can do this if we
keep track of the original index as an additional data point for every element or if we do two linear searches
for the obtained A[i] and A[j] values in the original array at the end.

ThAlg 2024 ThAlg Practice session 123

Since we performed n binary and 2 linear searches, the total runtime is O(n log n+ 2n) = O(n log n).

Note: The part after sorting can also be solved linearly using the Two Pointers technique. Starting from indices
i = 1 and j = n, generally, if A[i] + A[j] < b, we increment i by one, and if A[i] + A[j] > b, we decrement j
by one. We stop when A[i] +A[j] = b or if i > j—the latter case means there is no solution.

This algorithm is correct, since if A[1] + A[n] < b, it means that A[1] even with the biggest possible value in
the array, A[n] together still cannot create a large enough sum, so we can increment i by one. Similarly if
A[1] +A[n] > b, then A[n], even with the smallest possible value in the array A[1] together still cannot create
a small enough sum, sum, so we can decrement j by one. And so on for all i and j.

30. The value of one element of the originally increasing sequence a1, a2, . . . , an is changed. How can the elements
be put in increasing order using O(n) steps?

Solution:

Notice that if after the change ai < ai+1 is true for every i, then although we cannot determine which one
changed, it is not necessary; the sequence remains ordered.

However, if there is an i such that ai > ai+1, then this occurred because either ai increased or ai+1 decreased.

The simplest (not necessarily the fastest) method is to insert these two problematic elements into the increasing
sequence formed by the other elements.

This can be done with linear search, performing O(n) steps. (In binary search, the number of comparisons is
logarithmic, but even in that case, the movements may take linearly many steps.)

Note: It can be solved with just one insertion, intead of two. How?

31. Give an algorithm using a small number of comparisons to find the smallest two elements of an array of length
n.

Solution:

Same as Exercise 11 from Practice session 1, the solution can be read there.

32. A sequence of pairwise distinct integers is called bitonic if it starts as increasing and then from one point on
becomes decreasing, or vice versa, starts decreasing and turns into increasing at a point. For example the
sequences (1, 3, 7, 21, 12, 9, 5), (9, 7, 5, 4, 6, 8) and (1, 2, 3, 4, 5) are bitonic. Give an O(n) running time sorting
algorithm for bitonic sequences of length n.

Solution:

Idea: We split the sequence at the largest element. Each of the two resulting parts is sorted, and we can merge
them into a single sorted sequence using the Merge operation we have learned for MegeSort.

Algorithm: By comparing adjacent elements ai and ai+1 in the sequence, we can find the largest element: If
ax−1 < ax and ax > ax+1, then ax is the largest element. If there is no such element, i.e., ai−1 < ai for every
i, then there is no further action needed because the sequence is already increasing.

So far, we’ve used n − 1 comparisons. We merge the increasing sequences a1, . . . , ax and an, an−1, . . . , ax+1

using the method we learned, requiring at most n− 1 comparisons, thus we are done in at most 2n− 2 ∈ O(n)
comparisons. (The algorithm also involves moving elements, but overall this takes O(n) steps.)

We can achieve this without explicitly finding ax in advance. We can imagine having two sequences, one
starting with a1 and the other with an (and initially, we don’t know where they end). Let i = 1 and j = n,
and compare ai and aj. The smaller one becomes the next element in the sorted list, and if ai < aj, then we
increase the value of i, otherwise we decrease the value of j. We continue in this manner, similar to merging.
We finish when i = j (and then this is the largest element). This procedure uses at most n − 1 ∈ O(n)

ThAlg 2024 ThAlg Practice session 123

comparisons.

Note: Both methods work correctly even when the largest element is a1 or an, in which case we originally have
a sorted sequence (either increasing or decreasing).

33. The elements of a (not neccessarily sorted) array A of length n are pairwise distinct positive numbers. Give
an algorithm that determines an integer 1 ≤ k ≤ n and chooses k distinct elements of array A, such that the
sum of the chosen elements is at most k3. If there is no such k, the algorithm should report that. The running
time of your algorithm must be O(n log n).

Solution:

Notice that for a fixed value of k, if there is a solution, then the smallest k elements of the array also form a
solution. If these are not valid, then there is no solution. Therefore, we need to examine whether there exists
a value of k such that the sum of the smallest k elements is at most k3.

To achieve this, we sort the array in O(n log n) steps, for example, using MergeSort. Let k = 1 and T = A[1].
If T ≤ k3, then we are done; otherwise, we increase k and add A[k] to T . If none of the values of k ≤ n are
suitable, then there is no solution.

The part after sorting uses n comparisons and O(n) additions, so the total number of steps is O(n log n).

34. We are given n points on the plane whose coordinates are (a1, b1), (a2, b2), . . . , (an, bn). We need to find a
point P = (x, y) on the plane such that the sum

∑n
i=1(|ai − x| + |bi − y|) is minimal. Give an O(n log n)

running time algorithm that solves this problem.

Solution:

Notice, that the coordinates are independent from each other. To minimize the written sum, we can separately
determine the minimum in the x coordinates and the minimum in the y coordinates.

Therefore, we need to find an x such that the sum
∑n

i=1 |ai − x| is minimized and a y such that the sum∑n
i=1 |bi − y| is minimized.

To do this for x, imagine the points ai on the number line. If x is smaller than the smallest ai, then increasing
x reduces the sum. As long as there are fewer ai smaller than x than those larger than it, increasing x further
reduces the sum. It starts to increase when there are more ai smaller than x than those larger.

So, the optimal x is the median ai according to the sorted order, if n is odd. In the case of even n, it doesn’t
matter where it is within the middle interval, for example, choosing x = an/2 is good.

The same logic works for y as well.

After this, the algorithm proceeds as follows: we sort the ai values and let x be the ⌈n/2⌉th number in the sorted
sequence. We do the same for y: sort the bi values, and let y be the ⌈n/2⌉th number in the sorted sequence.

The number of steps for the algorithm, using MergeSort, is O(n log n), since everything else was a constant
number of steps.

35. We are given n intervals [a1, b1], . . . , [an, bn] on the number line. Our task is to calculate the total length
covered by these intervals combined (that is, what is the total length of the union ∪n

i=1[ai, bi]). Give an
O(n log n) running time algorithm that solves this problem.

Solution:

The length of an interval is bi − ai, but the union may be less than the sum of these lengths if the intervals
intersect. We need to handle these overlaps, more precisely, find the disjoint intervals that constitute the
union.

We sort the endpoints (all 2n numbers) while keeping track of which one was the start point of an interval and

ThAlg 2024 ThAlg Practice session 123

which one was the end point. The first part of the union starts at the smallest value (which necessarily is the
start of an interval aj).

We initialize a counter to 0 and proceed in the sorted sequence, adding +1 for every interval start point
encountered and adding −1 for every end point. We do this until the counter hits 0 again. This occurs at an
endpoint (bk), and we can see that here ends the first disjoint part of the union, with length bk − aj. If there
are still elements left in the sequence, we continue in the same way, tallying up all the disjoint lengths.

To determine the number of steps, we see that after sorting, we just need to iterate the sequence, counting the
start and end points. For determining the length, at most n subtractions are required, and then their results
need to be added up. The number of steps for sorting is O(2n log(2n)) = O(n log n), followed by O(n) steps,
resulting in a total of O(n log n) steps.

36. Give an algorithm that uses the smallest possible number of comparisons to determine the smallest and the
largest elements of an array of length n.

Solution:

Separately, both the smallest and the largest elements can be found with n − 1 comparisons, meaning we can
solve the exercise with at most 2n − 2 comparisons. (In fact, with 2n − 3 as well, since after finding the
smallest, we only need to check the other n− 1 numbers for the largest.)

But, we can do even better than this, as follows: First, pair the elements up and compare the pairs with each
other. Then, among each pair, select the smaller element. The smallest among them becomes the overall
minimum. Similarly, among the larger elements of the pairs, find the maximum.

If n is even, the number of steps is n
2 comparisons among the pairs, then n

2−1 comparisons to find the minimum
among the smaller pairs and n

2 − 1 comparisons to find the maximum among the bigger pairs, totaling up to
1.5n− 2.

If n is odd, instead of the last pair, consider the last 3 elements to determine the smallest and largest. This
can be done with 3 comparisons, so n−3

2 + 3 comparisons first, then 2 · (n−1
2 − 1), for finding the minimum

and maximum totaling in 1.5(n− 1).

Note: It can be shown that 1.5n− 2 is indeed necessary. Let B be the number of elements that can potentially
be both the smallest and largest, S those that can only be the smallest (we have seen them compared to a larger
element), L those that can only be the largest (we have seen them compared to a smaller), and R the rest, for
which both smaller and larger elements have been seen.

Initially, |B| = n, the others are empty, and in the end, B is empty, |S| = |L| = 1.

• With each comparison between two elements from B, B decreases by two, while S and L each increase
by one.

• If a comparison involves an element from B and another not from B, B decreases by one and there is
always a possibility that either one of S or L increases while the other doesn’t decrease (i.e., their union
doesn’t decrease).

• When comparing two elements from S or L, one of them moves to R.

• In all other cases, there can always be a result where neither S nor L changes.

To completely empty B, it requires at least n
2 comparisons. Every element from B must first move to S or

L, from which only one can move out at a time, so at least n − 2 comparisons are required to empty them
(almost). Hence, there must be at least 1.5n− 2 comparisons in total.

37. Use the adjacency matrix below to determine the number of vertices and edges in the undirected graph.

ThAlg 2024 ThAlg Practice session 123

Determine the degrees of all vertices.
0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0

Solution:

There are as many vertices as there are rows, that is, 5. d(vi) is the number of 1s in the i-th row. d(v1) =
2, d(v2) = 4, d(v3) = 2, d(v4) = d(v5) = 3. The number of edges is half the sum of the degrees according to the
degree sum formula (from the Handshaking lemma), thus 7.

38. (a) How do we know that the adjacency matrix below belongs to a directed graph?
(b) Determine the in and out-degree of each vertex.

0 1 1 0 0
0 0 0 1 0
0 1 0 1 1
0 0 0 0 1
0 0 0 0 0

Solution:

(a) The adjacency matrix of undirected graphs is symmetric, this one is not.
(b) dout(vi) is the number of 1s in the i-th row. dout(v1) = 2, dout(v2) = 1, dout(v3) = 3, dout(v4) = 1, dout(v5) =
0. din(vi) is the number of 1s in the i-th column. din(v1) = 0, din(v2) = 2, din(v3) = 1, din(v4) = din(v5) =
2.

39. What is the out-degree of each vertex in a directed graph whose adjacency list is as follows: a: b, c; b: e, d;
c: d; d: f; e: f; f:- ? What is the in-degree of the vertex f? How can this be determined from the adjacency
list?

Solution:

The out-degrees are 2, 2, 1, 1, 1, 0. The in-degree of f is 2. This is the number of occurences of f in the edge
list of the other vertices.

40. Run the DFS-MAIN(G) from vertex 1 in the directed graph below (given by the adjacency list) so that it
follows the order given in the edge list when examining the neighbours. Also give the discovery and finishing
numbers of the vertices.

a :c, d, e; b :a, e, f, g; c :b, d, f ; d :e; e :a, c; f :−; g :e

State which edges will be tree edges, forward-edges, back-edges and cross-edges.

Solution:

ThAlg 2024 ThAlg Practice session 123

41. We are given an inverse adjacency list of a directed graph where for each vertex we have a list of the edges
entering the vertex. Give an algorithm with running time O(n+m) that produces the outgoing edge list for
each vertex from the given edge lists.

Solution:

To construct the reverse edge list, we first copy the array of vertices and assign an empty list to each. This
takes O(n) steps so far. This now describes the graph in which the same points are present, but there are no
edges yet. Then we go through the original edge list. When we find a new edge (x, y), we add the edge (y, x)
to the reverse edge list, meaning we insert vertex x at the beginning of the list of vertex y. Such an insertion
requires O(1) steps (as we insert at the beginning of the linked list). Since there are originally m edges, this
totals O(m) steps, thus the total number of steps is O(n+m).

42. In a directed graph on six vertices, the order in which vertices are encountered in a run of DFS is a, c, f, e, d, b,
while the finishing numbers are a: 6; b: 5; c: 4; d: 3; e: 2; f : 1. Is it possible that there is an edge in the
graph (a) from f to e? (b) from d to e?

Solution:

(a) Since dtime[f] = 3 < dtime[e] = 4, it is certain that when we traverse f , we have not yet visited e. If
there were an edge from f to e, then we could still move on from f (for example, to e), so f could not be the
vertex finished first.
(b) This is possible. For example, if the edge list of the graph is a : c, b; b : −; c : f, e, d; d : e; e : −; f : −,
then the DFS precisely provides the specified discovery and finishing numbers. Then the edge (d, e) will be a
cross edge.

43. We are given a directed graph G with its adjacency list. We are further given an array C indexed by vertices
which stores the color of each vertex as red or green. We are also given two red vertices s and t in the graph.
(a) Give an algorithm with running time O(n + m) that decides whether there is a path from s to t that
passes only through red vertices.
(b) Give an algorithm with running time O(n(n+m)) that decides whether there is a path from s to t that
passes through at most one green vertex.

Solution:

(a) First, we transform the graph so that the green vertices are not reachable, then we run the DFS(G1, s)
depth-first search in the obtained new graph G1 from vertex s. If we reach vertex t during this process, then

ThAlg 2024 ThAlg Practice session 123

such a path exists; otherwise, it does not.

Running time: The transformation of the graph is done by traversing the edge list and deleting every edge
where one of the endpoints is green. This can be done with a single traversal of the edge list, and deleting
an edge from the adjacency list takes constant time, thus this totals in running time of O(n + m). In the
subsequent DFS, we work with a graph with n vertices and at most m edges, so the running time of this part
is also O(n+m).

Correctness of the algorithm: There is a path between s and t in the new graph if and only if there is a path
consisting only of red vertices in the original graph. And the DFS correctly determines whether t is reachable
from s in G1.

(b) For every green vertex z in the graph, we do the following: we declare vertex z to be red and run the
algorithm of question (a). This determines whether there is a path from s to t containing only vertices that
were originally red, possibly including z as well. This procedure takes O(n +m) steps for each green vertex,
and we do it at most n times, so the total running time is O(n(n+m)).

44. Given a directed graph G with an adjacency matrix, we want to determine all vertices from which a given
vertex t is reachable by a directed path. Give an algorithm with running time O(n2) for this task.

Solution:

If t is reachable from s via a directed path, then if we reverse the direction of every edge, s will be reachable
via a directed path from t. We can easily obtain the adjacency matrix of this graph from the original adjacency
matrix by taking its transpose. Run the DFS(G, t) procedure in the new graph. The running time of both the
generation of the transpose and the DFS is O(n2), hence the total running tiem is also O(n2).
If the graph were given by an edge list, then using the solution of the 5th problem, it can similarly be seen that
we can obtain the desired vertices in O(n+m) steps.

45. A novice driver wants to choose the best route to drive to work. The road network is given as an undirected
graph where the vertices are the intersections and the edges are the roads. Also, some of the vertices are
labelled as difficult intersections to navigate through. (Difficulty of navigation through an intersection does
not depend on where he arrives from or where he leave to from it.)

Give an algorithm with O(n+m) running time, to determine the vertices he can drive to from his home at a
given vertex such that his path will not have two consecutive vertices labelled as difficult. Assume that you
are given the graph with an adjacency list.

Solution:

Let’s eliminate those edges from the adjacency list that correspond to paths from difficult intersection to difficult
intersection. This can be done in a single traversal of the adjacency list with linear running time in the size
of the edge list, thus in O(n + m) steps. Then, in the new graph G′ obtained this way, run the DFS(G′, v)
algorithm, where v is the vertex that corresponds to the home of the driver. G′ has n′ = n vertices and
m′ ≤ m edges, so the DFS requires O(n′ + m′) = O(n + m) steps. The vertices reached by the algorithm
are precisely those reachable from v in G′, which are exactly the vertices reachable from v in the original
road network corresponding to original graph G without encountering two consecutive difficult intersections in
succession.

46. Give an algorithm with running time O(n+m) for Problem 7b.

Solution:

First, we run the algorithm of problem 7(a) to decide if there is a path consisting only of red vertices. If such
a path exists, we are done.

Then, in the second part of the algorithm, we determine if there is a path containing exactly one green vertex
by identifying those green vertices that are reachable from s and from which t is also reachable. To do this, we

ThAlg 2024 ThAlg Practice session 123

first remove the edges outgoing from the green vertices, which can be done in O(n+m) steps. In the resulting
graph G1, we run the DFS(G1,s) algorithm and record the green vertices reachable from s in an array T1

(T1 = 1 if the vertex was reachable and green, otherwise T1 = 0). The running time for this is O(n + m′),
where m′ is the number of edges in the new graph, but m′ ≤ m, the running time is O(n + m). Since we
removed the outgoing edges from the green vertices in graph G, the DFS precisely discovers those green vertices
that are reachable through red vertices.

In the next step, we reverse the direction of the edges in G and remove the edges outgoing from the green vertices
in the new graph. Let the resulting graph be denoted as G2. Now, by running the DFS(G2, t) algorithm, we
obtain those green vertices that are reachable from t through directed paths, and we record these in an array
T2. Due to the reversal of edges, there is a directed path to t in the original graph from every green vertex set
to 1 in T2, and due to the removal of outgoing edges, this path only passes through red vertices.

Next, we iterate through the arrays T1 and T2, and if we find a vertex v such that T1[v] = T2[v] = 1, then we
can reach the green vertex v from s through directed path containing only red vertices, and then from there
to t again passing through only red vertices. If there is no such intersection, then there is no directed path
with exactly one green vertex. Since after modifying the graphs (O(n + m)) and running DFS twice (each
O(n +m)), we only need to iterate through the two arrays, which takes O(n) time, the overall running time
is O(m+ n).

Solution 2: Let’s take another instance of the graph G, let’s call this G′. Each vertex v in G will have its
counterpart in G′, denoted as v′.

Then we delete each edge (v, w) outgoing from a green vertex in G, and instead, we add the edge (v, w′) in G′,
then we remove all outgoing edges from green vertices in G′. The resulting graph is denoted as H. We run the
DFS(H, s) algorithm. If it finds a directed path to t or t′, then it will be a good path.

Running time: the number of vertices in H is 2n, and the number of edges is at most 2m, because first we
duplicate every edge, then we move some, and finally we may delete edges from G′. Running this depth-first
search takes O(2n+ 2m) = O(n+m) steps.

Correctness: If there is a directed path from s to t, then it must have traversed all the way long through the
modified G, as there is no way to return from G′ to G. Since there are no outgoing edges from green vertices
within G, such a path cannot contain a green vertex. If there is a directed path from s to t′, then it must have
crossed from G to G′, and in doing so, it must have passed through a green vertex. Since it’s not possible to
go back to G and there are no edges originating from green vertices in G′, such a path contains exactly one
green vertex. It’s easy to see the reverse direction as well: if there is a good path in the original G graph, there
will be a good path in H too.

Note: The basic idea of this method can be applied even when searching for paths containing at most 2, 3, . . .
green vertices. (In this case, multiple instances of the graph are needed.) Furthermore, with slight modifica-
tions, it can also be used to find paths containing exactly 1, 2, 3, . . . green vertices. The running time always
remains O(n+m), provided that the prescribed number of green vertices is constant and independent of n.

47. Give an algorithm that either finds a cycle in an undirected graph given by its adjacency list, or shows that
the graph is cycle-free. The running time must be O(n) (independently from m, even though it could be much
larger than n).

Solution:

The graph is undirected, therefore no forward edges or cross edges will be found during a DFS algorithm’s
execution.

Only directed graphs can have a cross edge during a DFS run, because it is pointing towards an already
discovered and finished vertex. It is crucial for its existence that this edge is only traversable in one direction,
otherwise we would have traversed it in the opposite direction when we first discovered its endpoint, creating a
tree edge.

ThAlg 2024 ThAlg Practice session 123

Similarly, a forward edge has an endpoint that was discovered later than its starting point. In the undirected
case, this edge would have been traversable in the opposite direction too, creating a back edge instead.

So the DFS algorithm in the undirected case will only classify edges as a tree edge or a back edge.

Let’s modify the depth-first search algorithm so that we stop if we encounter an already visited vertex along
the next edge. If this does not occur, then the graph is cycle-free. If it does, then that edge is a back edge, and
it forms a cycle along with the path between its endpoints in the spanning forest.

In any case, the traversal terminates after examining at most n edges, since we have a forest (which can have
at most n− k edges, where 1 ≤ k is the number of components) and possibly one more edge. The breadth-first
search can be similarly modified.

Note: In the general case, the complexity of DFS is O(n + m), however with our modification, it will not
traverse all edges, only at most n, therefore the runtime complexity becomes O(n+ n) = O(n).

48. We are given the adjacency list of a connected directed graph G whose edges have an integer value weight
from the set 1, 2, . . . , k. Let the value of a path be the maximum of the weights of the edges on the path.
Given two vertices of the graph, x and y, give an algorithm with running time O(m log k) to determine the
path from x to y with the smallest possible value.

Solution:

We will use an algorithm similar to binary search. First, we check if there is a directed path from x to y in
the graph obtained by removing edges with weights greater than k

2 . If there is a path in the new, modified graph
from x to y, then we examine whether there can still be a path between x and y with smaller edge weights, so
we repeat the process for k

4 . If removing edges with weights greater than k
2 no longer allows for a path between

x and y, then we increase the weights to search for. In this case, we delete edges with weights greater than 3k
4

and continue the algorithm. This procedure surely finds the minimal path of weight l between x and y, because
if there were a path of weight at most (l−1), then in the graph obtained by removing edges with weights greater
than (l − 1), y would be reachable from x, thus the algorithm would not return with the l weight path. The
running time is O(m log k), since for each halving, we perform deletion of at most m edges and then run DFS
in O(n+m) steps, and we repeat this process log k times.

49. We are given the adjacency list of a directed graph G. Each vertex of the graph is given a label (number)
from 1 to 100, a label can occur more than once. Find (if there exists) a colorful path in the graph in which
each label 1 ≤ i ≤ 100 occurs exactly once. The running time of the algorithm should be O(m+ n).

Solution:

First of all, let’s notice that we need to find a path of exactly length 100, where the labels form a permutation
of the numbers 1, 2, 3, . . . , 99, 100. There are 100! such permutations, which is a constant.

For each possible permutation i1, i2, . . . , i100, we do the following:

We transform the graph so that only directed edges remain that correspond to consecutive label pairs in the
permutation. That is, an edge from x to y remains in the graph if and only if the label of x is just before the
label of y in the permutation.

In the new graph G1, we need to determine whether there is a path from any vertex labeled i1 to any vertex
labeled i100. We do this by adding a new vertex s connected to every vertex labeled i1, and then running
DFS(G2, s) in this graph G2. If there is a vertex labeled i100 reached during this process, then the desired path
exists; otherwise, it does not.

This procedure is correct because a vertex labeled i100 is reachable in the graph G2 precisely when there exists
a colorful path with labels i1, i2, . . . , i100 in the original graph G.

The edge list of G2 can be prepared in O(n +m) time, as the resulting graph has n + 1 vertices and at most
m+ n edges. Therefore, the running time of DFS is O(n+ 1 + n+m), which simplifies to O(n+m).

ThAlg 2024 ThAlg Practice session 123

Since checking one permutation takes O(n+m) time, and there are only a constant number of permutations,
the overall running time of the entire process is O(n+m).

50. We are given a graph that is a path on n vertices, where each vertex contains a positive integer. We want
to select a subset of vertices that has no adjacent vertices and where the sum of the numbers is as large as
possible. Give an algorithm with running time O(n) for this task.

Solution:

This can be solved with dynamic programming. Let w[i] mark the positive integer contained in vertex i and
let DP[i] mark the maximal possible such subset from vertices 1 to i. To calculate DP[i] we can observe, that
vertex i is either contained in the maximizing subset or not:

• If i is contained, then i−1 cannot be contained, the rest of the vertices that are not adjacent and maximize
the sum will come from 1 to i−2 and the maximal possible value for such subset is calculated in DP[i-2].

• If i is not contained, then we are maximizing the possible value from vertices 1 to i−1, which is calculated
in DP[i-1].

Therefore
DP[i] = max(DP[i− 2] + w[i],DP[i− 1]) i = 2, . . . n

And let DP[0] = 0, for the value of the empty set and DP[1] = w[1], for the value of the set containing only
vertex 1.

We calculate the values of the DP array from i = 0 to n, in each step referencing at most the previous two
cells. At the end of the calculation, the solution is contained in DP[n].

When we are also looking for the elements in the maximizing subset, we can allocate an extra array, named
is_contained, where we set is_contained[i] = true, if during the calculation of DP[i], vertex i was used. To
decode the maximizing subset at the end, we start from i = n and depending on the value of is_contained[i],
we do the following:

• When is_contained[i] = true, we print the i and set i = i - 2.

• When is_contained[i] = false, we don’t print anything and set i = i - 1.

We repeat this until 0<i is true.

During the calculation of DP and is_contained, we filled 2n cells with a constant number of steps in each
iteration and during the solution printing, we have done at most n steps when reading back from is_contained.
Therefore our algorithm is O(n).

51. We are given the adjacency lists of two directed (edge-)weighted graphs G1 and G2.
G1: a: b(3), c(8); b: d(-7); c: d(5); d: e(2); e: a(-10);
G2: a: g(2), f(10); b: a(-2), g(1); c: -; d: -; e: c(5), d(6); f : e(7); g: f(1), e(8);
(a) Use the DFS algorithm to determine which of them is a DAG.
(b) For the graph that is acyclic, find a Topological ordering and use that to find the (c) shortest and (d)
longest paths from a to all the other vertices.

Solution:

(a) G1 is not a DAG, because we have found a back edge during DFS.

ThAlg 2024 ThAlg Practice session 123

dtime[v], ftime[v]

tree edge forward edge back edge cross edge

a

1,5

b

2,3

c

5,4

d

3,2

e

4,1

3

8

−7

5

2−10

G2 is a DAG, because there is no back edge.

dtime[v], ftime[v]

tree edge forward edge back edge cross edge

a
1,6

b
7,7

c
5,1

d

6,2

e

4,3

f
3,4

g
2,5

2

10

−2

1

5

6

7

1

8

(b) Topological order: b, a, g, f, e, d, c, obtained by running DFS and listing the vertices in decreasing order of
their finishing times.

(c) Shortest paths:

shortest_distance[vi]

b

∞
a

0

g
2

f

3

e

10

d

16

c

15

2

10

−2

1 5

671

8

Drawn in red the edges we used to obtain the minimal value at a specific vertex (e.g. through which we came).
At vertex e, the minimal incoming edge could also be fe instead of ge.

(d) Longest paths:

ThAlg 2024 ThAlg Practice session 123

longest_distance[vi]

b

N/A

a

0

g
2

f

10

e

17

d

23

c

22

2

10

−2

1 5

671

8

Drawn in red the edges we used to obtain the maximal value at a specific vertex (e.g. through which we came).
At vertex e, the maximal incoming edge could also be fe instead of ge.

52. In a directed graph G given by an adjacency list, some vertices are red, some vertices are blue, and the
remaining vertices are colorless. (The coloring is given in an array C indexed by vertices.) Which algorithm
can be run once in O(n+m) steps to solve the following problems and how?
(a) We want to decide which blue vertices are reachable from a given red vertex p1 (via a directed path).
(b) Of all the blue vertices, we want to determine the ones nearest to a given red vertex p1.

Solution:

(a) Let’s run BFS or DFS from p1 without restarting. Those blue vertices form the desired set, which become
visited during this run. This is true because both algorithms traverse exactly those vertices (without restarting)
from the starting vertex into which there is a directed path from the starting vertex in the graph. The procedure
is O(n + m) because the running time of both algorithms is this much, and then it’s just a matter of going
through the array of vertices checking which were visited and reading out the visited blue vertices, which takes
O(n) steps.

(b) Let’s run BFS from p1 without restarting. By the end of this, we’ll have the distance of every vertex from p1.
Then, traversing through the array of distances, we search for the minimum among the values corresponding
to the blue vertices, and then we output those blue vertices where this found minimum distance is taken.

This is correct because BFS correctly determines distances when we interpret distance as the number of edges
in the path.

The procedure is O(n + m) because the running time of BFS is this much, and afterwards, we only need to
traverse through the array of distances once to find the minimum and then once again to print out the blue
vertices with this distance. The latter two steps are both O(n), hence the entire running time is O(n+m).

53. Let G be an undirected connected graph. Is it true that
(a) For each edge f of G, it is possible to run the DFS on G from some vertex such that f will be a tree-edge.
(b) For each edge f of G, it is possible to run the BFS on G from some vertex such that f will be a tree-edge.
(c) For every spanning tree F of G, we can obtain F as a BFS-tree (that is, all edges of F are tree edges).
(d) For every spanning tree F of G, we can obtain F as a DFS-tree (that is, all edges of F are tree edges).

Solution:

(a and b) The answer is yes to both questions. Let’s assume that ff connects vertices uu and vv. The first
element of the vertex array of the adjacency list u, and v should be the first element in the list of neighbors of
u. Both BFS and DFS will start from u, and they will discover v first.

(c) This is not true, for example, if G = Kn is a complete graph with n > 3 vertices and F is a star (every
edge is connected to the central vertex). In this case, regardless of the adjacency list, DFS can always move
on, and the DFS tree will be a path, not a star.

(d) This is also not true, for example, if G = Kn is again a complete graph, but now F is a path (with
maximum degree 2). In this case, regardless of the adjacency list, BFS will immediately discover all other

ThAlg 2024 ThAlg Practice session 123

vertices from the starting point, so the BFS tree will be a star, not a path.

54. We are given the adjacency list of a directed graph G with no directed cycles. Given a vertex s of the graph,
we want to determine the number of paths from s to v for all vertices v in the graph. Give an algorithm with
running time O(n+m) for this task.

Solution:

Let’s denote the graph as G = (V,E). We create an array indexed by the vertices, which we denote as num.
Our goal is for num[v] to represent the number of s → v paths. One possible way to achieve this is as follows:

We determine a topological ordering of the graph. If vertex v precedes s in the topological ordering, then
num[v] = 0, because according to the definition of a topological ordering, there cannot be an s → v path.
Furthermore, num[s] = 1 (there is exactly one path from s to s, the empty path, since there are no directed
cycles in the graph).

With this knowledge, for vertices v that follow s we progress forward in the topological ordering and we use
the recursion

num[v] =
∑

u∈V : (u,v)∈E

num[u]

to determine the number of s → v paths, where the num[u] values are already known, since if there is a u → v
edge in the graph then u preceeds v the topological ordering. The formula holds because if there is a u → v
edge, then there are exactly as many paths from s to v through u as there are from s to u, thus summing over
u gives us the number of paths from s to v (once again using the fact that edges can only go forward in the
topological ordering).

The implementation and runnung time of the algorithm: we know that the topological ordering can be deter-
mined in O(n +m) steps. To execute the recursion step, we need to know from which u vertices there is an
edge to a given v. For this we create the reversed edge list from the original edge list, which takes O(n +m)
steps (see previous exercise set, Exercise 5). Then, for each vertex v, we need to look at the num-values of at
most as many u vertices as many incoming edges there are to v, and sum these values. Thus this, and the
entire algorithm also, takes running time O(n+m).

Note: The algorithm defined by the above recursion is essentially dynamic programming, as will be seen later.

55. Continuation of exercise 2:
(c) We want to decide whether each blue vertex is reachable from at least one red vertex (i.e., there is a
directed path to each blue vertex from some red vertex).
(d) We want to find the shortest path in the graph that leads from a red vertex to a blue vertex. (Note: the
starting red vertex, and the ending blue vertex are not fixed).

Solution:

(c) Let’s add a new vertex v to the graph G. From here, let’s introduce (directed) edges to every red vertex in
G. The resulting graph will be G1. G1 can be obtained from G in O(n) steps. The number of vertices will be
n+ 1, and the number of edges will be at most n+m. Then, we start a traversal in G1 from v. This can be
either DFS or BFS. The set K of blue vertices reachable from v will contain precisely those blue vertices that
are reachable from a red vertex in G. We mark the vertices in K, and finally, we check - which takes O(n) work
- whether K is the set of all blue vertices. The running time of the traversal is O(1+n+n+m) = O(n+m).

(d) Here, in the previously constructed graph G1, we perform a BFS starting from v. For each vertex w, we
write its distance from v in G1, let this distance be dw. This takes O(n+m) work so far. Then, we determine
the minimum of the quantities dw − 1, where w goes over the set of blue vertices. This is an additional work
of O(n). Thus, the total running time is O(n+m).

56. Circus acrobats stand on each other’s shoulders and want to build a tower as big as possible (there will be
only one acrobat on each level). For aesthetic and practical reasons, only an acrobat who is both lighter and
smaller can stand on the shoulder of another acrobat. In the circus, there are n acrobats, and the height and

ThAlg 2024 ThAlg Practice session 123

weight of each is given.
(a) Give an algorithm with running time O(n2), that gives the maximum number of people that can stand in
a tower.
(b) Give an algorithm with running time O(n2), that returns a subset of the acrobats that constitute a tallest
possible tower.

Solution:

Let’s consider a graph G where the vertices represent acrobats, and between any two vertices vi and vj, there
is a directed edge if acrobat j can stand on the shoulders of acrobat i. Additionally, let’s introduce a vertex g
(representing the ground) and draw edges from it to every other vertex (any acrobat can stand on the ground).
Notice that G is a DAG (due to the conditions of standing on each other) and the paths starting from g
correspond to towers.

We need to carefully assign weights to the edges so that the length of such paths corresponds to the height of
the towers (as requested). Then both problems can be solved by running a longest path search from g in G.

a) Let every edge have a weight of 1. The tower on which acrobat i stands can be at most longest[vi] people
high (since there cannot exist a path of more than longest[vi]−1 vertices (acrobats) starting from g and ending
at vi). Let’s find the maximum longest[vi], which will correspond to the tallest tower. We can determine the
tower itself by keeping track, during the longest path search, of the previous vertex on the path at each vertex,
enabling us to trace back which acrobats are in the tower.

b) Let the weight of edge vi → vj be the height of acrobat j, and similarly the weight of edge f → vj be the
height of acrobat j. In this case, the length of a path will exactly be the sum of the heights of the acrobats on
the path. Therefore, the tower on which acrobat i stands at the top will be at most longest[vi] high (since
there cannot exist a longer (or higher) path from g to vi). Let’s find the maximum longest[vi], then determine
the tower itself in the same way as in part (a).

Providing the adjacency matrix (or list) of the graph takes running time O(n2) because we have to examine
every pair of acrobats. The longest path search takes O(n2) or O(n+m) steps, depending on how the input is
given, and finding the maximum is O(n). Since the graph is simple, m ∈ O(n2), so the entire algorithms fit
into O(n2).

57. We are given the adjacency list of a weighted graph, where the edges have weights 1, 2, 3. Give an algorithm
with running time O(n+m) to determine the length of the shortest paths from a given vertex s to all other
vertices in the graph.

Solution:

Split the edges of weight 2 into 2 edges (each adding a new point), and the 3 weighted edges into 3 edges. The
resulting graph G′ = (V ′, E′) satisfies |V ′| ≤ |V |+2|E| and |E′| ≤ 3|E|. Instead of the shortest paths in G, it
suffices to use in G′ are the paths with the fewest edges. And this, starting from v, can be done by a latitude
walk (BFS) from v. Number of steps = O(|V ′|+ |E′|) = O(n+m).

58. Let us delete the sources (din(v) = 0) and sinks (dout(v) = 0) from a directed graph G. Apply this operation
repeatedly for the remaining graphs while there are sources and/or sinks in the graph obtained after the
deletions. Prove that the final result is the empty graph if and only if G did not contain directed cycles.

Solution:

If G contains a directed cycle, then none of its vertices are sources or sinks, and this remains unchanged even
if we remove the sources and sinks from the graph. Therefore, G cannot be emptied by repeating the removal
of sources and sinks.

However, if G does not contain a directed cycle, let’s take a topological ordering of G. The first vertex in the
topological ordering is always a source, and the last one is always a sink. Therefore, we must remove these
in the first step of the process (it’s possible that these coincide only if the graph consists of a single isolated

ThAlg 2024 ThAlg Practice session 123

vertex). If there are still vertices in the graph after removing the sources and sinks, then the first remaining
vertex in the original topological ordering becomes a source because any vertex preceding it in the topological
ordering has been removed, so no edges can go into it. Similarly, the last remaining vertex becomes a sink
because no edges can go out from it. Therefore, we will also remove these in the next step (along with all the
other vertices that became sources or sinks). Thus, in each step, we can remove at least two vertices, except if
the graph has only a single (isolated) vertex, which can also be removed. Therefore, by repeating the procedure,
the graph can be emptied in at most ⌊n/2⌋+ 1 steps.

59. We are given a black and white image of n× n pixels. We would like to draw boundary line from the upper
left corner to the lower right corner of the image in such a way that the sum of the number of black pixels
above and to the right of the line and the white pixels below and to the left of the line is as small as possible.
Determine this boundary in running time O(n2).

Solution:

Let’s construct a graph (specified by an adjacency list) where the vertices represent pixels (as rectangles)
corners and the edges represent the borders of the pixels. The weight of vertical edges should be the sum of
black pixels on its right and white pixels on its left. The weight of horizontal edges should be 0. Direct all
vertical edges downwards, and horizontal edges to the right. With this definition of edge weights, it can be
observed that the total weight of the boundary line moving from the top left corner to the bottom right corner,
moving right-downwards, is exactly the number to be minimized, because we count each misplaced pixel exactly
once.

Due to the direction of the edges, the graph is a Directed Acyclic Graph (DAG), and we are looking for the
shortest path in it.

Number of vertices is (n+ 1)2 = O(n2), the number of edges is m = 2n(n+ 1) = O(n2).

The weight of vertical edges can be determined in O(n2) steps by iterating row by row from left to right. In
each row, we first count the number of black pixels (O(n)), which becomes the weight of the leftmost edge. The
weight of the edge to the right of the ith pixel is less by 1 than the weight of the left edge if the pixel is black,
and more by 1 if it is white. Thus, we obtain the weights in O(n) steps for each row. In the graph, we can find
the minimal weight path in O(n+m) = O(n2) steps. The path obtained exactly meets the requirements.

60. One thousand (1000) people live in a village. Every day each inhabitant tells every news that she/he learned
on the previous day to all of her/his acquaintances. It is known that the network of acquaintances is such,
that sooner or alter everybody learns everything. Prove that there are 90 inhabitants such that if they all
learn something together, then everybody will learn that within 10 days, the latest.

Solution:

Let’s consider an arbitrary spanning tree of the (undirected) graph determined by the acquaintances. (This
can be e.g. the BFS or DFS tree.) Such a tree exists because eventually everyone will know everything, so the
graph is connected. Choose an arbitrary point v in the spanning tree. (For BFS or DFS, it is advisable to
choose the starting point of the search.) In the spanning tree, there is exactly one path to every other point,
and the number of edges of this path is the distance of the respective point from v in the tree. (In the case of
BFS, this corresponds to the distance in the graph, but in the case of DFS, it is not guaranteed.)

Let Vi be the set of points in the tree at a distance i from v, these sets are pairwise disjoint. If the people in
set Vi learn a piece of news, then within 10 days, those in sets Vi+1, . . . , Vi+10 will also learn it (and also those
in sets Vi−1, . . . , Vi−10 if such sets exist). For k = 0, 1, 2, . . . , 10 define Wk = Vk ∪ Vk+11 ∪ Vk+22 ∪ Since
the sets Vi are pairwise disjoint, the sets Wk are also pairwise disjoint. If everyone in set Wk learns the news
on a given day, then in 10 days, everyone will know it. We know that

∑10
k=0 |Wk| = 1000. It cannot be that

|Wk| ≥ 91 for all k, because 91 · 11 = 1001 > 1000. Therefore, there must be some k such that |Wk| ≤ 90.
They need to be informed about the news.

61. Give a longest increasing subsequence in the sequence 10, 3, 5, 2, 7, 1, 18, 4, 12, 17, 6 by the dynamic program-
ming algorithm studied in class. (A subsequence can contain any subset of the elements, it is not necessarily

ThAlg 2024 ThAlg Practice session 123

consecutive.)

Solution:

Let us store the original sequence in array A, with length n. We define two auxiliary arrays, L and previous,
to help us track information about the increasing subsequences within A:

• L[i] represents the length of the longest increasing subsequence ending with the element A[i]. This
subsequence can include any combination of elements from the start of the array up to A[i − 1] and it
definitely includes the element A[i] itself. (This will be important.)

• previous[i] holds the index of the predecessor of A[i] in the longest increasing subsequence ending with
A[i]. Essentially, it points to the element that comes just before A[i] in this subsequence, helping us trace
the subsequence backward.

We can fill these auxiliary array from left to right. In each step, at index i we look at all of the previous
elements in A and select the ones that are smaller than A[i]: These are the subsequences A[i] can be appended
to as a last element.

L[i] = max{L[j] + 1 | A[j] < A[i], 0 ≤ j ≤ i− 1}

previous[i] corresponds to the j index in the equation above that maximized the L[i] value.

It was important to define L[j] in such a way that we definitely know the last element of the subsequence it
corresponds to, so we can check for A[j] < A[i] to make sure the subsequence is increasing.

For simplicity, we added an L[0], denoting the length of the empty subsequence.

i = 0 1 2 3 4 5 6 7 8 9 10 11

A[i] = - 10 3 5 2 7 1 18 4 12 17 6

L[i] = 0 1 1 2 1 3 1 4 2 4 5 3

previous[j] = - - - 2 - 3 - 5 2 5 9 3

The length of the longest increasing subsequence is the maximum in L, max{0, 1, 1, 2, 1, 3, 1, 4, 2, 4, 5, 3} = 5.
The maximum is at index i = 10, the exact positions can be found from the previous array recursively:
previous[10] = 9, previous[9] = 5, previous[5] = 3, previous[3] = 2 and previous[2] = -, so 2 is the first index
and a longest increasing subsequence can be formed with elements A[2], A[3], A[5], A[9], A[10], e.g. the numbers
3, 5, 7, 12, 17.

62. A ladder has n steps. Unfortunately, some of these steps are so rickety that if we step on them, they fall off.
Fortunately, we know which steps are rickety and we will not step on these. Assuming that we can in one
move cover upto 3 steps on the ladder. Give a dynamic programming algorithm that determines
(a) if we can go from the bottom of the ladder (the floor) to the top step of the ladder.
(b) the number of ways in which we can get from the bottom of the ladder to the top step.
(Assume that the top step is not rickety.) What is the running time of the algorithm?

Solution:

Let NR be the array where NR[i] is true if the i-th step is not rickety.

(a) The subproblems will be whether we can reach the i-th step (1 ≤ i ≤ f). We fill out the table F [i] in a way
that F [i] is true if we can reach the i-th step.

Note that the problem asks for the value of F [f].

ThAlg 2024 ThAlg Practice session 123

Initialization: F [0] = true, since the ground is safe; F [1] = NR[1].

The recursion: since we can come to the i-th step from one, two, or three steps below, we can step onto the
i-th step exactly when we can reach one of the three preceding steps and the i-th step is not rickety. Therefore,
the general recursion is: F [i] = NR[i] ∧ (F [i− 1] ∨ F [i− 2] ∨ F [i− 3]).

It is evident that this only works for i ≥ 3 cases. For i = 2, a similar formula works, except there is no
F [i− 3], thus: F [2] = NR[2] ∧ (F [1] ∨ F [0]).

If we fill out the table in the order of i = 0, 1, 2, . . . , f , then at each element, we use a constant number of
steps, and the running time of the algorithm is O(n).

(b) Similar to part (a), but now we need a numeric variable. Let M [i] be the number of ways we can reach the
i-th step.

M [f] provides the solution.

Initialization: let every M [i] = 0 if i > 0 and M [0] = 1. Since stepping to i can only happen from one of the
previous three steps, the number of possible ascents is obtained as the sum of the three preceding numbers. We
consider rickety steps by setting the value of M to 0 for those steps, meaning they contribute nothing to the
desired count. Thus:

If NR[1] is true, then let M [1] = 1, if NR[2] is true, then M [2] = M [1] +M [0] and in general, if NR[i] is
true, then let M [i] = M [i− 1] +M [i− 2] +M [i− 3].

This time we need to fill out the table also in the order of i = 0, 1, 2, . . . , f , and then the values we want to
use are available to us. For each i, there will be a constant number of additions, which means a total of O(n)
additions. For simplicity, we also consider this as the running time.

If we also consider that the numbers to be added are not necessarily of constant size, then the number of steps
will be higher. However, it can be easily proven by induction that the largest number is at most 3n. To describe
this, O(n) digits are sufficient. Since addition can be performed with an algorithm that is linear in the number
of digits, the total running time of the algorithm is O(n2).

63. We are given n+ 1 positive integers (n ≥ 1): s1, s2, . . . , sn, b, we want to decide whether the number b is the
sum of some subset of the numbers si. (Each si can be used at most once in the sum.)
Give a dynamic programming algorithm with running time O(n · b) for this problem. (Note: this is called the
subset-sum problem). Use the following subproblems:
Let L(i, c) (for 0 ≤ i ≤ n and 0 ≤ c ≤ b) denote whether it is possible to express the number c as a sum of
some subset of s1, . . . , si.

Solution:

1. Subproblems: Given in the problem, L(i, c) = 0 if c cannot be obtained and 1 if it can be obtained as a
sum of some numbers from s1, s2, . . . , si. (Essentially, we fill out a table of size (n+1)× (b+1), where
L(i, c) stands in the c-th cell of the i-th row.)

2. Order: i goes from 0 to n, and within an inner loop, for each i, c goes from 0 to b (we progress row by
row in the table from top to bottom, and within each row, from left to right).

3. Start: L(i, 0) = 1 for every i, because we can always obtain 0 without selecting any number, and L(0, c) =
0 if c > 0, because if we cannot select any number, then no sum greater than 0 can be obtained. (This
means the first column of the table is all 1s, and the rest of the elements in the first row are all 0s.)

4. Continue: if i ≥ 1 and c ≥ 1: L(i, c) = 1 if and only if L(i − 1, c) = 1 or if L(i − 1, c − si) = 1 (the
latter case only applies if c − si ≥ 0). This is correct because c can be obtained either without si, just
with some of s1, . . . , si−1, or using si, in which case we need to obtain c− si with some of s1, . . . , si−1.

ThAlg 2024 ThAlg Practice session 123

5. End: we need L(n, b), which determines whether we can obtain b with some of the numbers si. (In other
words, we want the bottom-right element of the table.)

6. Correctness: The formula is correct, because at each step we either use si as part of the sum and we must
formulate the c− si sum from s1, . . . , si−1 or we don’t use si and must formulate the entire c sum from
s1, . . . , si−1. In the special cases, where the required sum is 0, that is always considered possible (just
don’t select any numbers) and when the required sum is not 0, but i = 0, we cannot use any numbers,
so it is impossible to do.

7. Running time: At each subproblem, there are a constant number of steps, and there are (n+1) · (b+1),
i.e., O(n · b) subproblems, so the running time is O(n · b).

8. We need to determine the numbers with which the sum is obtained: it is necessary to determine which
si’s are used in the sum that gives b, if it can be obtained at all. Here, it is sufficient to provide a good
subset of the numbers si, and this can be done by keeping track of whether c was obtained due to the first
(without si) or the second (with si) case when calculating L(i, c) (if c can be obtained from both cases,
we pick one at random). Then, if L(n, b) = 1, by traversing backwards, we can determine for each si
whether it is needed to obtain b or not. At each step, the value of i decreases by one, so this backward
traversal (since we are only seeking a good subset, i.e., we only want to find one path) takes O(n) steps.

64. Consider a chessboard of size m ×m. Unfortunately, some holes have been punched into some squares. We
want to travel from the bottom left corner to the top right corner, such that in one move we can go from a
square to an adjacent square above it or to its right. Provide a procedure using dynamic programming that
computes the number of ways to reach the top right corner.

Solution:

Let’s define a table T with m+1 rows and columns, where T [i, j] represents the number of ways the cell (i, j)
can be reached. (The bottom-left corner is the cell (1, 1), and the top-right corner is the cell (m,m).)

Let the values in the 0-th row and column of T be zeros, and T [1, 1] = 1.

For the recursive formula, consider that we can only move to the cell (i, j) from either the cells (i − 1, j) or
(i, j − 1). If we set the values corresponding to the forbidden cells (the cells with holes) in T to 0, then the
formula

T [i, j] =

{
T [i− 1, j] + T [i, j − 1], if (i, j) is not forbidden
0, if (i, j) is forbidden

is correct for i ≥ 1, j ≥ 1.

This table can be filled out row by row, as when reaching (i, j), the two values to be used are already available.

Running time: The size of the table is (m + 1)2 ∈ O(n), as the input size is n = m2. Constant number of
additions are required for each element, so the number of additions is also O(n).

If we also need to consider the size of the numbers, if there are no forbidden cells, then the largest number is(
2m
m

)
. Since

∑2m
i=1

(
2m
i

)
= 22m, we have

(
2m
m

)
≤ 22m. The number of digits of this number is O(m). In this

case, the running time is O(m3), or O(n1.5).

Note: In the future, for simplicity, we assume that arithmetic operations can be performed in one step regardless
of the size of the numbers.

65. Let s1s2 . . . sn and t1t2 . . . tm be sequences of characters of lengths n and m respectively. We want that in a
matrix A of size n×m, the entry A[i, j] contains the largest number k for which s1s2 . . . si and t1t2 . . . tj end
in the same k characters. (If si ̸= tj then this would be 0). Give a procedure that fills the array A in O(nm)
steps.

Solution:

ThAlg 2024 ThAlg Practice session 123

If i = 1 or j = 1, then it’s simple, since one of the sequences has only 1 element, the value can only be 0 or 1.

A[1, j] =

{
1, if s1 = tj
0, if s1 ̸= tj

A[i, 1] =

{
1, if si = t1
0, if si ̸= t1

For the further steps, it should be noticed that if si and tj are different, then obviously k = 0; otherwise, it is
the extension of the longest common substring obtained for the prefix segments that are shorter by one.

A[i, j] =

{
1 +A[i− 1, j − 1], if si = tj
0, if si ̸= tj

If we fill the table row by row, we always have the necessary information available. Calculating one element
is constant time, and the size of the table is nm, so the overall running time is O(nm).

66. Each element of a table of size n× n is a positive integer. We want to go from the bottom left corner of the
table to the top right corner by taking one step up or one step to the right in the table. We further want
that the elements on our path should be in increasing order. Give an algorithm with running time O(n2) that
determines,
(a) how many paths satisfy the rules.
(b) what is the largest value of a path satisfying the rules if the value of a path is the product of the numbers
in it.

Solution:

(a) We use dynamic programming: Let A denote the original (given) table. We create an (n × n) table T ,
where T [i, j] represents the number of ways we can reach the j-th element of the i-th row of A according to
the rules. If A[1, 1] is the bottom-left field and A[n, n] is the top-right field, then T [n, n] provides the desired
answer.

Let T [1, 1] = 1. Since we can only come from the left or from below to the (i, j) position, there is a valid path
if we can reach at least one of these positions, and from there, the last step is valid, i.e. A[i, j] is greater than
the preceding element.

Therefore, for the first row if j > 1, we have:

T [1, j] = T [1, j − 1], if A[1, j] > A[1, j − 1], otherwise T [1, j] = 0. (The row will be 1 for a while, then
eventually becomes 0 if there was a non-increasing step.)

Similarly, for i > 1, we have:

T [i, 1] = T [i− 1, 1], if A[i, 1] > A[i− 1, 1], otherwise T [i, 1] = 0.

The general recursion for i, j > 1:

• if A[i, j] > A[i− 1, j] and A[i, j] > A[i, j − 1], then T [i, j] = T [i− 1, j] + T [i, j − 1]

• if A[i, j] > A[i− 1, j] and A[i, j] ≤ A[i, j − 1], then T [i, j] = T [i− 1, j]

• if A[i, j] ≤ A[i− 1, j] and A[i, j] > A[i, j − 1], then T [i, j] = T [i, j − 1]

• if A[i, j] ≤ A[i− 1, j] and A[i, j] ≤ A[i, j − 1], then T [i, j] = 0.

After determining the first row and column, if we fill the table row by row, we always have the necessary
information available. Thus, calculating each element will require a constant number of operations.

Since the size of the T array is n2 and filling each element requires a constant number of operations, the
running time is O(n2).

ThAlg 2024 ThAlg Practice session 123

(b) Similar to the previous point, but this time we are storing the maximum value. Therefore, at each valid
step, we need to multiply by the current A value, and instead of addition, we choose the maximum value.

Denote this array by S, then:

S[1, 1] = A[1, 1], since this is the value so far.

Filling the first row and column goes as follows: S[1, j] = S[1, j− 1] ·A[1, j], if A[1, j] > A[1, j− 1], otherwise
S[1, j] = 0.

Similarly, for i > 1:

S[i, 1] = S[i− 1, 1] ·A[i, 1], if A[i, 1] > A[i− 1, 1], otherwise S[i, 1] = 0.

In the following,i, j > 1, and then:

• if A[i, j] > A[i− 1, j] and A[i, j] > A[i, j − 1], then S[i, j] = A[i, j] ·max{S[i− 1, j], S[i, j − 1]}

• if A[i, j] > A[i− 1, j] and A[i, j] ≤ A[i, j − 1], then S[i, j] = A[i, j] · S[i− 1, j]

• if A[i, j] ≤ A[i− 1, j] and A[i, j] > A[i, j − 1], then S[i, j] = A[i, j] · S[i, j − 1]

• if A[i, j] ≤ A[i− 1, j] and A[i, j] ≤ A[i, j − 1], then S[i, j] = 0.

After determining the first row and column, if we fill the table row by row, we always have the necessary
information available, so calculating each element will require a constant number of operations. Therefore, the
total running time remains O(n2).

67. Given n files, where the ith file’s positive integer length is hi, and two hard drives each with a positive integer
capacity of L, our goal is to find the largest number k, such that files with indices between 1 and k can be
stored across the two drives. A single file cannot be split between multiple drives, it must be stored in a single
drive in one continuous space segment. Give an algorithm that finds the maximal possible k and outputs for
each of the first k files which drive it should be saved to. The running time of the algorithm should be O(L2).

Solution:

Ideas:

The solution will depend heavily on the fact that the files come in a predetermined order and we are only
interested in prefixes of this, not any possible subsets. Furthermore, since we are allowed an O(L2) time
complexity, we are able to construct a two dimensional DP table to solve this task.

First solution (inefficient):

Our first solution will use a three dimensional DP table, which will be inefficient. Then, we will optimize this
solution with an extra observation to use a two dimensional DP table instead.

Key observation: Let’s first focus on the 1st file. We have three possible choices to make with it:

• We store it on the 1st drive. (If there is enough space left.)

• We store it on the 2nd drive. (If there is enough space left.)

• We do not store it.

What is the remaining task that needs to be solved in each of these cases?

ThAlg 2024 ThAlg Practice session 123

• When we choose storing the file on the 1st drive, the remaining task consists of drives with size L− h1
and L and the remaining files with indices 2 to n.

• Storing it on the 2nd drive, the remaining task consists of drives with size L and L−h2 and the remaining
files with indices 2 to n.

• If we choose not to store this file, we are not allowed to store any later files either.

The same idea works in the general case. For file i, if we assume that the files with indices 1 to i − 1 have
already been placed and we know the space remaining on the drives, we can make a similar choice whether we
want to store the file - and which disk we want to store it on - or whether we should stop.

We can see now that the subtasks that need to be solved are parameterised by the space we used up so far on
the two drives and the index of the last file thas was placed.

Let us define DP [a][b][i] to be true if we are able to store the first 1 to i files on the two disks using up a size
a space on the first disk and a size b space on the second disk.

Then, to calculate the value of DP [a][b][i], the question is where should we store file i? We either store it on
the first or on the second disk. If we store it on the first disk, we will use up hi space. We know that in total
we used up exactly a space from the first disk, so before storing file i, the space used on the disk must have
been a−hi. Therefore the remaining subtask to be solved comes from the cell DP [a−hi][b][i−1]. With similar
logic, when we store the file on the second disk, the subtask to be solved comes from DP [a][b− hi][i− 1].

Therefore

DP [a][b][i] = DP [a− hi][b][i− 1] ∨DP [a][b− hi][i− 1]

and the base case is DP [0][0][0] = true, since storing no files uses up no space, and DP [i][j][0] = false for
all other i and j indices.

Let’s also assume, that when DP is indexed by a negative number in any of the 3 dimensions, it returns a
false, so we don’t have to list those as special cases.

We could fill out this table in a tripe nested for loop, however that would take us O(n · L2) time complexity,
which is too much.

Idea for optimization:

However, we can notice that there is redundancy in the three parameters. The total space used on all of the
drives will always equal to the total size of the files stored so far. E.g.

a+ b =

i∑
j=1

hj

Second solution (optimal, by dropping a parameter):

This means, that one of the parameters can be skipped and calculated from the other two. For example, we
can skip parameter b and calculate it with the formula

b =
i∑

j=1

hj − a

ThAlg 2024 ThAlg Practice session 123

So let us drop that dimension and let DP [a][i] mean whether it is possible to store the first i files on the two
disks, while using up exactly a space on the first and

∑i
j=1 hj − a space on the second.

Now, is the following formula correct?

DP [a][i]? = DP [a− hi][i− 1] ∨DP [a][i− 1]

It is not correct, because dropping the dimension b, we are at risk of running out of space on that drive, without
noticing it. The drive size

∑i
j=1 hj − a must never exceed L and this extra condition must always be checked

for both cases.

DP [a][i] = (DP [a− hi][i− 1] ∧
i∑

j=1

hj − (a− hi) ≤ L) ∨ (DP [a][i− 1] ∧
i∑

j=1

hj − a ≤ L)

A tiny problem we still have is that calculating the sum of the file sizes from 1 to i takes O(n), we should just

precompute that and store it in an array totalsize[i] =
i∑

j=1
hj.

DP [a][i] = (DP [a− hi][i− 1] ∧ totalsize[i]− (a− hi) ≤ L) ∨ (DP [a][i− 1] ∧ totalsize[i]− a ≤ L)

Third solution (by simply skipping the impossible DP cells):

Another way of dealing with a very large, but mostly empty and unused DP table is by doing something called
"forward recursion" instead of the typical "backward recursion" we used so far.

Consider the three dimensional DP [a][b][i] table as a graph. The cells are the vertices and the directed edges
of the graph point from the two cells that are used in the recursive formula for calculating DP [a][b][i], DP [a−
hi][b][i− 1] and DP [a][b− hi][i− 1] to the cell DP [a][b][i].

Notice how each DP [a][b][i] cell only has two outgoing edges as well, depending on where we choose to store
the file i+ 1!

We can now change the direction of the recursion by starting from the only true base case, DP [0][0][0] and
"move in a forward direction", by placing a true value in cells DP [h1][0][1] and DP [0][h1][1], then we recur-
sively continue with each additional file.

Since the file sizes are integer, for a specific i value, at most L+ 1 number of true values exist, as 0 ≤ a ≤ L
and i together determine the value of b too.

So there are only O(L) true values in the DP sub-array DP [..][..][i]. The outgoing edges point towards true
values in DP [..][..][i + 1]. Thus, between each layer, there are 2L edges and our solution iterates each edge
exactly once. (We make sure not to forward-recurse from a cell that was already done in a previous step.)

Finally, we keep track of the largest i we have seen during the recursion, and stop when we cannot move
forward.

(For implementation, a sparse matrix or similar implementation must be used, to only store the non-false
values of the table.)

Fourth solution (recognizing how we have already seen a similar task to the third solution):

Notice how the DP graph in the previous solution is a DAG (edges only point towards higher i values) and we
are looking for the largest possible i value, which corresponds to the longest path in the DAG.

ThAlg 2024 ThAlg Practice session 123

Therefore, our longest path finding algorithm can be used here, which runs in O(|V (G)| + |E(G)|), where
|V (G)| ≤ 2Ln ≤ 2n2 and |E(G)| ≤ 2L2 ≤ 2n2.

68. We are given two strings of length n and m respectively. We want to find the largest matching substring, i.e.
if one text is a1a2 · · · an and the other is b1b2 · · · bm, then we want to find the maximum number t such that
there are indices 1 ≤ i ≤ n and 1 ≤ j ≤ m, such that, aiai+1ai+2 . . . ai+t−1 = bjbj+1bj+2 . . . bj+t−1 is satisfied.
Give an algorithm for this problem using O(nm) steps.

Solution:

Notice that the task is similar to Exercise 5. The maximum value in the A matrix created there is required t. If
the position of this maximum value is cell A[x][y], then substrings a[x− t+1], . . . , a[x] and b[y− t+1], . . . , b[y]
are the corresponding largest matching substrings. Runtime complexity is also O(nm), similarly to the previous
task, with the addition of finding the maximum value at the end.

69. We are given two 0 − 1 sequences a1, a2, . . . , an, and b1, b2, . . . , bm of lengths n and m respectively. We will
now fill a matrix T in the following manner:

If 0 ≤ i ≤ n, then T [i, 0] = 0. If 0 ≤ j ≤ m, then T [0, j] = 0.

If 1 ≤ i ≤ n and 1 ≤ j ≤ m, then T [i, j] =

{
T [i− 1, j − 1] + 1 if ai = bj
max{T [i, j − 1], T [i− 1, j]} if ai ̸= bj

What is the meaning of T [i, j]? What property of the two series is given by T [n,m]?

Solution:

T [i, j] = length of the longest common subsequence in the sequences a1 · · · ai and b1 · · · bj, thus T [n,m] is the
length of the longest common subsequence in the two complete sequences.

The recursive formula shows that in the longest common subsequence, either ai = bj, and then the longest one
is obtained by extending the common subsequence found in the two sequences a1 · · · ai−1 and b1 · · · bj−1 with ai
and bj respectively, hence the length is T [i− 1, j − 1] + 1. If ai ̸= bj, then either bj or ai is not in the longest
common subsequence, which is indicated by the second possibility.

Note: For such tasks, it is advisable to examine what happens with a simple example, based on which one can
guess the rule (which of course needs to be proven).

70. (a) Give a dynamic programming algorithm that, given an integer n as input, computes Fn, the nth Fibonacci
number in O(n) steps. The sequence of Fibonacci numbers is defined by F0 = F1 = 1 and the recursion
Fn = Fn−1 + Fn−2 if n ≥ 2.
(b) Consider the following recursive algorithm to compute the nth Fibonacci number Fn. For n = 0 and n = 1
it returns 1, while for n ≥ 2 it call itself recursively with inputs n− 1 and n− 2, resp., and returns the sum
of the two values obtained. Show that the running time of this algorithm is Ω(2

n
2).

Solution:

(a) We fill out the table of size 1× (n+1), i.e. an array F [0..n] in a way that F [i] is the ith Fibonacci number.

Note that the problem asks for the value of F [n].

Initialization: F [0] = F [1] = 1.

Then starting from 2 we use the recursion formula of the Fibonacci numbers: F [i] = F [i− 1]+F [i− 2]. If we
fill out the table in the order of i = 0, 1, 2, . . . , n, then by the time we need the value of F [i− 1] and F [i− 2]
for F [i], we have already determined them.

At each element, we use a constant number of steps, and the running time of the algorithm is O(n).

(b) Let’s denote by L(n) the running time of the algorithm if the input size is n. Then L(0) = L(1) = 1, and

ThAlg 2024 ThAlg Practice session 123

L(n) ≥ L(n− 1) + L(n− 2), if n ≥ 2, thus for k ≥ 2

L(2k) ≥ L(2k − 1) + L(2k − 2) ≥ L(2k − 2) + L(2k − 3) + L(2k − 2) ≥ 2L(2k − 2),

and the same is true also for k = 1, since then L(2k) = L(2) ≥ L(1) + L(0) = 1 + 1 = 2L(0) = 2L(2k − 2).
Therefoer if n ∈ N is even, then

L(n) ≥ 2L(n− 2) ≥ . . . ≥ 2n/2L(0) = 2n/2,

while if n ≥ 3 is odd then

L(n) ≥ 2L(n− 2) ≥ . . . ≥ 2(n−1)/2L(1) =
1√
2
2n/2.

Thus L(n) ≥ 1√
2
2n/2, if n ≥ 0 (and this is true also for n = 0 and n = 1: L(0) = 1 ≥ 1√

2
· 1 and

L(1) = 1 ≥ 1√
2
· 21/2 = 1), So, for example, choosing c = 1/

√
2 and n0 = 1 shows that L(n) = Ω(2n/2)

(moreover n0 = 0 is good as well).

2. solution: We can prove also using induction. Choose such a c > 0 value, that L(n) ≥ c2n/2 holds for
n = 0, 1. Since L(0) = L(1) ≥ 1, for example c = 1/2 is good. Assume that L(i) ≥ c2i/2 for all 0 ≤ i ≤ n.
We prove that it also holds for n+ 1.

L(n+ 1) ≥ L(n) + L(n− 1) ≥ c2n/2 + c2(n−1)/2 ≥ c2(n−1)/2(21/2 + 1) ≥ c2(n−1)/2 · 2 = c2(n+1)/2.

Thus for example the choices c = 1/2 and n0 = 0 show that L(n) = Ω(2n/2).

71. We are given the following adjacency list of a directed graph:
a : b(5), e(6), b : c(4), d(6), c : a(3), d(1), d : e(2), e : c(2), f(1), f : b(3), c(1), d(1).
Using Dijkstra’s algorithm, determine the lengths of the shortest paths from a to all other vertices. (No need
to justify in words, but one should be able to see the steps, how the safe set S updates. Please also show the
table for final distances and the parents.)

Solution:

a

b

c

d

e

f

5

6

4

6

3

1 2

2

1

3

1

1

D a b c d e f SAFE
0. 0 ∞ ∞ ∞ ∞ ∞ {}
1. 0 5 ∞ ∞ 6 ∞ {a}
2. 0 5 9 11 6 ∞ {a, b}
3. 0 5 8 11 6 7 {a, b, e}
4. 0 5 8 8 6 7 {a, b, e, f}
5. 0 5 8 8 6 7 {a, b, e, f, c}
6. 0 5 8 8 6 7 {a, b, e, f, c, d}

P a b c d e f

0. – – – – – –
1. – a – – a –
2. – a b b a –
3. – a e b a e

4. – a e f a e

5. – a e f a e

6. – a e f a e

Dijkstra’s algorithm can find the shortest path from a given vertex to all others in a graph, with the condition
that the graph cannot contain a negative weight edge. In many real life scenarios, this is true (think of
cities and their distances via car). The runtime complexity of the algorithm is O(n log n+m) ⊆ O(n2), where
n is the number of vertices and m is the number of edges in the graph.

If the graph contains a negative edge, the algorithm can lead to incorrect results, see Exercise 5 as an example,
so we cannot use it. In such cases, other algorithms, such as the Bellman-Ford algorithm can be used, which
works correctly, even if there are some negative edges in the graph, as long as there are no negative cycles.
But, this algorithm is slower, with time complexity O(n ·m) ⊆ O(n3).

Let’s begin Dijkstra! D is the distance vector, P is the parent vector. These are both 1 dimensional vectors, and
above we have illustrated how their values change during the execution of the algorithm, each row corresponding
to the state of the vectors after one step of the algorithm.

ThAlg 2024 ThAlg Practice session 123

The algorithm works by keeping track of the currently known shortest distances to each vertex from the starting
one, vertex a. Initially, we set the distance of vertex a (to itself) to 0 and all others to ∞ (infinity), marking
the fact that no path is known at the moment. This value is chosen, because it is greater than any other value,
so any path will be shorter than it and we do not have to treat it as a special case.

In each step, we select the vertex with the smallest D value, that is not yet finalized and finalize it, by putting
it into the SAFE set. The D values of these vertices are final, it can be proven that no shorter path exists.
We will discuss why this is the case later on.

Let’s note the selected vertex with v.

Then, we iterate on the outgoing edges of the selected vertex v. For each outgoing edge v
w→ u, we form a

candidate path to its endpoint u, by appending this edge to the currently known shortest path to the selected

vertex, e.g. a
D[v]

v
w→ u. The length of the candidate path is D[v] + w.

This candidate path is then compared to the currently known shortest path to the endpoint, a
D[u]

u. If the
candidate path is shorter, we update the value of D[u], with the length of the candidate path D[v] +w, and we
also take note in P [u], that the value of D[u] came from the path via v, by setting P [u] = v. If the candidate
path is longer or the same length, then we just discard it.

We keep doing this process, until all vertices are finalized and in the SAFE set. At the end, the D vector will
contain the lengths the shortest paths towards all vertices from the starting one and the P vector will contain
all the information necessary to retrieve those paths, which we will show how to do at the end of this exercise.

Let’s begin!

In the first step, we finalize vertex a and update the distances along the two outgoing edges:

• To update along the outgoing edge a
5→ b, we consider the candidate path a

D[a] = 0
a

5→ b, towards
vertex b, via a, of length 5, which is technically just the edge a

5→ b, and compare it to the currently

known shortest path a
D[b] = ∞

b, towards vertex b, of length ∞, which technically just means that no
path has been found so far. Since the candidate path’s length is shorter, we update by setting D[b] to this
length, D[b] = 5 and taking note that this value was found via the parent vertex a, by setting P [b] = a.

• We update along the other outgoing edge a
6→ e, and with the exact same logic we update D[e] = 6 and

P [e] = a.

In the second step, we must choose the vertex that has the smallest D value and not yet finalized, this is vertex
b, and finalize it. We then update along its outgoing edges.

• To update along the outgoing edge b
4→ c, we consider the candidate path a

D[b] = 5
b

4→ c, towards vertex

c, via b, of length 9, and compare it to the currently known shortest path a
D[c] = ∞

c, towards vertex c,
of length ∞, which technically just means that no path has been found so far. Since the candidate path’s
length is shorter, we update by setting D[c] to this length, D[c] = 9 and taking note that this value was
found via the parent vertex b, by setting P [c] = b.

• In a similar fashion, updating along the other outgoing edge b
6→ d, we consider the candidate path

a
D[b] = 5

b
6→ d, via b, of length 11 and since it is shorter than the currently known shortest path,

a
D[d] = ∞

d, we update D[d] = 11 and P [d] = b.

This is the end of the second step.

In the third step we finalize e, and update with the two outgoing edges:

• Candidate a
D[e] = 6

e
2→ c is shorter than a

D[e] = 9
c, so we update D[c] = 8 and P [c] = e.

ThAlg 2024 ThAlg Practice session 123

• Candidate a
D[e] = 6

e
1→ f is shorter than a

D[f] = ∞
f , so we update D[f] = 7 and P [f] = e.

In the fourth step we finalize f , and update with the three outgoing edges:

• Candidate a
D[f] = 7

f
3→ b is longer than a

D[b] = 5
b, so we discard it.

Note here, that b is already in the SAFE set, so its D value is already finalized. This means, that any
candidate paths found towards b will be discarded by the algorithm. How can we be sure, this will be the
case, always? Because b was finalized before f was, we had a shorter path towards b than what we had towards
f at the moment. (Remember, we finalize shorted D values first.) The best path towards b is of length 5.
There is no possible way to get a shorter path towards b via vertex f , because the best path towards f is of
length 7. Since the graph does not have negative edges, any candidate path towards b via f will
be of length at least 7, so it will be discarded in favour of the already known path of length 5.
Therefore every time we finalize a vertex, we can be sure that no further candidate paths via any of the other
vertices could give us a shorter path, because the D values of the other vertices are higher and no negative
edges exist, so the candidate paths’ lengths will be longer too. And this is why Dijkstra’s algorithm is correct.

Continuing with the other two outgoing edges from f :

• Candidate a
D[f] = 7

f
1→ c is the same length as what we already have, path a

D[c] = 8
c, so we discard

it. It is enough to keep one of the shortest paths, we don’t care about multiple solutions.

• Candidate a
D[f] = 7

f
1→ d is shorter than a

D[d] = 11
d, so we update D[d] = 7 and P [d] = f .

Now we finalize vertex c. Note here, that both c and d have a D value of 8. In this case, we can arbitrarily
choose any of them as we execute this algorithm on paper. In the official solutions, to keep them consistent,
we usually choose vertex with the lexicographically smallest label.

When implementing this algorithm in a programming language, the choice is based on how the minimum finding
algorithm on the not-yet finalized vertices is implemented. For example, this could be a linear search on the D
vector, in which case the lexicographically smallest vertex label is selected in case of multiple smallest values. Al-
ternatively, it could be implemented more effectively using a combination of a heap (see std::priority_queue
in C++) and a hash table (see std::unordered_set in C++), in which case the D value, that was inserted
earlier, will be selected.

This choice is therefore completely up to how the algorithm is implemented (we usually call this implementation
detail) and we do not concern ourselves with it, as the correctness of the algorithm does not depend on it.

So let us finalize c and update along its outgoing edges:

• Candidate a
D[c] = 8

c
3→ a is longer than a

D[a] = 0
a, so we discard it. Notice here, that this is acually

a cycle containing the starting vertex a, of length 11.

• Candidate a
D[c] = 8

c
1→ d is longer than a

D[d] = 8
d, so we discard it.

We then finalize d, which is the last one. Since all vertices are in the SAFE set, no candidate can give us a
shorter path towards any of them, the algorithm is finished. In total, we needed n − 1 steps, since we do not
need to update via the last finalized vertex.

The final distance vector D is:
a b c d e f

0 5 8 8 6 7

And the final parent vector P is:
a b c d e f

- a e f a e

The only question left is how do we recontruct the shortest path to a vertex using the information in P . For
example, the shortest path from a to d is of length D[d] = 8. Which vertices are along that path?

ThAlg 2024 ThAlg Practice session 123

• The parent of d is P [d] = f , therefore the last edge on the path is f
1→ d.

• The parent of f is P [f] = e, therefore the previous edge on the path is e
1→ f , making the path so far

e
1→ f

1→ d.

• The parent of e is P [e] = a, therefore the previous edge on the path is a
6→ e, making the path so far

a
6→ e

1→ f
1→ d.

And since a is the starting vertex, we are done. The shortest path from a to d of length 8 is a
6→ e

1→ f
1→ d.

Note here, that this decoding procedure was a recursive algorithm.

72. Use Dijkstra’s algorithm to determine the lengths of the shortest
paths from a to all other vertices of the graph. Also provide the
shortest paths (as a sequence of vertices). (No need to justify in
words, but one should be able to see the steps, how the safe set SAFE
and the arrays D and P update. Please also show the table for final
distances and the parents.)

Solution:

D a b c d e f g h SAFE

0. 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ {}
1. 0 10 ∞ 3 ∞ ∞ ∞ ∞ {a}
2. 0 10 7 3 ∞ 5 5 ∞ {a, d}
3. 0 10 6 3 14 5 5 15 {a, d, f}
4. 0 10 6 3 14 5 5 15 {a, d, f, g}
5. 0 9 6 3 14 5 5 15 {a, d, f, g, c}
6. 0 9 6 3 13 5 5 15 {a, d, f, g, c, b}
7. 0 9 6 3 13 5 5 15 {a, d, f, g, c, b, e}
8. 0 9 6 3 13 5 5 15 {a, d, f, g, c, b, e, h}

P a b c d e f g h

0. – – – – – – – –
1. – a – a – – – –
2. – a d a – d d –
3. – a f a f d d f

4. – a f a f d d f

5. – c f a f d d f

6. – c f a b d d f

7. – c f a b d d f

8. – c f a b d d f

• The shortest path from a to b is a
3→ d

2→ f
1→ c

3→ b, of length 9.

• The shortest path from a to c is a
3→ d

2→ f
1→ c, of length 6.

• The shortest path from a to d is a
3→ d, of length 3.

• The shortest path from a to e is a
3→ d

2→ f
1→ c

3→ b
4→ e, of length 13.

• The shortest path from a to f is a
3→ d

2→ f , of length 5.

• The shortest path from a to g is a
3→ d

2→ g, of length 5.

• The shortest path from a to h is a
3→ d

2→ f
10→ h, of length 15.

73. Determine the directed graph G with the smallest possible number
of edges, so that the given table represents the status of the distance
array when the Dijkstra’s algorithm is run on G. Specify the contents
of SAFE at each stage and the parent of each vertex.

D v1 v2 v3 v4 v5 v6

1. ∗ 2 6 ∞ ∞ 7
2. ∗ ∗ 5 9 ∞ 6
3. ∗ ∗ ∗ 6 9 6
4. ∗ ∗ ∗ ∗ 8 6
5. ∗ ∗ ∗ ∗ 7 ∗

Solution:

The ∗ symbol represents the vertex being put into the SAFE set.

ThAlg 2024 ThAlg Practice session 123

In the first round v1 was moved to the SAFE set (it was the starting vertex, hence D[v1] = 0). We were
updating along the outgoing edges of v1 in this round.

• D[v2] is set to 2, which was done due to an update with candidate path v1
D[v1] = 0

v1
2→ v2, of length 2.

Therefore edge v1
2→ v2 must exist.

• D[v3] is set to 6, which was done due to an update with candidate path v1
D[v1] = 0

v1
6→ v2, of length 6.

Therefore edge v1
6→ v3 must exist.

• D[v7] is set to 7, which was done due to an update with candidate path v1
D[v1] = 0

v1
7→ v7, of length 7.

Therefore edge v1
7→ v7 must exist.

In the second round v2 was moved to the SAFE set. We were updating along the outgoing edges of v2 in this
round.

• D[v3] is updated to 5, which was done due to an update with candidate path v1
D[v2] = 2

v2
3→ v3, of

length 5. Therefore edge v2
3→ v3 must exist. Notice that the weight of the edge is not 5, but 5−D[v2].

• D[v4] is updated to 9, which was done due to an update with candidate path v1
D[v2] = 2

v2
7→ v4, of

length 9. Therefore edge v2
7→ v4 must exist.

• D[v6] is updated to 6, which was done due to an update with candidate path v1
D[v2] = 2

v2
4→ v6, of

length 6. Therefore edge v2
4→ v6 must exist.

In the third round v3 was moved to the SAFE set. We were updating along the outgoing edges of v3 in this
round.

• D[v4] is updated to 6, which was done due to an update with candidate path v1
D[v3] = 5

v3
1→ v4, of

length 6. Therefore edge v3
1→ v4 must exist.

• D[v5] is updated to 9, which was done due to an update with candidate path v1
D[v3] = 5

v3
4→ v5, of

length 9. Therefore edge v3
4→ v5 must exist.

• Note here, that we do not know whether a candidate path was considered and discarded for v6, as its value
remained the same. However, the task specifies, that we are looking for the smallest possible number of
edges, so we can assume such a candidate path was not available.

In the fourth round v4 was moved to the SAFE set. We were updating along the outgoing edges of v4 in this
round.

• D[v5] is updated to 8, which was done due to an update with candidate path v1
D[v4] = 6

v4
2→ v6, of

length 8. Therefore edge v4
2→ v6 must exist.

• Similarly to the previous round, we do not know whether a candidate path was considered and discarded
for v6, as its value remained the same. We can assume, that there was no such candidate.

Finally in the fifth round v6 was moved to the SAFE set. We were updating along the outgoing edges of v6 in
this round.

• D[v5] is updated to 7, which was done due to an update with candidate path v1
D[v6] = 6

v6
1→ v5, of

length 7. Therefore edge v6
1→ v5 must exist.

ThAlg 2024 ThAlg Practice session 123

Therefore, the graph with the minimal number of edges corresponding to the Dijkstra run above is given by this
adjacency list: v1 : v2(2), v3(6), v7(7); v2 : v3(3), v4(7), v6(4); v3 : v4(1), v5(4); v4 : v6(2); v6 : v5(1).

74. We are given a city’s road network as a weighted directed graph: the vertices are the intersections, the edges
are the direct paths between the intersections, and the weights of the edges show the average time it takes to
travel the road by car.

Two intersections in the city, a and b, will be closed next week for road renovations (these cannot be traversed
by car). Given two designated vertices in the graph, S and T , we want to decide whether and by how much the
time to get from S to T will increase due to the closure of the nodes a and b. (Assume that the average times
assigned to the direct roads between intersections do not change due to the closures.) Which algorithm can be
applied if we want to solve this problem in O(n2) running time (where n denotes the number of intersections)?

Solution:

Let’s assume the graph is given via its adjacency matrix. We first run Dijkstra’s algorithm from S on it, which
gives the lengths of the shortest paths from S to all other vertices, including T . This takes O(n2) time. Then,
we delete all incoming and outgoing edges of vertices a and b. In the matrix repesentation, this means clearing
two rows and two columns and can be done in O(n) time. The resulting graph still has n vertices (two of
them isolated now), so running Dijkstra on it still takes O(n2) time. We shall run Dijkstra a second time from
S and check the length of the shortest path to T . We should substract from this number the original result,
which tells us how much more time it takes to get from S to T . This difference cannot be negative, and if it
equals zero, then the travel time has not changed. This step takes O(1). The entire procedure, considering all
previous steps takes O(n2) time.

Note: If the graph was given by its adjacency list, we can convert it to an adjacency matrix format in O(n2),
or we can also run Dijkstra on the adjacency list format directly, with the small correction, that removing all
incoming and outgoing edges of a and b now takes O(n2) time, in particular, to remove all incoming edges,
one must iterate the entire adjacency list.

If we want to consider the edge case, where T is not reachable from S, we must check if D[T] = ∞ at the end
of any Dijkstra runs and print out ”T is not reachable!” (and exit after) for the first run and ”T is no longer
reachable!” for the second run.

75. Assign edge weights to the edges in the graph shown on the right
such that in the resulting graph the Dijkstra’s algorithm incor-
rectly computes the lengths of the shortest paths.

Solution:
Dijkstra may incorrectly compute the shortest paths if we run it
on a graph that has at least one negative edge. There are many
possible solutions, this is one example. Running Dijkstra on this
graph from S will finalize vertex B before A, however, there is
an alternative path to B via A that is only length 1, due to the
negative edge A

−2→ B, which does not get discovered by Dijkstra.

76. Use Dijkstra’s algorithm to find the shortest paths from vertex A
to all other vertices in the graph shown on the right, as function
of positive real parameter x.

Solution:

After the first three steps the SAFE set becomes {A,B,D}, irrespective of the value of x. The D vector’s

ThAlg 2024 ThAlg Practice session 123

values will be 0, 3, 6, 5, x+5 at this point. After this, in step 4 there are two main cases, depending on whether
vertex C or vertex E is placed into the SAFE set. If x < 1, then E is placed into the SAFE set, if x = 1 then
both cases are possible, depending on the implementation, finally if x > 1 then C is placed into the SAFE set.
Calculating the results in these cases the final values for the D vector are 0, 3, 6, 5, x + 5, when x ≤ 3, and
otherwise when x > 3, then 0, 3, 6, 5, 8.

See full calculations below:

Calculation for x < 1:
D A B C D E SAFE
1. 0 3 ∞ 5 ∞ {A}
2. 0 3 6 5 ∞ {A,B}
3. 0 3 6 5 x+ 5 {A,B,D}
4. 0 3 min{6, x+ 7} = 6 5 x+ 5 {A,B,D,E}
5. 0 3 6 5 x+ 5 {A,B,D,E,C}

Calculation for x ≥ 1:
D A B C D E SAFE
1. 0 3 ∞ 5 ∞ {A}
2. 0 3 6 5 ∞ {A,B}
3. 0 3 6 5 x+ 5 {A,B,D}
4. 0 3 6 5 min{8, x+ 5} {A,B,D,C}
5. 0 3 6 5 min{8, x+ 5} {A,B,D,C,E}

77. We are given a city’s road network as a weighted directed graph: the vertices are the intersections, the edges
are the direct paths between the intersections, and the weights of the edges show the average time it takes a
cyclist to cycle along the road.
A bicycle courier at vertex f is given the task of delivering two parcels he has with him to the nodes b and c
of the city as quickly as possible (in any order). Which algorithm can be applied to determine, with running
time O(n2), the order in which the courier should deliver the parcels and the shortest time in which he can
complete his task?

Solution:

The courier can either start in f , then move to b and finish in node c, or they can start in f , move to c, then
finish in node b.

Therefore, we must run Dijkstra’s algorithm three times: to calculate the distances from vertex f , vertex b and
vertex c to any other vertices in the graph. Let us denote our results with the distance arrays Df , Db and Dc.

The shortest delivery time is then either Df [b]+Db[c], for visiting the vertices in order f, b, c, or Df [c]+Dc[b],
for visiting the vertices in order f, c, b, the courier must choose the minimum value between the two options.

The three Dijkstra’s take O(n2) time, then choosing the minimum is O(1), for a total of O(n2).

78. We are given a directed graph G with its adjacency matrix. We know that, with the exception of one negative
weight edge, all the other edges have positive weight. There are no negatively weighted cycles in the graph.
Give an algorithm with running time O(n2) to find the shortest paths from a vertex s ∈ V (G) to all other
vertices.

Solution:

Let us denote the negative edge with (u, v) and its negative weight with w(u, v) < 0. Since there is no negative
cycle, the "shortest path" task is still valid in this graph, but we cannot use Dijkstra directly. (If there was a
negative cycle in the task, we could traverse it many times, always decreasing our distance, resulting in a −∞
distance from any vertex from which it is reachable to any vertex we can reach from it.)

ThAlg 2024 ThAlg Practice session 123

Whatever the shortest path from vertex s to another vertex t may be, it either contains the edge (u, v), or it
does not.

If it does not contain the edge (u, v), then the path can be found, by first removing the negative edge from the
graph, then running Dijkstra on it and reading the result for t.

If it does contain the edge (u, v), then we can similarly remove the negative edge first, then run Dijkstra from
vertices s and v, denoting the results with Ds and Dv, then combine the shortest path from the following three
parts: The shortest path from s to u, denoted by Ds[u], then the weight of the edge (u, v), denoted by w(u, v)
then the shortest path from v to t, denoted by Dv[t]. However, the list of edges we got may not form a path,
since vertices may repeat in the first and the second half. We must check our result if this is the case or not.
If this is the case, the path between those repeating vertices form a cycle, which can be removed from the path,
including the negative edge inside of it. The resulting path will be at least as long as the one we found in the
first case (it could be longer, if the negative edge we discarded decreased the length by a lot), so we can just
discard this case, if we find a repeating vertex.

For the runtime complexity note here, that we only run two Dijsktra’s in total, one from s and one from v
and calulate the results for all target vertices from these. To check for repeating vertices, we could store the
vertices appearing on the shortest path from s to u in a boolean array, then noting if we used one during the
second Dijkstra run from v. This lookup is one extra step during the runtime of Dijkstra, so the algorithm is
still O(n2).

79. We are given a simple directed graph G by its adjacency list, with non-negative edge weights. Let v1 be an
arbitrary vertex of G. Give an effective algorithm that finds the 100 closest vertices to v1.

Solution:

Let us run the first 100 steps of Dijkstra, the version without using heap or keeping track of parents in P . This
will place into the SAFE set, the 100 closest vertices to v1, since they are placed one-by-one in increasing
order of distance from v1.

The runtime complexities are as follows: O(n) for initialization of D, O(100n) = O(n) for finding 100
minimums, one in each step and O(100n) = O(n), for modifying the D vector 100 times. Therefore, the total
cost is O(n).

Note: This is smaller than the size of the input, we don’t need to read the entire adjacency list.

80. In what orders list PreOrder, InOrder and PostOrder walks the keys
stored in the tree on the right?

10

7

1

2

9

13

12 14

Solution:

PreOrder: 10, 7, 1, 2, 9, 13, 12, 14.
InOrder: 1, 2, 7, 9, 10, 12, 13, 14.
PostOrder: 2, 1, 9, 7, 12, 14, 13, 10.

81. Let the InOrder sequence of the elements of a binary tree be j, b, k, g, i, a, c, d, f, e, h, and let the PreOrder be:
a, b, j, g, k, i, d, c, e, f, h. Use this information to reconstruct the tree.

Solution:

We can see from the PreOrder, that the root is a. From the InOrder, we can see that the left subtree contains
j, b, k, g, i, and the right subtree contains c, d, f, e, h. Looking back at the PreOrder, we see that the root of the
left subtree is b and the root of the right subtree is d. We can continue the same logic until the tree is fully

ThAlg 2024 ThAlg Practice session 123

reconstructed. The final result is:

a

b

j g

k i

d

c e

f h

82. (a) Construct a heap using the linear time BUILD-HEAP method from the following array of numbers:
31, 6, 50, 7, 2, 51.
(b) Insert the numbers 1 and then 5 into the resulting heap.
(c) Perform two consecutive ExtractMin operations on the resulting heap.

Solution:

a) We HEAPIFY 50 first. (No change.)
31

6
7 2

50
51

We then HEAPIFY 6. Among 6, 7, 2, the 2 is smallest, so they switch.
31

6
7 2

50
51

31
2

7 6
50

51

We then HEAPIFY 31. Among 31, 2, 50, the 2 is smallest, so they switch. Then among 31, 7, 6, the 6 is
smallest, so they switch.

31
2

7 6
50

51

2
31

7 6
50

51

2
6

7 31
50

51

b) 1 is inserted as the next child, then HEAPIFY is called upwards. Among 50, 51, 1, the 1 is smallest so it
switches with the parent. Then, among 2, 6, 1, the 1 is smallest so it switches with the parent.

2
6

7 31
50

51 1

2
6

7 31
1

51 50

1
6

7 31
2

51 50

5 is inserted as the next child, then HEAPIFY is called upwards. Among 7, 5, the 5 is smallest so it switches
with the parent. Among 6, 5, 31, the 5 is the smallest so it switches with the parent.

1
6

7

5

31
2

51 50

1
6

5

7

31
2

51 50

1
5

6

7

31
2

51 50

c) First ExtractMin: 1 is removed and the last leaf, 7 is placed as root instead. Then we call HEAPIFY
downwards on 7. Among 7, 5, 2, the 2 is smallest so it switches with the parent. Among 7, 51, 50, the 7 is the
smallest, so no change occurs.

1
5

6

7

31
2

51 50

7
5

6 31
2

51 50

2
5

6 31
7

51 50

ThAlg 2024 ThAlg Practice session 123

Second ExtractMin: 2 is removed and the last leaf, 50 is placed as root instead. Then we call HEAPIFY
downwards on 50. Among 50, 5, 7, the 5 is the smallest, so it switches with the parent. Among 50, 6, 31, the 6
is the smallest, so it switches with the parent.

2
5

6 31
7

51 50

50
5

6 31
7

51

5
50

6 31
7

51

5
6

50 31
7

51

83. (a) Construct a heap using the linear time BUILD-HEAP method from the following array of numbers:
4, 3, 5, 21, 2, 7, 12, 6.
(b) Insert the number 1 into the resulting heap.
(c) Perform two consecutive ExtractMin operations on the resulting heap.

Solution:

a) We start with the array as-is, which represents the Heap, where the node at index i has the left child at
index 2i and the right child at index 2i+ 1. (And we start indexing from 1.)

4
3

21

6

2
5

7 12

HEAPIFY is called downwards on the non-leaf elements, from bottom-to-up, from right-to-left. We HEAPIFY
21 first.

4
3

21

6

2
5

7 12

4
3

6

21

2
5

7 12

Then we HEAPIFY 5. (No change.)
4

3
6

21

2
5

7 12

Then we HEAPIFY 3.
4

3
6

21

2
5

7 12

4
2

6

21

3
5

7 12

Then we HEAPIFY 4.
4

2
6

21

3
5

7 12

2
4

6

21

3
5

7 12

2
3

6

21

4
5

7 12

b) Element 1 inserted as the next leaf and we HEAPIFY it upwards.

ThAlg 2024 ThAlg Practice session 123

2
3

6

21 1

4
5

7 12

2
3

1

21 6

4
5

7 12

2
1

3

21 6

4
5

7 12

1
2

3

21 6

4
5

7 12

c) The first ExtractMin removes 1 and the last leaf, 6 is placed as root. Then we HEAPIFY 6 downwards.

1
2

3

21 6

4
5

7 12

6
2

3

21

4
5

7 12

2
6

3

21

4
5

7 12

2
3

6

21

4
5

7 12

The second ExtractMin removes 2 and the last leaf, 21 is placed as root. Then we HEAPIFY 21 downwards.

2
3

6

21

4
5

7 12

21
3

6 4
5

7 12

3
21

6 4
5

7 12

3
4

6 21
5

7 12

84. Prove that building a heap of n elements requires Ω(n) comparisons.

Solution:

After the heap has been built, the smallest element can be found without further comparisons (it’s in the root).
So building the heap requires at least as many comparisons as finding the minimum does, which is n− 1.

85. We are given a heap of n elements and a key k. Give an algorithm that finds the elements of the heap that
are smaller than k. If there are m such elements, then the running time must be O(m).

Solution:

We’ll use a method similar to PreOrder traversal. We begin by comparing the root value with k. If the root
value is smaller than k, we print it. If it is larger or equal, we stop exploring this path since all subsequent
nodes will also be larger (in a heap, each parent is smaller than its children, due to the heap property). Next,
we recursively apply the same method to the left and right subtrees. The time complexity is O(m) because for
each element less than k, we only consider its two direct children and then stop. Thus, we visit at most 3m
elements, which means the algorithm has O(m) time complexity.

ThAlg 2024 ThAlg Practice session 123

86. (a) Give an efficient algorithm for finding the second smallest element in a heap.
(b) Give an efficient algorithm for finding the tenth smallest element in a heap.

Solution:

(a) The second smallest element is a child of the root, since only the root is smaller than it. So we compare
the two children of the root and print the smallest one, which is a constant time (O(1)) algorithm.

(b) The distance of the 10th element from the root is at most 9, since only 9 elements can be smaller than it.

The number of such elements is at most 210 − 1 = 1023, and these are located in the first 1023 positions of
the array representing the heap. Finding the 10th smallest among these constant many elements requires O(1)
(constant) time.

It’s important to note that the children of the root in a heap aren’t necessarily smaller than all other elements.
For example, this is a heap where one subtree has smaller elements than the other:

1
2

3 4
10

11 12

Only when moving along a path from the root towards a specific node can we say, that the elements on the
path before the node must be smaller, due to the heap property.

87. n keys are inserted into an initally empty heap using succesive Insert operations. Show that the number of
comparisons used may be Ω(n log n).

Solution:

If we insert the numbers n, n− 1, n− 2, . . . , 1 in this order, then the number of comparisons made is

n∑
i=1

⌊log i⌋ ≥
n∑

i=1

((log i)− 1) =

(
n∑

i=1

log i

)
− n ≥

 n∑
i=n/2

log
n

2

− n =
n

2
log

n

2
− n ∈ Ω(n log n).

88. n elements of an ordered set are stored in a heap. Show that it takes Ω(n) comparisons to find the largest
element.

Solution:

The largest element must be a leaf, since if it had children, they have to be larger than it. To prove that one
leaf is larger than all other leaves, each other leaf must be proven to be smaller than at least one other element
in the heap. Therefore at least (number of leaves) − 1 = Ω(n) comparisons are necessary.

89. In a doctor’s office, you have to check in at the registration desk, where the staff decide whether the patient
must be assigned to doctor A or to doctor B or if the patient can be assigned to either one of them. Also,
after inpecting the referral note, the patient will be assigned a number indicating the urgency of the case.
Assume that a smaller number indicates a greater emergency. When a doctor has finished with a patient, he
picks a patient with the smallest emergency number out of all the patients who can/must be treated by him.
Assume that the emergency numbers assigned to all patients waiting are different. Describe a data-structure
that, in the case where n patients are waiting, allows the registration of a new patient and the selection of
the next patient by the doctors in O(log n) steps.

Solution:

We use 3 heaps, where in the first one the emergency numbers of those patients are placed who can only be
treated by doctor A, in the second one those who can only be treated by doctor B, and in the third one those
who can be treated by both A and B.

ThAlg 2024 ThAlg Practice session 123

During registration, the insertion of a new patient occurs by inserting their emergency number (using the usual
heap insertion) into the corresponding heap, which takes O(log n) steps, since each of the three heaps contains
at most n elements.

Both doctors select the next patient in O(1) steps by reading and comparing the elements in the roots of
the heaps containing emergency numbers of patients they can treat. Then, the doctor calls in the patient
corresponding to the smaller emergency number (more urgent), and then executes an ExtractMin operation on
the respective heap (with the help of the registration software), which takes O(log n) steps. After the ExtractMin
operation, the heap property is restored, so the selection of the next patient can happen in the same way.

90. We want to build a heap from n elements of an ordered set. However, besides the heap property we need that
for each node x the keys in the left subtree of x are smaller than the keys in the right subtree of x. Prove
that this requires Ω(n log n) comparisons.

Solution:

Let’s assume there’s an algorithm to create the desired structure. Then from the resulting tree, the PreOrder
traversal would produce an ordered list in O(n) steps. This implies that at least as many steps are needed to
create the desired structure as for sorting, which we have proven to be Ω(n log n) on the lecture.

91. There are n points on the plane, such that any two of them differ in both coordinates. Prove that there exists
a unique binary tree that stores these n points so that it is a binary search tree for the first coordinates and it
has the heap property for the second coordinates of the points. (Note, that the heap property does not mean
that the tree is an almost complete binary tree, like the one constructed by BuildHeap studied in class.)

Solution:

Due to the heap property, the root contains the point P with the smallest second coordinate. Due to the search
tree property, in the left subtree, there are points whose first coordinate is smaller than that of P , and in the
right subtree, there are points whose first coordinate is greater than that of P . Based on this, the statement
follows by induction.

92. We are given a binary search tree containing all distinct integers. Is it possible that during a call to
SEARCH(x), we see the key-values 20, 18, 3, 15, 5, 8, 9 in this order along the search path? If it is not possible,
give a reason why not, and if it is possible, then specify all the integers x for which this can happen.

Solution:

20 is the root of the tree. In the next step, we see an 18, which is smaller, which means we moved to the left
subtree of 20. Therefore whatever x may be, it is smaller than 20, hence why we choose to move to the left.

Repeat the same logic for the rest of the path:

• 18 < 20, therefore x < 20 as already stated.

• 3 < 18, therefore x < 18.

• 15 > 3, therefore x > 3.

• 5 < 15, therefore x < 15.

• 8 > 5, therefore x > 5.

• 9 > 8, therefore x > 8.

Either x = 9 and we found it, or we were not successful. Summarizing the above information, we know that
8 < x < 15. For any such x, the search path is identical in this tree.

93. (a) Insert the following elements into an empty binary search tree: 7, 3, 2, 9, 8, 12, 6, 4.
(b) What is the PreOrder, InOrder and PostOrder of the elements?
(c) Execute Insert(5), Delete(2), Delete(7), Delete(6).

ThAlg 2024 ThAlg Practice session 123

Solution:

(a) The final tree will look like this:
7

3

2 6

4

9

8 12

(b) The traversal results:
PreOrder: 7, 3, 2, 6, 4, 9, 8, 12
InOrder: 2, 3, 4, 6, 7, 8, 9, 12
PostOrder: 2, 4, 6, 3, 8, 12, 9, 7

(c)

Insert(5): 7

3

2 6

4

5

9

8 12

Delete(2): 7

3

6

4

5

9

8 12

Delete(7): 6

3

4

5

9

8 12

Delete(6): 5

3

4

9

8 12

94. (a) Insert 90 into the Red-Black tree on the right.
(b) Insert 50 into the Red-Black tree on the right
(that does not yet contain 90).

15

10 70

30

20 60

85

Solution:

(a) 90 is inserted as red in its position. No furhter action needed, the red-black tree is valid.

15

10 70

30

20 60

85

90

(b) 50 is inserted at its position. The parent is red, which violates the 7th rule.

15

10 70

30

20 60

50

85

ThAlg 2024 ThAlg Practice session 123

This is Case 2.1 - Red Uncle > Recolor. The uncle (20) is also red. We recolor the parent (60) and the uncle
(20) to black, while the grandparent (30) is colored red, to keep the black heights equal. The issue propagated
2 layers above, between 30 and 70.

15

10 70

30

20 60

50

85

This is Case 2.2.1 - Black Uncle ZigZag > Rotation around parent. Since 70 and 30 do not line up on the
same side of the grandparent (15). Rotation around the parent (70) is necessary, 30 rises up. Then we move
on to execute Case 2.2.2 immediately.

15

10 30

20 70

60

50

85

Now we are in Case 2.2.2 - Black Uncle Lineup > Rotation around grandparent. We rotate around the
grandparent (15), 30 rises up.

30

15

10 20

70

60

50

85

In the final step of Case 2.2.2, we recolor the former grandparent (15) to red and the former parent (30) to
black.

30

15

10 20

70

60

50

85

The black heights are equal.

95. Give a 2-3-tree that stores keys 5, 8, 21, 63, then insert keys 69, 32, 7, 23, 25 in this order.

ThAlg 2024 ThAlg Practice session 123

Solution:

In each step, we make sure that for each node, the length of the paths towards all leaves from it are equal,
therefore keeping the tree balanced. All operations are formulated with this goal in mind.

The initial 2-3 tree looks like this. 4 elements can only be arranged in 2 layers in 2-nodes.

21

8

5 8

63

21 63

69 is inserted, the node becomes a 3-node.

21

8

5 8

63 69

21 63 69

32 is inserted, the 3-node splits into two. The root node becomes a 3-node as a result.

21 63

8

5 8

32

21 32

69

63 69

7 is inserted, the node becomes a 3-node.

21 63

7 8

5 7 8

32

21 32

69

63 69

23 is inserted, the node becomes a 3-node.

21 63

7 8

5 7 8

23 32

21 23 32

69

63 69

25 is inserted, the 3-node splits into two 2-nodes. The root was a 3-node, it cannot store 4 elements, so it
splits into 2. A new root node is created, the height increases by one.

ThAlg 2024 ThAlg Practice session 123

25

21

7 8

5 7 8

23

21 23

63

32

25 32

69

63 69

96. n integers are stored in binary search tree A, while binary search tree B stores m integers. Sort these n+m
elements in O(n+m) time.

Solution:

We know that InOrder traversal provides the stored elements in increasing order. Let us read out the numbers
stored in both trees this way and merge the two sorted lists, using the merge operation of MergeSort. The
number of steps for reading (traversal) is proportional to the size of the tree, the merging requires n+m− 1
comparisons and n+m moves, so the total number of steps is therefore O(n+m).

97. In a Red-Black tree the color of the vertices on some path from the root to a leaf are black,red,black,black, in
this order. What is the smallest possible number of keys stored in this tree?

Solution:

Without loss of generality we can assume the leftmost path was traversed, so this is what we saw:

Root

A

B

Since in a Red-Black tree each node that has at least one child must have exactly two, the Root, A and B must
all have a right child.

Root

A

B

?

?

?

The right child of B is also a (black) leaf, so that all black heights are equal from B. The right child of A must
be black, since a red node cannot have a red child. The right child of Root could be either color, but the task
is asking for smallest number of vertices, so it must be black (to reach equal black heights on both sides of the
Root, the reds contribute nothing to it).

Root

A

B C

D

ThAlg 2024 ThAlg Practice session 123

To have equal black heights from A, C cannot be a leaf, it must have children. Similarly, to have equal black
heights from Root, D cannot be a leaf, it must have children.

Root

A

B C

D

And this Red-Black tree is minimal, all Red-Black tree properties are satisfied.

Hence, the minimal number of elements stored in the tree is 5 (Root,A,B,C,D). The leaves are not storing
elements in Red-Black trees.

98. Is it possible that the figures below show the vertices of a red-black trees? The empty (NIL) leaves have not
been drawn and a black circle indicates a black vertex while a white square indicates a red vertex.

Solution:

In the first case, no, because in the case of the red node on the right side, there are 2 black nodes on the path
in one direction (including the leaf, not pictured), but only 1 black node in the other direction (the leaf, not
pictured), making the black heights not equal.

The second case is possible, as all properties are satisfied: it is a binary tree, the root is black, the leaves (not
pictured) are black, the black heights are equal, no red node has red children, each node is either a leaf or has
two children (the leaves are not pictured).

99. What are the minimum and the maximum possible numbers of keys stored in a Red-Black tree whose black
height is 3?

Solution:

We know that the number of non-leaf nodes is at least 23−1 = 7, so the tree stores at least this many elements.
If the tree contains only black nodes, then it can store exactly 7 elements, making 7 the minimum.

We also know that its height is at most 2 · 3 = 6, when each black node is followed by a red (except the leaves),
and a tree of height 6 can store at most 26 − 1 = 63 elements. This can be achieved by alternating black and
red nodes at each level.

100. The root of a 2-3-tree has 3 children, the two keys in the root are 40 and 50. What could be the minimum
and maximum number of the stored keys if it is known that the tree stores only positive integers?

Solution:

From the conditions, it follows that the root has 3 children: on the left, it stores elements between 1 and 39,
in the middle between 40 and 49, and on the right, it stores elements from 50 and above.

ThAlg 2024 ThAlg Practice session 123

The minimal number of elements is obviously obtained if the children of the root are leaves, storing elements
x, 40, and 50, where 1 ≤ x ≤ 39 is any integer.

To find the maximum number of elements, let’s consider what we can say about the height of the tree! Since
in this case, the middle subtree can store the least amount of elements among the three subtrees, it will be
the limiting factor on the tree height. Its height is at most 4, and to store a maximum of 10 elements, this
height is necessary. Thus, the heights of the other two subtrees are also 4. To maximize the number of leaves
(stored elements), each subtree branches into 3 parts, storing 27 elements each. This is the allowed number of
elements on both sides, so the maximum number of elements is 10 + 2 · 27 = 64.

101. Let x and y denote the two children of the root of a Red-Black tree. It is known, that bh(x) = bh(y), but the
the black heights of the two children of x are different. What is the color of node y?

Solution:

Since the node itself is not counted into the black height, the colors of x and y must be the same. In case of
red, the root’s black height is bh(root) = bh(x) = bh(y). In case of black, the root’s black height is bh(root) =
bh(x) + 1 = bh(y) + 1.

If we name the two children of x: a and b, if their black heights are different bh(a) ̸= bh(b), it means that
either one of them is exactly 1 larger than the other. Let’s name the larger one a and the smaller one b.
bh(a) = bh(b) + 1. To make the black heights equal at x, this can only happen if a is red and b is black.

Since x has a red child, it cannot be red itself, it must be black. Since y is the same color, it must also be
black.

102. Is it possible that the PreOrder of the elements of a red-black tree is : 6, 1, 5, 3, 2, 4?

Solution:

This means that 6 is the root. Since all elements are less than 6, due to the search tree property, the right
subtree of 6 must not contain any of them and the left subtree contains the elements 1, 5, 3, 2, 4.

So the right subtree of 6 is a single black leaf, therefore the black height of the root is 1. If the left child of
the root is black, it must also be a leaf. If the left child of the root is red, its children must be black (since a
red node cannot have red children) and they must be leaves as well (as the black heights would not be equal
otherwise). Neither case has enough storage capacity for 5 elements.

This is a contradiction, it is not possible.

103. We are given a binary search tree with n vertices, all the values of which are different. For each vertex v of
this tree, we want to determine how many elements in the subtree with root v are smaller than v. Give an
algorithm that does this in O(n) steps.

Solution:

In a search tree, elements smaller than v can only be in the left subtree of the node v. Our task is to determine
the size of the left subtree for each node.

Let us use dynamic programming to accomplish this task!

To calculate the size of a left subtree, we must calculate the size of the entire subtree of our left child. The size
of the entire subtree contains the right subtree of that child as well, so we will need this extra information to
perform our calculations.

Therefore, let us define two arrays, L[v] and R[v], meaning the size of the left and the right subtrees of v,
respectively, for all v vertices of the tree.

When v is not a leaf:

ThAlg 2024 ThAlg Practice session 123

The left subtree of v is the size of the left and right subtrees of the left child of v plus one, for the left child
itself, we can see that

L[v] = L[left_child(v)] +R[left_child(v)] + 1.

With similar logic

R[v] = L[right_child(v)] +R[right_child(v)] + 1.

When v is a leaf L[v] = R[v] = 0.

If we traverse our tree in PostOrder traversal order to calculate these, all subtrees of a specific vertex will be
visited and calculated before the vertex itself is visited, so when the calculations are performed the components
will be already available.

Finally, the result is the array L[v].

The number of steps: the traversal is linear, and for each node, we perform a constant number of additional
operations, so the total complexity is O(n).

104. A 2-3 tree contains all integers in the interval [1, 178]. The root is a 3-node and the first waypoint key it
contains is 17. What can be the other one?

Solution:

The second waypoint indicates the smallest number stored in the right subtree, we need to determine this.

Due to the first waypoint, the numbers stored in the left subtree range from 1 to 16.

We know that when the tree stores n nodes (which are stored in the leaves for 2-3 trees) on l levels, then

2l−1 ≤ n ≤ 3l−1,

or equivalently

log3 n+ 1 ≤ l ≤ log2 n+ 1.

(Pay attention to the base-2 and base-3 logarithm switching sides.)

Using the second form, plugging in n = 16, for the number of elements in the left subtree we get

log3 16 + 1 ≤ l ≤ log2 16 + 1

which is calculated as

3.524 ≤ l ≤ 5.

Since the levels must be integer, we get

4 ≤ l ≤ 5.

ThAlg 2024 ThAlg Practice session 123

Therefore, the height of the left subtree is at least 4, and at most 5.

Since we have two waypoints, the root has 3 children. We know that the height of all three subtrees is the same.
If this common height is 4, then there are at most 34−1 = 33 = 27 leaves in both the middle and right subtrees
combined. Hence, they can store at most this many values, so all 178 elements cannot fit into the tree.

Therefore, the height of the left subtree, and consequently the other two, must be 5. In this case, each of the
other two subtrees can store at most 35−1 = 34 = 81 values. Since 16+ 2 · 81 = 178, it follows that each of the
other two subtrees are storing exactly as much as they can possibly store, 81.

At this point, the tree has been uniquely identified.

Every non-leaf node in the middle and right subtrees is therefore at maximum capacity, having exactly 3
children (while in the left subtree, they all have 2), allowing the middle and right subtrees to store 81 elements
each exactly.

The tree itself stores all elements between 1−16 in the left subtree, all elements between (16+1)− (16+81) =
17− 97 in the middle subtree and all elements between (97 + 1)− (97 + 81) = 98− 178 in the right subtree.

Therefore 98 is the second waypoint, the smallest element in the right subtree.

105. A 2-3-tree stores 4 keys. Is the tree unique?

Solution:

Using the formula for the number of levels l and the number of leaves n

log3 n+ 1 ≤ l ≤ log2 n+ 1

substituting n = 4 for the number of elements stored (in the leaves)

log3 4 + 1 ≤ l ≤ log2 4 + 1

we get

2.2618 ≤ l ≤ 3

however l must be integer, therefore equivalently

3 ≤ l ≤ 3,

so l = 3.

The tree has precisely 3 levels. A three-level tree has exactly 4 leaves, if each node has exactly 2 children. If
any node had 3 children, there would be at least 5 leaves. Therefore, the tree is a complete binary tree, which
is unique.

Since we also know that the elements grow from left to right in the leaves, and the labels of the internal nodes
can be uniquely determined from the leaves, the 2-3 tree is unique.

106. We want to store items in a hash table using the hash function h(k) = k (mod 11), and we will resolve
collisions with chaining.
(a) Insert the following elements into an empty hash table: 2, 5, 12, 1, 3, 88, 23, 43, 10, 34.
(b) Demonstrate how SEARCH(1), SEARCH(20) and SEARCH(45) will work in the resulting table.
(c) Delete the element 23.

ThAlg 2024 ThAlg Practice session 123

Solution:

(a)

The table will look like this after the insertions:

Each collision is resolved by inserting the
incoming element at the start of the linked list.
The ∅ represents a null pointer.

0

1

2

3

4

5

6

7

8

9

10

88

34 23 1 12

2

3

5

10 43

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

(b)

SEARCH(1): Will linear search the linked list at
index 1 and find the element 1 after 3 steps.
SEARCH(20): Will check the linked list at index 9
and see it’s empty. Therefore 20 is not in the hash
table.
SEARCH(45): Will linear search the linked list at
index 1. After reaching the end, it reports that 45 is
not found in the tabe.

(c)

DELETE(23): First we execute SEARCH(23),
which will linear search the linked list at index 1. Dur-
ing linear search, in each step, we always keep track of
the previous element too. When we find the element
23 in the second cell we edit the pointer of the previous
element (34) to point to the next element instead (1).
Then we destroy the cell containing 23.

107. We want to store items in an open-address hash table using the hash function h(k) = k (mod 11). After the
insertion of 4, 5, 14, 15, 16, 26, 3, what will the resulting table look like and what are the number of collisions
at each insert if collisions were resolved using:
(a) Linear probe (b) Quadratic probe
(c) Double hashing where our second hash function is h′(x) = 7x (mod (10)) + 1?

Solution:

(a)

The probing sequence is: −1,−2,−3,−4, . . .
The number of collisions are: 0 + 0 + 0 + 2 + 4 + 4 + 4 = 14.
The table at the end is:

0 1 2 3 4 5 6 7 8 9 10
26 16 15 14 4 5 3

(b)

The probing sequence is: +1,−1,+4,−4,+9,−9,+16, . . .
The number of collisions are: 0 + 0 + 0 + 3 + 1 + 4 + 2 = 10.
The table at the end is:

0 1 2 3 4 5 6 7 8 9 10
26 3 14 4 5 16 15

(c)

The probing sequence is: −h′(x),−2h′(x),−3h′(x),−4h′(x) . . .
The number of collisions are: 0 + 0 + 0 + 1 + 1 + 1 + 2 = 5.
The table at the end is:

ThAlg 2024 ThAlg Practice session 123

0 1 2 3 4 5 6 7 8 9 10
26 16 14 4 5 15 3

108. The edges of an undirected graph are as follows:
ab(2), ac(3), bd(2), bc(2), cd(1), de(2), df(4), ef(1), eg(2), fg(2), fh(1), gh(3).
What are the edges selected by the Kruskal’s algorithm and in which order? To determine this, use the
UNION-FIND data structure.

Solution:

(Note: An extra edge has been added to the graph, relative to how it appeared on the Practice Session originally,
so that all possible cases can be presented below.)

Kruskal is an algorithm that can find a minimal weight spanning tree in a weighted, undirected graph in
O(mG lognG) time, where nG is the number of vertices and mG is the number of edges of the graph G.

The first step is ordering the edges of the graph in increasing order of weights:
cd(1), ef(1), fh(1), ab(2), bd(2), bc(2), de(2), eg(2), fg(2), ac(3), gh(3), df(4)

This sorting happens in O(mG logmG) ⊆ O(mG log n2
G) = O(mG · 2 log nG) = O(mG log nG).

Then we iterate this sorted list, building up the spanning forest of the graph. We keep track of the currently
connected components of the current spanning forest using the UNION-FIND data structure. If the current
edge connects two previously unconnected components we include it, if it runs inside an already connected
component we discard it (otherwise, it would create a cycle).

You may notice that this is a greedy algorithm, as it makes local choices in each step, without having to
consider how that affects later steps. It can be proven, that the structure of this problem is such, that the
greedy algorithm in fact will find the optimal solution. Beware, that this is not true in general for greedy
algorithms, the underlying mathematics are incredibly beautiful, and lead to Matroid theory with applications
ranging from statics in building construction to Kirchhoff’s Current Law in electronic circuit theory.

The UNION-FIND data structure keeps track of the sets of vertices, that are currently connected assigning a
representing vertex to each set and pointing a directed path towards the representing vertex. Two vertices are
currently in the same set if and only if they point towards the same representing vertex via a directed path.

The FIND operation traverses the directed path towards the representing vertex and returns it.

To merge two components together we first FIND their representative vertices, then UNION them by pointing
one of the representats towards the other. This way all vertices in both sets now point (indirectly) towards
the same representant, effectively merging the two sets into one. If we did this naively, we may end up with
a single very long path, but if we always point the smaller set’s representant towards the bigger one, we can
prove that the length of the resulting paths will be O(log(nG)) on average.

Due to this, FIND takes O(log(nG)) time and while UNION itself takes O(1), it usually involves two FIND
operations beforehand, to find the representants to be unioned. We run it mG times, for a total cost of
O(mG log nG). The initial sorting step is also O(mG log nG), so the entire algorithm runs in O(mG log nG).

Below, on the left hand side you’ll see how the UNION-FIND data structure evolves during the algorithm’s
run and on the right hand side you’ll see the corresponding spanning forest in the graph evolving.

The UNION-FIND data structure, although is a graph too, does not directly correspond to the edges of the
original graph, i.e. for edge u−v, do not expect the new edge in the UNION-FIND data structure
to appear between u − v (sometimes it does, in special cases, but do not get confused by this).
Instead, UNION-FIND represents the spanning forest’s connected components via a shared representing vertex
at the end of the directed path from the vertices of the graph.

ThAlg 2024 ThAlg Practice session 123

• Initially, each vertex is isolated (represents itself) and no edges have been added to the spanning forest
yet.

cd(1), ef(1), fh(1), ab(2), bd(2), bc(2), de(2), eg(2), fg(2), ac(3), gh(3), df(4)

a b c d e f g h a

b

c

d

e

f

g

h

2

2

2

2

1 2 1

2

2

12

2

• The first edge we consider is cd(1).

• We first check the endpoints c and d, if they are in the same component already.

• Executing FIND(c) it reports that its component’s representing vertex is c.

• Executing FIND(d) it reports that its component’s representing vertex is d.

• Since FIND(c) ̸= FIND(d), it means that edge cd(1) connects two previously disconnected components,
therefore we should add it to the spanning forest.

• Since the components of c and d are now connected, we execute UNION(c, d), to keep track of this fact.

• Since both of the sets are size 1, we can choose which one to point to the other, we choose d to point to
c.

• Now the representant of both vertices c and d is c, therefore they are now in the same connected component
set.

cd(1), ef(1), fh(1), ab(2), bd(2), bc(2), de(2), eg(2), fg(2), ac(3), gh(3), df(4)

a b c

d

e f g h a

b

c

d

e

f

g

h

2

2

2

2

1 2 1

2

2

12

2

• The next edge we consider is ef(1).

• We first check the endpoints e and f , if they are in the same component already.

• Executing FIND(e) it reports that its representing vertex is e.

• Executing FIND(f) it reports that its representing vertex is f .

• Since FIND(e) ̸= FIND(f), it means that edge ef(1) connects two previously disconnected components,
therefore we should add it to the spanning forest.

• Since the components of e and f are now connected, we execute UNION(e, f), to keep track of this fact.

• Since both of the sets are size 1, we can choose which one to point to the other, we choose f to point to
e.

• Now the representant of both vertices e and f is e, therefore they are now in the same connected compo-
nent set.

ThAlg 2024 ThAlg Practice session 123

cd(1), ef(1), fh(1), ab(2), bd(2), bc(2), de(2), eg(2), fg(2), ac(3), gh(3), df(4)

a b c

d

e

f

g h a

b

c

d

e

f

g

h

2

2

2

2

1 2 1

2

2

12

2

• The next edge we consider is fh(1).

• We first check the endpoints f and h, if they are in the same component already.

• Executing FIND(f) it traverses the path f → e in the UNION-FIND data structure and reports that
f ’s representing vertex is e.

• Executing FIND(h) it reports that its representing vertex is h.

• Since FIND(f) ̸= FIND(h), it means that edge fh(1) connects two previously disconnected compo-
nents, therefore we should add it to the spanning forest.

• Since the components represented by e and h are now connected, we execute UNION(e, h), to keep track
of this fact.

• Since the component of e is size 2, while the component of h is size 1, we must point h towards e, to
minimize the length of the paths appearing. (Pointing e towards h would result in a path length of 2!)

• Notice here that due to the graph edge fh(1) in the UNION-FIND dataset a directed edge h → e
appeared!

• Now the representant of all three vertices e, f and h is e, therefore they are now in the same connected
component set.

cd(1), ef(1), fh(1), ab(2), bd(2), bc(2), de(2), eg(2), fg(2), ac(3), gh(3), df(4)

a b c

d

e

h f

g a

b

c

d

e

f

g

h

2

2

2

2

1 2 1

2

2

12

2

• The next edge we consider is ab(2).

• We first check the endpoints a and b, if they are in the same component already.

• Executing FIND(a) it reports that its representing vertex is a.

• Executing FIND(b) it reports that its representing vertex is b.

• Since FIND(a) ̸= FIND(b), it means that edge ab(2) connects two previously disconnected components,
therefore we should add it to the spanning forest.

• Since the components represented by a and b are now connected, we execute UNION(a, b), to keep track
of this fact.

• Since both of the sets are size 1, we can choose which one to point to the other, we choose b to point to
a.

ThAlg 2024 ThAlg Practice session 123

• Now the representant of both vertices a and b is a, therefore they are now in the same connected compo-
nent set.

cd(1), ef(1), fh(1), ab(2), bd(2), bc(2), de(2), eg(2), fg(2), ac(3), gh(3), df(4)

a

b

c

d

e

h f

g a

b

c

d

e

f

g

h

2

2

2

2

1 2 1

2

2

12

2

• The next edge we consider is bd(2).

• We first check the endpoints b and d, if they are in the same component already.

• Executing FIND(b) it traverses the path b → a in the UNION-FIND data structure and reports that b’s
representing vertex is a.

• Executing FIND(d) it traverses the path d → c in the UNION-FIND data structure and reports that
d’s representing vertex is c.

• Since FIND(b) ̸= FIND(d), it means that edge bd(2) connects two previously disconnected components,
therefore we should add it to the spanning forest.

• Since the components represented by a and c are now connected, we execute UNION(a, c), to keep track
of this fact.

• Since both of the sets are size 2, we can choose which one to point to the other, we choose c to point to
a.

• Notice here that due to the graph edge bd(2) in the UNION-FIND dataset a directed edge c → a
appeared!

• Now the representant of vertices a, b, c, d is a, therefore they are now in the same connected component
set.

cd(1), ef(1), fh(1), ab(2), bd(2), bc(2), de(2), eg(2), fg(2), ac(3), gh(3), df(4)

a

c

d

b

e

h f

g a

b

c

d

e

f

g

h

2

2

2

2

1 2 1

2

2

12

2

• The next edge we consider is bc(2).

• We first check the endpoints b and c, if they are in the same component already.

• Executing FIND(b) it traverses the path b → a in the UNION-FIND data structure and reports that b’s
representing vertex is a.

• Executing FIND(c) it traverses the path c → a in the UNION-FIND data structure and reports that c’s
representing vertex is a.

ThAlg 2024 ThAlg Practice session 123

• Since FIND(b) = FIND(c), it means that edge bd(2) runs inside a single component, its endpoints b
and c are already connected via a path, therefore adding this to the spanning forest would create a cycle.

• So edge bc(2) is discarded, the UNION-FIND dataset is not modified.

cd(1), ef(1), fh(1), ab(2), bd(2), bc(2), de(2), eg(2), fg(2), ac(3), gh(3), df(4)

a

c

d

b

e

h f

g a

b

c

d

e

f

g

h

2

2

2

2

1 2 1

2

2

12

2

• The next edge we consider is de(2).

• We first check the endpoints d and e, if they are in the same component already.

• Executing FIND(d) it traverses the path d → c → a in the UNION-FIND data structure and reports
that d’s representing vertex is a.

• Executing FIND(e) it reports that its representing vertex is e.

• Since FIND(d) ̸= FIND(e), it means that edge de(2) connects two previously disconnected components,
therefore we should add it to the spanning forest.

• Since the components represented by a and e are now connected, we execute UNION(a, e), to keep track
of this fact.

• Since the component of a is size 4, while the component of e is size 3, we must point e towards a, to
minimize the length of the paths appearing. (Pointing a towards e would result in a path length of 3,
while doing it our way, we only get paths of length at most 2!)

• Notice here that due to the graph edge de(2) in the UNION-FIND dataset a directed edge e → a
appeared!

• Now the representant of vertices a, b, c, d, e, f, h is a, therefore they are now in the same connected
component set.

cd(1), ef(1), fh(1), ab(2), bd(2), bc(2), de(2), eg(2), fg(2), ac(3), gh(3), df(4)

a

c

d

b

e

h f

g a

b

c

d

e

f

g

h

2

2

2

2

1 2 1

2

2

12

2

• The next edge we consider is eg(2).

• We first check the endpoints e and g, if they are in the same component already.

ThAlg 2024 ThAlg Practice session 123

• Executing FIND(e) it traverses the path e → a in the UNION-FIND data structure and reports that d’s
representing vertex is a.

• Executing FIND(g) it reports that its representing vertex is g.

• Since FIND(e) ̸= FIND(g), it means that edge eg(2) connects two previously disconnected components,
therefore we should add it to the spanning forest.

• Since the components represented by a and g are now connected, we execute UNION(a, g), to keep track
of this fact.

• Since the component of a is size 7, while the component of g is size 1, we must point g towards a, to
minimize the length of the paths appearing. (Pointing a towards g would result in a path length of 3,
while doing it our way, we only get paths of length at most 2!)

• Notice here that due to the graph edge eg(2) in the UNION-FIND dataset a directed edge g → a
appeared!

• Now the representant of every vertex is a, therefore our graph is connected and our spanning tree is
complete!

cd(1), ef(1), fh(1), ab(2), bd(2), bc(2), de(2), eg(2), fg(2), ac(3), gh(3), df(4)

a

c

d

b

e

h f

g

a

b

c

d

e

f

g

h

2

2

2

2

1 2 1

2

2

12

2

The rest of the edges can be skipped, since our minimal spanning tree is complete.

Our final result, a minimal spanning tree of the graph are the green edges:

Note, that other spanning trees with the same weight are possible (try to find one), hence we say ’a minimal’
and not ’the minimum’.

a

b

c

d

e

f

g

h

2

2

1 2 1

2

1

Note here that although the UNION-FIND data structure at the end also happens to resemble a tree, the edges
of that do not directly correspond to the edges of a spanning tree in the graph.

109. Can it happen that in an open-address hash table of size n > 3 with exactly 3 elements in it, but a search
takes O(n) steps?

Solution:

Yes, if there were a lot of deletions earlier, it can happen. For example if every single cell that does not
contain an element contains the ∗ sign, denoting that something was deleted from there, the search procedure
will continue when encountering such an element, therefore the entire table will be traversed.

ThAlg 2024 ThAlg Practice session 123

In practical implementations, when a hash table reaches a state where there are many deleted, but otherwise
empty cells, it becomes inefficient to search in it. In such cases, a common approach is to rehash the elements
into a new empty table. This process involves reading the contents of the existing table and reinserting them
into the new one. We do not discuss the exact techniques for this.

110. For a hash table of size M = 7, is the following a good hash function: h(x) = x2 (mod 7)?

Solution:

No. To check, we only have to go through the hash of the possible remainders of 7:

• h(0) = 0 (mod 7) = 0

• h(1) = 1 (mod 7) = 1

• h(2) = 4 (mod 7) = 4

• h(3) = 9 (mod 7) = 2

• h(4) = 16 (mod 7) = 2

• h(5) = 25 (mod 7) = 4

• h(6) = 36 (mod 7) = 1

Notice that in general, the hash function is h(7y + z) = (7y + z)2 (mod 7) = 7(7y2 + 2z) + z2 (mod 7) = z2

(mod 7) = h(z), hence why only the remainders are checked.

Since h(1) = h(6), h(2) = h(5) and h(3) = h(4), so only the cells with indices 0, 1, 2, 4 are used as possible
starting positions (altough the other cells can later be filled, but only after some collisions). It would be better
to distribute the incoming keys ”more evenly” among the 7 posible cells ot the table. This would result in likely
less collisions in the average scenario.

111. Given an open-address hash table of length 11 with hash function h(x) = x (mod 11) and using linear probe
for collision resolution, we perform a few insertions and deletions and obtain the following table (∗ denotes a
deleted entry and not an empty one):

0 1 2 3 4 5 6 7 8 9 10
11 4 * 3 15 6 18 22

There is only one element in the above table that upon deletion and being inserted again, will end up with a
new address in the hash table. What is this element? Show the deletion and insertion steps of it to support
your answer.

Solution:

The answer is number 4 in the 1st cell.

On the one hand, we can check that all the other numbers in the table will be placed back to their current
position after deletion and insertion.

On the other hand, the deletion of 4 starts at the 4th cell due to h(4) = 4, from here we step backwards to the
3rd, 2nd, and then 1st cell, where we find and delete the number 4 and write ∗ in place of it. The insertion of
4 in the resulting table starts again with a search at the 4th cell, where a collision happens and with the linear
probing sequence we continue to the 3rd cell, then the 2nd, where 4 can be written in place of ∗, a formerly
deleted element.

The reason why this happens is because 4 was inserted after what was originally in place 2 was inserted but
before it was deleted.

ThAlg 2024 ThAlg Practice session 123

This is why it’s important to mark the deleted cell with a ∗, so that we do not lose track of elements that
collided with it when they were inserted.

112. A big film production wants to shoot a film in a city. A map of the city is given as an undirected graph,
where the vertices are the nodes and the edges are the direct roads between them. The filmmakers would like
to close as many roads as possible during the filming, but we charge money (greater than zero) to close each
section, we know the specific amount for each road. (The filmmakers have money to close all roads.) Give an
algorithm that determines which roads should be closed if we want the city to function during the closure (we
need to be able to get from everywhere to everywhere) and we want to maximize our revenue. The running
time of your algorithm should be O(n2), where n is the number of nodes.

Solution:

Since we (the city administration) aim to maximize revenue, we want to offer to close the streets that sum
up to the highest possible cost. Therefore we want to keep the roads open that sum up to the smallest possible
cost, while keeping the city connected.

This means, that we want to find a minimal spanning tree of our city, which will contain the edges that will
keep the city connected while minimizing the total ”unpaid” costs, therefore maximizing the total ”paid” costs.

We can run the Kruskal algorithm on the undirected weighted graph to find a minimal spanning tree, then
return all edges that don’t belong to it.

The time complexity of the Kruskal algorithm is O(mG log nG), where nG is the number of vertices and mG is
the number of edges in the graph.

113. Give an algorithm that determines a maximal weight spanning tree in an undirected, connected, edge weighted
graph.

Solution:

Let the input graph be G = (V,E, c), with nG vertices, mG edges, and the edge weights given by the function
c : E → R.

Consider the function c′ = −c instead of c, and with this weight function c′, determine a minimal cost spanning
tree T in G. This will be a maximal weight spanning tree with respect to the original weight function.

When T is minimal with respect to c′, then for any other possible spanning tree T2 of G we know that c′(T) ≤
c′(T2) and from this it follows that −c(T) ≤ −c(T2), so c(T) ≥ c(T2), which means that T is maximal with
respect to c.

For computation, the Kruskal algorithm can be used, with a time complexity of O(mG log nG).

114. In table T [0 : M] we have placed 2n elements (n < M/3) using some hash function, when we found that the
elements were all placed in the first 3n positions. If there was no deletion in the meantime and in the resulting
table all places with index 3i remained empty (0 ≤ i < n), then there could have been at most how many
collisions if (a) a linear probe was used? (b) a quadratic probe was used?

Solution:

(a) The resulting hash table looks like this (it is possibly longer to the right, denoted by . . .):

0 1 2 3 4 5 6 7 8 9 . . .

a1 a2 a3 a4 a5 a6 . . .

From each group of cells with indices (3i), (3i + 1), (3i + 2), cell (3i) is empty and cells (3i + 1), (3i + 2) are
filled. When using linear probing, upon collision we move to the left and we stop at an empty cell. Therefore
collisions only happen with neighbouring elements to the right, so only the content of the cell 3i+1 could have

ThAlg 2024 ThAlg Practice session 123

collided at position (3i+2). For each group of 3 cells, this results in at most 1 collision, for a total of at most
n.

This can in fact happen, for example when elements (2), (M + 2), (5), (M + 5), . . . , (3i+ 2), (M + 3i+ 2), . . .
are inserted in this order.

(b) Since everyone has at least one empty neighbor and quadratic probing first checks the two neighbours, there
could be at most one collision per group. Thus, there could still be at most n collisions

This can in fact happen, using the same example numbers as in (a), but now with quadratic probing.

115. A hash table of size m already has some elements, but the table is not full. Give an algorithm with running
time O(m) that determines the maximum number of collisions that can happen during the insertion of a new
element using a linear probe to resolve collisions.

Solution:

The task is to determine the length of the longest occupied block in the table. This can be done simply iteratively.
We initialize a counter to 0 and we start iterating the hash table from left-to-right. In each step, when we
encounter a cell that is occupied, we increase the counter by 1 and when we encounter a cell that is empty, we
reset the counter to 0. During our iterations, in each step, we keep track of the maximal value of the counter
we have seen. At the end, we return this value.

116. We are given the adjacency list of a simple, connected graph G = (V,E). The edges of the graph are weighted,
the weight function c : E → {−1, 1}. Give an algorithm that determines in O(|V |+ |E|) steps, the minimum
total weight of a subgraph of G that is connected and contains all points of G.

Solution:

Unfortunately, Kruskal is too slow (it runs in O(|E| log |V |) time), so we cannot use it here.

However, there are only two types of weights, with value −1 and value 1. DFS (and BFS) can find spanning
trees in unweighted graphs and its runtime fits into the limits, so we may be able to make it find a minimal
spanning tree if we only have 2 types of weights to consider, with some extra logic.

Let us denote the number of positive edges in a minimal spanning tree with spos and the number of negative
ones with sneg. Since in a spanning tree we have exactly nG − 1 edges, we know that spos + sneg = nG − 1.
Furthermore, the total weight of the spanning tree is spos − sneg.

The idea of the algorithm is to maximize sneg, which in turn will also minimize spos, as their sum is constant.

This can be achieved by running DFS first on a graph that only consists of negative edges. This will find the
largest possible connected components using just the negative edges. After this is complete, if we are left with
more than one component, we might need to use some positive edges to finish connecting our tree.

Luckily we do not need to return which exact edges crete this minimal spanning tree, we are only interested in
the weight sum. Therefore it is sufficient to find the value of spos.

From the equation spos + sneg = nG − 1, we have

spos = nG − sneg − 1

Here, if our negative spanning forest is already a tree, spos = 0 is true.

The positive edge connections needed are guaranteed to exist, since the original graph is connected, so we can
just plug this into our total weight formula

spos − sneg = nG − 2sneg − 1

ThAlg 2024 ThAlg Practice session 123

and we know exactly the weight of a minimal spanning tree, without having to run any extra steps.

To summarize, our algorithm simply runs DFS on the graph of the negative edges, counts the edges of the
resulting spanning forest, by counting the DFS parent array’s non-null entries, denoted by sneg and reports
back the number nG − 2sneg − 1.

Time complexity wise, we first construct the adjacency list of the negative edges only, which we can do in
O(|V | + |E|), by simply iterating the original adjacency list and copying only the negative edges into a new
one. Then, we run DFS on the resulting graph, count the number of edges in the spaning tree, denoted by sneg
and report back the value nG − 2sneg − 1, which takes O(|V | + |E|) time for the DFS itself and O(|V |) time
for counting the resulting parent array’s non-null entries.

117. We are given the adjacency matrix of the connected, weighted, undirected, graph of a city’s road network: the
vertices are the nodes, the edges are the direct roads between the nodes, and the weight of the edges indicates
how many workers can clear the given section of road in 1 hour. After a night snow storm, we would like
to know the minimum number of workers we need to hire in total, so that all the nodes of the city can be
reached after 8am from the main square (which is a vertex in the graph) on roads clear of snow. Assume that
the snowfall stopped and the workers can start the work at 7 am.
Which algorithm can be applied, if we want to get an answer in O(n2 log n) running time, where n is the
number of nodes? Describe why it can be applied and how.

Solution:

Let us apply Kruskal’s algorithm to the graph of roads, where the weight of the edges represents the number of
workers needed to clean that specific road segment. The output of the algorithm is a minimal spanning tree,
which has the property that it is the minimal weight set of edges in a connected graph that make the vertices
connected. Since the workers have just 1 hour to finish working, we will need to hire unique workers for each
road segment, so the weight of the minimal spanning tree is the total number of workers needed.

The graph is given by its adjacency matrix, where the weights of the edges are written in the cells. We can sort
these using merge sort in O(n2 log n2) = O(n2 log n) steps. Then, by selecting the edges in increasing order
and using the UNION-FIND data structure, we can decide whether to add each new edge in O(log n) steps for
each edge using two FINDs, and update the data structure in a constant number of steps if needed using a
UNION . Since there are at most n2 edges, this totals O(n2 log n) steps, including the initial sorting.118. Prove that the following two languages are in the class NP. Which of these is in P? Which of them is in
coNP?
P1 = {G|G is an undirected graph with a cycle on exactly 100 vertices. }
P2 = {(G, k)|k is a positive integer and G is an undirected graph with a cycle on exactly k vertices. }

Solution:

For P1:

P1 ∈ NP

A problem is in P if it has a polynomial algorithm for finding a solution. Roughly speaking, polynomial algo-
rithms are considered ”effective”, while anything worse than that (exponential, factorial, etc.) are considered
ineffective, only good for small enough inputs.

Our goal for the future is to find polynomial solutions to as many problems as we can. Some problems, we
haven’t been able to solve like this. In cases like this, some form of randomized (nondeterministic) solution can
be viable. These are not guaranteed to find the best solution with 100% probability or they are not guaranteed
to find the solution fast, but they can perform ”good enough” in practice. For any randomized solver to work,
we need an effective verification algorithm for a potential solution. These algorithms explore the possible
solutions to a problem by some metaheuristic (see Drunktard’s Walk, Simulated Annealing, Hill Climbing,
Genetic Algorithm, etc) checking in each step if the currently held random solution is correct, or how far away
it is from a correct solution, then randomly generating new ones that are (hopefully) closer to it.

Some problems don’t even have an effective verification algorithm. If someone were to give us the solution to

ThAlg 2024 ThAlg Practice session 123

such a problem, we would not be able to tell if it is correct or not. Think about the difference between someone
telling us the solution to a Sudoku puzzle vs telling us the best next move in a game of Chess. If someone
gives me a fully filled Sudoku table, it is easy to check if it is correct, just by checking each row, column and
square if they contain unique numbers. If someone tells me the best next move in Chess, I can’t verify if they
are correct easily, as I would have to explore all possible future moves, of which there are exponentially many
possibilities.

We have much more hope for finding a polynomial solution to a problem, where at least we can verify a correct
solution for ourselves, when we are given one, than we have for problems, where we can’t even do that. And
while a polynomial solution might not exist yet, we can still do away with a randomized alternative, that works
”good enough” in practice. Hence, the class NP (nondeterministic polynomial) contains exactly these types of
problems.

A language is in NP if it has an effective algorithm for checking a possible solution (more generally, a witness)
to the problem. This is formalized via the witness theorem, so we will use this to prove that P1 ∈ NP .

Imagine you and your friend are given a G graph via its adjacency matrix and you get into an argument on
whether or not G contains a 100 vertex cycle. Your friend assures you it does, but you don’t believe them.
What proof can you ask from your friend? You can tell them to point out the cycle in question to you: this
will be your witness (denoted by t). However, you don’t believe them, so you must check for yourself if they
are lying to you by trying to fake a good solution: this will be your witness checking algorithm (denoted by τ).

Since the witness checking algorithm must be effective, it has to run in polynomial time relative to its input.
Since its input contains the witness itself, the witness must be polynomial in size, relative to the original input
in question. We’ll check these during our proof.

We first specify what format your friend should give the witness to you. In this case, the cycle can be represented
by listing the indices of the vertices in order they appear in the cycle: v1, v2, v3, . . . , vx.

Notice that we did not trust your friend to give us exactly 100 vertices. It is part of the checking algorithm to
make sure that is the case.

What is the size of the witness? We are given x numbers, denoting vertex indices in our graph G. What is the
possible range of a single number? If G has nG vertices, then 1 ≤ vi ≤ nG for all vi in the witness. The number
nG can be represented in binary format on log2(n) bits, which is the upper limit on the width of our numbers.
Therefore a valid witness (which has exactly 100 vertices) has a size O(100 log2(nG)) = O(log2(nG)).

In the case of an invalid witness, the size can be arbitrarily large, our friend could give us any garbage, or
the full text of Odyssey by Homer, or their favourite chocolate cake recipe. If our checking algorithm notices,
that the witness is too large to be valid, or it has other formatting issues, it can immediately report that and
exit. This is the case, for example when 100 < x or when the witness contains something other than a list of
numbers.

Now let’s describe the witness checking algorithm:

• We first check, that we have been given exactly x = 100 numbers on our input. We can do this by counting
them. If we notice x to be at least 101, we report that failure and exit. This is done in O(101) = O(1)
steps.

• We then check, that the numbers given on our input are indeed vertices that exist in the graph. This
requires a range check, for all vi we check 1 ≤ vi ≤ nG. These numbers are in binary format and we
use the ≤ comparison operator, which operates bit-by-bit from the most significant position to the least,
until it finds a differing bit. This will be 200 comparisons, each taking O(log2(nG)) steps for the bits in
the numbers, for a total of O(200 log2(nG)) = O(log2(nG)) steps.

• Finally, we must check if the edges exist between all adjacent pairs of vertices in the witness. This will
be 100 lookups in our 2D adjacency matrix of G, for the edges v1 − v2, v2 − v3, . . . , v99 − v100 and don’t
forget v100 − v1, since it’s a cycle. This takes O(100) = O(1) steps for all edges.

ThAlg 2024 ThAlg Practice session 123

If you have checked all of these, you can be sure, that your friend did not trick you, they indeed pointed out a
100 cycle in this graph. So now, you can believe them.

What was the runtime of this checking algorithm? Totaling the individual steps, we had O(1)+O(log2(nG))+
O(1) = O(log2(nG)). The size of the original input, G’s adjacency matrix is O(n2

G). If we denote the size of
the input with n, then n = n2

G. The size of the witness is O(log2(nG)), which is polynomial relative to the
input size n, since nG =

√
n, so O(log2(nG)) = O(log2(

√
n)) = O(log2(n

1
2)) = O(12 log2(n)) = O(log2(n)).

The witness checking algorithm also runs in O(log2(nG)), with the same logic, that is also O(log2(n)), hence
polynomial.

Finally, we should make sure that our checking algorithm is correct, as in:

• there always exists a witness that will pass our checks if G contains such a 100-cycle

• no witness exists that could fool our checks if G does not contain such a 100-cycle.

In the current case, this is a trivial observation, since the 100-cycle itself is the witness. In later exercises,
we’ll see examples of non-trivial cases.

To summarize the explanation above, focusing on what must be written down for a proper solution:

To prove that P1 ∈ NP , we use the witness theorem.

Suppose that the input G is given by its adjacency matrix. If G has nG vertices, the size of the orig-
inal input is O(n2

G).

The witness is a description of such a 100-cycle, given by the list of vertices, in order they appear in
the cycle.

t (Witness): v1, v2, . . . , vx

The size of the witness is O(x log2(nG)), in case of a valid witness, with x = 100, that is O(log2(nG)).
This is polynomial relative to the input size, O(n2

G).

τ (Witness Checking Algorithm):

• Count that x = 100. Done in O(101) = O(1).

• Check that all vertices are valid with a range check on all vi: 1 ≤ vi ≤ nG. Done in O(100 log2(nG)) =
O(log2(nG)).

• Check that all of the edges v1 − v2, v2 − v3, . . . , v99 − v100, v100 − v1 exist in the graph. Done in
O(100) = O(1).

The runtime of the witness checking algorithm is O(log2(nG)), which is polynomial relative to the input
size, O(n2

G).

A witness always exists if G contains a 100 cycle, and does not exist, when G does not contain such a
cycle, since that cycle is the witness.

P1 ∈ P

Is P1 in P? In other words, do we need our friend telling us the solution, or can we find it ourselves?

Interestingly, we can actually solve P1 effectively.

ThAlg 2024 ThAlg Practice session 123

Let’s iterate all possible subsets of 100 vertices in the graph! There are exactly
(
nG
100

)
of them. Then, let’s try

all possible orderings of those vertices. For a specific set, there are 100! orderings. Finally, let’s check if that
is a cycle, by checking the existence of all 100 necessary edges in the graph. This runs in

O(

(
nG

100

)
· 100! · 100) = O(

(
nG

100

)
)

steps. Since (
nG

100

)
=

nG · (nG − 1) · (nG − 2) · . . . · (nG − 99)

100 · 99 · 98 · . . . · 1
≤ n100

G = O(n100
G)

, the runtime is O(n100
G), which is polynomial relative to O(n2

G), the input size.

P1 ∈ coNP

coNP is the set of languages who’s complementer is in NP . The co- prefix does not mean that coNP
would be the complementer of NP . The co- prefix is always used to denote a set, which contains the
complementers of the elements from the original set. See below:

It is still an unresolved, open question in computer science, whether P
?
= NP ∩ coNP and whether P

?
= NP .

To prove that P1 is in coNP , we must prove that P1 is in NP , which means that instead of giving a witness
for the yes answer, we must give a witness for the no answer (that the graph has no 100-cycles). So now your
friend wants to convince you that the graph has no 100-cycles. Although we don’t have such a construct, which
could in general show the non-existence of a 100-cycle in a graph, we don’t need it.

Since the problem is solveable in P , we don’t need any extra information to figure out if the answer is no to
the question. Therefore, the witness is empty, and the witness checking algorithm is the polynomial solver we
just discussed.

This logic works in general, for both a witness for the yes and the no answer, hence P ⊆ NP and P ⊆ coNP
as we can see on the Venn-diagram above.

For P2:

P2 ∈ NP

Similarly as before, the witness is now the list of the vertices in the k-cycle. Since the graph has at most nG

vertices, the length of this list is smaller than nG and the size of the witness is O(nG log(nG)). For nG < k
no cycle can exist, therefore any witness of that length is immediately rejected. The checking algorithm is
identical to the one for P1. Although the runtime calculation is a bit different, it is still polynomial.

ThAlg 2024 ThAlg Practice session 123

Note: We can’t prove that P2 ∈ P using the same algorithm as we did for P1, since
(
n
k

)
is no longer polynomial

(k is not a constant anymore). For example for k = n
2 , the algorithm would run in Θ(

(
n
n
2

)
) (the lower bound

is also true), which is Θ(2n√
n
) due to Stirling’s approximation. It does not follow that the problem is not in

P , just that this possible solver algorithm is not polynomial itself. Other algorithms could potentially perform
better, but in this course we do not study such an algorithm.

119. We are given a length n sequence of characters of the English alphabet. We want to decide whether n is a
prime number. Prove that this problem is in P .

Solution:

To prove that this problem is in P , we must give a polynomial algorithm that can solve it.

For the numbers i = 2, 3, . . . , ⌊
√
n⌋ we shall do the following: Let’s iterate through the characters of the

sequence and mark each i’th character with a ∗. (Effectively performing integer division by i.) If we mark the
last character with a ∗, it means n is divisible by i, therefore it is not a prime.

Since n’s factors come in pairs, where one is smaller than or equal to ⌊
√
n⌋ and the other is larger than or

equal to ⌈
√
n⌉, all possible pairs have been checked.

If no factor is found, n must be a prime.

The number of steps required is O(
√
n · n), which is polynomial relative to the input size, which is O(n).

Note: We could also convert n into a binary number and perform the commonly known algorithm for integer
division for an even more efficient algorithm.

120. We want to decide about a positive integer given in its decimal number system form whether (a) it is a
complete square (b) whether it is a power of 2. (The input size n is the number of the decimal digits.) Prove
that these problems are in P.

Solution:

To prove that these problems are in P , we must give polynomial algorithms that can solve them.

Let us denote the input number with s, therefore the size of the input is n ∈ O(log2(s)).

(a) We will use BinarySearch to determine whether there exists a number q such that q2 = s.

Initially, the possible values of q come from the interval [1, s] (since the square of a number cannot be more
the number itself).

Then, we pick the mid point of this interval, q = ⌈ s+1
2 ⌉. We then multiply q · q and check whether the result is

• q · q = s, in this case, the answer is yes and we can immediately return.

• q · q < s, in this case we continue searching the lower half of the interval.

• q · q > s, in this case we continue searching the upper half of the interval.

Eventually, we either find the root or our interval of possibilities shrinks to size 0, in which case the answer
is no, s is not a complete square.

Multiplications can be performed with decimal representations in O(n2) steps. The number of questions required
for binary search is O(log2 s) ⊆ O(n). Therefore, the algorithm’s complexity is O(n3).

(b) Perform integer division on s by 2 with remainder. If the remainder is 1, then s is not a power of 2. If the
remainder is 0, divide the quotient by 2 again, and so on. Once the quotient becomes 1 (and the remainder

ThAlg 2024 ThAlg Practice session 123

is 0), then s is a power of 2 and we can stop. One division can be performed in O(n2) steps. The number of
divisions is O(log2 s) ⊆ O(n). Therefore, the algorithm’s complexity is O(n3).

121. We are given a directed graph by its adjacency list. We want to decide whether it can be transformed into a
DAG by deleting at most 3 edges. Prove that this problem is in P.

Solution:

Let’s iterate through all the possible size 3 sets of edges (if G has nG vertices and mG edges, then there
are O(m3

G) many size 3 edge sets). In each step of the iteration, remove just those 3 edges from the graph
temporarily, then run a DFS on the resulting graph. If the DFS does not find a back edge, then the resulting
graph is a DAG, in which case we have our solution. If it is not a DAG, we keep trying with the other edge
sets (by first putting back the previous 3 edges into the graph and taking out the new ones). If neither of the
cases gave us a DAG, then there are no suitable edges. The number of steps in the DFS is O(nG + mG),
when the graph is given by its adjacency list. So the complete algorithm runs in O(m3

G(nG +mG)), which is
polynomial relative to the input size, which is O(nG +mG) in the case of an adjacency list.

122. For the following languages (of decision problems), prove that the first seven are in NP, the last two in coNP.
Which of them are in P?

P1 = { (G, k) | G is a bipartite graph and k a positive integer, and G has a matching of size k }
P2 = { G | G is an undirected graph with an Eulerian circuit }
P3 = { G | G is an undirected graph with an independent vertex set of size 2024 }
P4 = { (G, k) | G is an undirected graph, k a positive integer, and G has an independent vertex set of size k }
P5 = { (s1, . . . , sm, b) | b and all the si’s are positive integers, and there is a subset of (s1, . . . , sm) such that
their sum is b }
P6 = { G | G is an undirected graph with chromatic number 2 }
P7 = { G | G is an undirected graph with a proper coloring with 2024 colors }
P8 = { m | m is a positive integer and all its non-trivial divisors are smaller than

m

10
}

P9 = { G | G is a tree on nG ≥ 2 vertices and it has exactly 1 leaf }

Solution:

P1 ∈ NP:

• Input + its size: We assume G is given by its adjacency matrix and the number k is in binary format
unless stated otherwise. The adjacency matrix is size O(n2

G), the binary number is size O(log(k)), for a
total of O(n2

G + log(k)).

• Witness (t) + its size is polynomial relative to the input: The witness is a matching consisting
of k edges, which is given by a list of k vertex index pairs, each of them in binary format. Since the
graph has nG vertices, one vertex index has the width at most O(log(nG)) bits, for a total witness size
of O(k log(nG)). Although it is not immediately visible that this is polynomial relative to the input size
O(n2

G), since a valid matching cannot have more than ⌊nG
2 ⌋ edges, there is an upper bound on k with

k ≤ ⌊nG
2 ⌋, which means the witness size is in fact polynomial relative to the input size.

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input: The
verification algorithm checks whether each edge of the matching exists in the graph (O(k)), that it contains
exactly k edges (O(k)), and that no two edges share a common endpoint (O(k log k)), since duplicates
can be found via sorting). This is a O(k log k) algorithm, which is polynomial relative to the input size
due to the same upper bound argument we had for the witness size.

• Correctness: A witness always exists for a yes instance (graph with a k-matching) and never for a no
instance (graph with no k-matching), since the witness is the matching itself.

P1 ∈ P: In ITC2, we have seen a polynomial algorithm that finds the maximum size matching. We just need
to add an extra step to verify that this maximum is at least k.

ThAlg 2024 ThAlg Practice session 123

P2 ∈ NP:

• Input + its size: We assume G is given by its adjacency matrix, of size O(n2
G).

• Witness (t) + its size is polynomial relative to the input: The witness is an Eulerian circuit,
i.e. a suitable permutation of the edges. It is given by the list of edges in the order they appear on the
circuit, each edge represented by the vertex indices of its two endpoints in binary format. The size of
the witness is O(n2

G log(nG)), as we have O(n2
G) edges, each represented by two O(log(nG))-width binary

number. This witness size is polynomial relative to the input size.

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input: The
verification algorithm checks whether each edge of the witness is indeed an edge in the graph and that no
edges of the graph has been left out or used more than once. This can be done for example by iterating
the edges of the witness and constructing the adjacency matrix of the matrix from them and checking
if the result is identical to the original graph. This step is done in O(n2

G) time. Then, the verification
algorithm also checks that each edge in the list shares a common vertex with the next one, forming a
walkable circuit. This step is done in O(n2

G) time. So the total runtime is O(n2
G), which is polynomial

relative to the input size.

• Correctness: A witness always exists for a yes instance (graph with an Eulerian circuit) and never for
a no instance (graph with no Eulerian circuit), since the witness is the Eulerian circuit itself.

P2 ∈ P: We have seen in ITC2 that an undirected graph has an Eulerian circuit if and only if the graph is
connected and every vertex has an even degree. Connectivity can be checked with a polynomial algorithm by
running a BFS or DFS on the graph once in O(n2

G) time. By summing the rows of the adjacency matrix, we
can calculate the degree of each vertex in O(n2

G), so the second condition can also be verified in polynomial
time.

P3 ∈ NP:

• Input + its size: We assume G is given by its adjacency matrix, of size O(n2
G).

• Witness (t) + its size is polynomial relative to the input: A witness is a size 2025 subset of
the vertices, S ⊆ V (G), consisting of the independent points. It is given by the list of the vertex indices
in binary format. The size of this is O(2025 log(nG)) = O(log(nG)), which is polynomial relative to the
input size.

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input: The
verification algorithm checks each pair of points in S to see if there is an edge between them. This can
be done in O(20252) ⊆ O(1) steps, by performing lookups in the adjacency matrix, which is in fact O(1)
constant time.

• Correctness: A witness always exists for a yes instance (graph with a size 2025 independent vertex set)
and never for a no instance (graph with no size 2025 independent vertex set), since the witness is the
size 2025 independent vertex set itself.

P3 ∈ P: We can check all possible size 2025 subsets of the vertices of G. There will be
(

ng

2025

)
of them. For

each of these vertex sets we must check if they are independent: there can be no edges running between any
pairs of vertices in them. this can be done in O(20252) = O(1) steps by doing lookups in the adjacency matrix.
The total runtime is therefore O(

(
nG
2025

)
) = O(n2025

G), which is polynomial relative to the input size.

P4 ∈ NP:

• Input + its size: We assume G is given by its adjacency matrix and the number k is in binary format
unless stated otherwise. The adjacency matrix is size O(n2

G), the binary number is size O(log(k)), for a
total of O(n2

G + log(k)).

ThAlg 2024 ThAlg Practice session 123

• Witness (t) + its size is polynomial relative to the input: A witness is a size k subset of the
vertices, S ⊆ V (G), consisting of the independent points. It is given by the list of the vertex indices in
binary format. The size of this is O(k log(nG)). It is not immediately obvious, that this is polynomial
relative to the input size, since O(k) is exponential relative to O(log k). However, since the size of any
independent vertex set in G cannot be larger than nG, the number of vertices, we know that the upper
bound k ≤ nG is true. This makes the witness size polynomial relative to the input size.

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input: The
verification algorithm checks each pair of points in S to see if there is an edge between them. This can
be done in O(k2) steps, by performing lookups in the adjacency matrix. With a similar argument as for
the witness size, this is polynomial relative to the input size.

• Correctness: A witness always exists for a yes instance (graph with a size k independent vertex set)
and never for a no instance (graph with no size k independent vertex set), since the witness is the size
k independent vertex set itself.

P4
?
∈ P: This problem is in fact NP -complete. It is the Maximum Independent Vertex Set (MAXINDEP)

problem’s decision form. Therefore, if anyone was able to prove that MAXINDEP is in P , P = NP would
immediately follow and vice versa. We do not know whether or not this is true at the moment.

P5 ∈ NP:

• Input + its size: All integers are in binary format unless stated otherwise. The width of the si can be
upper bound with the maximum si’s width, therefore the size of the input is O(m log(max(si))+ log(b)).

• Witness (t) + its size is polynomial relative to the input: A witness is a subset of indices of S
for which the sum equals b. This is given by the list of indexes in binary format. The size of a single
index is O(logm), and we can choose up to m indexes, therefore the of the witness is O(m log(m)),
which is polynomial relative to the input size.

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input: The
verification algorithm calculates the sum according to the given indices and compares it with b. The
algorithm that performs adding the two numbers, a + b receives the numbers in binary format, with
size O(log(a) + log(b)) on its input and it can perform the calculations in O(max(log(a), log(b))) ⊆
O(log(a)+ log(b)) steps using the method we learn in primary school. However, after multiple additions,
the size of the result can grow larger and larger. In each step, the result can be 1 bit longer than the
operands. After m additions, the size of the result can become m bits longer, i.e. O(m+ log(max(si)).
Therefore, we can upper bound the number of steps in the additions with O((m+log(max(si))

2). Finally,
to compare the number to b, we will take at most O(log(b)) steps, to check each bit of the result. If the
result has a different number of bits, it can be rejected upon discovering this fact.

• Correctness: A witness always exists for a yes instance (a set, which has a subset that sums up to
b) and never for a no instance (a set, which has no subset that sums up to b), since the witness is the
subset itself.

P5
?
∈ P: This problem is in fact NP -complete. It is the Subset Sum (SSP) problem’s decision form. Therefore,

if anyone was able to prove that SSP is in P , P = NP would immediately follow and vice versa. We do not
know whether or not this is true at the moment.

P6 ∈ NP: The chromatic number being 2 means, that the graph can be colored with 2 colors and cannot be
colored with 1 color.

• Input + its size: We assume G is given by its adjacency matrix, of size O(n2
G).

• Witness (t) + its size is polynomial relative to the input: The witness is a good coloring with 2
colors. This is given by a binary array of 0’s and 1’s, where c[i] = 0 if vi’s color is red and c[i] = 1 if
vi’s color is blue. The size of the witness is O(nG), which is polynomial relative to the input size.

ThAlg 2024 ThAlg Practice session 123

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input: The
verification algorithm checks that it received exactly nG number of bits (and only 0’s and 1’s are allowed).
Then, it checks for each edge of the graph, whether its two endpoints received different colors, to make
sure this is a valid 2-coloring. Additionally, it must also check if the graph has no valid 1-coloring,
otherwise the chromatic number would be 1. This is only the case, if the graph has absolutely no edges,
so we iterate at the adjacency matrix until we find an edge (this can be done while doing the first check
anyways). The verification can be performed in O(n2

G) steps, checking each edge, which is polynomial
relative to the input size.

• Correctness: A witness always exists for a yes instance (graph with valid 2 coloring that has no valid 1
coloring) and never for a no instance (graph with no valid 2 coloring), since the witness is the 2-coloring
itself and the verification algorithm checks to make sure no valid 1-coloring exists in the graph.

P6 ∈ P: Graphs that have valid 2-colorings are exactly the bipartite graphs. We have seen an algorithm in
ITC2 to check if a graph is bipartite using BFS. The number of steps of this algorithm is polynomial. Then,
we check if the graph has at least an edge, to exclude graphs with a chromatic number of 1.

P7 ∈ NP: Notice, that the task is not asking us to check that there is no valid coloring of less colors, only
that a valid 2025 coloring is achieveable.

• Input + its size: We assume G is given by its adjacency matrix, of size O(n2
G).

• Witness (t) + its size is polynomial relative to the input: The witness is a good coloring with
2025 colors. We can number the colors between 1 and 2025. Then, the coloring is given by an integer
array, containing numbers between 1 and 2025 where c[i] = x if vi’s color’s number is x. A size of a
single cell is the width of a binary number between 1 and 2025, O(log(2024)) = O(1). The size of the
witness is therefore O(nG), which is polynomial relative to the input size.

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input: The
verification algorithm checks that it received exactly nG number of integers between 1 and 2025. Then, it
checks for each edge of the graph, whether its two endpoints received different colors, to make sure this
is a valid 2025-coloring. Luckily we do not have to check that no valid coloring on less colors exists,
because that is an NP -complete problem, for a color number of 3 or larger. Therefore the verification is
complete and this can be performed in O(n2

G) steps, checking each edge, which is polynomial relative to
the input size.

• Correctness: A witness always exists for a yes instance (graph with valid 2025 coloring) and never for
a no instance (graph with no valid 2025 coloring), since the witness is the 2025-coloring itself.

P7
?
∈ P: This problem is in fact NP -complete. It is the problem of whether a 2025 coloring exists for a specific

graph (2025COLOR) in decision form. Therefore, if anyone was able to prove that 2025COLOR is in P ,
P = NP would immediately follow and vice versa. We do not know whether or not this is true at the moment.

P8 ∈ coNP: A non-trivial divisor of m is d if it divides m without remainder (e.g. m mod d = 0) and
1 < d < m. (A prime number has no non-trivial divisors.) Notice that for coNP , we are giving a witness to
the no answer! So we must prove that a divisor d for which both m

10 ≤ d and also 1 < d < m holds exists.

• Input + its size: The input is the positive integer m, which is given in binary format unless stated
otherwise. The size of the input is therefore O(log(m)).

• Witness (t) + its size is polynomial relative to the input: A witness for the no answer is a
divisor d of m for which both m

10 ≤ d and also 1 < d < m holds. The size of the witness is O(log(d)).
Since d < m, this is smaller than the input size, and therefore polynomial relative to the input size.

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input: The
verification algorithm first computes m

10 in O(log(m)), then checks whether the witness is at least this

ThAlg 2024 ThAlg Practice session 123

large and is also non-trivial, e.g. 1 < d < m. These comparisons also take O(log(m)). Then, by
performing an integer division with remainder, it also checks whether it is indeed a divisor. Since the
division can be performed in O(log2(m)2) steps, the total runtime of the algorithm is O(log2(m)2), which
is polynomial relative to the input size.

• Correctness: A witness always exists for a no instance (m with a non-trivial divisor too large)
and never for a yes instance (m with only small enough non-trivial divisors), since the witness is
the non-trivial divisor itself that is too large.

P8 ∈ P : If m has a non-trivial divisor larger than or equal to m
10 , since they come in pairs, their pair has to be

smaller than or equal to 10. This is true, because if d is a non-trivial divisor of m, then let c = m
d be its pair,

so m = cd. Since m
10 ≤ d, therefore m ≤ 10d and from m = cd, it follows that m = cd ≤ 10d, so c ≤ 10. So

we can check all possible options between 2 and 10 if they divide m. Checking the primes is enough, so check
the remainder of m with 2, 3, 5 and 7. We can do integer division in O(log(m)2) four times, so this algorithm
is polynomial relative to the input size.

P9 ∈ NP: Notice that for coNP , we are giving a witness to the no answer! Since all trees have at least 1
leaf, we must prove that the graph has 2 or more leaves.

• Input + its size: We assume the tree’s graph G is given by its adjacency matrix, of size O(n2
G). (There

are better representations for trees, but this is also fine.)

• Witness (t) + its size is polynomial relative to the input: A witness is two vertices with degree
1. They can be given by their binary indices. The size of the witness is therefore O(log(nG), which is
polynomial relative to the input size.

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input: The
verification algorithm checks that these vertices are indeed part of the graph by performing a range check
in O(log(nG)) steps, checks that they are not the same vertex, by checking for equality in O(log(nG))
steps, then it counts the degree of the given vertices in the adjacency matrix and makes sure it is exactly
1, so they are indeed both leaves of the graph. This can be done in O(nG) steps. The total runtime is
therefore O(nG), which is polynomial relative to the input size.

• Correctness: A witness always exists for a no instance (a tree with 2 or more leaves) and never
for a yes instance (a tree with exactly 1 leaf), since the witness is 2 different leaves of the graph.

P9 ∈ P: It was mentioned in ITC2 that every tree with at least 2 vertices has at least 2 degree-1 vertices.
Therefore, the answer to the question will always be no. That is, the algorithm will immediately give the no
answer without examining anything about the input. The number of steps for this is constant. (For the case
of a graph on 1 vertex, if it has no loop we don’t consider that a leaf, since its degree is 0, not 1 and if it has
a loop, it’s not a tree because it has a cycle.)

123. Assume that we have an algorithm X that can, given a graph G and a positive integer k, tell in polynomial
time if G has an independent vertex set of size at least k.
(a) Design an algorithm (using X), that can determine α(G), the size of the maximum independent vertex
set of G in polynomial time.
(b) Design an algorithm (using X), that will find an independent vertex set of G of size α(G) in polynomial
time.

Solution:

Let us assume, that G is given by its adjacency matrix, of size O(n2
G) and k is in binary format, unless

otherwise stated, of size O(log(k)). Therefore, the size of X ′s input is O(n2
G + log(k)). If we assume X runs

in polynomial time relative to its input size, it means that there is some constant 0 < c, for which it is true
that X runs in O((n2

G + log(k))c).

ThAlg 2024 ThAlg Practice session 123

(a) We know that the possible values of α(G) are between 1 and nG. We can run X for each possible k in
1 ≤ k ≤ nG on the graph. The smallest k for which it returns Yes is α(G). The runtime of this algorithm will
be O(nG(n

2
G + log(k))c), which is polynomial relative to the input size.

Note: We can do this even more efficiently, using BinarySearch. Since if X returns yes for any k, it will also
return yes for any k′ larger than that, therefore our search space is ”ordered”. For smaller k’s the answer is
no, for larger k’s the answer is yes and we are looking for the divide between them, which can be done using
BinarySearch.

(b) First, determine the value of k = α(G) using the method given in (a). Then, let’s examine each ’missing’
edge from the graph separately. For a specific pair of vertices that is not connected via an edge, let us add an
extra edge to the graph and run algorithm X on this modified graph with parameter k. If it reports Y ES back,
it means that the size of (one of) the largest independent vertex set(s) did not decrease with this extra edge,
therefore the edge must be connecting vertices where at least one of them is not part of this independent set.
In this case, we keep the edge in the graph and continue. However, if X reports NO back, it means that the
extra edge has decreased k (it cannot increase it), therefore it must be connecting vertices that are both part
of the independent set. In this case let us remove this edge from the graph. Continue this procedure for all
missing edges of the graph, until we finish all of them.

Observations about this algorithm:

• The algorithm does not branch! For each edge it makes a definitive choice on whether we should keep it
or throw it away and continues on that graph only.

• The resulting graph will contain all of the edges that do not run between points of the independent set,
as those are the only ones we skipped. Therefore the independent set is clearly visible, as it will be a
large square submatrix full of 0’s in the adjacency matrix. We can for example calculate the degree of all
vertices in O(n2

G) and keep the ones that are equal to nG − α(G).

• The runtime of the algorithm is as follows: We first run the algorithm we designed in (a), then we run
algorithm X for each of the O(n2

G) number of edges of the graph, then we run the degree check. Therefore
it is O(nG(n

2
G + log(k))c + n2

G(n
2
G + log(k))c + n2

G), which is polynomial relative to the input size.

124. Let FACTORIZATION be the language of the following decision problem:
Input: Two positive integers m and t.
Question: Does m have a divisor d such that, 1 < d ≤ t?

(a) Show that FACTORIZATION is in NP.
(b) Show that FACTORIZATION is in coNP. (You can use the fact that PRIMES is in P.)
(c) Show that if P = NP ∩ coNP , then RSA can be decrypted fast, because then prime factorization can be
done in polynomial time.

Solution:

(a) FACTORIZATION ∈ NP

• Input + its size: The input is the positive integers m and t, which are given in binary format unless
stated otherwise. The size of the input is therefore O(log(m) + log(t)).

• Witness (t) + its size is polynomial relative to the input: A witness for the yes answer is the
divisor d, such that 1 < d ≤ t. The size of the witness is O(log(d)). Since d ≤ t, this is smaller than
the input size, and therefore polynomial relative to the input size.

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input: The
verification algorithm does a range check in O(log(t)), then performs integer division with remainder
in O((log(m) + log(d))2) time. Therefore the total time is O(log(t) + (log(m) + log(d))2), which is
polynomial relative to the input size, since d ≤ t.

ThAlg 2024 ThAlg Practice session 123

• Correctness: A witness always exists for a yes instance (for m that has a divisor less than or equal
to t) and never for the no answer (for m with no such divisor), since the witness is the divisor itself in
question.

(b) FACTORIZATION ∈ coNP

• Input + its size: The input is the positive integers m and t, which are given in binary format unless
stated otherwise. The size of the input is therefore O(log(m) + log(t)).

• Witness (t) + its size is polynomial relative to the input: A suitable witness for the no answer
is the prime factorization of m, i.e. m = pα1

1 pα2
2 . . . pαk

k , where the pi are primes and the αi are positive
integers.

The size of the witness is O(
k∑

i=1
log(pi) + log(αi)).

We handle the pi and the αi parts separately, as follows:

k∑
i=1

log(pi) = log(

k∏
i=1

pi) ≤ log(

k∏
i=1

pαi
i) = log(m)

For the αi, we can first show that if we switch out the primes in m’s factorization to 2, we can only
decrease its value, since that is the smallest possible prime.

m = pα1
1 pα2

2 . . . pαk
k ≥ 2α12α2 . . . 2αk = 2

k∑
i=1

αi

Taking the logarithm of both sides we get

log(m) ≥
k∑

i=1

αi

Now looking back at our αi sum above, since the logarithm of a positive integer is always less than or
equal to the number itself, we get

k∑
i=1

log(αi) ≤
k∑

i=1

αi ≤ log(m)

Therefore the size of our witness is O(
k∑

i=1
log(pi) + log(αi)) ⊆ O(log(m)), which is polynomial relative

to the input size.

• Witness checking algorithm (τ) + its runtime is polynomial relative to the input:

The verification algorithm first checks if all pi’s are indeed prime, using the fact that PRIME ∈ P , i.e.
the AKS primality check.

Since there are k primes to check, we need a suitable upper bound for the value of k.

Since 1 ≤ αi for all i, we can see that

log(m) ≥
k∑

i=1

αi ≥
k∑

i=1

1 = k

ThAlg 2024 ThAlg Practice session 123

so this step is polynomial relative to the input size.

Then it calculates pα1
1 pα2

2 . . . pαk
k and checks if it is equal to m. This requires O(

k∑
i=1

αi) multiplications

and we have proven above already, that this can be upper bound by O(log(m)). Each multiplication is
performed between numbers of size O(log(m)), therefore the runtime is O(log(m)2) for one multiplication
and O(log(m)3) for all of them. The comparison then requires O(log(m)) steps. These steps are therefore
polynomial relative to the input size.

Finally it verifies if t < pi holds for every i. (Remember, this is a witness for the no answer.) This re-
quires O(k log(max(pi))) steps. We have already proven above that k ≤ log(m), so this is also polynomial
relative to the input size.

All steps are therefore polynomial realtive to the input size.

• Correctness: The prime factorization of a number always exists and it can only pass the checking if
m has no divisors smaller than or equal to t, since those would result in prime factors smaller than or
equal to t in m’s factorization.

(c) We have just proven in parts (a) and (b), that FACTORIZATION ∈ NP ∩ coNP . If we assumed that
P = NP ∩ coNP (it is unknown to computer science whether this is true or not at the moment), it would
follow that FACTORIZATION ∈ P , as in there would exist an algorithm with polynomial number of steps that
can decide whether or not number m has a factor smaller than t.

If we actually want to find a factor of m, we could use this algorithm combined with a BinarySearch procedure.
If the smallest factor of m is d1, then for any t < d1 given to this algorithm, it will return no and any t ≥ d1
it will return yes. If we find the smallest t where the answer is yes, that will equal to d1. Then we can set
m1 =

m
d1

and continue finding the factors of m1 in a similar manner, dividing with the next one and creating
m2 and so on, until all of them are found. Since 2 ≤ di, in each step the size of m (in binary format) decreases
by at least one bit, therefore we run BinarySearch O(log(m)) many times. In each step, the search space is
1 < t < m, so BinarySearch runs in O(log(m)) steps. If FACTORIZATION has a polynomial solver, we
would run it for a total of O(log(m)2) times, making this entire algorithm polynomial, relative to the input
size.

125. Assume that we have an algorithm X that can determine in polynomial time if a given graph G is 3-colorable.
Provide an algorithm, using X, that finds a 3-coloring of a graph G (if it exists) in polynomial time.

Solution:

We first check with X is the graph itself is 3-colorable. If the answer is no, we can return this failure.

Then, we fill up the graph with as many edges we can while keeping it still 3 colorable.

For each ”missing” edge from the graph, we add it and check if the graph is still 3 colorable. If the answer is
yes, it means that this edge is connecting two vertices in two different color sets, therefore we can keep it. If
the graph is not 3 colorable anymore, it means that the only way to color this graph using 3 colors involves
assigning the same color to both endpoints of the edge, therefore the edge must be discarded.

This algorithm never branches. In each step we make a decision whether to keep the edge in or discard it and
continue with that graph only.

At the end of the procedure, we will retain one possible configuration of 3 independent vertex sets of the graph
and all edges running between them will be added by the procedure above, so we can easily distinguish the
members of the three sets.

We called X O(n2
G) times, and X itself is polynomial, therefore this entire procedure is polynomial relative to

the input size.

126. There exists two decision problems, A and B, which answer different questions for the same input. It is known
that A,B ∈ P. Prove that if decision problem C answers whether at least one of A or B answers YES for a

ThAlg 2024 ThAlg Practice session 123

given input, then C ∈ P also holds. How does the running time of the algorithm deciding C depend on the
running times of the algorithms of A and B?

Solution:

Let A run in O(na) and B run in O(nb), where n is the size of the common input and a, b positive integer
constants.

Let’s decide C by running the decider algorithm of A and B both. If either of them reports a yes answer back,
we return yes, otherwise no.

The total runtime is O(na + nb + 1) ⊆ O(na+b), which is polynomial relative to the input size n of C.

127. Let B be a polynomial running time algorithm, whose output is not necessarily one bit. Consider procedure
C which runs B on input x, then runs B again with the output of the first run as input, and so on, c times
altogether. Prove that the running time of C is polynomial if c is a constant. What happens if c could be
polynomial in the length of the first input?

Solution:

Let the runtime of B be O(nb) if the size of its input x is n. Then, the size of the output of B will be O(nb).
(In order for B to calculate the output, it must write it down, which is part of the runtime of B. Therefore
the size of the output is asymptotically bound by the runtime of the algorithm.)

Upon refeeding B with the input of size O(nb), it will return an output of size O((nb)b) = O(nb2). Repeating
this c times, we get a size O(nbc) result, which is polynomial relative to the original input size n, since bc is a
constant.

However, if B is called c ∈ Ω(nk) times, this is no longer the case. Let us give a simple counterexample: Let
B be an algorithm that duplicates the input x word on its output, i.e. it writes xx down, doubling the length.
The runtime of B itself is Θ(n), which is polynomial. After the second call, it will write xxxx down, making
the length 4n, and so on. If C runs B n times, refeeding the output of the previous run as the input of the
next, the resulting length will be Θ(2n · n), which is not polynomial relative to the input size, even though C
only called B a linear (i.e. polynomial) number of times relative to the first input’s size.

