TAZ ALY

UNORTHOGONALITIES IN THE IDENTIFICATION
RuLES IN Aba

Ivan Bach

Computer and Automation Institute
Hungarian Academy of Sciences
1111 Budapest, XI., Kende u. 13-17.

Key words. Ada, visibility, identification, overloading.

Introduction. In Ada, the identification, i.e., the determina-
tion of the corresponding defining occurrence for each applied
occurrence turns out to be one of the most delicate problems

of compilation.

In the traditional block-structured languages the visibility
rules were very simple and there was no overloading (except
for predefined arithmetic operators but since the concept or
overloading has not yet been "discovered" even the implementor

was not aware of it).

In Ada there are significant changes in both fields. The
concept of package together with the use clause altered
visibility rules. The overloading has been extended to any
subprogram including enumeration literals. In addition, the
identification is further complicated byv derivation, i.e.,

by the introduction of derived subprograms.

In general however, the complexity of the facilities does
not mean necessarily the complexity of visibility rules.

It is of vital importance that despite of these improvements
they should remain as simple as possible and orthogonal

as well. Otherwise the user will not be able to follow all
the details and will not understand the concepts of the
language.

It has been previously mentioned that the derivation rules
seem not to be logical and their syntax is dangerous 313,

It will be explained that the visibility rules in Ada are
not well defined and orthogonal. This is partly due to some
concept which introduce totally different visibility and/or

overloading resolution rules leading sometimes to contradic-
tions.

The goal of this article is to focus the attention on these
possible misunderstandings.

Unorthogonality in visibility, In Ada, defining occurrences
of a designator can be seen from a given location of the
program text due to two reasons.

Every declaration found on the unique path along the
program-structure tree going from the given location up
to the root of the tree is directly visible unless hidden.
This kind of visiblity will be referred to as visiblity
through structure.

Introducing the package concept, the declarations within

the visible part of the package may be made directly visible
through applying use clauses to the package in question.
This kind of visibility will be called visibility through
use clause.

8¢-¢ Al

These two kinds of visibility are disjoint. Although it is
not prohibited to apply a use clause to a package within
the package, i.e., where its visible part is directly
visible through structure, in this case the use clause will
not have any effect whatsoever.

The visibility rules of Ada treat these two kinds of
visibility differently. Two major differences will be
mentioned.

A new declaration may hide an entity formerly directly
visible through structure but may never make directly wisible
a formerly hidden declaration.

Unfortunately there is no full analogy in the case of
visibility through use clause. While a directly visible
entity may turn out to be only potentially visible due to
a new declaration it may happen that a formerly only
potentially visible declaration will be "promoted" to
directly visible due to the effect of a new declaration.

Example 1.

A : declare
function F return INTEGER;
package B Zs
function F return BOOLEAN;
end B;
C : declare
use B; -- both A.F and B.F are directly visible
F : INTEGER; =-- neither A.F nor B.F are visible
D : declare
function F return FLOAT;
-- only B.F but not A.F is directly visible

The example shows clearly the uneven treatment of entities

visible through structure versus through use clause.
A similar situation occurs in the case of homographs.

When visible through structure at most one of the homographs
can be directly seen, while when visible through use

clause all of the homographs are directly visible simultaneously.

The next example demonstrate such a situation. It emphasizes
the unorthogcnality of the visibility rules. It is quite
strange that the very same declarations behave differently
depending upon the location of the applied occurrence.

Probably it is not necessary to mention how disturbing this
difference in treatment can be for a user.

be-¢ Al

Example 2.

declare
package A is
procedure P (X : INTEGER):
package B 18
procedure P (Y : INTEGER);
end B;
end A;
package body A is
procedure P (X : INTEGER) s
end P;
package body B is
procedure P (Y : INTEGER) <s

end P;

P (X => 5); -- illegal since A.P is hidden by B.P

end B;
end A;
use A; use B;

P (X => 5); -- legal P means A.P since both homographs
-- are directly visible and therefore

-~ overlcading can be resolved

Mixed operations. At the very end only two mixed operators

remained in the language, the * and the / defined between
any two fixed point types. The disadvantages of the mixed
operators have already been analized by the aouthor 2,31.

The visibility rules suppose that for each entity there
is a given location in the program text where this entity
is dexlared or can be regarded as being declared. For the
mixed operators, according to the Manual, this location
is the STANDARD package. The semantics is, however, not
quite clear.

It is not stated explicitly that the universal real type
is considered to be a member of the "any fixed type". If
not the mixed operators can not be used for multiplying
rsp. dividing with numeric literals.

It is strange that closely related operators behave quite
differently.

Example 3.

package A is
type FIXl ts delta 0,125 range 0.0 .. 10.0;
end A;

with A; use A;
package B is

X, Y : FIX1;

type FIX2 Zs new FIX1;
end B;

with B; use B;
rrocedure MAIN s
Z : FIX2; 1 : INTEGER;

X + ¥Y; -- illegal the "+" for type FIX1l is not visible
FIX2 (X + Y); -- illegal the operator is not visible

N
i

1]

Oh-¢'Al

X * I; -- illegal the operator "*" defined between
FIX2 (X * I); -- FIX1l and INTEGER types is not visible
FIX2 (X * ¥); -- legal it is the mixed operator

According to the visibility rules it is only the last
statement which is legal. Since the mixed operators are
dexlared within the STANDARD package they are visible
everywhere in the program, i.e., within the entire scope

of any type. In addition there is no possibility to redefine
them they can not be hidden, too.

In general an operator is applicable if it is visible.

Only the basic operations which can be applied within the
entire scope of the operation. This means that the mixed
operators behave as though they belonged to basic operations.

Although there is no possibility to redefine the mixed
operators, the user may define any number of * and /
operators between cbjects of any (two) fixed type(s).
This may cause surprising ambiguity problems.

Example 4.

declare

type FIX is delta 0.125 range 0.0 .. 10.0;
P, Q : FIX;

funetion "#** (X, Y : FIX) return FIX is
end "*";

P :=P
P := FIX (P * Q); -- ambiguity the operator can be the
-- user defined one or the mixed one

Q; -- legal the "*" operator is the user defined one

"

It is very doubtful whether the gain in applying those
mixed operators is worth for the strange semantics the
user has to learn.

Overinterpretation. The unique interpretation of the program
text is sometimes quite difficult in Ada. There are potential
ambiguities which must be - if possible - resolved to

achieve unique interpretation.

Potential ambiguity may be caused by overloading, i.e.,
when more than one defining occurrence of a designator is
visible from a given location of the program. There are
certain rules described in the Manual for overloading
resolution. It is the context which serves as a tool for
determining the actual meaning of an identifier.

However, a seemingly mild change in theé language syntax
may cause a new kind of ambiguity which will be referred
to as "overinterpretation".

In case of overinterpretation, there is a unique defining
occurrence corresponding to a given applied occurrence

of an identifier but it can be interpreted more than one

way. This kind of possible ambiguity is not mentioned in

the Manual explicitly.

The mild change mentioned above which made this trouble
"possible” is the new way of calling parameterless functions.

According to the new rule no empty parentheses are needed.

In analogy with the overloading resolution there should be
an overinterpretation resolution algorithm which helps the
"true" interpretation of the defining occurrence at the
given location be determined. Unfortunately there is no
detailed description in the Manual how overinterpretation
should be resolved.

- Al

Of course the context is adequate tool for resolving any
kind of ambiguities. Nevertheless, the context is mentioned
only in connection with overloading resolution and there

is no hint in the sense, that context should be used in
general as a tool for resolving any kind of ambiguities.

As a matter of fact this part of the Manual is inherited
from those times, when the syntax of function call was
more rigorous and there was no such phenomenon as

overinterpretation.

Only for the interpretation of selection has been a new

rule added to the Manual when the new syntax for function
call were introduced. It says: "If there is one possible
interpretation of the prefix of a selected component as

the name of an enclosing function, then the only interpreta-
tions considered are those as expanded names."

This rule covers a special case of overinterpretation

and determines how to resolve it.

It is against the orthogonality that according to the
rule it is not the context which should be used when
resolving overinterpretation as far as selections are

concerned.

The next example shows how the "expended name first”

rule should be applied.

Example 5.

type R s record
X, Y : INTEGER;
end record;
funetion F return R is
Z, Y : INTEGER;
Z := F.Y; -- means the variable Y within the
-- function body, F.Y is an expanded name

2 := F.X; -- illegal, there is no entity X declared
-- within the scope of the prefix

It should be mentioned that resolution through context
would not resclve the first ambiguity but would give a
reasonable interpretation to the second.

Unfortunately the above "expanded name first" principle
cannot be used as a general tool for resolving overinter-
pretation. The next example shows such a situation.

Example 6.

type W i8 array (INTEGER range < >) of INTEGER;
Y :w(l .. 3) :=(1, 2, 3);

J : INTEGER;

funcetion F (I : INTEGER := 5) return W s

end F;

procedure P (X : W) is

end P;
J :=F (2);
P (Y & F (3));

ch-¢'Al

In this example there are two interpretations possible both
for F (2) and for F (3). The function F should be called

in both cases but it is ambiquous whether this call should
be performed with the default value or with the actual
parameter 2 rsp. 3.

Using the old notation, when empty parentheses were obligatory

to indicate function call, these two possibilities can
be characterized as follows

F () (2) or F (2)
and F () (3) F (3)

The left hand side notation indicates a function call

with the default value 5 giving an array which is in turn
indexed by the value 2 rsp. 3 finally resulting an INTEGER
type object.

The right hand side notation means a function call with
the actual parameter 2 rsp. 3 and the result will be an
array of type W i.e., array of INTEGER.

What should be done?

It is more than desirable that these ambiquities should
be resolved, toc. By all means the natural way to do it
is the resolution through the context. The mechanism for
context resolutions must be incorporated in the compiler
anyway - because the overloading resolution - and can be
used allmost without changes in general for any ambiguity,
so for overinterpretation resolution as well.

If the context is used for resolving ambiguity the F (2)
in the text should be interpreted according to the left
hand side.

The example has been constructed carefully in such a way
that the ambiguity of F (3) can not be resolved with the
help of the context.

The use of two resolution principles where one would be
satisfactory makes un unnecessary burden on both the user
and implementor.

Last but not least it will be shown that overloading and
overinterpretation may occur simultaneously.

Example 7.

type V s record

A : INTEGER;

end record;

type W record

A : BOOLEAN;

end record

function F return V ia
end F;

function F return W is
A : FLOAT;

B : BOOLEAN;

I : INTEGER;

.
]
~

F.
F

A
I : <A

~

eh-g Al

Of course, this case is more interesting when the overinter-
pretation should be resolved through expanded name first
principles, as in the example above.

Thus different method should be used for overloading rsp.
overinterpretation resolution.

‘The result depends upon the order of resclution. If the

expanded name first principle is applied first, as it is
probably indicated by the Manual, only the second of the
two assiguiment statements is legal. Changing the order
of resolution both statements were correct.

Conclusion. The degree of camplexity of the language rules
influences the legibility and teachability of the language.
The rules of Ada are unnecessarily sophisticated and it
would be desirable to simplify them. With respect the
identification it is disadvantegeous that the visibility
through structure and the visibility through use clause

is defined by different rules. The visibility of the mixed
operators need a special treatment, too. The important
deficiency is the lack of a uniform adequate resclution
for overinterpretation. The Manual covers only partically
this topic presently.

Literature

13 PReference Manual for the Ada Programming Language
Alsys 1983 Januar

2] 1I. Bach: Remarks on Ben Brosaol’s paper
Ada UK News, Vol.3. No.l.

£31 1I. Bach: On the Type Concept of Ada
ACM Ada Letters, Vol.II. No.3.

