Computer and Automation Institute
Hungarian Academy of Sciences

Picture Manipulator & Comparator

Budapest 1995

Contents

B: PEEDTIHTEPIO8, o csn svmmves wos svis s Sromyvet 185 T RGaRs TRemyons 516 & 1
L. Nobioms s NobaIoms . .oman v coomass wosovsss v aseemen crsseia 153 3
LAk "EHE ROl o o wmsmmmmes s s S a1 S L aa 3
b L BRI o womisswnsmairesi s wismings s R v sssme i do SmEs s SRR 4
Lo 20 C0lOUTS « vttt ettt et e e 6
R O I 4 T
1.4, Characterso.oniiiii i e e 8
L5, MOUSE .ottt 12
2. OPerationscooiiiiiii it 13
Zil: TGBNRTAL. o . oo covioinn rion rismomims wim s i wmR S Y B A A, i8em R 13
2 Iz NUScellanienns o cumns oo 55 iusni 46 50808 SMH 000 tmsnmmas s Snmmmms s 14
S Z Niunibeis & TE vovoens sivsaenn ans Moinein 08k e is s oas satsras s 16
28 CHReSHals « uvvuvey oo snsaeess SIS PRI ST T 19
24. Mouse Bandlingo svamuns son svvvmims svt ssmnmain doe Sossems o5 o 20
T DI SEIBEIIIE « on oo s sy ve SRR SR SRR TS B 21
&8 o "Tyne SEIBEE o v wmmmaes mommme o AT AR R S 23
2iA. AeAon Mude BB ECEMI o cis s wom oaosEwms. €am SR A5 SRR 24
2. 8. DraAWIII . ot 25
2.9, Tagging........ooovviiiiinninn.. B A A AN L BOSRSARR ERN SATHHAIENS W 28
2.10. Letteringt e 29
2.11. Filling (Flooding)c.uuininineiiiinaieiiiiienennaeeeenae. 3l
2.12. Magnification & Pixelwise Modification...............................32
R R R AR A i AP R ST Lo R) R R 33
2 14 COMDBTING vosvs s cny insainein U505 Haass el 05 e min o35 B Sheus o5 e mae
2. 16, Bavinip /RS o s onRehy a8 NEsaeEs vap weiae sxnsBb
2 16, PIEming Bl aosinsamesn e Groms e i Saaniis i sae iea- il Sipvess o 36
2 17 Rquest Files covvvein svvenvns svssnamii vom eviesm s 6om s o508 sner BT
B LU E s summnnns v sy SR S PR R S R 39
Appendix. ProcessInberlessing. ... coosvmm s mommons s wscnmenss e s s 43
Itermel (S RBET .ohccsmusvossbions nessomoesmSihon s arom o s o RIS SRS N 15

1i

0. Preliminaries

“You are not expected to understand this.”

Caveat from the V6 UNIX kernel, documented
in E. Raymond (ed.), “New Hacker’s Dictio-
nary”, Cambridge MA, MIT Press, 1991

This is a program to examine and modify digitized pictures (including the modifica-
tion of the empty picture, that is, drawing), and to compare and discriminate different
pictures (or variants of the same picture), to store and retrieve them, etc.

The program is intended to run on any PC with MS-DOS 3 or better, a 640 x 480
SVGA screen and some sort of mouse (actually, a three-button serial mouse was used
during development, but even a two-button mouse would do). It can be run from
under Windows, but does not utilize Windows’ facilities and monopolizes the screen
while running. It is written in C, using as few system-specific features as possible
(whenever it does, Turbo C is involved), and can be adapted to other configurations
in a systematic way. Nevertheless, it is parametrized to conform with this setup (its
pixel resolution, colour generation, etc.); the present description is confined to this.
Porting to other sites is dealt with in a separate Annex.

The program gets started by picture.

To get acquainted with program working, perhaps the best thing to do is to sit down
to a PC and play around with the program while reading what follows. (A superficial
acquaintance with Sect. 1 is sufficient; a more thorough reading might come after
some experience with the operations themselves.) A lot of minute detail has been
left unmentioned, in order to keep the exposition digestible, yet will be found out
soon during experimentation. No harm can be done, except possibly by overwriting
some valuable file, which, however, needs explicit action (file operations are never
automatic).—As a start, hit INS: a small demo will be shown. Help is Ctrl+F1.

[The program is still in the process of development. Square-bracketed remarks contain
alternatives, questions, suggestions about the course to be taken. Customers-in-spe
are encouraged to communicate their ideas: attn. Brédy, 131-3016.]

1. Notions & Notations

1.0. The Screen

The screen shows (look at it) two biggish windows, the left one to be called the Yard,
the right one, the Backyard.

The main operations are performed in the Yard; the Backyard has auxiliary functions
(such as comparison, magnification, etc.).

These windows are bordered with “light buttons” that select colours, line types and
action modes.

The bottommost line is for requests; the line above this line is for textual responses
issued by the program; the topmost line contains state information.

The screen consists of pixels: coloured spots, each being in one of 16 colour states.
where the 16 states can be selected from 64 possibilities. Screen size is 640 x 480
pixels. Pixels are referred to by screen coordinetes, denoted z horizontally and y
vertically, numbered from 0 on; the origin is in the lower left corner. (The maximum
screen coordinates are * = 639 and y = 479.) The Yard’s origin on the screen is
29, 78, the Backyard’s is 334, 78; both have size 296 x 376.

1.1. Entities

A byte is an eight-bit quantity with bits numbered 7 to 0 from most significant
(leftmost) to least significant (rightmost) bit. Bytes in multi-byte quantities are
numbered analogously, with higher number for more significant. (The PC stores
higher bytes at higher addresses, but there will be no need to know that.)

A number is a four-byte (32-bit) quantity with bits numbered 31 to 0, representing
a signed number in the range [—2°!, +2%! — 1] with negative numbers represented in
“two’s complement” notation (so bit 31 is the ‘sign’).

A number constant is a (possibly signed) decimal number fitting in that range.—
Wherever decimals make sense, hexadecimal numbers are also accepted; hexadecimals
are prefixed with a colon (:), digits that are letters may be upper- or lower-case.
Octals are not implemented (in retaliation for J. R. Patkul’s foul execution).

There are 26 number variables, also called register variables, denoted @a—@z, let-
ters lower-case; upper-case lettered @’s (@A—@Z) refer to them indirectly: take the
unsigned contents of the corresponding lower-case variable mod26 and select the
variable pointed to by that number (0 is a, ..., 25 is z), that is, the variables act as
an array, indexed by any of them.

Numbers can be ‘stacked’, and stacked numbers may serve as additional number
variables, called stack variables, denoted $n and &n, with n a number constant: the
location counted from stack top. The stack area can also be used as plain variable
area: $"n and &"n count from stack bottom.

A point or coordinate pair is a pair of numbers (constants or variables), representing
a pixel on the screen.

A text 1s a (possibly empty) string of (non-control) characters, not exceeding 30
characters.

A text constant represents a text; its internal coding uses two bytes per character,
appended with a (two-byte) zero.

There are 10 text variables, denoted @0—@9, each taking a text, represented as above.

A name, or identifier, is a text of up to 12 characters, starting with a letter, followed
by (zero or more) letters or underscores (). (No digits.) (Note that this notion is
different from what is usually called ‘name’ under the operating system; nevertheless,
DOS file names will also be called so; it will be clear which is which.) Names (in
the present sense) are used to identify (customer-defined) routines and labels. By
convention, upper- and lower-case letters are considered no different. A name may
be longer than 12 characters but only the first 12 are significant. (A name, being a
text, may also be put into a text variable.)

The program executes requests: commands, possibly with arguments.

Requests may come either from the console, meaning the keystrokes of the Human
Interactor sitting before the screen, or from request files, meaning prepared and stored

request sequences activated from the console or another file. Request files can be
attached / changed / dropped (by requests) at any time. Console input and request-
file input can be freely intermixed.

Request sequences can also be composed into routines, again possibly with arguments.
A library is a prepared and stored collection of routines. Libraries have to be attached
to the program to make the routines in them accessible; library attachment is also
changeable at any time. Routines, as seen from the customer, act as ordinary requests.
They can be activated both from console and file.

1.2. Colours

Colours are defined in the r(ed-)g(reen-)b(lue) system; each component may have
four intensity levels, denote them 0—3 from absent to maximum brightness; so 64
colours are definable. In particular, a colour with (r,g,b) = (0,0,0) produces black,
(3,3,3) produces white.

The complement of colour col with definition (r, g, b), denoted cpl(col), is the colour
with definition (3 —r,3 — g,3 — b). They are in fact complementary in the sense that
their or is white and their and is black. Still, the colour distribution is rather uneven,
and it may take quite a bit of experimentation to mix a colour that is somewhat
similar to the desired one, or to find well-contrasting colours.

At any time, any 16 of the 64 definable colours can be shown; such a set of 16 colours
is called a palette; palettes can be specified / changed run-time.

The component-wise definition of colours is used only within palette specifications;
once a palette is specified and activated, all screen operations refer to colours by their
location in the palette, a number ranging from 0 to 15 (:0—:F), the colour number.
(So the same colour number may denote different colours in different palettes.)

Between colours, logical operations (and, or, etc.) can be performed, but they operate
on the colour numbers (rather than the colour definitions), so their outcome can be
quite unrelated to the optical properties of the colours involved.

8 palettes are available, numbered 0 to 7. [There could be more.]

Palette 0 is the “official” palette, the one that is specified and activated by the
operating system.

Palette 1 is a setup that has been felt fit to be the basic working palette for this
program; colours in it are ordered approximately according to overall brightness. and
colours with numbers n and 15 — n (that is, colours complementary in the sense of
operations on colour numbers) are also complementary in their definitions: moreover,
the palette tries to include most of the (few) non-disgusting colours.

Palettes 2—7 initially equal palette 1; they are intended to be freely redefinable. (0 and
1 can also be redefined, but don’t do that.)

Initially, palette 1 1s activated.

The Yard and the Backyard have a ground colour, g, initially white (more accurately:
colour number 15); redefinable.

At any given instant, there is an actual drawing colour, ¢, initially black (number 0);
redefinable.

The xor of the (numbers of) g and c is used in many operations, to be denoted x.

6

1.3. Lines

There are three types of lines (“strokes”) used in drawing.
Type 0 — width is one pixel, contiguous pixels meet in an edge or a vertex;
Type 1 — width is one pixel, contiguous pixels meet in an edge;

Type 2 — width is three pixels, contiguity structure is determined by the requirement
that there must be three pixels in at least one axis direction (the one “more per-
pendicular” to the local line direction); line ends are either cut (again in the “more
perpendicular” direction) or bloated: having a 3x3 blot around the nominal endpoint.

Lines are symmetric for all mirror symmetries of the square around the starting (or
ending) point (meaning that lines in mirror positions are mirror images of each other),
with the proviso that +45°, +135° count as “more horizontal than vertical”. which
makes no difference for type 0. Lines of type 0 and 2 are the same if drawn in the
opposite direction, those of type 1, not necessarily.

A line of length 0 appears as a point: with types 0 an 1 a single one, with type 2
(even for a cut line) as a 3 x 3 blot.

1.4. Characters

Text handling comprises very different and physically unrelated actions: Text may
come from the console or from files, it may go into a file or onto the screen, become,
or not, part of a picture, etc.

At output (on the screen), the shape of characters depends on the current font.
Eight character fonts can be defined, they are numbered 0 to 7.

Presently two character fonts are available: a bigger one (8 x 15 pixels), font 0, and
a smaller (8 x 8), font 1. (Accents may add to the vertical dimensions.) (For more

detail, cf. Sect. 2.10.)

[At least one more font will be added: a small sans-serif font (variable-widthx 7, with
digits and upper-case letters not exceeding 5 pixels vertically).]

There is a concomitant character-design program to produce new fonts or redesign
characters in existing ones, so customers are not confined to what they are presented
with.—While existing fonts can be changed run-time, font redefinition, unlike palette
redefinition, requires program recompilation. [This restriction can be raised.]

Every communication with the program appears in font 0: other fonts are only for
application within pictures.

The internal character representation of the program, to be called the concise re-
presentation, takes a two-byte (16-bit) unit to hold a character. Most input sources
will not be able to directly produce this representation, so the program understands
another one, call it verbose, that takes a byte per character (or the lower byte of a two-
byte unit, with high byte zero) and uses exclusively the ‘printable’ ASCII character set
(the characters with codes :20—:7E) and a ‘carriage return’ or ‘newline’ (with code
less than :20). A lot of characters that take a single unit in concise are expressed by
a sequence of characters (an ‘escape sequence’) in verbose.

The printable ASCII characters are contained both in concise and verbose, and
have their ASCII codes, except the characters ! (exclamation mark) and ¢ (back-
apostrophe) have special functions: they serve as escape characters. In verbose, to
getan ! or °, type !! or !‘, resp. In concise, the ‘true’ ! and ¢ are coded with
high byte set to :80 (that is, :8021 and :8060, resp.).

In extension of the ASCII printable character set, 32 additional character patterns
can be included for character codes :00—:1F. By definition, the character with code
: 7F equals that with code :00.

These additional characters are intended to produce arbitrarily designed visible pat-
terns on the screen. A tentative set of such characters has been implemented as shown
below; any other set would do, even different ones in different fonts. Note, however,
that three codes have predefined usage: the program uses character :00 as “cursor”,
and characters :1E and :1F for ‘pointless’ 1 and j.

(As a matter of fact, any character can be redesigned in any way:; still, the suggestion
is to adhere to ASCII for codes :20—:7E, and restrict arbitrariness to :00—: 1F.)

In concise, the additional characters are represented by their codes. In verbose,
they are referred to with !-prefixed symbols; letters in upper-case and lower-case are
considered different. [Naming conventions can also be changed.]

:00 | '+ — W (all-black),
R0 I L e M
:02 [11 - o,
W3R ——,
:04 (10U - T,
s0h | ML=
:06 |'D - |,
;07 [1C — &,
:08 [P - £,
09| LY=#,
:0A |!S - §,
:0B [[- «,
:0C 1] -,
20D Y=g,
:0E | V7 — =,
OF | 1= - =,
110 | 1< - <,
i |13 =2,
112 | e
13 L —es
14 | 'x — %,
i T L
:16 | 'r - 4/,
PIF| W~
:18 | 'p - I,
< 2l e
(1A [ln -1,
1B [T - oo,
:1¢ |10 - 0,
D Fy B
:1E [!i —1 (for Turkish or with accents),
Sa b W [

The colour of the characters can be controlled in a similar way. Normally, characters
start to appear in the ‘current drawing colour’. A ‘colour switch’ character can appear
anywhere in the character string, it changes the colour of subsequent characters to
the colour encoded in the switch. In concise, the code is :20 in the low byte, :40
or’ed with the colour number in the high byte. In verbose, the coding is ! followed

9

by the colour number given as a hexadecimal digit; the digit must not be preceded
by a colon, and if it is a letter-digit: a—f, it must be lower-case.

Any other character preceded by an ! appears in concise with its low byte unchanged,
high byte set to :80.

There is a set of 16 accents (“diacritical marks”). Every visible character can be ac-
cented. In concise, the high byte of the accented letter takes :80 or’ed with the accent
number. (:80 is not mandatory, except for the ‘empty accent’.) In verbose. accents
are ‘-prefixed symbols: the accentuation has to precede the character. [Accents and
their names can be changed too.]

:0 | ‘y (¢ followed by a space) — the “empty accent”; e.g., 1,
21| % =EE 2
22| 9~ 4y
23 e, 1,
o] =g ¥,
$h | =B T
16| ‘“H—&g., 0,
@ T=ae o,
8 | f=—eg., §,
9 |‘u-eg, 1,
A ‘v - g, &
:B|‘0-e.g., &
) =B G
Dt "B, B
:E | ‘d —epg.. h,
| B—eg.. T

Ordinary ‘i’ and ‘j” can go accented, the dot on top is automatically discarded for
upper accents.

(All this is very similar to TpX’s ways, except no braces are ever used. and two
‘escape characters’ are appointed—neither of which is \, so it’s easier to put them
in C “strings”.)

The keyboard has a lot of “control keys”, which are widely used to start program
actions, not always strongly related to the markings on the keys.

In concise, they get unorthodox codes, with bit 7 set. In verbose, they are written as
three-character tokens, upper-case, prefixed with a point (period, full stop). (Writing
the control-key symbols in character form doesn’t make much sense in console input
but enables producing ‘keystrokes’ from routines and request files in verbose.)—There
are no settled conventions for naming the control keys. The following identification
seems unambiguous for most keyboards I've come across. In the sequel, the verbose
form will be used to name the keys / combinations in the text of this description.

:81 | .ETR - the key called ‘Enter’ (or ‘Carriage return’ or ‘CR’),

:82 | .BSP — backspace (often marked with a back-arrow but is not an ‘arrow key’),
:83 | .ESC - ‘Esc’, escape,

:84 | .TAB - ‘Tab’, tabulator,

:90 | . INS — ‘Ins’, insert,

:91 | .DEL — ‘Del’, delete,

:92 | .HOM - ‘Home’,

.93 | .END - ‘End’,

:95 | .PGU - ‘PgUp’, page up,

:96 | .PGD - ‘PgDn’, page down,

:97—:9A | .RAR, .UAR, .LAR, .DAR — the arrows —, T, «, |,

:A1—:AA | .FO1—.F10 — the numbered functional keys (some keyboards have keys up
to 12 or 16; they remain unused).

Keys are often to be depressed together with one or more of ‘Shift’, ‘Ctrl’, *Alt’. In
concise, this is indicated by or’ing the character code with :0100, :0200, :0400. resp.
In verbose, this is written by setting ‘s’, ‘c’, ‘a’, lower-case, after the point. before
the three-letter token (in any order if more of them).

(Not all modifier / control key combinations can be obtained from the keyboard—
some are confiscated / disconfigured by the authorities. Those used in the program
do exist everywhere.)

From the console, control-key input can be produced directly. The modifiers s, c, a
are or’ed onto the code of all characters (not only control keys) they modify, except
s is not shown in the high bytes of codes for ‘ordinary ASCII’ characters (they being
different anyway). The ‘arbitrary’ characters and the colour switches need verbose
coding, as well as most of the accents, except that for the “Hungarian” accents the
following shorthand is available with console input (but not with input from a file):
simultaneously holding (depressing) ‘Ctrl’ yields ‘long’ (6), ‘Alt’ yields ‘umlaut’ (),
‘Ctrl” and “Alt’ yields ‘long umlaut’ (8). (On the other hand, the ‘HUNKEY’ con-
vention is not supported; it has been felt that the character positions usurped by it
are going to be much heavier used in their original meaning.)

Request files and library files are read bytewise; they have to use verbose coding;
all characters outside the range :20—:7E, e.g., carriage return or newline, convert to
.ETR, a sequence of them, to a single one. Request files have the additional control
symbols (not corresponding to keystrokes) .FIN, .BRK, .ECX, .CYC, .LVC, .RPT, coded
:FO—:F5; library files have, moreover, .RET, .XIT, coded :F6—:F7.

1.5. Mouse
A three-button mouse is assumed. (No problem if otherwise: button clicks can be
substituted by keystrokes or other means, cf. Sect. 2.4.)

Note that to activate the mouse, or all three buttons, some systems and some mouses
require the left button, or all buttons, to be held down during power-up. (Reset
without power off / on is not enough.)

12

2. Operations

2.0. General

Operations are activated by mouse clicks or request lines.

A request line can come from the console or a file. It consists of zero or more request
sentences, terminated by depressing a control key (or by giving, in character form,
its symbol). In particular, a control key in itself is a ‘request line’.

If there are several request sentences in a line, they are to be separated by semi-
colons (;). The line must not exceed 80 characters.

Execution starts when the terminating control key is given; request sentences are
executed in order, at last the action of the control key is performed.

If no special control key action is needed, terminate with . ETR, or, in a file, by starting
a new line. On the other hand, no new line is required in a file to terminate a request
line when it is terminated by other means.

If the line becomes full in lack of a terminator, it gets terminated with : OOFF.

A request sentence consists of an operation code and possibly arguments to it; argu-
ments are, depending on the operation, particular signs, number or text constants or
variables, etc. A routine call is also considered a request sentence; in this case the
operation code 1s the routine name.

Letters in operation codes can be upper- or lower-case. Arguments are separated by
spaces or commas (,). Empty request sentences, as well as redundant spaces around
codes and arguments, are permitted.

With console input, the request line, as long as not terminated, can be edited in a
rudimentary way: .BSP backsteps (deletes last characters) one by one, .ESC discards
the whole lot. .BSP and .ESC must be the control keystrokes themselves (not their
character symbols).

Any tool can be activated at any time, except the mouse is inactive (and invisible)
when a request line has been started and is not yet finished (or discarded).

Some operations elicit textual responses or send messages, appearing in the response
line. Such responses remain visible until the next response or message, or until the
end of the next request line, whichever comes first.

13

2.1. Miscellaneous

.END

Terminates program run.

.DEL

Restarts the program, restoring initial values, except attached request files / libraries
remain attached.

ERR ¢

Sets error notification condition: requests in error appear in the response line and
suspend program execution—for bit 0 set if coming from console, for bit 1 set if coming
from request file. To skip, strike S or s: the request will be forgotten and execution
resumes; any other key terminates program run. Errors not to be notified cause
a short beep, get skipped, and run continues. Undefined control keys act as .ETR,
adding only the beep (no notification is given). Initial value is 3.—Structural errors
in library routines get notified unconditionally; the choice here is between skipping
the culprit or exiting the library call altogether.

.cFO7

Shows (coherent) date and time; date also goes to @x as days since 15 Oct. 1582, time
to @y as hundredth of seconds since midnight.

.cF08

Converts the contents of @x (interpreted as with .cF07) to year / month / day, and
puts year in bytes 3—2, month in byte 1, day in byte 0 of @y.

.cF09

Informs of the free space available (for library and request-file attachment and picture
saving); space is given in bytes. Space goes to @x, the number of pictures that can
be saved, to the low byte of @y.

SYS command

Calls DOS to execute command, which may be anything it can execute (including
the running of programs). Normal screen handling is not restored, so if DOS is going
to write something, this will be illegible, and will, moreover, destroy screen contents.

SYST command

The same as SYS, except the screen is saved / restored and DOS finds its normal
working conditions (those that prevailed before the start of picture).—Screen saving

14

requires as much space as saving two pictures. If less is available, it asks the console
whether to go on or not; if going on, it will orderly execute but the Backyard, and
possibly also the Yard, will be empty at return.

SYSTEM command

The same as SYST, except it waits for (any) keystroke after returning from DOS and
before restoring the screen.

% anyvthing not containing a ;

Comment, extending till the next ; or (if no ;) till the terminator; the terminator
remains functional (is not “commented out”).

.cF01

Help, offered in the Backyard. Requires the file picture.hlp to be present in the
DOS directory wherefrom picture is being run. (When picture gets renamed. the
help file has to be renamed the same way, appended with the extension .hlp.)—The
program saves and restores the Backyard; if unable, asks the console as to what to do.

2.2. Numbers & Texts

Number Operations:

Recall that number constants must fit into the range [—23!, 423! — 1], and are written
either as possibly signed decimals or as hexadecimals prefixed with a colon.

Number variables are initially 0. @x, @y and the low byte of @z are also set by some
non-arithmetic requests; the higher bytes of @z are extensively used to convey program
control information.

There are two number stacks, each 256 deep: one for the use of library routines, called
the ‘library stack’, one for everything else, call it the ‘plain stack’. Routines cannot
push / pop on the plain stack, nor non-routines on the library stack, but otherwise
both stacks can be accessed from everywhere. $n refers to elements on the plain
stack, &n, to those on the library stack, with n a number specifying the position of
the element in the stack. stack top being 0; $"n and &"n count the position from the
stack bottom.

In what follows, variable will mean any of the @a—@z, or a reference to them by
QA—QZ. or $n. $"n. &n, &"n.

The push / pop opeartions are as follows. The stack (plain or library) affected by
them depends on the caller. Causing overflow or underflow counts as ‘error’.
+z or Tx

z is a number constant or variable: it gets pushed onto the stack. Bit 8 in @z is set if
successful. cleared if not (stack full). When @z is being pushed. it is first pushed, then
set. If z is relative to the top of the same stack that is being changed, the reference
relates to the pre-change state.

~w or | &

z is a number variable: the stack top gets popped into it. A reference to the same
stack again relates to the pre-change state (a reference to the stack top is perfectly
legal, but the popped contents will be lost).

T

z a number constant or variable: the stack pointer gets changed by that amount.
The elements gained by increasing the pointer have indefinite contents (remnants of
previous stack operations).

.cF06

Informs of the stack load (= number of clements stacked), plain stack going to @x,
library stack, to @y.

L6

Arithmetic:

T op Y
z is a number variable, y is a number constant or variable, op is one of the following.

=~ the value of y to go to z;

+= - r+y to go to x;

-= - 1 —y togo to z;

¥= - z Xy togotoux;

/= - |z/y] to go to z (“integer division”: z -+ y);

%= — z mody to go to z (“modulo”);

&= - Ay togotox (“and”: bitwise mod 2 multiplication);

= — zBytogotoz (“xor”: “exclusiveor”, “antivalence”, “symmetric difference”,
bitwise mod 2 addition);

|I= - zVytogotoz (“or”: “inclusive or”);

<K= - z x 2¥ to go to x (“left shift”);

>>= — [z x 27Y] to go to z (“arithmetic right shift”, the sign bit is shifted in).

With shifts, a single < or > is sufficient.

Second operands in shifts are considered unsigned numbers. (With and. xor. or,
number type 1s of course irrelevant.)

Overflow simply overflows; division by zero yields ‘signed infinity’ (that is, the number
with the appropriate sign and max. abs. value). Division rounds in abs. value. (So
(—3) +2 is —1, rather than —2: instead of |z/y| above, sgn(z/y)- ||z/y|] should
have been written.) Modulo adheres to the “mathematical” convention: there are n
residue classes mod n (and. e.g., (—1) mod 3 is 2). mod 0 yields 0.

—231 (= :80000000) makes no sense in certain signed-arithmetic operations since it
has no negative within the value range.

[Integer square root and vector length (“Pythagorean addition”) to be added?]

n

n a number constant: abbreviation for @x = n. (Do not use a + sign; - is OK.)
n,m

n,m number constants, as above: abbreviation for 0x = n; @y = m.

&7

Shows the contents of z in the response line.

Text Operations:

Text constants, as used in text operations, are terminated either by their 80" char-
acter if exceeding that length, or by the end of the request sentence: the semicolon
or the terminator. To have ; in a text constant, give !; (to have !;, give ;).

17

Text variables @0—@9 are initially empty. @9 is also set by some lettering requests.

Texts (constants or variables) may contain references to variables. The ‘expansion’ of
a text is the text with the variable references in it replaced by the current contents of
the variables (in decimal if numeric). Expansion is a single-level process: references
popping up while expanding a reference are not further expanded. @@, $$, && expand
to @, $, &, resp. (Thus, e.g., @@0 expands to @0; a subsequent expansion will replace
this @0 with its contents.) To get a @, $, & that is never expanded, write '@, !$, !&.

u="rv

u a text variable, v a text constant: the expanded text of v goes to u. (A single quote
(apostrophe) is used. Notice that there is no closing quote. If there are subsequent
quotes, they belong to the text.)

u=v

v a text variable: the text in v gets expanded, otherwise as above.

(Notice the subtle difference between, e.g., @ = @1 and @0 = ’@1: if @1 contains.
say, @a, then Qa gets expanded in the first case and is copied as it is in the second.)

U ‘v

u a text variable, v a text constant: compares u unexpanded with v expanded lex-
icographically (according to the character codes) and sets the low byte of @z to 0.
:FF, 1 for ‘equal’, ‘the first precedes (is smaller than) the second’, ‘the first follows (is
greater than) the second’, resp. Only the low bytes are compared (so, e.g., accents
are neglected); colour switches are disregarded.

u~ v
v a text variable.
u 7

u a text variable: shows its contents, character length and pixel width; length and
width go also to @x and @y, resp. Contents are shown unexpanded, but length and
width are given for the current expansion and in the current font.

u
u a text constant: abbreviation for @9 = *u.

Il,u

u a text constant: message, to appear in the response line.

(For using texts in picture lettering, cf. Sect. 2.10.)

18

2.3. Conditionals

Conditional sentences affect the remainder of the request line: if they evaluate true,
the remainder gets executed, if not, not—the line acts as if terminated with .ETR in
place of the conditional. (The remainder of the line may contain further conditionals.)
(Conditionals, too, need a semicolon separator if not immediately followed by the
terminator.)—Conditionals have the form

cond z,y

where x and y are number constants or variables and cond is one of the following:
IFEQ, IFNE, IFGT, IFLE, IFSET, IFCLR; the condition is true if z =y, z £ y, z > v,
z < y, some of the bits set in y are set in z, none of the bits set in y is set z, resp.,
false otherwise. With a zero second operand, IFSET is always false, IFCLR is always
true.

[Instead of “rest of line”, parenthesizing might be introduced.]

(Nobody will ever be tempted to use conditionals from the console; they are intended
for use in request files and routines, cf. Sects. 2.17—18.)

.sF04

Waits for a (single) keystroke from the console (always from the console, even if input
is coming from a file), and puts its ‘concise’ code in @x. The incoming keystroke has
no other effects (not even if a control key).

(This is very obviously not a ‘conditional’. But I couldn’t find any other place to
mention it, and its most natural application is, after all, in asking for decisions.)

19

2.4. Mouse Handling

Mouse positioning can be done (as if by magic) manually—in case program control
is with the console. (Otherwise, manual motion has no effect.) Mouse buttons are
also inactivated while being in the middle of a request line (even if given from the
console).

=z,1
Sends the mouse to z,y, always effective.

= in itself (without arguments)

Shows, in the response line, the position of the mouse and the colour of the pixel at
that location and sets @x, @y to the location and the low byte of @z to the colour.

.sF01, .sF02, .sF03
Equivalent to click left, middle, right button, resp., always effective.
SPEED n

Sets the mouse speed to n “mickeys”, 1 < n < 100; initially 50. (Ineffective with
some mouse drivers.)

SPEED in itself (without argument)

Shows the mouse speed in the response line. (Falsely shown by some drivers even if
setting is effective.)

.sPGD

Hides the mouse symbol; a second . sPGD displays it again.

.sPGU

Changes the symbol into a magnifier (loupe); a second . sPGU undoes the change.

2.5. Colour Selection

/ pal

Selects the palette pal (0 < pal < 7). The initial palette is palette 1.
.cF03

Shows the current palette in the Backyard.

\ pal,col,r,g,b

(Re)defines col of pal to have component brightnesses 7, g, b (0 < pal < 7, 0 < col <
15,0 < r,g,b < 3). The new setting takes effect when the palette gets activated next
(even if it is the current palette that is being modified).—The program expects that,
in every palette, colour 0 is 0,0,0 (black) and colour 15 is 3,3,3 (white). (This is not
enforced, but the screen may look funny otherwise.)

+FLO

Complements (the definition of all colours in) the current palette; the effect is imme-
diate. (Some picture details may become more discernible.—A second .F10 obviously
reverts to the original.)

N coll,col2,col 3

Sets the ‘notification’ colours: col 1 is the colour of the response-line texts and of the
frames of the selected light-buttons, col 2 is the colour of the request-line cursor and
of pixel-boundary marking in grid-magnifications, col 3 is the colour of the clock-time
display. Initially 10, 8, 4, resp.

G col

Selects col as the background colour (0 < col < 15). It is initially 15. (Changing
it does not affect anything that is currently visible; the effects start with subsequent
operations.)

H col

Selects the halting colour; initially 0.

C col or any mouse button or the horizontal arrows .RAR / .LAR
Selects the drawing colour; initially 0.

X coll,col2

Changes pixels of col1 to col2 in the Yard.

21

Y coll,col?2

Mixes pixels of col1 with col2 in the Yard: col 1-pixels having even coordinate sum
turn to col 2.

Z col

Blinks pixels of col on the screen (not only in the Yard); until the next keystroke if the
request i1s coming from the console (the character gets discarded), for 1 sec otherwise.

.cF05

Counts the pixels in the Yard having the current drawing colour, and puts the count
in @x.

(S]
| S]

2.6. Line Type Selection

S [or mouse buttons

Selects the line type (stroke) I (0 < [< 2); the line-type symbol in the upper left
corner gets changed by the mouse: the left button increases, the right button decreases
the type cyclically. Initially, the type is 1.

2.7. Action Mode Selection

Action modes specify the effects of mouse button clicks (and their control-key and
symbol equivalents) when the mouse is pointing into the Yard or the Backyard. (They
don’t affect mouse operations when the mouse points outside, nor non-mouse opera-
tions.)

Action modes are represented by the symbols in the vertical array at left; they are
numbered 0 to 15 from bottom to top.

M mode or any mouse button or the vertical arrows .UAR / .DAR

Selects the action mode; initially 0.

2.8. Drawing

«FO1

Clears the Yard, that is, sets it to the ground colour g.

.F02
Clears the Backyard to g.

Drawing is done in the Yard or in the Backyard, whichever the mouse happens to point
to, on whatever happens to be there: nothing, result of previous operations, pictures
coming from extraneous sources, etc. The reference point is the pixel pointed to by
the mouse. If the mouse is outside those regions, nothing is drawn, and no drawing
can continue outside the region it started in (no harm is done in trying, and drawing
gets resumed when returning to the region: drawings get “clipped”).

Drawing starts from the reference point. Drawing can be done either by manu-
ally moving / clicking the mouse—cases (i)—(iii) below—or by request sentences—
case (iv). While drawing manually, mouse clicks cannot be replaced by control keys
or their symbols. (Evidently, files can only draw with explicit requests: case (iv).)
While the mouse symbol is hidden or is a magnifier, manual drawing is disabled.
[This can be reconsidered.]

The current line type is used.
Colouring has the following variants.
Paint: set the colour of the affected pixels to c, the current drawing colour.

Stain: set the colour of the pixels to cpl(x) (recall that cpl is the complement, and
x is the xor of c, the drawing colour, and g, the background colour).

Mark: xor the colour of the pixels with x itself.
Erase: set the colour to g, the background colour.

Notice that marking is a reversible operation, meaning that executing it a second time
undoes the effect. (Erasing does not necessarily revert the effect of drawing: drawing
may have changed pixels that have had colours different from the background.)

The following operations are available.

(1) Select mode 0:

A line (curve) is drawn along the path of the motion of the mouse as long as a button
is being held down.

The left button paints, the middle button stains, the right button erases. Erasing is
always done with line type 2 (irrespective of the current type).

Lines of type 2 are bloated.

(ii) Select mode 2:

Draws a straight line segment, starting at the location of the first click and ending
at the second one (showing in the meantime a segment connecting the starting point
and the current mouse location).

The left button paints, the middle button marks, the right button drops the segment
(instead of erasing anything). It is the second click that decides upon what happens
(the first click can be done with any button).

Lines of type 2 are cut.

(iil) Select mode 3:

Like (ii) but draws a rectangle with one vertex at the first click and the opposite
vertex at the second click.

Lines of type 2 put the fat on the outside.

(iv) Drawing requests (acting irrespective of the current mode setting):

P

Paints a point at the current mouse location z,y.

Q
Like P but marks.

L dz,dy

Paints a straight line segment connecting the mouse location z,y with z +dz,y + dy,
endpoints included.—L 0,0 1s a point.

Lines of type 2 are cut.
K dz,dy
Like L but marks.

Ar,f,t

Paints a circular arc counterclockwise around the mouse location, with radius r,
starting angle f and ending angle ¢, f and ¢ are in degrees.

[This is not yet really implemented, since it uses the “official” arc drawing facilities
that have a lot of shortcomings. Moreover, the form of the request itself ought to be
reconsidered: Preferably, the current location might be the starting point of the arc
(rather than its centre), and, instead of the radius, an arc definition based on a Sabin-
type “bulge” might be introduced (which, in contrast to the definition involving the

26

radius, i1s numerically more stable, and enables, within the number representation,
the definition of all arcs that are drawable). Instead of “exact” interpolation, a
Bernstein-type approximation could be implemented (excellent!).]

Ey.f.t.a8

Paints an elliptical arc, defined as a distorted circular arc: the horizontal extension
of the circular arc as given by the first three arguments is unchanged, its vertical
extension is magnified by d, given in percents (100 means undistorted).

[The same reservations apply as to circular arcs.]
B bx, by, cx, cy,dz, dy

Paints a third-degree Bernstein arc (‘Bézier spline’) connecting the mouse location
z,y with = 4 dz,y + dy, the ‘control points’ having coordinates z + bz,y + by and
z + cx,y + cy. (Again, B with all-zeros is a point.)

Lines of type 2 are cut.
(There is a “tutorial” request file bezier.prq to experiment with such arcs.)

(Definitions of Bernstein arcs and chains of them will probably seldom if ever gen-
erated manually. To get a taste of their application for similar purposes, the best
source | know is D. E. Knuth’s “Metafont”, where, among other things, methods of
automatic control-point generation are discussed. Incidentally: Metafont’s “tracing”
capabilities enable the production of character-format files wherefrom Bernstein arc
/ chain definitions can be generated for the present program.)

[Or: the methods can be stolen and implemented directly. Since, in the currently
planned applications, Bernstein arcs are likely to be applied in producing some basic
pictures but not in the everyday manipulations on them, it is, at least, not urgent to
incorporate those methods in the program itself.]

01

If 2 > 0, the parameter space is to be partitioned into ¢ equal-length intervals while
generating the next Bernstein arc; s < 0 leaves alone / restores ordinary working.
(Normally, the program chooses its steps automatically; this can be overridden by 0
for a single arc. 0 1 might improve, or not, upon smoothing; on the other hand, small
values of ¢ produce a polygonal arc with vertex points on the Bernstein arc. High
values may cause overflow and draw mock Chinese characters.)

[A good question: Should L, K, A, E, B reposition the mouse into the ending point?]

27

2.9. Tagging

The symbols of modes 4—11 are called tags (or markers).

When in one of those modes, a mouse click puts the symbol into the Yard or Backyard;
the midpoint goes to the reference point.

With line type 0 or 1, tags are drawn as shown; with type 2, strokes are tripled.
Left paints, middle marks, right erases.

[Tag symbols can be redesigned like characters.]

2.10. Lettering

A character has a width w, a height & and a depth d; w may be different for different
characters, h and d are defined the same for all characters of a font. (w x (h + d)
is a sort of enclosing rectangle; the ‘black’ of the character needn’t span the whole of
its measurements.)

In horizontal mode, when a character gets placed to a pixel position, its A extends
upwards from that pixel, including that pixel; d extends downward, excluding the
pixel; w extends to the right, including the pixel. (So the rectangle of a character
placed at z,y extends over the horizontal pixels z to z + w — 1 and the vertical pixels
y—dtoy+h—1.)

Upper / lower accents may add to the vertical sizes, this, however, is not a fixed
amount: accents are placed higher or lower according to the ‘black’ of characters.

In vertical mode, read left for upward, right for downward, upward for right.

Only the pixels to hold the ‘black’ points of characters get recoloured in the picture,
the rest remains untouched.

Font 0 has w = 8, h = 12, d = 3; accents add either 4 pixels to A or 3 pixels to d in
the worst case.

Font 1 has w =8, h = 7, d = 1. with accent excesses 3 / 2.
[The planned font 2 will have w variable-size, h = 5, d = 2.]

(This is not the whole story; characters have a lot of other parameters: e.g., “step”,
which equals w for the fonts above but can be different, ete. For more detail, consult
the character-design program.)

*f

Sets the font (0 < f < 7). [Only 0 and 1 make sense now.]
.cF04

Shows the current font in the Backyard.

— ’text

Puts the expanded text constant into the picture, writing horizontally, starting from
the pixel pointed to by the mouse.

| text

The same but vertically.

In modes 12 and 13, texts are inserted in the Yard or Backyard at mouse clicks:
horizontally for 12, vertically for 13.

29

A mouse click prompts for inputting the text, in the request line, terminated with
.ETR (or any other terminator); editing is possible as long as unterminated; the text
goes to the picture after termination. No quote is to be given at the beginning, and
a semicolon can be written as it is (without !-prefix). The text gets expanded.—It
will be painted if the button was the left one, marked if middle, erased if right.—The
text going to the picture goes also to @9. If @9 is referred to, it is first used, then
overwritten.

[Should the mouse be shifted to the position following the end of the text?]

30

2.11. Filling (Flooding)

Filling is done in mode 1.
It starts from the Yard or Backyard pixel pointed to by the mouse.
Two methods are available.

(1) Filling proper: All neighbours and neighbours-of-neighbours that have the same
colour as the starting pixel get recoloured (any colour different from it, including the
filling colour itself, bars colour propagation).

(ii) Flooding: Everything gets recoloured until neighbours having the halting colour
h stop the process.

In both cases, neighbours are the pixels that share an edge (so horizontally and
vertically adjacent pixels are neighbours, diagonally adjacent ones are not).

(1) is soft-coded and comparatively slow. (ii) is an “official” benefit, quick but defect-
ive: it does not correctly flood regions that have complicated shapes, cannot be
orderly clipped, and is able and willing, in some circumstances, to bring the computer
to a standstill. (It is real fast and it is often handy, so it has been included in the
program. But be careful to minimize losses when trying it under previously untested
conditions.)

Left button starts (i) with colour ¢ (it “paints”).

Middle button starts (i) with cpl(x) (it “stains”).

Right button starts (ii) with c.

(1) can be stopped in midtime by hitting any key (the character gets thrown away).

(Notice that. as a consequence of the definitions, lines of type 1 and 2 can themselves
be filled, lines of type 0 not necessarily—in fact only if they are composed of axis-
parallel segments; filling is revertible / recolourable if and only if the filling colour
was different from the limiting colour(s).)

31

2.12. Magnification & Pixelwise Modification
In modes 14 and 15, (clippings from) the picture in the Yard can be magnified into
the Backyard; pixel alterations in the magnified picture modify the original.

Mode 15 shows the pixel boundaries, mode 14 does not.

Um

Sets the magnification, 2 < m < 32 (can be 1 in mode 14).

If the mouse is in the Yard, a click (any button) magnifies its surrounding; if it is in
the Backyard, left paints, middle stains, right erases the pixel; immediately clicking
again at the same pixel reverts to the previous state (the state “alternates”).

2.13. Filtering

Filters operate in the Yard.

Two kinds of filters are presently available, both perform “contour” operations:

.F08 and .F09

They retain the boundary pixels of the picture and clear (set to g) the rest. A
boundary pixel is a pixel that has a neighbour of a colour different from its own. For
.F08, neighbours are the pixels that meet in an edge (that is, the four pixels that
are horizontally or vertically adjacent); for .F09, pixels meeting in a vertex (that
is, the four diagonally adjacent ones) are also neighbours. At the Yard’s periphery,
there are no outside pixels. (More accurately: Imagine the Yard surrounded with
replicas of its horizontal and vertical edges, joining in the replicas of its vertices, and
work in that enlarged area. This obviously is an unambiguous construction, yields an
unambiguous decision for the pixels inside, and amounts to what has been said.)

[Other filters could be added, e.g., for contrast enhancing, smoothing. mixing, and so
on. (Even the simplest 3 x 3 matrix filters can do amazing things.) It is not yet clear,
however, what kinds of filters will turn out useful. Eventually, some fairly general
filter definition formats ought to be given, enabling the incorporation of additional
filters ad libitum.]

(For another type of filtering, cf. F below.)

33

2.14. Comparing

.F03
Copies the Yard into the Backyard.

.Fo4

Produces the pixelwise xor of the Yard, the Backyard and white (:F), and puts it
into the Backyard. (Notice that doing it a second time reverts the effect.)

.F0O5

Like .F03 but in the opposite direction.

.F06

Like .F04 but in the opposite direction.

CFO7

Exchanges the Yard and the Backyard. (Exercise: How can this be done without
using .F07 7)

The most refined operation is

F f,o

executed between the Yard and the Backyard, the result going to the Backyard.
f and o may be given in any order, either or both may be missing.

f is the ‘filter’, specifying the ‘colour components’ of the pixels in the Yard that
participate in the operation:

missing or :0 or :F — all components;

:1—:F — the components for which the bit positions set in f are set in the colour
number.

o is the operation between the ‘permitted’ components of the Yard and the (unfiltered)
components of the Backyard:

missing — plain copying (the Backyard components play no role);

~or N - the complement gets copied (Backyard has no role);

& or A — the and of the two;

| or 0 — the or of the two;

A or X — the xor of the two;

@ or C — the xor of the two, xor’ed with white.

When using the letter symbols, separate them from F by a space.
(So F in itself is equivalent to .FO3, F @ is equivalent to .F04. F” is also reversible.)
[Maybe “white” ought to be altered to g.]

34

2.15. Saving / Restoring

.PGU

Saves the current contents of the Yard into free memory (if there is enough to hold
it). Bit 9 in @z is set if successful, cleared if not (no space).

.PGD
Restores the Yard from what has been saved in memory.
Saving / restoring is “stacked”: the picture saved last gets restored first.

(Saving the Yard into a file, cf. next sect., has no such restrictions but is somewhat
slower and more circumstantial.)

35

2.16. Picture Fliles

> file

Puts the picture from the Yard into file: creates the file if it does not exist, overwrites
it if it exists. If no extension is given, .pic is appended. file can be a text variable.
Bit 10 in @z is set if successful, cleared if not.

< file

Puts the picture from file (produced by > file or by some extraneous process, e.g., a
digitizer program) into the Yard. If no extension is given, .pic is assumed. file can
be a variable. The file name is shown in the top line of the screen. @z as above.

< in itself simply cancels the reference to a previous picture. (@z unchanged.)

The physical format of picture files is as follows (no need to know).
They have a 64-byte header:

:00—:07 SG - signature,

:08—:1F NN — anything,

:20—:2F DL - directory link,

:30—:33 SZ - size in bytes, counted from byte :30,

:34—:37 CD - coding method,

:38—:3B CP — compression method,

:3C—:3D WD - picture width in pixels,

:3E—:3F HT - picture height in pixels.

In multibyte numbers, higher bytes precede lower ones (in contrast to the PC).
Settings for the present format are:

SG — PICTURE#,

NN — zero (may contain information for / by extraneous handling programs),
DL - zero (reserved for more complex file formats to come),

SZ — as it happens to turn out,

CD - :012220C4,

CP — :00000044,

WD — 296,

HT - 376.

From :40 till the end, the body is encoded:

With this CD and CP, pixels are packed, left to right in a row and rows from bottom
to top, as follows.

In each byte, bits 7—4 contain the colour number, bits 3—0 contain the repetition
factor minus one. Rows are not straddled by counts (a new row starts a new byte).

[Complications may be added: Loading / storing of clippings (rather than of whole
pictures), picture transformations while loading, etc.]

36

2.17. Request Files

[file

Loads a request file and executes it. If no extension is given, .prq is assumed. file
can be a text variable. Bit 11 in @z is set if successful, cleared if not.

Another [file during request file execution kills (discontinues and closes) that file
and starts the new one. A [in itself merely kills, and it does not affect @z.

(Notice that this arrangement enables ‘chaining’ of files: they may start one another,
but there is no ‘return’; ‘back-call’ is possible of course. [A ‘call / return’ discipline
is implementable.])

File execution survives a .DEL, and a file itself may issue .DEL (not forgetting that it
clears all stacks and variables).

Request files can be written on any editor capable of producing a ‘character file’ (and
not putting in extra printing etc. instructions); ‘verbose’ coding is used.

They can contain any requests / terminators listed above (except .BSP and .ESC make
no sense and act as .ETR).

In addition, the following ‘program control’ constructs are available.

Moy ie AN

Starts / ends a cycle (loop). Cycles can be nested (to a depth of 32); exceeding the
nesting depth results in termination of file execution and closing the file; bit 31 in
0z gets set. Multiple .LVC’s are permitted: each executed .LVC exits a cycle level.
A supernumerary .LVC acts as an .ETR with a beep. (The cycle stack is maintained
separately from the number stacks; so cycle structure and number stack dynamics
are not bound to respect each other.)

.RPT

Jumps to the request line immediately following the topmost .CYC (the one on top of
the cycle stack, that is, the .CYC of the innermost cycle it is in). A cycle may contain
any number of .RPT’s. An .RPT that is not inside a cycle jumps to the beginning of
the request file.

label :

(No spaces before the :.) Marks a target location to ‘go to’; label is any name. Mul-
tiple use of the same label name is not inhibited (but is signalled); later occurrences
override former ones.

Al

Goes to II, Il being a label name or a text variable containing a label name.—Can
also be used from console.

.FIN

Kills the file. End-of-file counts as .FIN. Bit 31 in @z gets set.

Input from file and from console can be intermixed arbitrarily:

Any keystroke coming at any time from the console

Takes over control from the file at the end of the current request line, and starts (or
is) a console request. Mouse buttons (do not take control but) halt file execution as
long as held down (mouse position does not change).

.BRK (from the file)

Hands over control to the console. Bit 30 in @z gets set.

.TAB (from the console)

Causes the file to resume control.

.sTAB

Another way to kill the file (to be used from console or a routine). Bit 31 in @z is set.

.ECX

Echo switch: At starting a request file, requests coming from it do not appear in
the request line, nor do program responses in the response line. .ECX changes to
echo mode (this might make sense for checking purposes), a second .ECX revokes it.
(Console input is always echoed.) Messages are shown in either mode.

.8F01—.sF03 in mode 12—13 (prompt for picture lettering) prompts the person at
the console. (For lettering from the request file, use _ or |.) If terminated by . TAB,
the file regains control; otherwise, control remains with the console.

The request file is executed from disc, merely label / cycle information is hashed /
stacked in memory. The file gets closed at execution completion.

*

A request file named pictdemo.prq may have been placed in the DOS directory
where picture is being run. If such a file is present, and no library is attached to
the program, .INS starts that file. (If a library is attached, .INS acts differently, cf.
below; it is for the library to provide demonstrations or not.)

38

2.18. Libraries

{ file or { filel,file2

Builds a (single) library from the library file(s). If no extension is given, .prl is
assummed.

The file(s) can also be given at program start in the parameter list to picture (with-
out the {).

Another { with argument(s) drops the library and builds the new one. A { in itself
merely drops it.

Library attachment survives a .DEL; a routine itself may issue .DEL, but argument,
cycle and stack structures (if any) will break down (so do not do it from some obscure
recess of an intricate Gaudi-style edifice, in lack of a safe escape).

Library files can be written the same way as request files.

A library consists of routines (routine definitions). It may contain up to some 6000
names, otherwise its size is not restricted (unless by memory space).

Routine call is the routine name, followed by its arguments (if any); the format is
the same as with ordinary request sentences.—Nine routines may get (in addition
to calling them by name) one-keystroke activators: .aF01—.aF09 can be defined to
call a routine. (.aF10 is reserved for esoteric purposes.) This is mostly intended for
argumentless routines; if there are arguments, they are considered 0, except simulta-
neously pressing s sets the first argument, c the second argument to 1. Activators
act also as terminators.

A routine can be defined to have up to 9 arguments, possibly none. Routine arguments
can be number constants and variables and text variables (not text constants and not
terminators), and cannot be used in place of the operation code (e.g., an argument
being a text variable containing ifeq cannot be used as ifeq).

(Routines can of course use values in any way, without making them formally into
‘arguments’.)

Routine bodies may contain any request sentences / lines, including routine calls.

The following constructs are available (in addition to those already mentioned).

routine|n:

(No spaces around the | and before the :.) Routine definitor, to be followed by the
routine body; n is the number of routine arguments (0 < n < 9). routine must be a
name different from the names used for ‘basic’ requests (e.g., ifeq is not accepted as
a routine name). The body ends at the next routine definitor or at the end of the file.

n: routine

(No spaces before the :.) .aFon (1 < n < 9), with s, c possibly also depressed, is
to activate routine.

39

#m

(No spaces after the #.) Reference, in the routine body, to routine arguments, 1 <
m <n. (A # within a text string is not considered an argument reference.)

.RET

Return from routine. Body end implies a .RET even without saying so.

JXIT

Exits, meaning return not only from the current routine but also from all its direct
and indirect callers.

label: and * 1l

As with request files, but pertains here to the library (no relation to possible identical
names elsewhere, not accessible to jumps from outside and unable to jump outwards).
Label names may conflict with everything except routine names; a routine name is a
legitimate target of a ‘go to’: jump to the routine start. (Notice that a label seemingly
preceding a routine definitor belongs, according to the above rules, to the body of the
previous routine. A label may of course immediately follow the definitor.)

.CYC / .LvVC / .RPT

This, too, is local to the library; a separate stack is maintained for them (also 32
deep). (Cycles in routines and cycles in request files have no relation to each other.)
An .RPT without a corresponding .CYC is not defined here.

.BRK (from a routine)

Re-calls the caller (console or request file, as the case is); clears bits 31—16 (the two
highest bytes) in @z. (Bits 23—12 are never set and bits 15—12 never cleared by
the program, nor will be by later extensions; they can be used at the customer’s
discretion.)

.INS (from the console or a request file)

Returns from a re-call to the re-calling routine; sets bit 29 in @z. (When no library
is attached, .INS starts a demo file.)

A .BRK from a request file, if given in a re-call, also returns to the routine. (So a
request file needs no knowledge of who it is communicating with, whereas the routine
can know it.)

When a routine prompted the console for picture lettering, both . INS and . ETR return
to the routine.

.sINS (from the console or a request file)

Exits (causes to .XIT) the current routine.

40

{

Given from within a routine (with or without arguments) exits everything before
executing.

LcF02

Shows library names and activators in the Backyard.—Saves and restores the Back-
yard (if unable, asks the console, whether to proceed).

Multiple use of the same name is not inhibited (but is signalled); later occurrences
override former ones.

At call, the number of arguments need not conform with the definition: they are taken
in order, and if less, missing arguments are considered 0, if more, supernumerary
arguments are simply neglected.

Routines may call each other and themselves to (practically) any depth. (The “of-
ficial” stack is used; if the depth happens to be exhausted, increase that—yet the
probable cause is an endless recursion.)

Re-call is confined to one level. (So a routine called from within a re-call cannot itself
re-call again.) Prompt for picture lettering, as well as asking for a keystroke, does
not count as re-call.

No request file can be started from a re-call. (But of course the routine can be induced
to start the file after the re-call, or the file can be started beforehand.)

Go to’s and cycles are permitted to hop around between different routines. (This,
however, is a risky business.) '

All errors in routine definition and usage prompt the console to choose between ‘skip’
and ‘exit’.
The library is built and stored within memory; the defining file(s) will be closed

immediately.

(The functional picture behind this is as follows. A customer might want access to the
tested-and-proved, time-honoured routines of the application, and, at the same time,
routines for his / her / its favourite keystroke sequences, for one-time arrangements,
and for experimentation; the ‘personal’ routines possibly partly replacing / overriding
the ‘institutional’ ones.—Anyhow, applications ought to have conventions as to access
procedures, name usage, saving or not of variables, etc., etc.)

[Consider the following variants.

Using a programmed stack, rather than the official one, for routine nesting. (Unfor-
tunately, DOS does not behave intelligently at stack overflow.)

Multi-level re-call.

41

Label range local to routines.
Strong argument checking (less comfortable but more foolproof).
Removing the restrictions on arguments.

Smaller limit on the number of arguments (say 3 instead of 9—slightly reducing the
processing costs).]

42

Appendix. Process Interleaving

With programs like this, it is often desirable to be able to run other processes in
parallel: make a hard-copy, search in alien databases, run statistics, and the like.

A PC is not a real multiprocessor (not under DOS, not under Windows). But it can
be made look “as if”.

In addition to more complicated solutions, the program offers a very simple way to
bind it into any bunch of concurrent processes: Its executive routine, exec, executes
at every call a single request line, then returns. So, instead of running the program
itself, its exec can be run from anywhere, interleaved with anything.

The exact details are as follows.
The only file to be #include’d is pictools.h (it brings the rest).
The main of the stand-alone program is

if (init(argc,argv)) return(l);
while (exec()) ;

finish();

return(0) ;

Now, rather than running it as it is, call its components from whatever controls the
program flow:

Once init has been (successfully) executed, exec can be activated at wish; it returns
0 for .END, 1 for everything else. When enough of it, finish. (Re-init after finish
is permitted.)

init goes to graphics mode and grabs the screen; finish releases graphics. Con-
current processes may access the screen if they know what they do (and even if they
don’t); they may save-and-restore it or leave visible traces or drop the current graphics
mode altogether.

To supply an additional or alternate input source, say, newin, execute at any time
extrin = newin. If no longer needed, drop it by extrin = dummy. newin has to be
a function with one int argument, returning an int. The argument value is of no
interest. (It is zero when called before request line start, non-zero afterwards.) The
function shall return zero if willing to give precedence to other input sources; it will
be called again later. When wanting to have a go, but having nothing to send, it shall
return :FF, which maintains rights and elicits repeated calls. When wanting to send,
it shall return :FE, which will be dropped, and start issuing ‘veritable’ (non-zero and
non- : FE—:FF) characters, these will be taken at face value until line termination. The
line must terminate. (If zero is to be given, which is never the case, give : 7F instead,
which is anyhow what the outcome is.) For the next line, newin will be called first, so

43

it may maintain precedence and continuity. Both concise and (hence) verbose coding
may be used.

No control-transfers (go to’s, cycles) are feasible in newin. (Routine calls and re-calls
are possible of course, even depending on conditions.) .BSP, .ESC act as .ETR.

.DEL is survived by newin.

[An added degree of freedom could be: Make exec call arbitrary extraneous functions,
periodically or at request. Do we need that?]

44

Request Summary

(Visible screen symbols are not listed; they have been felt self-explanatory. Mouse
actions are too multifarious to be summarized here; remember this much: left paints,

middle stains or marks, right erases or drops.)

Bracketed numbers refer to subsections of Sect. 2.

; — request separator [0] u or , — argument separator [0]

.ETR - request line terminator [0]

.BSP, .ESC — editing keys [0]

.END — program end [1]

.DEL — program restart [1]

.FO1 - clear Yard [8]

.F02 — clear Backyard [8]

.FO3 - Yard — Backyard [14]

.F04 — Yard xor Backyard xor white — Backyard [14]
.FO5 - Backyard — Yard [14]

.F06 — Yard xor Backyard xor white — Yard [14]
.FO7 — Yard < Backyard [14]

.F08 — contour filter, four neighbours [13]

.FO9 — contour filter, eight neighbours [13]

.F10 - complement the palette [5]

.sF01 — = left click [4]

.sF02 — = middle click [4]

.sF03 — = right chck [4]

.sF04 — wait for keystroke, set @x [3]

.cF01 — help [1]

.cF02 — library contents [18]

.cF03 — display current palette [5]

.cF04 — display current font [10]

.cF05 — count pixels of current colour in the Yard, set @x
.cF06 — stack load, set @x, @y [2]

.cF07 — date and time, set @x, @y [1]

.cF08 - convert date, set @y [1]

.cF09 - inquire free memory, set @x, @y [1]
.aF01—.aF09 [+ s, c| - routine activators [18]
.RAR / .LAR - drawing colour selection [5]

.UAR / .DAR — action mode selection [7]

.PGU - save Yard (to memory), set @z [15]

.PGD - restore Yard (from memory) [15]

45

(5]

.sPGU — mouse symbol switch [4]

.sPGD — mouse visibility switch [4]

.INS (if no library) — show demo [17]

.INS (with library) — return from re-call, set @z [18]
.sINS — escape from routine [18]

.TAB - hand back control to request file [17]

.sTAB — abandon request file, set @z [17]

.BRK — hand over control to / re-call console, set @z [17,18]
.FIN - end of request file, set @z [17]

.ECX — echo switch [17]

.CYC - cycle start [17,18]

.LVC — cycle end [17,18]

.RPT - cycle repeat [17,18]

.RET — return [18]

XIT - exit [18]

= z,y — mouse positioning [4]

= (without arguments) - inquire mouse position / pixel colour, set @x, @y, @z [4]
SPEED n — mouse speed [4]

SPEED (without argument) — inquire mouse speed [4]
S [- line type [6]

\ pal,col,r,g,b— palette colour definition [5]

/ pal — palette [5]

N col 1, col 2, col 3 — notification colours [5]

G col — background colour [5]

H col - halting colour [5]

C col — drawing colour [5] s
X col 1, col2 - change col 1 to col2 in the Yard [5]

Y coll,col 2 — mix col 1 with col2 in the Yard [5]

Z col - blink col on the screen [5]

P - point [8]

Q — point, marked [8]

L dz,dy — straight line segment [8]

K dz,dy — straight line segment, marked [8]

Ar, f,t - circular arc [8]

Er, f,t,d - elliptical arc [8]

B bz, by, cz,cy,dz,dy — Bernstein arc [8]

0 ¢ — override the interval number for the next Bernstein arc [8]
M mode — action mode [7]

* f —font [10]

_ ’text - horizontal lettering [10]

| ’text — vertical lettering [10]

U m — magnification factor [12]

F f,o - filter-and-mix [14]

> file — store Yard to file, set @z [16]

< file - load Yard from file, set @z [16]

< (without argument) — drop current file [16]

[file — execute request file, set @z [17]

[(without argument) — drop current request file [17]

{ file or { filel,file2 — build library [18]

{ (without argument) — drop library [18]

any keystroke — take over control by console [17]

label: —label [17,18]

Ml - go to Il (constant or variable) [17,18]

routine [arguments| — routine call [18]

routine|n: — routine definitor [18]

n: routine — routine activator definition [18]

#n — argument reference [18]

cond z,y (cond = IFEQ, IFNE, IFGT, IFLE, IFSET, IFCLR) — conditionals [3]
@a—0z, @QA—Q@Z — number variables / references [2]

$n, $"n / &n, & n - plain / library stack references [2]

+ z or T ¢ — push number constant or variable, set @z [2]

-z or | z — pop to number variable [2]

~ x — alter stack pointer [2]

=, +=, -= x= [= = &= "= |= <<= >>= 7 - arithmetic operations [2]
n — shorthand for @x = n (n a constant) [2]

n,m — shorthand for @x = n; @y = m (n and m constants) [2]
@0—@9 — text variables [2]

=, 7, ? - text operations, ~ sets @z, ? sets @x and @y [2]
‘u — shorthand for @9 = v [2]

"u — message [2]

SYS command - call DOS [1]

SYST command — call DOS, restore everything [1]
SYSTEM command — call DOS, restore and wait [1]
ERR ¢ - errors to be notified [1]

% anything — comment [1]

47

