MACTOR
Matrix / Vector Handling

May 1989

This is a C function set, providing fast 16-bit scalar / vector
/ matrix arithmetic in two and three dimensions (typically, for
graphics applications).

Entities

An element (or co-ordinate, or component) is represented as a
16-bit two's-complement fixed-point number with the point before
the 12" ..., 9*R binary digit; its place is given in the com-
pile-time parameter fixpnt. The minimum and maximum values re-
presentable are 0x8001 and Ox7FFF, resp., interpreted according
to fixpnt. O0x8000 is accepted as operand vyet never produced as
result. Overflow results 1in the corresponding extremal value
(signed "machine infinity"). Division by zero is handled as
overflow.

Two- and three-dimensional vectors and matrices are arrays con-
sisting of 2, 4, 3, 9 elements, resp.; matrices are ordered row-

wise. Positive rotation is ccw: three-dimensional space is
right-oriented.

Types

The following types are predefined.

elem is a 16-bit signed integer quantity (normally a short), re-
presenting an element.

scalar, vector, matrix, vect3 and matr3 are arrays of elems (or
pointers to elems) corresponding to the above entities.

Arithmetic

Functions take pointers (or (names of) arrays) as arguments. The
operand is x, or, when two of them, x and y in this order; the
result (if any) goes to z.

Functions return a condition code, which is an elem carrying
this information. Iff any of the result’'s components is negat-
ive, the leftmost (or sign) bit is set; iff any of them is
(strictly) positive, the rightmost (or least significant) bit is
set; iff any of them has overflown, then the bit next to the
rightmost is set. The restly bits are zero. (Thus the condition
code is zero iff all the components are.) (Overflow means over-
flow in the result: whenever a resulting component fits in, it
is correctly computed, even if the mathematical formula defining
the operation seems to suggest that there might have been inter-
mediate overflow.)

Function names are hoped to be self-explanatory; merely such be-
haviour as felt non-obvious is set forth in more detail.

elem stest (scalar x)

elem sadd (scalar z,scalar x,scalar y)
elem ssub (scalar z,scalar x,scalar V)
elem scomp (scalar x,scalar y)

Like ssub without the result (overflow may be set).

elem smul (scalar z,scalar x,scalar y)
elem sdiv (scalar z,scalar x,scalar V)
elem ssqgrt (scalar z,scalar x)

Square-root of negative yields negative of square-root of absol-
ute, and sets overflow.

elem scos (scalar z,scalar x)
Operand in radians. I is represented 0x3244>>(12-fixpnt).
elem ssin (scalar z,scalar x)

Like scos.

elem vtest (vector x)

elem vadd (vector z,vector x,vector y)
elem vsub (vector z,vector x,vector y)
elem veomp (vector x,vector y)

Cf. scomp.

elem vscale (vector z,vector x,scalar y)

elem dot (scalar z,vector x,vector y)

elem cross (scalar z,vector x,vector y)
elem ppend (vector z,vector x)
elem length (scalar z,vector x)
elem unit (vector z,vector x)

A zero vector remains unchanged, with overflow set.
elem cossin (vector z,scalar x)

Yields both cos and sin (in this order). It is faster than com-
puting them separately.

elem angle (scalar z,vector x)

Computes arctan(x[1]/x[0]), result in radians; a zero x yields
zero and sets overflow.

elem mtest (matrix x)

elem madd (matrix z,matrix x,matrix y)
elem msub (matrix z,matrix x,matrix y)
elem mcomp (matrix x,matrix y)

Cf. scomp.

elem mscale (matrix z,matrix x,scalar y)
elem mmul (matrix z,matrix x,matrix y)
elem adjung (matrix z,matrix x)
elem trpose (matrix z,matrix x)
elem trace (scalar z,matrix x)
elem det (scalar z,matrix x)
elem invert (matrix z,matrix x)
elem trform (vector z,matrix x,vector y)
elem strf (vector z,vector vy)

When transforming a sequence of vectors with the same matrix and
no other mactor calls in between, a first call to trform and
subsequent calls to strf speed up the computation.

elem rotor (matrix z,scalar x)

The result matrix rotates the vectors transformed by it; angle
in radians.

elem vtest3d (vect3 x)

elem vadd3 (vect3 z,vect3 x,vect3 y)
elem vsub3 (vect3 z,vect3 x,vect3 y)
elem vcomp3 (vect3 x,vect3 vy)

Cf. scomp.

elem vscal3 (vect3 z,vectd x,scalar y)
elem dot3 (scalar z,vect3 x,vect3 y)
elem cross3 (vect3 z,vect3 x,vect3 y)
elem 1ngth3 (scalar z,vect3 x)

elem unit3 (vect3 z,vect3 x)

Like unit above.

elem mtest3 (matr3 x)

elem madd3 (matr3 z,matr3 x,matr3 y)
elem msub3 (matr3 z,matr3 x,matr3 y)
elem mcomp3 (matr3 x,matr3 y)

Cf. scomp.

elem mscal3 (matr3 z,matr3 x,scalar y)
elem mmul3 (matr3 z,matr3 x,matr3 y)
elem adjng3 (matr3 z,matr3 x)
elem trpos3 (matr3 z,matr3 x)
elem trace3 (scalar z,matr3 x)
elem miv3 (scalar z,matr3 x)

Middle invariant: the one in the co-efficient of the linear term
in the characteristic polynomial.

elem det3 (scalar z,matr3 x)

elem invrt3d (matr3 z,matr3 x)

elem trfrm3 (vect3 z,matr3 x,vect3 y)
elem strf3 (vect3 z,vect3 y)

Related to trfrm3 as strf to trform.

elem rot03 (matr3 z,scalar x)

Rotator around the 0" axis: cf. rotor above.
elem rot13 (matr3 z,scalar x)

Around the 1%% axis.

elem rot23 (matr3 z,scalar x)

Around the 2™ axis.

Note

Where there is no danger of overflow, ordinary C addition and
subtraction may be applied between components; similarly, shifts
and multiplication or division by ordinary C integer-type values
would yield the expected results. This can save time and space.

Conversions

Conversion is between an elem and a double (n o t pointers).

elem sfix (double d)
If not fitting in, signed "machine infinity" is given.

double sflt (elem e)

Structure

The code consists of two files: "mactor.c", which is (absolute-
ly) clean C, and "mactas.c", which comprises everything that is
implementation-dependent. ("mactas" consists of "#define" bod-
ies, comprising about 90 lines of assembler code, chiefly con-
cerned with overflow handling, a thing inordinately expensive if
done in C.) - Presently, the only "mactas" existing is the one
for the IBM PC 8086 Macro Assembler, accepted by Turbo C (tcc,
using -B).

Compilation parameters, placed in the beginning of "mactor", are
fixpnt, spoken of above, and dim3, which in- or excludes three-
dimensional features according to its being non-zero or zero.

To use "mactor", include it in the program to be compiled
("mactor" includes "mactas"). - A feasible usage on PC/XT/AT is
to precompile "mactor" with -B and -c¢ (and maybe some memory
model prescription), forming an obj file +that can be linked;
"mactdc.c" contains all the public declarations needed by, and
to be included in, the program using "mactor™".

Mactor functions must not be used in interrupt routines possibly
interrupting (the same copy of) mactor functions. If such a
working is ever needed, the possibly endangered static variables
X+ ¥, 2z, and ¢ are to be saved.

Size

The Turbo C version including dim3 is about 33 KBytes; without
dim3, 14 KBytes. The size can be very considerably reduced at a

little cost in speed (simply by turning part of the macros into
functions).

Speed

Execution times depend to a certain extent on the operands. As
an orientation, some averages on typical functions with typical
data are listed below, using an AT with Norton performance index
11.7; times are in microsecs.

sadd 25 smul 41 cossin 171 ssqgrt 72
length 106 unit 134 dot 50 Cross 52
mmul 138 det 49 invert 134 trform 81
Ingth3 189 unit3 231 dot3 60 cross3 114
mmul3 360 det3 144 invrt3 655 trfrm3 143

Error accumulation in limited-precision scalar arithmetic is now
a fairly well understood topic, having found its way into com-
puter nursery wisdom, like "independent errors add up to square-

root order", or '"try to avoid small differences of large numb-
ers", or "multiplication/division is comparatively harmless, at
least if done in floating-point rather than fixed-point". With

multidimensional arithmetic, additional subtleties turn up. Per-

haps the simplest example is this. Take a rotator matrix con-
taining sine and cosine values with rounding errors. While ap-
plying it repeatedly, angle errors add up, whereas an error in
the determinant has an exponential effect on sizes. (So it might
be quite sound to make components worse in order to make the
determinant better.) Sometimes, computational stability can be
achieved by simple but rather unconventional methods (such as
"antitruncating", that is, always rounding a w a y from zero);
sometimes, it is inherently lacking. In fact, no comprehensive
theory is available; the best we have is case studies. A rule of
thumb might be this: Anything thot con be computed directly
ought to be computed that way rather thaon through a series of
un-analyzed iterations; "absolute is preferable to relative".
Except when otherwise.

