FIRING-SQUAD PROCESSORS
FOR MULTIPLICATION-PLUS-ADDITION
March 1979
% o= X eoa%X), Y o= (¥, y---Y¥y¥g) ond z = (zz.2.) dre n-
bit two’s-complement (or unsigned) binary numbers. xy+z will

be computed.

The processor accepts the bits of x, y and z in ascending order

at clock times 0, 1, ..., n-1 (bits x,, y,, z, at clock time i)
and replicas of the "sign bit" (or zero bits for unsigned) at
clock times n, n+1, ..., 2n-1. It produces the bits of xy+z in

ascending order at clock times 1, 2, vy 2R
So xy+z is computed in at most 2n+1 clock times; the result may
begin to flow into a subsequent process with 1 clock time delay.

It follows that processors can be parallelled to compute scalar
products of k-dimensional vectors in 2n+k clock times, and fur-
ther porollelled to multiply-and-add k-dimensional matrices in
the same time.

The processor is an array (a "squad") of machines ("soldiers"),
having all the same structure. The next state of each machine
depends on its current state and on that of its two neigh-
bours. The leftmost machine (the "officer") takes the input
and issues the output (the environment playing the role of the
officer's "left neighbour").

The minimum number of soldiers in the squad depends on the bin-
ary width, n. (Thot is why the existence of such a processor
does not contradict the fact that no linear-time multiplicator
is known.)

Two versions will be given.

Straight Version

A machine has
- six "data" bits: Pygr 9 Pyv Gy P Qs

- a three-bit "accumulator": r, the bits of which will be denot-

ed 5 S P

- a two-bit "switch": s, its bits: Sy S,-

[n/2]+1 machines (at least) are needed to form a processor.

In addition to its own state, each machine "senses" the state of

p, 9, r,, s of its 1left neighbour, denoted pry gl PQL, sl

resp., and the state of r of its right neighbour, denoted rDR.

The next state of a machine, indicated by asterisked letters, is
produced this way.

if sf=3: &% <- min(s+1,3);

if s=0: p,* <= p¥, q," <~ ",

if s=1: p;' <= p= q}' ¢= qr,

if s22: p° «<-p, q <~ g%

P sl ¥ o=t v r et s phgh

if s=1: r <= r®+r +r* + pa” + p"q,.

if s=2: r” <= r0+r +rt+ pqt+ pa, + phq,,

if s=3: r" <= r®+r + 4+ pg"+ p,g+ pg + plq,.

[This can be simplified for hardware purposes in many ways. So,
e.g., we add the transition p* <- p¥ if s=1 (that is, if s=1).
Then we can write

if 8=0: ¢ <= s;s;r X+ e+ et 4 pgt + plq, + piat,
if 850 r” <= ss;r® 4+ rp 4+ 0t 4 pgt + ptq) + p,g + pa,.

Let P denote p* for s=0 and p, for s>0. Then we can have

2 * R L L L

in all cases r <- s s;r° + r, + r,7 + Pg® + p7q, + p,9 + pq,,
wherein the only switching is that for P. The first terms can be
simplified to slrok if the rightmost machine senses 0 for roR. =
Obviously, the addition for r* is the decisive operation as to
clock time duration; this is to be cut down by clever circuit-

ry.J

Before computation, a processor reset must be started, that is,
the leftmost machine has to sense a 0 for st. (This reset will
propagate from left to right; there is, however, no need to wait
for that.) The reset can be given at the last (2n*™®) clock time
of a computation (so no extra time is used up between successive
computations).

Now computation is done this way.

The leftmost machine shall sense 3 for s®, and successively the
bits of x, y, z, from the lowest bits on, followed by replicas
of the sign bit (or zero), for p*, g", r,*, resp. The output ap-
pears on rg, of the leftmost machine, from the lowest bit on.

(Perhaps the simplest way to verify the procedure is this. First
verify it for n=1,2. Then assume its validity by induction for
the processor formed by the array of machines with the leftmost

machine left out, and join that processor to the leftmost mach-
ine.)

Queer Version

This is simpler, but (at least) n machines are needed.
Now s is one bit, and there are but two "data" bits: p, and q,.

In addition, there is a two-bit "rail" (or "bus"): p, q, which
is sensed by all machines simultaneously.

Note that signal propagation along the rail takes time, so there
must be some trade-off between clock time duration and array
length; the processor is not really linear-time, nor in fact a
squad. (Still, for moderate values of n this can be practically
neglected, and the processor performs well, if that is what is
aimed at.)

L R

r

Each machine senses the rail and st, Baiw Fg v

The next state is:
if s¥=1 and s=0: s" <- 1, pJ* <~ p, 9 <- 9, r’ <= r,b + pq,

. * » R L
iF a=ls 1 A= P + 0 ¥ r,” + p,9 + pq,-

[Denote by P now p for s=0 and p, for s>0. Then we can compute
in all cases r’ <- sr® + r, 4+ r," + Pq + pq,.]

Again, s“=0 resets the processor.

Computation is done analogously to the straight version except
that the leftmost machine must sense 1 for s*, and the bits of x
and y go to the rail.

(Verification is by simple induction.)

Both versions can be modified to work with arbitrary-base (rath-
er than binary) digits. E.g., with base 4 - two-bit - digits,
the necessary number of machines and clock times is halved, at
the cost of more storage and more complicated operations.

(It turns out that cell automata, even one-dimensional ones, may
- have practical applications.)

History

Investigation of "squads" for computational purposes was probab-
ly originated by F.C. Hennie (Iterative Arrays of Logical Cir-
cuits, MIT Press, 1961). The first to use them for multiplica-
tion (and presumably the first to multiply in linear time at
all) was A.J. Atrubin (IEEE Transactions on Electronic Comput-
ers, 14 (1965), pp. 394-399). An improvement upon his method was
given by D.E. Knuth (The Art of Computer Programming, Vol. 2,
4.3.3, Addison-Wesley, 1969, pp. 276-278); the improvement con-
sists in that Knuth multiplies-and-adds (while Atrubin merely
multiplies); and that with fewer states. The first version above
is essentially the same as Knuth’s. The second version is sim-
plified by degradation from the first one (whereas it might make
a very good chip).

