Drawing in $\mathbb{A}T_{E} X$

— by circumventing it, taking recourse to $T_{\!E\!}X$ and $\verb+special+$

Relative Difference: an Example

$$d(A,B) := \frac{|A-B|}{|A|+|B|}; \quad d(0,0) := 0$$

d is a distance. (A peculiar kind of distance, as the valuation defined by it -||A|| := d(A, 0)—is the trivial valuation, whereas, of course, the distance defined by the trivial valuation is not d; in fact, d cannot be derived from any valuation.)

An example of its behaviour—represented with complex numbers (could as well be represented with two-dimensional vectors):

The grey circle is the unit circle.

The red points are the base points: A = 0.5300 + i0.6400, B = 0.3500 - i1.1300; $d(A, B) \approx 0.8834$.

The grey point is the minimum-distance point among the points at equal distance from the base points: $\approx 0.9725 - i0.1927$; its distance from A and B is ≈ 0.5175 , twice the distance is ≈ 1.0349 . (The point is not on the straight-line segment connecting the base points; the (ordinary, Euclidean) segment midpoint is at distance ≈ 0.6666 from A, ≈ 0.5274 from B, together ≈ 1.1940 .)

The light blue curve: The points at equal distance from the base points.

The green curves: The points at equal distance from point 1 and from A, B, resp.: $d(A, 1) \approx 0.4337$, $d(B, 1) \approx 0.5972$, together ≈ 1.0308 . (Less than the midpoint-distance sum; moreover, even less than twice the minimum distance.)

The dark blue curves: The points that are at the same distance from A, B, resp., as A and B are from each other, that is, ≈ 0.8834 . The intersection points of the curves (three of them are visible in the figure, there is a fourth one to the right) are at distance d(A, B) from both A and B. (So four equilateral triangles can be constructed with a common edge.)

The stroke width varies according to the flatness of the function: it covers all the points that meet the condition within a given absolute ε (= 0.0075).