
Third Lecture
September 20, 2022

Variable length source coding (cont.)

We stated and proved the Main Theorem in variable length coding:

Theorem 6 Let us have an information source emitting symbol x(i) ∈ X with probability p(x(i)) =
pi, (i = 1, ▷ ▷ ▷ , r). For any s-ary UD code f : X → Y∗ of this source we have expected codeword length

L(f) =
r

∑

i=1

pi|f(x
(i))| ≥ Hs(P) =

1

log s
H(P) =

1

log s

−

r
∑

i=1

pi log pi

= −

r
∑

i=1

pi logs pi,

where P stands for the distribution (p1, ▷ ▷ ▷ , pr). Thus, for a UD code the average codeword length is
bounded from below by the entropy of the distribution governing the system.

For proving the theorem, we used McMillan theorem and the corollary of Jensen’s inequality.

Proof of Theorem 6. We know from the McMillan theorem, that
r

i=1 s
−|f(x(i))| ≤ 1. Set b =

r
i=1 s

−|f(x(i))|

and qi =
s−|f(x(i))|

b
≥ s−|f(x(i))|. Then

r
∑

i=1

pi|f(x
(i))| = −

r
∑

i=1

pi logs(qib) ≥ −

r
∑

i=1

pi logs qi = −
1

log s

r
∑

i=1

pi log qi▷

Observe that
r

i=1 qi = 1 and qi ≥ 0 for every i (so (q1, ▷ ▷ ▷ , qr) could be considered a probability
distribution). Thus by Corollary 4 of Jensen’s inequality, we have that −

r
i=1 pi log qi ≥ −

r
i=1 pi log pi

and the statement follows. □

We can have equality i the distribution of s-adic, ie. for all i pi = s−li .

Example:
- s = 2 case: the distribution

1
2
, 1
4
, 1
8
, 1
8

is diadic, since the probabilities in the distribution are

2−1, 2−2, 2−3, 2−3. We have seen that the entropy of this distribution is 1▷75bits and also we have seen
a perx code for this distribution with expected codeword length 1▷75bits.
- s = 3 case: the distribution

1
3
, 1
3
, 1
9
, 1
9
, 1
27
, 1
27
, 1
27

is triadic. We calculated the entropy, and checked

that the expected codeword length of the code (0, 1, 20, 21, 220, 221, 222) equals the entropy.

Thus in this special case, we can reach the lower bound, we can nd a code f such that L(f) = Hs(P).
For other source distributions, there isn’t such a code, but there exists a code with expected codeword
length close to the lower bound.

Theorem 7 Let us have an information source emitting symbol x(i) ∈ X with probability p(x(i)) =
pi, (i = 1, ▷ ▷ ▷ , r). There exists an s-ary prex code for this source with average codeword length less than

Hs(P) + 1 = H(P)
log s

+ 1.

Proof of Theorem 7. Kraft’s theorem implies that there is a prex code with codeword lengths
⌈

logs
1
p1

⌉

, ▷ ▷ ▷ ,
⌈

logs
1
pr

⌉

, since

1 =
r

∑

i=1

pi =
r

∑

i=1

slogs pi =
r

∑

i=1

s− logs(1◁pi) ≥

r
∑

i=1

s−⌈logs(1◁pi)⌉
▷

Such a code has average length

r
∑

i=1

pi

logs
1

pi

<
r

∑

i=1

pi(logs
1

pi
+ 1) ≤

r
∑

i=1

pi logs
1

pi
+

∑

pi =
r

∑

i=1

pi logs
1

pi
+ 1▷

Shannon-Fano code

Next we introduced a code construction, called the Shannon-Fano code:

We assume p1 ≥ p2 ≥ · · · ≥ pn > 0. Let w1 = 0 and for j > 1 let wj =
j−1

i=1 pi. Let the codeword
f(x(j)) be the s-ary representation of the number wj (which is always in the [0, 1) interval) without
the starting integer part digit 0, and with minimal such length that it is not a prex of any other such
codeword. The latter condition already ensures that the code is prex.

This construction is very closely related to the one on which the proof of Theorem 7 was based. Never-
theless, below we give a second proof of Theorem 7 directly using the Shannon-Fano code construction.

The above denition (of Shannon-Fano code) implies that the rst |f(x(j))| − 1 digits of f(x(j)) is a
prex of another codeword and thus it must be the prex of a codeword coming from a closest number
wh, thus wj−1 or wj+1. This implies

pj = p(x(j)) = wj+1 − wj ≤ s−(|f(x(j))|−1)

or
pj−1 = p(x(j−1)) = wj − wj−1 ≤ s−(|f(x(j))|−1)

▷

By pj−1 ≥ pj in either case the rst of the above two inequalities holds. Thus logs pj ≤ −|f(x(j))| + 1
implying

−pj logs pj ≥ pj(|f(x
(j))|− 1),

and thus

−

r
∑

j=1

pj logs pj + 1 ≥

r
∑

j=1

pj|f(x
(j))|▷

Then we constructed the Shannon-Fano code for three probability distributions.

Examples:

• s = 2, consider the distribution

1
2
, 1
4
, 1
8
, 1
8

• s = 3, consider the distribution

3
8
, 1
6
, 1
8
, 1
8
, 1
8
, 1
12

• s = 4, consider the distribution (0▷36, 0▷17, 0▷09, 0▷09, 0▷07, 0▷04, 0▷04, 0▷04, 0▷03, 0▷03, 0▷02)

In order to get the s-ary representation of the wis, we took the interval [0, 1] and partitioned it into s

parts of the same length

1
s

. The wis falling into the rst partition get a rst digit 0, the wis falling
into the second partition get a rst digit 1, etc the wis falling into the last partition get a rst digit
s − 1. We go on partitioning further the subintervals having more than one wi falling there. And the
corresponding codewords get a new digit. We do this until there are no partition with more than one
wi in it.

Optimal codes

We have seen constructions giving average codeword length close to the lower bound Hs(P), but nothing
guaranteed that any of these codes would be best possible. So the question of how to nd an optimal
average length code comes up. This will be answered by constructing the so-called Human code. We
will study this only for the binary case, i.e, when the size of the code alphabet is s = 2.

Def. A code f is optimal if E |f(X)| ≤ E |f ′(X)| for all codes f ′ : X → Y∗

We discussed that optimal code does exist, since there are nitely many possible codes, and there are
more than one possibility for an optimal code, since eg. inverting the bits doesn’t change the average

codeword length but results in a dierent code. Similarly interchanging the codewords of the same
length.

Assume p1 ≥ · · · ≥ pr > 0, pi = p(x(i)) and having an optimal binary code C = (f(x(1)), ▷ ▷ ▷ , f(x(r))),
li := |f(x(i))|. By the foregoing we can assume that the code is prex. (Note that the pr > 0 assumption
is not a real restriction: if we have 0-probability events, they need not be encoded. Or they could even
be encoded into long codewords, since their contribution to the average length will be zero anyway.)

Theorem 8 (Properties of optimal code) If the prex code f : X → {0, 1}∗ is optimal then (there is a
reordering of the source symbols and the codewords of the same length such that)
(1) l1 ≤ l2 ≤ · · · ≤ lr
(2) lr = lr−1

(3) the two longest codewords f(x(r)) and f(x(r−1)) dier only in the last bit.

We will prove this theorem next time, and also then will we learn about a construction of an optimal
code, the Human code.

