
Seventh Lecture
October 18, 2022

After reviving what we’d learnt last time about Markov chains, we solved some problems.
Example 1. Let Π be the 2 × 2 matrix with first row p, 1 − p and second row 1 − p, p. Then the
stationary distribution is 1

2 , 1
2 , while the entropy of the Markov chain is h(p). Actually, we considered

the case when p = 0.1.
Example 2. Let the 3×3 transition probability matrix Π of a Markov chain Z with three states A, B, C
have first row: 0, 1, 0, second row: 0, 2/3, 1/3, third row: 2/3, 0, 1/3. We determine the entropy of the
source whose outcome is the actual state of this Markov chain.
This needs the calculation of the stationary distribution. Let pA, pB, pC denote the stationary proba-
bilities of the system being in state A, B, C, respectively. Then from the first column we have pA = 2

3c
giving pC = 3

2pA and from the second column we have pB = pA + 2
3pB giving pB = 3pA. (The third

column gives pC = 1
3pB + 1

3pC that gives pB = 2pC , that already follows from the first two equations,
so this is redundant and we do not need to use this third equation.) Using pA + pB + pC = 1 we obtain
pA + 3pA + 3

2pA = 11
2 pA = 1, so pA = 2

11 , pB = 3pA = 6
11 , and pC = 3

2pA = 3
11 . Now we can write

H(Z) = 2
11H(Zn|Zn−1 = A) + 6

11H(Zn|Zn−1 = B) + 3
11H(Zn|Zn−1 = C) =

= 2
11H(0, 1, 0) + 6

11H
(
0, 2

3 , 1
3

)
+ 3

11H
(

2
3 , 0, 1

3

)
=

= 0 + 6
11h(1/3) + 3

11h(1/3) = 9
11h(1/3).

Home-work

Exercise 1: This exercise is similar to the previous example, only the numbers differ. Let the 3 × 3
transition probability matrix Π of a Markov chain Z with three states A, B, C have first row: 7/8, 1/8, 0,
second row: 0, 7/8, 1/8, third row: 1/3, 1/3, 1/3. Determine the entropy of the source whose outcome is
the actual state of this Markov chain.
Exercise 2: Let X1, X2, . . . be a Markov chain for which Prob(X1 = 0) = Prob(X) = 1) = 1

2 and let the
transition probabilities for i ≥ 1 be given by Prob(Xi+1 = 0|Xi = 0) = Prob(Xi+1 = 1|Xi = 0) = 1

2 ,
while Prob(Xi+1 = 0|Xi = 1) = 0 and Prob(Xi+1 = 1|Xi = 1) = 1. Calculate the entropy of the source
whose outcome is the resulting sequence of random variables X1, X2,

Universal source coding, Lempel-Ziv type algorithms

Huffmann code gives optimal average length but it assumes knowledge of source statistics: we expected
we know the probabilities pi with which the characters xi are emitted by the source. When we have
to compress information it may not be so. Or we want to compress earlier than we could know such
statistics. (Think about compressing a text. In principle we could first read it through, make the source
statistics and then encode. But we may prefer to encode right in the moment we proceed with its
reading) The term universal source coding refers to coding the source in such a way that we do not
have to know the source statistics in advance. The following algorithms are devised to such situations.
Although they usually cannot provide as good compression as the Huffman code, they still do pretty
well. Perhaps surprisingly, it can be shown that their compression rate approaches the entropy rate
of the source, that is the theoretical limit. (We will learn the technique without proving this.) The
examples provided in different files (see references to them below) are from the textbook written in
Hungarian by László Györfi, Sándor Győri, and István Vajda "Információ- és kódelmélet" (Information
Theory and Coding Theory), published by Typotex, 2000, 2002.

Remark: We discussed when we learned about Huffman codes that Huffman encoding can also be
adapted to the situation when we cannot create the optimal code in advance. Then we simply use the

empirical source statistics. This means that the probability of a character is considered to be equal
to the proportion of the number of its appearances up to a certain point to the number of characters
seen altogether up to that point. This statistics is updated after every single character. For every new
character we use the Huffman code that would belong to the source statistics we calculated right before
the arrival of that character. We encode the character according to that code and then update the
statistics and modify the code accordingly. This can be done simultaneously at the decoder (without
communication), so the decoder will always be aware of the code the encoder is using. For the latter we
need a rule how to handle equal probabilities that could result in different optimal encodings, but such
rules are not hard to agree on. Also, the encoder and the decoder has to agree on a starting code. This
can be one that assumes uniform distribution on the source characters or one that estimates the source
statistics according to some a priori knowledge if that exists. (For example, if the source is an English
text, we can use the more or less known frequency of each letter in the English language as the starting
distribution and a Huffman encoding of that.) Although this is possible, the methods to be discussed
below are simpler.

We are going to discuss three versions of the same method: LZ77 (suggested by Lempel and Ziv in 1977),
LZ78 (suggested by Lempel and Ziv in 1978) and LZW (which is a modification of LZ78 suggested by
Welch).
First version: LZ77
There is s sliding window in which we see lw = lb + la characters, where lb is the number of characters
we see backwards and la is the number of characters we see ahead. The algorithm looks at the not yet
encoded part of the character flow in the "ahead part" of the window and looks for the longest identical
subsequence in the window that starts earlier. The output of the encoder is then a triple (o, l, c), where
o is the number of characters we have to step backwards to the start of the longest subsequence identical
to what comes ahead, l is the length of this longest identical subsequence, and c is the codeword for
the first new character that is already not fitting in this longest subsequence. Note that the longest
identical subsequence should start in the backward part of the window but may end in the ahead part,
so o may be less than l.
For example, when we are encoding the sequence ...cabracadabrarrarrad..., the ...cabraca part is already
encoded (so the coming part is dabrarrarrad...), and we have lb = 7, la = 6, then the first triple sent
is (0, 0, f(d)) (where f(.) is the codeword for the character in the argument), the second triple sent is
(7, 4, f(r)), etc. Note that for the next triple we will have (3, 5, f(d)) showing an example when o < l.
We discussed that the decoder can get back the original text from this code, since by the time such a
character should be copied that has not been encoded before, i.e. was not in the search window, it is
already in its place.

Second version: LZ78
In LZ77 we build on the belief that similar parts of the text come close to each other. The LZ78 version
needs only that substantial parts are repeated but they do not have to be right after each other. Also,
LZ77 is sensitive to the window size. As an example suppose that we wish to encode the following text:
abcdefgabcdefgabcdefg.... If lb = 6, then we never find an identical subsequence though our text is
periodic. In LZ78 we do not have this disadvantage.
We build a codebook and each time we encode we look for the longest new segment that already appears
in the codebook. The output is a pair (i, c) where i is the index of the longest coming segment that
already has a codeword and c is the first new character after it. Apart from producing this output the
algorithm also extends the codebook by putting into it the shortest not yet found segment, which is the
concatenation of the segment with index i we found and the character c. This new, one longer segment
gets the next index and then we go on with the encoding. The words of the codebook are stored in
TRIE datastructure. It is a tree, where the nodes are the indexes and the edges are labelled with the
characters. We get the words of the codebook by concatenating the labels of neighbouring edges starting
from the root.

