Ninth Lecture

November 8, 2022

We started with the homeworks.
Home work 1
Let the source alphabet be $\mathcal{X}=\{a, b, c\}$ and the initial dictionary contain the letters a, b and c with their indexes (1, 2 and 3 respectively). Using the Lempel-Ziv-Welch algorithm
(a) encode the sequence $c a b c b c b c b$
(b) decode the sequence $3,4,5,6,7,1$

Home work 2
Let X be a random variable that takes its values on the finite set $\{1,2,3,4\}$ with uniform distribution. (That is $P(X=1)=P(X=2)=P(X=3)=P(X=4)=1 / 4$.) Calculate the distortion of the following three quantizers:

$$
\begin{gathered}
Q_{1}(1)=1, Q_{1}(2)=Q_{1}(3)=Q_{1}(4)=3 ; \\
Q_{2}(1)=Q_{2}(2)=1.5, Q_{2}(3)=Q_{2}(4)=3.5 ; \\
Q_{3}(1)=Q_{3}(2)=Q_{3}(3)=2, Q_{3}(4)=4 .
\end{gathered}
$$

It takes an easy calculation to check that $D\left(Q_{1}\right)=D\left(Q_{3}\right)=0.5$, while $D\left(Q_{2}\right)=0.25$. Thus only Q_{2} is optimal, although neither of Q_{1} and Q_{3} can be improved by the Lloyd-Max algorithm.
Remember that we call a quantizer a Lloyd-Max quantizer if the two steps of the Lloyd-Max algorithm have no effect on them. In the previous example we have seen that a Lloyd-Max quantizer is not necessarily optimal. Fleischer gave a sufficient condition for the optimality of a Lloyd-Max quantizer. It is in terms of the density function $f(x)$ of the random variable to be quantized. In particular, it requires that $\log f(x)$ is concave.

Home-work: Let X be a random variable with density function

$$
f(x)= \begin{cases}\frac{3 x^{2}}{8}, & \text { if } x \in[0,2] \\ 0, & \text { otherwise }\end{cases}
$$

The source is quantized by a 2-level quantizer. Starting from the initial levels $\frac{1}{2}$ and $\frac{3}{2}$, give the first iteration (first two steps) of the Lloyd-Max algorithm.

The above condition of Fleischer is satisfied by the density function of a random variable uniformly distributed in an interval $[a, b]$. Thus a corollary of Fleischer's theorem is that there is only one LloydMax quantizer with N levels for the uniform distribution on $[a, b]$. It is not hard to see that this should be the uniform quantizer: the one belonging to $B_{i}=\left\{x: a+(i-1) \frac{b-a}{N} \leq x \leq a+i \frac{b-a}{N}\right\}$ and quantization levels at the middle of these intervals. (The extreme points of the intervals belonging to two neighboring B_{i} 's can be freely decided to belong to either of them.)

Uniform quantizer

The simplest quantizer is the uniform quantizer, we investigate it a bit closer. Note that we do not assume now that the distribution we work with is uniform. For simplicity we assume, however, that the density function of our random variable to be quantized is 0 outside the interval $[-A, A]$, and it is continuous within $[-A, A]$. The N-level uniform quantizer is defined by the function

$$
Q_{N}(x)=-A+(2 i-1) \frac{A}{N}
$$

whenever

$$
-A+2(i-1) \frac{A}{N}<x \leq-A+2 i \frac{A}{N}
$$

(To be precise: for $x=-A$ we also have $Q_{N}(-A)=-A+\frac{A}{N}$.)
The length of each interval for the elements of which we assign the same value is then $q_{N}=\frac{2 A}{N}$. The following theorem gives the distortion of the uniform quantizer asymptotically (as N goes to infinity) in terms of q_{N}.

Theorem 13 If the density function f of the random variable X satisfies the above requirements (continuous in $[-A, A]$ and 0 outside it) then for the distortion of the N-level uniform quantizer Q_{N} we have

$$
\lim _{N \rightarrow \infty} \frac{D\left(Q_{N}\right)}{q_{N}^{2}}=\frac{1}{12} .
$$

Proof. We will use the following notation. The extreme points of the quantization intervals are

$$
y_{N, i}=-A+2 i \frac{A}{N}, i=0,1, \ldots, N
$$

while the quantization levels are

$$
x_{N, i}=-A+(2 i-1) \frac{A}{N}, i=1,2, \ldots, N .
$$

With this notation the distortion can be written by definition as

$$
D\left(Q_{n}\right)=\sum_{i=1}^{N} \int_{y_{N, i-1}}^{y_{N, i}}\left(x-x_{N, i}\right)^{2} f(x) d x .
$$

We define the auxiliary density function $f_{N}(x)$ as

$$
f_{N}(x):=\frac{1}{q_{N}} \int_{y_{N, i-1}}^{y_{N, i}} f(z) d z \quad \text { if } x \in\left(y_{N, i-1}, y_{N, i}\right] .
$$

First we calculate the distortion $\hat{D}\left(Q_{N}\right)$ of Q_{N} with respect to this auxiliary density function.

$$
\begin{gathered}
\hat{D}\left(Q_{N}\right)=\sum_{i=1}^{N} \int_{y_{N,(i-1)}}^{y_{N, i}}\left(x-x_{N, i}\right)^{2} f_{N}(x) d x= \\
\sum_{i=1}^{N} \frac{1}{q_{N}} \int_{y_{N,(i-1)}}^{y_{N, i}} f(z) d z \int_{y_{N,(i-1)}}^{y_{N, i}}\left(x-x_{N, i}\right)^{2} d x= \\
\sum_{i=1}^{N} \frac{1}{q_{N}} \int_{y_{N,(i-1)}}^{y_{N, i}} f(z) d z \int_{-\frac{q_{N}}{2}}^{\frac{q_{N}}{2}} x^{2} d x= \\
\frac{q_{N}^{2}}{12} \sum_{i=1}^{N} \int_{y_{N,(i-1)}}^{y_{N, i}} f(z) d z=\frac{q_{N}^{2}}{12} .
\end{gathered}
$$

To finish the proof we will show that

$$
\lim _{N \rightarrow \infty} \frac{\hat{D}\left(Q_{N}\right)-D\left(Q_{N}\right)}{\hat{D}\left(Q_{N}\right)}=\lim _{N \rightarrow \infty} \frac{\hat{D}\left(Q_{N}\right)-D\left(Q_{N}\right)}{q_{N}^{2} / 12}=0
$$

that is clearly enough.
Since f is continuous in the closed interval $[-A, A]$ it is also uniformly continuous. Thus for every $\varepsilon>0$ there exists N_{0} such that if $N \geq N_{0}$ then $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$ whenever $x, x^{\prime} \in\left(y_{N,(i-1)}, y_{N, i}\right)$ (since $\left|y_{N,(i-1)}-y_{N, i}\right|<q_{N}$, and $q_{N} \rightarrow 0$ as $\left.N \rightarrow \infty\right)$.
So for $N \geq N_{0}$ we can write

$$
\begin{gathered}
\frac{\left|\hat{D}\left(Q_{N}\right)-D\left(Q_{N}\right)\right|}{q_{N}^{2} / 12}= \\
\frac{12}{q_{N}^{2}}\left|\sum_{i=1}^{N} \int_{y_{N,(i-1)}}^{y_{N, i}}\left(x-x_{N, i}\right)^{2} f(x) d x-\sum_{i=1}^{N} \int_{y_{N,(i-1)}}^{y_{N, i}}\left(x-x_{N, i}\right)^{2} f_{N}(x) d x\right| \leq \\
\frac{12}{q_{N}^{2}} \sum_{i=1}^{N} \int_{y_{N,(i-1)}}^{y_{N, i}}\left(x-x_{N, i}\right)^{2}\left|f(x)-f_{N}(x)\right| d x \leq \\
\frac{12}{q_{N}^{2}} \sum_{i=1}^{N} \int_{-q_{N} / 2}^{q_{N} / 2} z^{2} \varepsilon d z=\frac{12}{q_{N}^{2}} N \frac{q_{N}^{3}}{12} \varepsilon=q_{N} N \varepsilon=\frac{2 A}{N} N \varepsilon=2 A \varepsilon
\end{gathered}
$$

that can be made arbitrarily small by choosing ε small enough. This completes the proof.

