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We started with the homeworks.
Home work 1
Let the source alphabet be X = {a, b, c} and the initial dictionary contain the letters a, b and c with
their indexes (1, 2 and 3 respectively). Using the Lempel-Ziv-Welch algorithm
(a) encode the sequence cabcbcbcb
(b) decode the sequence 3, 4, 5, 6, 7, 1



Home work 2
Let X be a random variable that takes its values on the nite set {1, 2, 3, 4} with uniform distribution.
(That is P (X = 1) = P (X = 2) = P (X = 3) = P (X = 4) = 1◁4.) Calculate the distortion of the
following three quantizers:

Q1(1) = 1, Q1(2) = Q1(3) = Q1(4) = 3;

Q2(1) = Q2(2) = 1▷5, Q2(3) = Q2(4) = 3▷5;

Q3(1) = Q3(2) = Q3(3) = 2, Q3(4) = 4▷
It takes an easy calculation to check that D(Q1) = D(Q3) = 0▷5, while D(Q2) = 0▷25. Thus only Q2 is
optimal, although neither of Q1 and Q3 can be improved by the Lloyd-Max algorithm.
Remember that we call a quantizer a Lloyd-Max quantizer if the two steps of the Lloyd-Max algorithm
have no eect on them. In the previous example we have seen that a Lloyd-Max quantizer is not
necessarily optimal. Fleischer gave a sucient condition for the optimality of a Lloyd-Max quantizer. It
is in terms of the density function f(x) of the random variable to be quantized. In particular, it requires
that log f(x) is concave.

Home-work: Let X be a random variable with density function

f(x) =


3x2

8 , if x ∈ [0, 2]
0, otherwise▷

The source is quantized by a 2-level quantizer. Starting from the initial levels 1
2 and 3

2 , give the rst
iteration (rst two steps) of the Lloyd-Max algorithm.

The above condition of Fleischer is satised by the density function of a random variable uniformly
distributed in an interval [a, b]. Thus a corollary of Fleischer’s theorem is that there is only one Lloyd-
Max quantizer with N levels for the uniform distribution on [a, b]. It is not hard to see that this should
be the uniform quantizer: the one belonging to Bi = {x : a+(i−1) b−a

N
≤ x ≤ a+i b−a

N
} and quantization

levels at the middle of these intervals. (The extreme points of the intervals belonging to two neighboring
Bi’s can be freely decided to belong to either of them.)

Uniform quantizer
The simplest quantizer is the uniform quantizer, we investigate it a bit closer. Note that we do not
assume now that the distribution we work with is uniform. For simplicity we assume, however, that
the density function of our random variable to be quantized is 0 outside the interval [−A,A], and it is
continuous within [−A,A]. The N -level uniform quantizer is dened by the function

QN(x) = −A+ (2i− 1)A
N

whenever
−A+ 2(i− 1)A

N
< x ≤ −A+ 2i A

N
▷

(To be precise: for x = −A we also have QN(−A) = −A+ A
N
.)

The length of each interval for the elements of which we assign the same value is then qN = 2A
N
. The

following theorem gives the distortion of the uniform quantizer asymptotically (as N goes to innity)
in terms of qN .



Theorem 13 If the density function f of the random variable X satises the above requirements (con-
tinuous in [−A,A] and 0 outside it) then for the distortion of the N-level uniform quantizer QN we
have

lim
N→∞

D(QN)
q2N

= 1
12 ▷

Proof. We will use the following notation. The extreme points of the quantization intervals are

yN,i = −A+ 2i A
N
, i = 0, 1, ▷ ▷ ▷ , N,

while the quantization levels are

xN,i = −A+ (2i− 1)A
N
, i = 1, 2, ▷ ▷ ▷ , N▷

With this notation the distortion can be written by denition as

D(Qn) =
N

i=1

 yN,i

yN,i−1
(x− xN,i)2f(x)dx▷

We dene the auxiliary density function fN(x) as

fN(x) :=
1
qN

 yN,i

yN,i−1
f(z)dz if x ∈ (yN,i−1, yN,i]▷

First we calculate the distortion D̂(QN) of QN with respect to this auxiliary density function.

D̂(QN) =
N

i=1

 yN,i

yN,(i−1)
(x− xN,i)2fN(x)dx =

N

i=1

1
qN

 yN,i

yN,(i−1)
f(z)dz

 yN,i

yN,(i−1)
(x− xN,i)2dx =

N

i=1

1
qN

 yN,i

yN,(i−1)
f(z)dz

 qN
2

− qN
2

x2dx =

q2N
12

N

i=1

 yN,i

yN,(i−1)
f(z)dz = q2N

12 ▷

To nish the proof we will show that

lim
N→∞

D̂(QN)−D(QN)
D̂(QN)

= lim
N→∞

D̂(QN)−D(QN)
q2N◁12

= 0,

that is clearly enough.
Since f is continuous in the closed interval [−A,A] it is also uniformly continuous. Thus for every ε > 0
there exists N0 such that if N ≥ N0 then |f(x) − f(x′)| < ε whenever x, x′ ∈ (yN,(i−1), yN,i) (since
|yN,(i−1) − yN,i| < qN , and qN → 0 as N → ∞).
So for N ≥ N0 we can write

|D̂(QN)−D(QN)|
q2N◁12

=

12
q2N


N

i=1

 yN,i

yN,(i−1)
(x− xN,i)2f(x)dx−

N

i=1

 yN,i

yN,(i−1)
(x− xN,i)2fN(x)dx

 ≤

12
q2N

N

i=1

 yN,i

yN,(i−1)
(x− xN,i)2|f(x)− fN(x)|dx ≤

12
q2N

N

i=1

 qN◁2

−qN◁2
z2εdz = 12

q2N
N
q3N
12 ε = qNNε = 2A

N
Nε = 2Aε

that can be made arbitrarily small by choosing ε small enough. This completes the proof. □


