
Fourth Lecture

September 27, 2022

Optimal codes cont.

We prove the theorem that we stated at the of the last lecture:

Theorem: (Properties of optimal code) If the prex code f : X → {0, 1}∗ is optimal then (there is a
reordering of the source symbols and the codewords of the same length such that)
(1) l1 ≤ l2 ≤ · · · ≤ lr
(2) lr = lr−1

(3) the two longest codewords f(x(r)) and f(x(r−1)) dier only in the last bit.

Proof:
(1) l1 ≤ l2 ≤ · · · ≤ lr. This is true, because if this is not satised, then we may exchange codewords
without increasing the average length.

(2) Suppose that it is not true, then lr > lr−1 by (1) above and since the code is prex, deleting the
last digit of f(x(r)) would result in a prex code with smaller average length, so the original code was
not optimal.

(3) Exchanging the last digit of the codeword f(x(r)) we should get another codeword (otherwise this
last digit could have been deleted without ruining the prex property), and if this codeword is not
f(x(r−1)) but some f(x(i)) with i ̸= r − 1, then we can simply exchange the two without eecting the
average length as these two codewords both have the same length |f(x(i))| = |f(x(r))| = |f(x(r−1))|. □

A very important observation follows that leads us to the optimal code construction Human algorithm.

Theorem: Cutting the last digit of the two codewords f(x(r−1)) and f(x(r)) we obtain an optimal binary
prex code for the distribution (p1, p2, ▷ ▷ ▷ , pr−2, pr−1 + pr).

Proof:
This is true because the average length L of our code is L′+pr−1+pr, where L

′ is the average length of the
code obtained by identifying the codewords f(x(r−1)) and f(x(r)) by cutting their last digit. If there was
a better (i.e., one with smaller average length) prex code for the distribution (p1, p2, ▷ ▷ ▷ , pr−2, pr−1+pr),
then extending the codeword belonging to the probability pr−1 + pr source symbol once with a 0 digit
and once with a 1 digit, we would obtain a better code than our original one, so its average length could
have not been optimal. □

Human code

From these three observations the optimal code construction is immediate: add two smallest probabilities
iteratively until only two distinct ones remain. Give these the (sub)words 0 and 1 and then follow the
previous "adding up two probabilities" process backwards and put a 0 and a 1 at the end of the
corresponding codewords.

Example:
P = (0▷25, 0▷14, 0▷13, 0▷12, 0▷11▷0▷1, 0▷1, 0▷05)

The "merged" distributions are:
(0▷25, 0▷14, 0▷13, 0▷12, 0▷11, 0▷1, 0▷15= 0 ▷1 + 0 ▷05 )
(0▷25, 0▷14, 0▷13, 0▷12, 0▷21= 0 ▷11 + 0 ▷1 , 0▷15= 0 ▷1 + 0 ▷05 )
(0▷25, 0▷14, 0▷25= 0 ▷13 + 0 ▷12 , 0▷21= 0 ▷11 + 0 ▷1 , 0▷15= 0 ▷1 + 0 ▷05 )
(0▷25, 0▷29= 0 ▷14 + 0 ▷15 (= 0 ▷1 + 0 ▷05 ), 0▷25= 0 ▷13 + 0 ▷12 , 0▷21= 0 ▷11 + 0 ▷1 )
(0▷46= 0 ▷25 + 0 ▷21 (= 0 ▷11 + 0 ▷1 ), 0▷29= 0 ▷14 + 0 ▷15 (= 0 ▷1 + 0 ▷05 ), 0▷25= 0 ▷13 + 0 ▷12 )
(0▷46= 0 ▷25 + 0 ▷21 (= 0 ▷11 + 0 ▷1 ), 0▷54= 0 ▷29 (= 0 ▷14 + 0 ▷15 (= 0 ▷1 + 0 ▷05 )) + 0 ▷25 (= 0 ▷13 + 0 ▷12 ))

And the code obtained writing it backwards for each stage of the construction:
(0, 1)



(0, 10, 11)
(00, 01, 10, 11)
(00, 100, 101, 01, 11)
(00, 100, 110, 111, 101, 01)
(00, 100, 110, 111, 010, 011, 101)
and nally

(00, 100, 110, 111, 010, 011, 1010, 1011)

We discussed that if there are more than one possibilities to choose and combine the two least likely
symbols, then it is up to us which way we go on. Each leads us to an optimal Human code.

Also there is no rule in which order to assign the 0 and the 1 to the branches. We might as well
assign 0 to the left branch and 1 to the right in the rst step and do it the other way round in the next
step.

Exercise: Two people made two dierent Human codes for the distribution p1 ≥ p2 ≥ p3 ≥ p4.
The codewords of these codes are 0, 10, 110, 111 for one and 00, 01, 10, 11 for the other. Determine the
distribution if we know that p3 = 1◁6.

Remark 1: Human code can be constructed for any code alphabet size, not just for binary alphabet. If
s ̸= 2 then we combine the s− 1 least likely symbols in each step. However in this case, we might need
to use "dummy symbols", symbols with probability 0, in order to ensure that there are s − 1 symbols
even at the last step to be combined. There need to be k · (s − 1) + 1 symbols at the beginning. We
constructed the ternary Human code for the above distribution as an example, and we needed one
dummy symbol for that.

Remark 2: If the distribution is unknown, we can estimate the probabilities by the relative frequencies.
After reading K symbols, let wi denote the number of occurrences of x(i). Then p̂i = wi

K
is a good

estimate of pi. Moreover it is not necessary to divide wi by K, since the construction doesn’t use that
the sum of the labels is one. So we might use the wis in the Human construction.

Home-work

Exercise 1: Which ones of the following codes can and which ones cannot be a Human code?

a) 0, 10, 111, 101

b) 00, 010, 011, 10, 110

c) 1, 000, 001, 010, 011

Exercise 2: Two people made two dierent Human codes for the distribution p1 ≥ p2 ≥ p3 ≥ p4.
The codewords of these codes are 0, 10, 110, 111 for one and 00, 01, 10, 11 for the other. Determine the
distribution if we know that p3 = 1◁6.

More on the entropy function

Let us denote the joint probability distribution of random variable X and random variable Y :
p(x, y) = Prob(X = x, Y = y) for all x ∈ X and y ∈ Y

The marginal distribution of X: p(x) = Prob(X = x) for all x ∈ X

The marginal distribution of Y : p(y) = Prob(Y = y) for all y ∈ Y

The conditional distribution of X given Y = y: p(x|y) = Prob(X = x|Y = y) for all x ∈ X

The conditional distribution of Y given X = x: p(y|x) = Prob(Y = y|X = x) for all y ∈ Y



Remember from Probability Theory that

p(x) =
∑

y∈Y

p(x, y) p(y) =
∑

x∈X

p(x, y) p(x|y) =
p(x, y)

p(y)
p(y|x) =

p(x, y)

p(x)

and that X and Y are independent if for all x ∈ X and y ∈ Y

p(x, y) = p(x) · p(y)

Def. The joint entropy of X and Y is simply the entropy of the joint distribution of the variable (X, Y )

H(X, Y ) = −
∑

x,y

p(x, y) log p(x, y)

Def. The conditional entropy is dened as:

H(X|Y ) =
∑

y

p(y)H(X|Y = y) =

= −
∑

y

p(y)
∑

x

p(x|y) log p(x|y) =

= −
∑

x,y

p(x, y) log p(x|y) =

= −
∑

x,y

p(x, y) log
p(x, y)

p(y)
▷

Property 1

H(X, Y ) ≤ H(X) +H(Y )

with equality i X and Y are independent.

Note the intuitive plausibility of the statement. (The information content of the pair (X, Y ) is not more
than the sum of the information X and Y contain separately. And equality means that they ”do not
contain information about each other”, that is, they are independent.)

Proof. Follows by applying Corollary 4 of Jensen’s inequality for p = p(x, y) and q = p(x)p(y). In details:

H(X) +H(Y )−H(X, Y ) =

−
∑

x



∑

y

p(x, y)



log p(x)−
∑

y



∑

x

p(x, y)



log p(y) +
∑

x,y

p(x, y) log p(x, y) =

∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
≥ 0▷

Equality holds i p(x, y) = p(x)p(y)∀x, y, i.e. i X and Y are independent. □

Example: Consider the random variables X and Y with the following joint distribution



Y

X
1 2 3 4

1 1
8

1
16

1
32

1
32

2 1
16

1
8

1
32

1
32

3 1
16

1
16

1
16

1
16

4 1
4

0 0 0

We calculated the marginal distributions:

Prob(Y = 1) =
Prob(X = 1, Y = 1) + Prob(X = 2, Y = 1) + Prob(X = 3, Y = 1) + Prob(X = 4, Y = 1) =
1
8
+ 1

16
+ 1

32
+ 1

32
= 1

4

Prob(Y = 2) =
Prob(X = 1, Y = 2) + Prob(X = 2, Y = 2) + Prob(X = 3, Y = 2) + Prob(X = 4, Y = 2) =
1
16

+ 1
8
+ 1

32
+ 1

32
= 1

4

and similarly Prob(Y = 3) = 1
4
, Prob(Y = 4) = 1

4
.

Prob(X = 1) =
Prob(X = 1, Y = 1) + Prob(X = 1, Y = 2) + Prob(X = 1, Y = 3) + Prob(X = 1, Y = 4) =
1
8
+ 1

16
+ 1

16
+ 1

4
= 1

2

Prob(X = 2) =
Prob(X = 2, Y = 1) + Prob(X = 2, Y = 2) + Prob(X = 2, Y = 3) + Prob(X = 2, Y = 4) =
1
16

+ 1
8
+ 1

16
+ 0 = 1

4

and similarly Prob(X = 3) = 1
8
, Prob(X = 4) = 1

8
.

We discussed that these two random variables are NOT independent, since for example
0 = Prob(X = 4, Y = 4) ̸= Prob(X = 4) · Prob(Y = 4) = 1

8
· 1
4
= 1

32

Then we calculated the entropies:
H(X) = H



1
2
, 1
4
, 1
8
, 1
8



= 1▷75bits, H(Y ) = H


1
4
, 1
4
, 1
4
, 1
4



= log 4 = 2bits

H(X, Y ) = H


1
8
, 1
16
, 1
32
, 1
32
, 1
16
, 1
8
, 1
32
, 1
32
, 1
16
, 1
16
, 1
16
, 1
16
, 1
4
, 0, 0, 0



= −1
4
log 1

4
−



1
8
log 1

8



·2−


1
16
log 1

16



·6−


1
32
log 1

32



· 4 = 27
8
bits

We checked that 27
8
= H(X, Y ) < H(X) +H(Y ) = 30

8

In order to calculate the conditional entropy
H(X|Y ) =



y p(y)H(X|Y = y) = 1
4
H(X|Y = 1) + 1

4
H(X|Y = 2) + 1

4
H(X|Y = 3) + 1

4
H(X|Y = 4),

we needed the conditional distributions of X. Those we can get from the joint and the marginal distri-

butions. Eg. Prob(X = 1|Y = 1) = Prob(X=1,Y=1)
Prob(Y=1)

=
1

8
1

4

= 1
2

Thus
H(X|Y ) = 1

4
H(X|Y = 1) + 1

4
H(X|Y = 2) + 1

4
H(X|Y = 3) + 1

4
H(X|Y = 4) =

1
4
H



1
2
, 1
4
, 1
8
, 1
8



+ 1
4
H



1
4
, 1
2
, 1
8
, 1
8



+ 1
4
H



1
4
, 1
4
, 1
4
, 1
4



+ 1
4
H(1, 0, 0, 0) = 1

4
· 1▷75 + 1

4
· 1▷75 + 1

4
· 2 + 1

4
· 0 = 11

8

We checked that 27
8
= H(X, Y ) = H(X|Y ) +H(Y ) = 11

8
+ 2

We stated but haven’t proved the next property.

Property 2

H(X, Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X)

Home-work

Find H(Y |X), H(Y )−H(Y |X) and H(X)−H(X|Y )


