Eighth Lecture

October 25, 2022

We discussed the home works.
Exercise 1: This exercise is similar to the previous example, only the numbers differ. Let the 3×3 transition probability matrix Π of a Markov chain \mathbb{Z} with three states A, B, C have first row: $7 / 8,1 / 8,0$, second row: $0,7 / 8,1 / 8$, third row: $1 / 3,1 / 3,1 / 3$. Determine the entropy of the source whose outcome is the actual state of this Markov chain.
Solution: We need to calculate the stationary distribution. Let a, b, c denote the stationary probabilities of the system being in state A, B, C, respectively. Then from the first column we have $a=\frac{7}{8} a+\frac{1}{3} c$ giving $a=\frac{8}{3} c$ and from the third column we have $c=\frac{1}{8} b+\frac{1}{3} c$ giving $b=\frac{16}{3} c$. Using $a+b+c=1$ we obtain $\frac{8}{3} c+\frac{16}{3} c+c=1$ which implies $c=\frac{3}{27}=\frac{1}{9}$. Thus $a=\frac{8}{27}, b=\frac{16}{27}$ and the requested entropy value is

$$
\begin{gathered}
H(X)=\frac{8}{27} H\left(X_{n} \mid X_{n-1}=a\right)+\frac{16}{27} H\left(X_{n} \mid X_{n-1}=b\right)+\frac{1}{9} H\left(X_{n} \mid X_{n-1}=c\right)= \\
\frac{8}{27} h(1 / 8)+\frac{16}{27} h(1 / 8)+\frac{1}{9} \log 3=\frac{8}{9} h(1 / 8)+\frac{1}{9} \log 3 .
\end{gathered}
$$

Exercise 2: Let X_{1}, X_{2}, \ldots be a Markov chain for which $\operatorname{Prob}\left(X_{1}=0\right)=\operatorname{Prob}\left(X_{1}=1\right)=\frac{1}{2}$ and let the transition probabilities for $i \geq 1$ be given by $\operatorname{Prob}\left(X_{i+1}=0 \mid X_{i}=0\right)=\operatorname{Prob}\left(X_{i+1}=1 \mid X_{i}=0\right)=\frac{1}{2}$, while $\operatorname{Prob}\left(X_{i+1}=0 \mid X_{i}=1\right)=0$ and $\operatorname{Prob}\left(X_{i+1}=1 \mid X_{i}=1\right)=1$. Calculate the entropy of the source whose outcome is the resulting sequence of random variables X_{1}, X_{2}, \ldots.
Intuitively the solution is quite clear: This source emits some number (perhaps zero) 0's first, but after the first 1 it will emit only 1's. As i gets larger and larger, the probability of $X_{i}=0$ is smaller and smaller (in fact it will be $\frac{1}{2^{2}}$), so if i is large, then X_{i} is almost certainly 1 . Therefore the uncertainty about the value of X_{i} approaches zero, so the entropy of the source should be 0 .
This intuition is easy to confirm by calculation: by Theorem 10

$$
\begin{gathered}
H(X)=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{n-1}\right)= \\
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(X_{n-1}=0\right) h(1 / 2)+\operatorname{Prob}\left(X_{n-1}=1\right) h(0)= \\
\lim _{n \rightarrow \infty} \frac{1}{2^{n-1}}+\left(1-\frac{1}{2^{n-1}}\right) 0=0
\end{gathered}
$$

Note that the exercise can also be solved similarly as the previous one: realizing that the stationary distribution is concentrated on the value 1 we get that the entropy of the source is $0 \cdot h(1 / 2)+1 \cdot h(1)=0$. \diamond

We considered the next version of the Lempel-Ziv algorithms.
Third version: LZW
This is the most popular version of the algorithm that is a modification of LZ78 as suggested by Welch. We now start with a codebook that already contains all the one-character sequences. (They have an index which serves as a codeword for them; we can think about their codeword as the s-ary, or simply binary representation of this index.) We now read the longest new part p of the text that can be found in the codebook and the next character, let it be a. Then the output is simply the index of p, we extend the codebook with the new sequence $p a$ (that we obtain by simply putting a to the end of p) giving it the next index, and we consider the extra character a as the beginning of the not yet encoded part of the text.

$$
4,1,2,2,1,3,6,8,10,12,9,11,7,16,4,5,5,11,21,23,5
$$

index	bejegyzés		index	bejegyzés
1	a		14	$a c d$
2	b		15	$d a b b$
3	c		16	$b a c$
4	d		17	$c d a$
5	e	18	$a b b$	
6	$d a$		19	$b a c d$
7	$a b$		20	$d e$
8	$b b$		21	$e e$
9	$b a$		22	$e c$
10	$a c$		23	$c d e$
11	$c d$		25	$e e c$
12	$d a b$			$c d e e$
13	$b b a$			

Home-work

Let the source alphabet be $\mathcal{X}=\{a, b, c\}$ and the initial dictionary contain the letters a, b and c with their indexes (1,2 and 3 respectively). Using the Lempel-Ziv-Welch algorithm
(a) encode the sequence $c a b c b c b c b$
(b) decode the sequence $3,4,5,6,7,1$

Quantization

In many practical situations the source variables are real numbers, thus have a continuum range. If we want to use digital communication we have to discretize, which means that some kind of "rounding" is necessary.
Def. Let $X=X_{1}, X_{2}, \ldots$ be a stationary source, where the X_{i} 's are real-valued random variables. A (1-dimensional) quantized version of this source is a sequence of discrete random variables (another source) $Q\left(X_{1}\right), Q\left(X_{2}\right), \ldots$ obtained by a map $Q: R \rightarrow R$ where the range of the map is finite. The function $Q($.$) is called the quantizer.$

Goal: Quantize a source so that the caused distortion is small.
How can we measure the distortion? We will do it by using the quadratic distortion measure $D(Q)$ defined for n-length blocks as

$$
D(Q)=\frac{1}{n} E\left(\sum_{i=1}^{n}\left(X_{i}-Q\left(X_{i}\right)\right)^{2}\right),
$$

where $E($.$) means expected value.$
Since our X_{i} 's are identically distributed we have

$$
D(Q)=E\left((X-Q(X))^{2}\right)
$$

(Here X is meant to have the same distribution as all the X_{i} 's.)
Let the range of $Q($.$) be the set \left\{x_{1}, \ldots, x_{N}\right\}$, where the x_{i} 's are real numbers. $Q($.$) is uniquely defined$ by the values x_{1}, \ldots, x_{N} and the sets $B_{i}=\left\{x: Q(x)=x_{i}\right\}$. Once we fix x_{1}, \ldots, x_{N}, we will have the smallest distortion $D(Q)$ if every x is "quantized" to the closest x_{i}, i.e.,

$$
B_{i}=\left\{x:\left|x-x_{i}\right| \leq\left|x-x_{j}\right| \forall j \neq i\right\} .
$$

(Note that this rule puts some values into two neighboring B_{i} 's (considering $x_{1}<x_{2}<\cdots<x_{N}$, we have $x=\frac{1}{2}\left(x_{i}+x_{i+1}\right)$ in both B_{i} and $\left.B_{i+1}\right)$. This can easily be resolved by saying that all these values go to (say) the smaller indexed B_{i}.)
If now we consider the B_{i} 's fixed then the smallest distortion $D(Q)$ is obtained if the x_{i} values lie in the barycenter of the B_{i}, which is $E\left(X \mid B_{i}\right):=E\left(X \mid X \in B_{i}\right)=\frac{\int_{B_{i}} x f(x) d x}{\int_{B_{i}} f(x) d x}$, where $f(x)$ is the density function of the random variable X. (We will always assume that $f(x)$ has all the "nice" properties needed for the existence of the integrals we mention.)
We proved the previous claim, i.e. smallest distortion is achieved for given quantization intervals B_{i} when $Q(x)=E\left(X \mid B_{i}\right)$ for $x \in B_{i}$. Here you can find a different proof for the statement:
This holds for all B_{i} separately, so it is enough to show it for one of them. By the linearity of expectation

$$
E\left((X-c)^{2}\right)=E\left(X^{2}\right)-c(2 E(X)-c),
$$

and this is smallest when $c(2 E(X)-c)$ is largest. Since the sum of c and $2 E(X)-c$ does not depend on c, one can see simply from the inequality between the arithmetic and geometric mean $\left(\frac{a+b}{2} \geq \sqrt{a b}\right.$ with equality iff $a=b$) that this product is largest when $c=E(X)$. (At least this is the case if we can assume that both c and $2 E(X)-c$ are non-negative and so the inequality $\frac{a+b}{2} \geq \sqrt{a b}$ can be used. If this is not the case, we can still easily obtain that $c(2 E(X)-c)$ is maximized by $c=E(X)$ by looking at the derivatives.)

Lloyd-Max algorithm

The above suggests an iterative algorithm to find a good quantizer: We fix some quantization levels $x_{1}<\cdots<x_{N}$ first and optimize for them the B_{i} domains by defining them as above: let $y_{i}=\frac{x_{i}+x_{i+1}}{2}$ for $i=1, \ldots, N-1$ and

$$
B_{1}:=\left(-\infty, y_{1}\right], \quad B_{i}:=\left(y_{i}, y_{i+1}\right], i=2, \ldots, N-1, \quad B_{N}=\left(y_{N-1}, \infty\right)
$$

Notice that in general there is no reason for the x_{i} 's to be automatically the barycenters of the domains B_{i} obtained in the previous step. So now we can consider these domains B_{i} fixed and optimize the quantization levels with respect to them by redefining them as the corresponding barycenters:

$$
x_{i}:=\frac{\int_{B_{i}} x f(x) d x}{\int_{B_{i}} f(x) d x} .
$$

Now we can consider again the so-obtained x_{i} 's fixed and redefine the B_{i} 's for them, and so on. After each step (or after each "odd" step when we optimize the B_{i} domains for the actual x_{i} 's) we can check whether the current distortion is below a certain threshold. If yes we stop the algorithm, if no, then we continue with further iterations.

The distortion is non-increasing in each step, therefore it converges to somewhere since it is non-negative. The problem is that not necessarily to the global optimum, the limit might as well be a local optimum. To solve this the algorithm can be started from different initial quantization levels and then the one with smallest distortion is chosen.
It should be clear from the above that if either of the two steps above changes the x_{i} quantization levels or the B_{i} domains, then the quantizer before that step was not optimal. It is possible, that no such change is attainable already and the quantizer is still not optimal.
A quantizer is called a Lloyd-Max quantizer if the two steps of the Lloyd-Max algorithm have no effect on them.

Example

Let X be a random variable that takes its values on the finite set $\{1,2,3,4\}$ with uniform distribution. (That is $P(X=1)=P(X=2)=P(X=3)=P(X=4)=1 / 4$.) Let $N=2$ that is we are allowed to use two values for the quantization. There are three different quantizers for which neither of the above steps can cause any improvement, but only one of them is optimal.
These three quantizers can be described by

$$
\begin{gathered}
Q_{1}(1)=1, Q_{1}(2)=Q_{1}(3)=Q_{1}(4)=3 ; \\
Q_{2}(1)=Q_{2}(2)=1.5, Q_{2}(3)=Q_{2}(4)=3.5 \\
Q_{3}(1)=Q_{3}(2)=Q_{3}(3)=2, Q_{3}(4)=4 .
\end{gathered}
$$

Home-work

Calculate the distortion of the above three quantizers.

