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We discussed the home works.

Exercise 1: This exercise is similar to the previous example, only the numbers dier. Let the 3 × 3
transition probability matrix Π of a Markov chain Z with three states A,B,C have rst row: 7◁8, 1◁8, 0,
second row: 0, 7◁8, 1◁8, third row: 1◁3, 1◁3, 1◁3. Determine the entropy of the source whose outcome is
the actual state of this Markov chain.
Solution: We need to calculate the stationary distribution. Let a, b, c denote the stationary probabilities
of the system being in state A,B,C, respectively. Then from the rst column we have a = 7

8a + 1
3c

giving a = 8
3c and from the third column we have c = 1

8b +
1
3c giving b = 16

3 c. Using a + b + c = 1 we
obtain 8

3c+
16
3 c+ c = 1 which implies c = 3

27 = 1
9 . Thus a = 8

27 , b =
16
27 and the requested entropy value

is

H(X) = 8
27H(Xn|Xn−1 = a) + 16

27H(Xn|Xn−1 = b) + 1
9H(Xn|Xn−1 = c) =

8
27h(1◁8) +

16
27h(1◁8) +

1
9 log 3 = 8

9h(1◁8) +
1
9 log 3▷

♢
Exercise 2: Let X1, X2, ▷ ▷ ▷ be a Markov chain for which Prob(X1 = 0) = Prob(X) = 1) = 1

2 and let the
transition probabilities for i ≥ 1 be given by Prob(Xi+1 = 0|Xi = 0) = Prob(Xi+1 = 1|Xi = 0) = 1

2 ,
while Prob(Xi+1 = 0|Xi = 1) = 0 and Prob(Xi+1 = 1|Xi = 1) = 1. Calculate the entropy of the source
whose outcome is the resulting sequence of random variables X1, X2, ▷ ▷ ▷ .
Intuitively the solution is quite clear: This source emits some number (perhaps zero) 0’s rst, but after
the rst 1 it will emit only 1’s. As i gets larger and larger, the probability of Xi = 0 is smaller and
smaller (in fact it will be 1

2i ), so if i is large, then Xi is almost certainly 1. Therefore the uncertainty
about the value of Xi approaches zero, so the entropy of the source should be 0.
This intuition is easy to conrm by calculation: by Theorem 10

H(X) = lim
n→∞H(Xn|X1, ▷ ▷ ▷ , Xn−1) = lim

n→∞H(Xn|Xn−1) =

lim
n→∞Prob(Xn−1 = 0)h(1◁2) + Prob(Xn−1 = 1)h(0) =

lim
n→∞

1
2n−1 + (1− 1

2n−1 )0 = 0▷

Note that the exercise can also be solved similarly as the previous one: realizing that the stationary
distribution is concentrated on the value 1 we get that the entropy of the source is 0·h(1◁2)+1·h(1) = 0▷
♢

We considered the next version of the Lempel-Ziv algorithms.
Third version: LZW
This is the most popular version of the algorithm that is a modication of LZ78 as suggested by Welch.
We now start with a codebook that already contains all the one-character sequences. (They have an
index which serves as a codeword for them; we can think about their codeword as the s-ary, or simply
binary representation of this index.) We now read the longest new part p of the text that can be found
in the codebook and the next character, let it be a. Then the output is simply the index of p, we extend
the codebook with the new sequence pa (that we obtain by simply putting a to the end of p) giving it
the next index, and we consider the extra character a as the beginning of the not yet encoded part of
the text.





Home-work

Let the source alphabet be X = {a, b, c} and the initial dictionary contain the letters a, b and c with
their indexes (1, 2 and 3 respectively). Using the Lempel-Ziv-Welch algorithm
(a) encode the sequence cabcbcbcb
(b) decode the sequence 3, 4, 5, 6, 7, 1

Quantization

In many practical situations the source variables are real numbers, thus have a continuum range. If we
want to use digital communication we have to discretize, which means that some kind of "rounding" is
necessary.
Def. Let X = X1, X2, ▷ ▷ ▷ be a stationary source, where the Xi’s are real-valued random variables.
A (1-dimensional) quantized version of this source is a sequence of discrete random variables (another
source) Q(X1), Q(X2), ▷ ▷ ▷ obtained by a map Q : R → R where the range of the map is nite. The
function Q(▷) is called the quantizer.

Goal: Quantize a source so that the caused distortion is small.
How can we measure the distortion? We will do it by using the quadratic distortion measure D(Q)
dened for n-length blocks as

D(Q) = 1
n
E


n

i=1
(Xi −Q(Xi))2


,

where E(▷) means expected value.
Since our Xi’s are identically distributed we have

D(Q) = E((X −Q(X))2)▷

(Here X is meant to have the same distribution as all the Xi’s.)
Let the range of Q(▷) be the set {x1, ▷ ▷ ▷ , xN}, where the xi’s are real numbers. Q(▷) is uniquely dened
by the values x1, ▷ ▷ ▷ , xN and the sets Bi = {x : Q(x) = xi}. Once we x x1, ▷ ▷ ▷ , xN , we will have the
smallest distortion D(Q) if every x is "quantized" to the closest xi, i.e.,

Bi = {x : |x− xi| ≤ |x− xj| ∀j ̸= i}▷
(Note that this rule puts some values into two neighboring Bi’s (considering x1 < x2 < · · · < xN , we
have x = 1

2(xi + xi+1) in both Bi and Bi+1). This can easily be resolved by saying that all these values
go to (say) the smaller indexed Bi.)
If now we consider the Bi’s xed then the smallest distortion D(Q) is obtained if the xi values lie in the

barycenter of the Bi, which is E(X|Bi) := E(X|X ∈ Bi) =

Bi

xf(x)dx
Bi

f(x)dx , where f(x) is the density function

of the random variable X. (We will always assume that f(x) has all the "nice" properties needed for
the existence of the integrals we mention.)
We proved the previous claim, i.e. smallest distortion is achieved for given quantization intervals Bi

when Q(x) = E(X|Bi) for x ∈ Bi. Here you can nd a dierent proof for the statement:
This holds for all Bi separately, so it is enough to show it for one of them. By the linearity of expectation

E((X − c)2) = E(X2)− c(2E(X)− c),

and this is smallest when c(2E(X)− c) is largest. Since the sum of c and 2E(X)− c does not depend
on c, one can see simply from the inequality between the arithmetic and geometric mean ( a+b

2 ≥
√
ab

with equality i a = b) that this product is largest when c = E(X). (At least this is the case if we can
assume that both c and 2E(X) − c are non-negative and so the inequality a+b

2 ≥
√
ab can be used. If

this is not the case, we can still easily obtain that c(2E(X)− c) is maximized by c = E(X) by looking
at the derivatives.)



Lloyd-Max algorithm
The above suggests an iterative algorithm to nd a good quantizer: We x some quantization levels
x1 < · · · < xN rst and optimize for them the Bi domains by dening them as above: let yi = xi+xi+1

2
for i = 1, ▷ ▷ ▷ , N − 1 and

B1 := (−∞, y1], Bi := (yi, yi+1], i = 2, ▷ ▷ ▷ , N − 1, BN = (yN−1,∞)▷

Notice that in general there is no reason for the xi’s to be automatically the barycenters of the domains
Bi obtained in the previous step. So now we can consider these domains Bi xed and optimize the
quantization levels with respect to them by redening them as the corresponding barycenters:

xi :=

Bi

xf(x)dx

Bi

f(x)dx ▷

Now we can consider again the so-obtained xi’s xed and redene the Bi’s for them, and so on. After
each step (or after each "odd" step when we optimize the Bi domains for the actual xi’s) we can check
whether the current distortion is below a certain threshold. If yes we stop the algorithm, if no, then we
continue with further iterations.
The distortion is non-increasing in each step, therefore it converges to somewhere since it is non-negative.
The problem is that not necessarily to the global optimum, the limit might as well be a local optimum.
To solve this the algorithm can be started from dierent initial quantization levels and then the one
with smallest distortion is chosen.
It should be clear from the above that if either of the two steps above changes the xi quantization levels
or the Bi domains, then the quantizer before that step was not optimal. It is possible, that no such
change is attainable already and the quantizer is still not optimal.
A quantizer is called a Lloyd-Max quantizer if the two steps of the Lloyd-Max algorithm have no eect
on them.
Example
Let X be a random variable that takes its values on the nite set {1, 2, 3, 4} with uniform distribution.
(That is P (X = 1) = P (X = 2) = P (X = 3) = P (X = 4) = 1◁4.) Let N = 2 that is we are allowed to
use two values for the quantization. There are three dierent quantizers for which neither of the above
steps can cause any improvement, but only one of them is optimal.
These three quantizers can be described by

Q1(1) = 1, Q1(2) = Q1(3) = Q1(4) = 3;

Q2(1) = Q2(2) = 1▷5, Q2(3) = Q2(4) = 3▷5;

Q3(1) = Q3(2) = Q3(3) = 2, Q3(4) = 4▷

Home-work
Calculate the distortion of the above three quantizers.


