Information Theory—Midterm test, 22 November 2001

Important! Answers are not complete without sufficient reasoning.

Problem 1 Assume that the source alphabet is binary. Is it possible to construct a uniquely decodable code that consists of 8 codewords and the lengths of the codewords are 2, 2, 3, 3, 3, 5, 5, 5? Why?

Problem 2 A biased coin ($\mathbf{P}(head) = \frac{1}{3}$, $\mathbf{P}(tail) = \frac{2}{3}$) is tossed until two heads or two tails are seen. Let X_1 and X_2 be the outcomes of the first two tosses, Y the outcome of the last (second or third) toss and N the number of tosses. Calculate $H(X_1)$, $H(X_2)$, H(Y), H(N), $I(X_1, Y)$, $I(X_2, Y)$, $I(X_1, X_2; Y)$, I(Y, N), $I(X_1, N)$, $I(X_2, N)$, $I(X_1, X_2; N)$.

Problem 3 Let X_1, \ldots, X_n be binary random variables. Denote by $\mathbf{R} = (R_1, R_2, \ldots)$ the run lengths of this sequence. For example the sequence 1110010001111 yields run lengths $\mathbf{R} = (3, 2, 1, 3, 4)$. Compare $H(X_1, \ldots, X_n), H(\mathbf{R})$ and $H(\mathbf{R}, X_n)$. Show all equalities and inequalities.

Problem 4 Find a possible Huffman code and the Lempel-Ziv-Welch code of the word MISSISSIPPI. Concerning the latter, assume that the letters I,M,P and S are already in the dictionary and their codes are 1,2,3 and 4 respectively. Describe also the final state of the dictionary (words and their codes).

Problem 5 Give the definition of the Markov-source. How can its entropy rate be calculated?

Information Theory—Midterm test, 22 November 2001

Important! Answers are not complete without sufficient reasoning.

Problem 6 Assume that the source alphabet is binary. Is it possible to construct a uniquely decodable code that consists of 8 codewords and the lengths of the codewords are 2, 2, 3, 3, 3, 5, 5, 5? Why?

Problem 7 A biased coin ($\mathbf{P}(head) = \frac{1}{3}$, $\mathbf{P}(tail) = \frac{2}{3}$) is tossed until two heads or two tails are seen. Let X_1 and X_2 be the outcomes of the first two tosses, Y the outcome of the last (second or third) toss and N the number of tosses. Calculate $H(X_1)$, $H(X_2)$, H(Y), H(N), $I(X_1, Y)$, $I(X_2, Y)$, $I(X_1, X_2; Y)$, I(Y, N), $I(X_1, N)$, $I(X_2, N)$, $I(X_1, X_2; N)$.

Problem 8 Let X_1, \ldots, X_n be binary random variables. Denote by $\mathbf{R} = (R_1, R_2, \ldots)$ the run lengths of this sequence. For example the sequence 1110010001111 yields run lengths $\mathbf{R} = (3, 2, 1, 3, 4)$. Compare $H(X_1, \ldots, X_n), H(\mathbf{R})$ and $H(\mathbf{R}, X_n)$. Show all equalities and inequalities.

Problem 9 Find a possible Huffman code and the Lempel-Ziv-Welch code of the word MISSISSIPPI. Concerning the latter, assume that the letters I,M,P and S are already in the dictionary and their codes are 1,2,3 and 4 respectively. Describe also the final state of the dictionary (words and their codes).

Problem 10 Give the definition of the Markov-source. How can its entropy rate be calculated?