Information Theory—Exam paper, 17 January 2002 Important! Answers are not complete without sufficient reasoning. **Problem 1** What is the maximum entropy probability mass function p(x, y) with the following marginals? | | x_1 | x_2 | x_3 | | |-------|----------|----------|----------|-----| | y_1 | p_{11} | p_{12} | p_{13} | 1/2 | | y_2 | p_{21} | p_{22} | p_{23} | 1/4 | | y_3 | p_{31} | p_{32} | p_{33} | 1/4 | | | 2/3 | 1/6 | 1/6 | | Find H(X,Y) for the above distribution. Problem 2 State the source coding theorem, lower and upper bounds for the expected codeword length. **Problem 3** Let l_1, l_2, \ldots, l_{10} be the binary Huffman codeword lengths for the probabilities $p_1 \geq \ldots \geq p_{10}$. Suppose we get a new distribution by splitting the last probability mass. What can you say about the optimal binary codeword lengths $\tilde{l}_1, \tilde{l}_2, \ldots, \tilde{l}_{11}$ for the probabilities $p_1, p_2, \ldots, p_9, \alpha p_{10}, (1-\alpha)p_{10}$, where $0 \leq \alpha \leq 1$. (why?) **Problem 4** Let X be uniformly distributed over the interval [0, 50]. Quantizing X uniformly, the distortion is 0.02. Give a good estimation for the length of the quantization regions (q). Find the entropy of the quantizer. **Problem 5** Define the channel capacity, give the capacity of BSC(p) (binary symmetric channel) with proof.