Information Theory—Exam paper, 17 January 2002

Important! Answers are not complete without sufficient reasoning.

Problem 1 What is the maximum entropy probability mass function p(x, y) with the following marginals?

	x_1	x_2	x_3	
y_1	p_{11}	p_{12}	p_{13}	1/2
y_2	p_{21}	p_{22}	p_{23}	1/4
y_3	p_{31}	p_{32}	p_{33}	1/4
	2/3	1/6	1/6	

Find H(X,Y) for the above distribution.

Problem 2 State the source coding theorem, lower and upper bounds for the expected codeword length.

Problem 3 Let l_1, l_2, \ldots, l_{10} be the binary Huffman codeword lengths for the probabilities $p_1 \geq \ldots \geq p_{10}$. Suppose we get a new distribution by splitting the last probability mass. What can you say about the optimal binary codeword lengths $\tilde{l}_1, \tilde{l}_2, \ldots, \tilde{l}_{11}$ for the probabilities $p_1, p_2, \ldots, p_9, \alpha p_{10}, (1-\alpha)p_{10}$, where $0 \leq \alpha \leq 1$. (why?)

Problem 4 Let X be uniformly distributed over the interval [0, 50]. Quantizing X uniformly, the distortion is 0.02. Give a good estimation for the length of the quantization regions (q). Find the entropy of the quantizer.

Problem 5 Define the channel capacity, give the capacity of BSC(p) (binary symmetric channel) with proof.