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Abstract. An important feature of service-based and cloud-based sys-
tems is their ability to perform self-adaptation. Through self-adaptation,
such systems can automatically react to changes and thus ensure the con-
tinued satisfaction of their functional and non-functional requirements.
Self-adaptation may take non-negligible time (which we term adaptation
latency), and during this period the self-adaptive system may exhibit
degraded performance or other negative impact. Hence, it is important
to understand how long self-adaptations take and what influences the
adaptation latency. However, we are not aware of a systematic study of
this question in the literature. This paper is a first step in this direc-
tion. We present (i) a model of adaptation latency that breaks it down
into four components and (ii) a preliminary survey, limited to one con-
ference series and to service-based and cloud-based systems, to analyze
information about adaptation latency in the available literature on self-
adaptive systems. According to the findings from this preliminary survey,
although some components of the adaptation latency are studied in some
publications, the whole adaptation delay is seldom considered.

1 Introduction

Modern software systems must operate in highly dynamic environments. To ef-
fectively cope with changes of the environment, the concept of self-adaptation
has been proposed [31]. A self-adaptive system reacts to changes in the environ-
ment by adapting its own structure or behavior at run time, so that the system
continues to satisfy its requirements [5]. For example, in a service-based applica-
tion, if one of the used services becomes unavailable, an alternative service can
automatically be involved instead to ensure that the service-based application
remains functional [14]. As another example, a cloud-based application can re-
act to an increasing workload by automatically scaling out to use more virtual
machines [21].

From the moment the change in the environment happens, it takes some time
until the self-adaptive system resolves the issue. We call this time adaptation
latency. The amount of the adaptation latency can be very different, depending
on the type of change of the environment, the type of adaptation used by the
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self-adaptive system etc. During the period of the adaptation latency, the self-
adaptive system may be in a transient state in which its performance may be
degraded and some requirements may be temporarily violated [23]. For example,
if a cloud-based application scales out to support an increased number of user
requests, it takes some time until this adaptation action takes effect, and in the
meantime, the application’s response time may be too high (e.g., higher than
stipulated in the service level agreement) [24].

The adaptation latency is important for multiple reasons. First, it is a fun-
damental goal of self-adaptation to reach a new system state in which the re-
quirements are again satisfied as soon as possible, i.e., with minimum adaptation
latency, so as to minimize the negative impact of the transient state during the
adaptation process [12]. Second, if the new state is reached with a high delay, this
increases the likelihood that in the meantime the environment has changed again,
so that the ongoing adaptation will not be effective anymore. In other words, the
speed of adaptation should be commensurate with the speed of change in the
environment [23]. Third, the self-adaptive system may be able to make better
adaptation decisions if it is aware of the latency associated with the possible
adaptation actions. For example, knowing how long it takes to spin up a new
virtual machine, a cloud-based application can start the scale-out in a proactive
way, early enough [25, 26].

Despite the importance of adaptation latency for self-adaptation, we are not
aware of a systematic study about adaptation latency, the factors influencing
adaptation latency, or the implications of adaptation latency. In fact, there is
not even consensus about the name and the exact scope of adaptation latency.
For example, Tamura et al. call it “settling time” and include the time for mak-
ing an adaptation decision and executing it [35]. On the other hand, Gambi et al.
consider what they call “actuation delay”, which includes the time for executing
an adaptation and the time it takes for the adaptation to show its effect [13].
Cámara et al. use the terms “adaptation latency”1 and synonymously “adapta-
tion tactic latency” to refer to the time it takes to execute an adaptation action
[8].

Therefore, this paper makes two contributions towards a better understand-
ing of adaptation latency in self-adaptive systems. First, we present a simple
model of adaptation latency that breaks it down into four components. This
model makes it easier to compare different notions of adaptation latency used
by different authors. Second, we present preliminary results of a literature survey,
so far limited to one relevant conference series (Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS2) and to the topics of service-based
and cloud-based systems. In the survey, we identified the papers that contain
specific information about adaptation latency and mapped them on our model of

1 It should be noted that this is different from the meaning of “adaptation latency”
in this paper. The adaptation latency considered by Cámara et al. is only a part of
the adaptation latency considered in this paper.

2 http://self-adaptive.org/seams/
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Fig. 1. Model of adaptation latency

adaptation latency. According to the preliminary findings, most of the relevant
papers address only some components of the adaptation latency.

The rest of the paper is organized as follows. Section 2 presents our model
of adaptation latency and the components of adaptation latency. Section 3 de-
scribes the methodology and the results of our preliminary literature survey.
Section 4 discusses the findings, and Section 5 concludes the paper.

2 A model of adaptation latency

As already mentioned in Section 1, different authors consider different latencies
when evaluating the speed of adaptation. To make a meaningful comparison
between different approaches, we provide a simple model of adaptation latency
that we believe to be a good basis for capturing different temporal aspects of
adaptation.

Our model is related to the well-known MAPE model of self-adaptive systems
[19]. According to the MAPE model, a self-adaptive system monitors (M) its
environment to detect changes, analyzes (A) the changes to decide if adaptation
is necessary, plans (P) adaptations if necessary, and executes (E) the adaptations.

The proposed model for adaptation latency is shown in Fig. 1. As can be
seen, there are five key points in time:

1. First, the need for adaptation arises, typically in the form of a change in the
environment. For example, the number of users of a cloud-based application
starts to increase.

2. After some time `M , which is related to the monitoring activity, the self-
adaptive system recognizes the change. For example, the cloud-based appli-
cation observes that the queue length of user requests grew over a threshold.

3. This is followed by the analysis and planning activities, taking altogether `AP

time, leading to the decision to perform a specific adaptation. For example,
the cloud-based application decides to turn on a new virtual machine for the
purpose of scale-out.

4. The execution of the adaptation takes `E time. In our example, this is the
time until the new virtual machine is turned on and registered with the load
balancer.



5. Finally, it takes further `E2 time until the adaptation shows its effect. In
our example, this is the time until the queue length is normalized again as
a result of the increased processing power.

There are two main differences between our model and the MAPE model.
First, we do not differentiate between the analysis and planning activities. The
differentiation between analysis and planning is a purely internal concern of
the self-adaptive system; moreover, there are a number of approaches to self-
adaptation that do not have separate analysis and planning activities [31, 3].
The other difference is that our model also includes `E2 which does not have an
equivalent in the MAPE model, but it is important for understanding the overall
temporal behavior of self-adaptive systems.

We define the adaptation latency as L = `M +`AP +`E +`E2. The individual
delays `M , `AP , `E , `E2 are called the components of the adaptation latency.

3 Preliminary literature study

Using the model introduced above, we performed a (limited) literature survey.
We first describe the methodology of this survey in Section 3.1, followed by the
main results in Section 3.2. Finally, in Section 3.3, we mention some further
papers excluded during the literature survey which could nevertheless provide
interesting impetuses to further research.

3.1 Methodology

In the long run, we plan to perform a comprehensive literature review on the
topic of adaptation latency in self-adaptive systems. As a first step, we system-
atically reviewed all papers published in the SEAMS (Software Engineering for
Adaptive and Self-Managing Systems) conference series from 2009 to 2019. We
filtered the papers according to the following criteria:

– We only included papers that contain some information about adaptation
latency. This also includes papers in which information about adaptation
latency is only present in diagrams about experiments.

– We only included papers that are related to the field of service-based or
cloud-based systems.

We performed this limited literature study manually, i.e., looking at each
paper published in SEAMS in the given period. Although it is more common
to perform a literature survey using a set of search strings applied to a set of
databases, we opted for the manual approach focused on one conference series
because of the difficulties associated with finding the appropriate search terms.
This way, we do not run the risk of missing whole classes of relevant papers
because of a poorly chosen search string. In fact, the papers found with the
help of the manual search can serve in the future as baseline for identifying
appropriate search terms, which can then be applied in a database search in the
future. For now, we manually went through all 225 papers published in SEAMS
between 2009 and 2019 and applied the above filter criteria.



Table 1. Relevant publications

Paper `M `AP `E `E2 Time Notion

[9] X X X X ≈ 300 s none explicitly mentioned
[34] X 118–389 ms time to find a reconfiguration
[20] X ≥ 9 min planning time
[32] X ≥ 1513 ms time for generating a workflow
[1] X X 0.2–1.02 ms performance of adaptation
[35] X X 1.85–2.34 ms performance, settling time
[36] X X 12 s – 15 min redeployment time
[29] X X 125–625 µs transition time
[13] X X 115–420 s actuation delay
[7] X ∅ 19.74 s time to recovery

[38] X X execution time
[8] X adaptation (tactic) latency
[28] * X tactic latency

3.2 Results

The papers identified as relevant according to the above criteria are summarized
in Table 1. For each of the relevant papers, the components of the adaptation
latency covered by the paper are indicated, as well as the name that the authors
of the paper used to call the considered part of the adaptation latency. In the first
half of the table, also the specific duration measured in the paper (corresponding
to the sum of the marked components of the adaptation latency) is given; the
papers in the second half of the table did not contain such values.

As can be seen from Table 1, only [9] considers the whole adaptation latency.
However, that paper does not make any specific statement about the adaptation
latency. The quoted information about adaptation latency can only be read off
from a diagram of an experiment within the paper. The experiment shows how
a self-adaptive web application can manage the slashdot effect by appropriate
adaptations, so that the response time of the web application goes after an initial
increase back to its normal values.

Several papers focus on the `AP component of the adaptation latency. This
may be attributed to the fact that analysis and planning exhibit the most in-
teresting challenges algorithmically, leading to high research attention. In par-
ticular, [34] proposes a sophisticated planning algorithm using Pseudo-Boolean
constraints; the performance of the planning algorithm was also in the focus
of the evaluation using the Heroku platform-as-a-service environment. Similarly,
[20] proposes a planner using genetic programming, and makes statements about
the time it takes to create a plan by their planner and a baseline planner based
on an existing model checker. [32] considers the problem of generating a work-
flow for dynamically changing the configuration of a self-adaptive system by
integrating and testing new components at run time. This problem is a part of
the general planning activity of a self-adaptive system (e.g., it does not include



the choice of components to add), but the authors formulate it as a planning
problem on its own and evaluate the time needed for this planning.

Some papers take, beside `AP , also `E into account. [1] considers the proactive
adaptation of service compositions. In evaluating their approach, they measure
the time of determining the need for adaptation (analysis), the time to determine
the necessary changes to the service composition (planning) and the time to
actually change it (execution). An interesting finding is that problems occurring
early in the workflow of composed services lead to higher adaptation latency
than problems occurring later. This is because the space of possible solutions is
larger if the problem occurs early. [35] considers the adaptation of the monitoring
infrastructure for an adaptive web application. In their experimental evaluation
the authors measure the time from detecting a change until the adaptation is
finished. [36] addresses the problem of dynamically redeploying service-oriented
systems, also measuring latency from detecting a change until the adaptation is
finished.

[29] presents an approach for the dynamic change between pre-compiled vari-
ants of a software at run time. In the experimental evaluation, the time of tran-
sitioning from one variant to another is measured, corresponding to `E + `E2 in
our model. Similarly, also [13] considers the time `E + `E2 and calls it actuation
delay. In contrast to most other found papers which only make statements about
the adaptation latency in the context of their empirical evaluation, [13] focuses
explicitly on the problem of estimating the actuation delay.

We also found one paper that focuses specifically on the `E2 component of the
adaptation latency. [7] investigates to what extent and how quickly self-adaptive
systems can recover after changes. The authors define the metric Mean Time To
Recover and measure it for an adaptive web service.

The second part of Table 1 lists papers that do not contain specific duration
information, but still explicitly address (some components of) the adaptation
latency. [38] presents a simulator of a self-adaptive system in which different
adaptation engines can be evaluated, and the simulator measures the execution
time of the adaptation engine. [8] shows that taking into account the latency as-
sociated with the execution of different adaptation tactics leads to better adap-
tation decisions. [28] also takes into account the latency of adaptation tactics
(`E); in addition, it aims to speed up decision-making (`AP , denoted by a * in
the table to make clear that this duration is not part of the tactic latency).

In addition to the papers in Table 1, also [16] should be mentioned. This
paper is not about the latency of specific adaptations, but about overall metrics
to quantify the performance of cloud elasticity solutions, thus aggregating the
effect of a series of adaptations.

3.3 Adaptation latency in other papers

Although our present study was limited to papers about service-based and cloud-
based systems, we also found papers published in SEAMS that are unrelated to
these domains but contained interesting information about adaptation latency.



For example, [10] addresses the problem of reverting short-term remediation ac-
tions. The suggested approach is evaluated using an example from the smart
homes domain, which is not relevant to the domains covered here. However, the
evaluation contains information about all four components of the adaptation la-
tency. [2] proposes an adaptive approach for the mitigation of Denial-of-Service
attacks; the experimental results also showcase the full adaptation latency with
all its four components. [39] addresses adaptations in networked embedded sys-
tems under real-time constraints, where the adaptation latency must remain
within given bounds even in the worst case. [6] improves the self-adaptation
behavior of an industrial data acquisition and control system using architecture-
based self-adaptation and shows that the re-engineered system can recover from
disturbances faster.

Other works contain information about specific components of the adaptation
latency. [30] investigates the application of genetic algorithms to find optimal
adaptations for mobile applications and is specifically concerned with the time
taken by the algorithm (`AP ). [33] devises an approach for the self-adaptation of
access control policies, and measures the execution time of the proposed approach
(`AP ). [4] proposes an approach which can adapt the requirements if the available
resources are not sufficient to satisfy the requirements, applies this approach in
meal planning to reduce food waste, and measures the processing time (`AP +
`E). [27] presents an exemplar for self-adaptation approaches for cyber-physical
systems, and emphasizes the importance of timing in this domain. In particular,
the exemplar explicitly supports tactic latencies (`E). Also in the domain of
cyber-physical systems, [17] investigates how offline machine learning can reduce
the time needed for online planning (`AP ).

[15] presents a systematic literature study about self-adaptation in mobile
apps. Regarding timing, the result of the study was that all found approaches
were best-effort, i.e., without any guarantees for the adaptation latency.

[18] is domain-independent and defines a large set of metrics for the evalua-
tion of self-adaptive systems. The metric that comes closest to our adaptation
latency is “Time for Adaptation” which is defined as the “time to return to a
nominal behavior after a perturbation”. Similarly, [37] defines a set of properties
and metrics for the evaluation of self-adaptive systems. That paper uses “set-
tling time”, defined as “the time required for the adaptive system to achieve
the desired state”, but it is mentioned that several other terms are used in the
literature (recovery time, reaction time, healing time).

[11] proposes a control-theoretic approach to self-adaptation, which allows to
derive an upper bound on the settling time. The resulting estimate is actually
the number of iterations of the control loop, after which the investigated system
property will be within given proximity of the goal.

4 Discussion

Regarding the model of adaptation latency proposed in Section 2, some details
may require further elaboration. For example, it is not always clear when exactly



the “need for adaptation arises” (which is the point in time from which `M
is measured). Like any model, also our model of adaptation latency abstracts
from some details of reality and thus may leave some room for interpretation
when being applied to a specific scenario. We found this level of uncertainty
acceptable when analyzing the literature, and we could determine in each case
which components of the adaptation latency are involved. Also the question of
how appropriate the model is can be answered in this context: we found the
model very useful for structuring the literature relating to adaptation latency.
For other purposes, it may or may not be appropriate, depending on the required
level of detail.

Regarding the results of the survey presented in Section 3, several observa-
tions can be made:

– In most of the found papers, information about adaptation latency was
only presented in the context of an experimental evaluation. In most cases,
the proposed approaches were not adaptation-latency-aware themselves, i.e.,
they did not perform any reasoning on latency-related information. Such
reasoning, however, could be very useful [25]. Also those papers that did
reasoning about adaptation latency, were only concerned with the latency of
the execution of adaptation tactics. Hence we expect to see more research
on adaptation-latency-aware self-adaptation approaches in the future.

– Information about adaptation latency was limited in most papers to `AP

and/or `E , which are the parts of the adaptation latency that are mostly
internal to the self-adaptive system. The other parts of the adaptation la-
tency, which are more strongly related to the environment (`M and `E2) are
considered less frequently. On the one hand, this is understandable since we
can better control the system-related components (`AP and `E). However,
the effectiveness of self-adaptation is ultimately determined by the adapta-
tion latency as a whole, in which the environment-related components (`M
and `E2) can be just as important as the system-related components. Hence,
more research may be needed on the environment-related components of the
adaptation latency.

– The specific timing information collected in the penultimate column of Ta-
ble 1 has huge variance. Obviously, timing measurements stemming from
different technical environments cannot be directly compared to each other,
but there could be some trends at least concerning the orders of magni-
tudes (especially since the considered papers are all from similar domains).
However, not even such trends are observable: for each component of the
adaptation latency for which we have multiple measurements, these vary by
several orders of magnitude.

– As shown in the last column of Table 1, there is no generally accepted name
for adaptation latency. Rather, the authors usually resort to different, longer
expressions to describe adaptation latency. Naming is also challenging be-
cause of the ambiguity with the base functionality of the self-adaptive system
(e.g., latency for processing web page requests versus latency of an adapta-



tion). Unfortunately, the lack of a generally accepted term for adaptation
latency makes it difficult to search for relevant work using keyword search.

Of course, these observations are based on the limited literature survey pre-
sented in this paper, and should hence be seen as preliminary. It remains an
important task for future research to check whether the observations are sup-
ported also by a comprehensive survey of the relevant literature.

5 Conclusions and future work

This paper is a first step towards a better understanding of adaptation latency
in self-adaptive systems. In particular, we have presented a model of adapta-
tion latency that identifies its main components. Furthermore, we conducted a
literature survey on information about adaptation latency, for the time being
restricted to the SEAMS conference series and to service-based and cloud-based
systems, and used our model of adaptation latency to categorize the found pa-
pers. The results of the literature survey show that there is some awareness of the
importance of adaptation latency in the research community, but this awareness
is limited. One of the identified limitations is that most of the relevant papers
only consider some components of the adaptation latency and ignore other com-
ponents that could also be important. Another limitation is that most of the
relevant papers deal with adaptation latency only in their experimental evalu-
ation, which means that most of the presented approaches are not adaptation-
latency-aware. On the other hand, adaptation-latency-aware approaches can be
very powerful, even if limited to awareness of a component of the adaptation
latency, like the latency of adaptation execution [25] or the latency of planning
[22]. Hence we expect to see more research in this direction in the future.

The next step in our research is to extend the literature survey to other
publication venues and to other domains of self-adaptive systems. This way, we
expect to collect a larger body of related papers, allowing us to do a more compre-
hensive qualitative and quantitative analysis, also comparing different research
communities in terms of their relation to adaptation latency. We are particularly
interested in (i) insights into the aspects influencing adaptation latency, (ii) ex-
perience about the consequences of adaptation latency, and (iii) approaches that
explicitly take into account adaptation latency, either reactively (e.g., taking into
account ongoing adaptations while planning new ones) or proactively (e.g., pre-
ferring quick planning algorithms or quick adaptation tactics in cases of urgency).
In the long run, we hope to contribute to building better self-adaptive systems
by raising the awareness of adaptation latency in the research community, and
incorporating such aspects in approaches to self-adaptation.
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