
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 48, NO. 3–4, PP. 133–149 (2004)

TIME-CONSTRAINED DESIGN OF PIPELINED
CONTROL-INTENSIVE SYSTEMS

András ORBÁN, Zoltán Ádám MANN and Péter ARATÓ

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

H–1117 Budapest, Magyar tudósok körútja 2, Hungary
e-mail: arato@iit.bme.hu, {zoltan.mann, andras.orban}@cs.bme.hu

Received: April 2, 2004

Abstract

Although there are widely known solutions for dataflow-dominated resource constrained high-level
synthesis (HLS) problems, optimization of hardware resources under time-constraints in control-
intensive systems is still a challenge. This paper examines the case when functional pipelining
is used to increase the throughput of the system. The traditional concept of mutually exclusive
conditional branches must be dropped and new methods are needed to exploit the resource sharing
possibilities of conditional branches. We developed new methodologies able to exploit the resource
sharing possibilities under these circumstances and extended the two schedulers and the allocation
module of the HLS tool PIPE to handle arbitrarily nested conditional structures and demonstrated
the improved resource utilization on control-intensive benchmarks.

Keywords: conditional branches, functional pipelining, time-constrained scheduling, allocation, HLS.

1. Introduction

As hardware design becomes even more complex and time-to-market constraints
grow, there is a strong motivation for high-level-synthesis methodologies. HLS
should be able to equally handle dataflow-dominated and control-intensive designs.
There are efficient algorithms and tools (also covering a wide-range of special
cases like multicycle operations, operation chaining, functional pipelining etc.) in
[2, 9, 5, 16], but there is still a need for new solutions in the latter area.

Mostly the resource-constrained design problem is considered. Although less
frequently analysed, the time-constrained model is very useful in the early stage of
the system design where behavioral timing requirements are already known but
few information of the resources are available. The HLS tool PIPE [2] developed
at our department is one of the few tools working in time-constrained model.

The ever-growing speed requirements to special purpose hardware circuits
increased the significance of pipeline architectures. Pipeline operation is useful if a
large amount of data has to be processed with the same algorithm and inter-iteration
dependencies are not present. Examples include image processing, cryptographic
applications, medical devices. This paper deals with the control-intensive HLS
problem in the case of functional pipelining.

134 A. ORBÁN et al.

Related articles in the field of control-intensive HLS can be categorized as
exact methods [6, 23] and heuristics [24, 3, 18]. There are several optimization
techniques mainly in the scheduling phase of HLS. A good survey can be found
in [15]. We mention some of them without the intention of an exhaustive list:
code-motion techniques moving operations in and out of conditionals [11], specu-
lative execution [10, 24], conditional resource sharing detection [14, 23, 25], node
duplication [24], lazy execution transformation [7], false-path elimination [15],
optimization according to the probabilistic distribution of the input values [4]. An-
other research direction aims at optimizing the underlying control structure or, vice
versa, the control structure implies further constraints on the scheduling [7, 13].

Another approach beside HLS dealing with parallelization techniques is rep-
resented by the ILP (Instruction Level Parallelism) community. In most cases a
concrete target architecture is selected (e.g. superscalar or VLIW processors),
hence the majority of papers deal again with the resource-constrained schedul-
ing problem. Similar techniques have been developed in this field as well, like
code–motion [8], loop–pipelining [20, 12] or branch probability prediction [26].
These techniques aim at executing many operations as soon as possible (respecting
the resource constraints) to reduce the latency of the system. In time–constrained
model, on the other hand, one should rather distribute the operations uniformly in
every control step to get minimal resource usage.

There are several representations of the control-intensive design problem, the
most commonly used are the variants of the CDFG (Control and Data Flow Graph)
[17, 4], however, new guard-based representations are emerging [15, 23] claiming
that this representation can avoid the drawbacks of syntactic variance in the input
description.

The basic concept of resource sharing in a control-dominated problem in-
stance is based on the mutual exclusiveness of the two branches of a conditional
[6, 25]. However, if the system is used in pipeline mode to achieve higher through-
put, this principle is hurt, hence traditional approaches fail. It is possible that
with the first piece of data the left branch of a conditional, while with the second
piece of data the right branch of the same conditional is active at the same time,
hence they are not mutual exclusive. There are only few papers handling pipeline
processing in control-intensive problems. [23] is one of the exceptions; it presents
a theoretical calculation of mutual exclusivity in loop-intensive problems using a
complicated guard mechanism for the detection. However, it also examines the
resource-constrained problem. Our model, on the contrary, is time-constrained
and is much simpler and it is not only theoretical but a tool that has proven its
applicability.

PIPE automates the HLS process from C to VHDL. It operates on a CDFG-
like data structure detailed in Section 2. In the design of PIPE the support of
pipeline processing from the beginning of the design was one of the most important
goals. Now we extend it to manage conditional branches in the same philosophy.
The former version handles conditional branches in the most pessimistic way: it
produces a circuit that would be able to execute both branches at any time and no
resource-sharing is applied.

TIME-CONSTRAINED DESIGN 135

Although the two branches are not completely mutually exclusive, but de-
pending on the value of the restart time (i.e. the frequency of giving new input to
the system) there are pairs of operations that are mutual exclusive and can be allo-
cated to the same processor. (An example follows in Section 2.) These pairs can
be detected without assuming anything about the branch probabilities. Beside the
detection mechanism, our main contribution is to improve the two schedulers and
the allocation module of PIPE to take advantage of these resource-sharing possi-
bilities.

Note that the aim of this paper is neither to compete with advanced code-
motion techniques available in the literature nor to use a special representation.
We only focus on the issues following from the pipeline processing; the above
techniques are orthogonal to that and might be combined with ours.

The paper is organized as follows. Section 2 introduces the basic concepts
of our model, the structure of the HLS tool PIPE. Section 3 describes the new
scheduling and allocation algorithms and the extension of PIPE in detail. The
experimental results comparing the former PIPE with the updated one follow in
Section 4, while Section 5 concludes the paper.

2. Background

To represent conditional information we use a CDFG variant. Besides the usual
nodes representing data-transformation operations (elementary operations, EO)
and usual edges representing data-dependencies some special control nodes and
control edges are introduced to identify the nested structure of conditional branches.
The control nodes have no real operation on data. The beginning of a conditional
branch is marked with a special fork node. For the sake of simplicity of our al-
gorithms we divided this node into two, namely forkR and forkL identifying the
right and the left branch of the conditional, respectively. As input they receive the
output of the evaluated condition corresponding to this conditional and they decide
whether to be active or not. The fork nodes are connected to the first operations of
their conditional branch through special control edges. An active fork sends a start
signal to its successors through these control edges. The fork operation has zero
execution time, and it will not be allocated into physical processors.

The end of the conditional branch is represented by a join node. If e.g. vari-
able x can be modified in a conditional branch, the value of x will depend on that
conditional. The task of the join operation is to select the appropriate value depend-
ing on the branch that has been really executed. If there are k variables that can be
modified in either of the branches of the conditional, the join operation will have
2k + 1 input signals: the data signals for each variable (one for the left branch and
another for the right branch) and the control information of the executed branch
through a control edge. Fig. 1 shows an example.

In the time-constrained model the goal of the design is to minimize the total
cost of utilized resources. Beside the CDFG two other parameters are given as

136 A. ORBÁN et al.

input describing the time requirements of the system. The latency of the system,
denoted by L , is the time the system requires to execute an iteration. The more
important time property is the restart time (or initiation interval) of the system,
denoted by R, which specifies how frequently a new input is fed into the system.
If R < L , we talk about functional pipelining, i.e. the system is working on more
than one input data at the same time. There is a minimal valid latency determined
by the sum of the execution times on the longest path of the CDFG. The actual
throughput of the system is determined by R, hence a decrease in R might be
compensated by a small increase in L .

PIPE automates the whole HLS process starting from the C until structural
VHDL code. Separate modules are responsible for the different tasks of HLS,
therefore it is easy to improve a subtask by replacing the corresponding module.
The most important modules of PIPE are the following:

Restart. This module makes transformations on the CDFG to make the desired
restart time possible. It inserts buffers and replicates operations in an optimal
way. See [2] for more details.

Scheduling. This module aims at finding the starting time of each operation. The
quality of the final output is highly dependent on the used scheduling algo-
rithm. Two different scheduler modules can be plugged into PIPE, the first
one is a force-directed scheduler [21, 22] the second is a genetic scheduler
[1]. Both schedulers have been extended to handle conditional branches, see
Section 3 for details.

Allocation.1 The scheduled operations are allocated to physical processors. There
is a mapping between operations and available processor types. An unlim-
ited number of processors are assumed in each type, and the goal is to use a
minimal-cost set of them. The allocation unit uses a first-fit heuristic. This
module has also been extended to take advantage of the conditional branches
(Section 3).

Let us consider the example in Fig. 1 which demonstrates the used notions
and the problem of conditional branches in pipeline mode. The name of the op-
erations contains their type and a number, e.g. -2 means the second subtraction.
Assuming that every real operation except multiplication takes one time step, and
multiplication takes three2, the minimal latency of the system equals L = 7 time
steps. For the sake of simplicity we use ALUs capable of executing all the opera-
tions in the example.

Without pipeline operation (R = 7) the operations *1 and +1 are compat-
ible, i.e. they can share the same resource—irrespective of the scheduling, since
they are in separate conditional branches. Now consider the pipeline case with
R = 4 and L = 8. A possible scheduling with allocation can be seen in Fig.2. A
vertical track corresponds to an ALU. The operations -1,-2 and +1 conditionally

1Note that scheduling and allocation are separate subsequent tasks in our model. For further
details see [2].

2Multicycle operations are allowed in our model.

TIME-CONSTRAINED DESIGN 137

int a,b,c,d;

if (a<1){
b=c*d;
if(a+b>0){

c=a-3;
}
else{

c=b-3;
}

}
else{

b=a+d;
}

forkL_1

*1

<1

forkR_1

+1

init_a

+2

−1

const_1

−2

join_1

init_c init_d

forkL_2

>1

forkR_2

const_0

join_2

const_3

Fig. 1. An example C code and the generated CDFG

share the same ALU. The figure shows a second iteration shadowed. Although
operation +1 and *1 are in different branches of the same conditional, they are
concurrent in time-cycle 7 due to pipelining. (Of course they are still mutually
exclusive within an iteration.)

3. Improved Algorithms

This section presents our new algorithmic results. First an effective method is
described to extract the conditional structure from the input description, then the
so-called CONCHECK algorithm is introduced, which can decide whether two
operations can share the same processor or not. Finally two existing scheduling
algorithms and the allocation procedure will be modified according to the new
concepts.

3.1. Extracting Conditional Information

In order to determine the compatibility of node-pairs with the CONCHECK algo-
rithm (Section 3.2), first the information whether two nodes are executed under
exclusive conditions, i.e. whether they are mutually exclusive in the traditional

138 A. ORBÁN et al.

0

1

2

3

4

5

6

7

8

9

10

12

11

ALU1 ALU2 ALU3

<1

+2

>1

*1

−1/−2/+1

<1

+2

>1

*1

−1/−2/+1

Fig. 2. A possible scheduling for the example with R = 4 and L = 8.

sense, has to be extracted. Formally:

DEFINITION 1 Let �� ⊆ V × V be the following symmetric relation between two
operations. E Oi �� E O j if and only if they are in separate branches of the same
conditional, i.e. they are mutually exclusive within an iteration.

Therefore our aim is to determine the �� relation. Similar techniques exist
based on conditional vectors [24] or BDDs [15]. In our method the detection is
achieved by parsing the description file of the CDFG. We are aware of the fact that
structural variance in the input file can cause a different conditional structure of the
same behavior and that there are more advanced representations like HCDG [15]
to avoid this, but this is not the focus of our research.

From a CDFG with n nodes and m conditional branches we create an n × m
table (A) each row of which corresponds to the role of a node in the conditional
branches. The role types are as follows: NOT_MEMBER, LEFT_BRANCH,
RIGHT_BRANCH, FORK, JOIN. More precisely: the element of the j th column
of the i th row (aij) determines the role of the i th operation (E Oi) in the j th condi-
tional. (In the following we assume that the conditionals are somehow numbered
from 1 to m and there is a one-to-one mapping between the numbers and the cor-
responding fork and join nodes. So we can refer to the forkR_j, forkL_j or join_j
node of the j th conditional branch.) This table encapsulates the whole nested con-
ditional structure and the �� relation as the following obvious proposition shows.

PROPOSITION 1 Two nodes E Oi and E Oj are exactly in the same conditional

TIME-CONSTRAINED DESIGN 139

branches if and only if their rows are exactly the same. E Oi �� E O j if and
only if there is at least one column where their roles are LEFT_BRANCH and
RIGHT_BRANCH, or vice versa.

Table 1. The table encapsulating the conditional structure of the example

Operation Conditional1 Conditional2

<1 NOT_MEMBER NOT_MEMBER
forkR_1 FORK NOT_MEMBER

+1 RIGHT_BRANCH NOT_MEMBER
forkL_1 FORK NOT_MEMBER

*1 LEFT_BRANCH NOT_MEMBER
+2 LEFT_BRANCH NOT_MEMBER
>1 LEFT_BRANCH NOT_MEMBER

forkR_2 LEFT_BRANCH FORK
-2 LEFT_BRANCH RIGHT_BRANCH

forkL_2 LEFT_BRANCH FORK
-1 LEFT_BRANCH LEFT_BRANCH

join_2 LEFT_BRANCH JOIN
join_1 JOIN NOT_MEMBER

Table 1 contains the conditional information of the previous example. How-
ever, it is not straightforward to fill in this table, since the information in each row
may depend on other ones.

Important to note that the row of an operation can only depend on the rows
of its predecessors, but not on the successors’ rows. Therefore one should first sort
the nodes of the CDFG in topological order, i.e. E O1 ≺ E O2 ≺ . . . ≺ E On, so
that for each edge (E Oi , E O j) i < j holds3. Parsing the nodes in this order all the
information needed to fill in the row of the next node is already available. Based
on the following proposition an effective algorithm can be given for the extraction
of conditional information.

PROPOSITION 2 The ordinary node (neither fork nor join) x is member of the j -
th conditional branch if and only if one of its predecessors is member (RIGHT_
BRANCH, LEFT_BRANCH or FORK) of the j -th conditional branch.

REMARK 1 It is possible for node x to have predecessors that are members of
the j th conditional as well as predecessors that are not. The previous proposition
states that in this case x is a member of the j -th conditional. See e.g. the -2 node of

3More precisely we should write that there is a permutation π of the set {1,2,. . . ,n} so that
E Oπ(1), E Oπ(2), . . . , E Oπ(n) is a topological order. For the sake of simplicity we assume that the
original numbering is a topological order.

140 A. ORBÁN et al.

the example of Fig. 1: this node has three predecessors, one of which (forkR_2)
is member of the second conditional branch, others are not. Node -2 should be
declared as a member of the second conditional.

Proof of the proposition. Since x needs the result of an operation in the j th con-
ditional branch, this result will only be produced provided the condition for this
conditional branch is evaluated as true. Hence the execution of x also depends on
the condition of the j th branch, so x is a member of this conditional branch. The
other direction of the proof is obvious. �

This proposition implies an algorithm to fill in the table. The input nodes are
not members in any of the conditional branches. The following recursive definition
of aij can be obtained.

aij :=

LEFT_MEMBER, if ∃k : (E Ok, E Oi) ∈ E and
(ak, j = LEFT_MEMBER or ak, j = f orkL_ j)

RIGHT_MEMBER, if ∃k : (E Ok, E Oi) ∈ E and
(ak, j = RIGHT_MEMBER or ak, j = f ork R_ j)

JOIN, if E Oi = join_ j
FORK, if E Oi = f orkL_ j or E Oi = f ork R_ j
NOT_MEMBER, otherwise.

(1)
Parsing the input graph in topological order, table A can be easily filled in using
the above rule.

The complexity of the algorithm is linear in the size of the CDFG, i.e. O(n +
|E |), since sorting the nodes in topological order of a DAG takes linear time and
determining the value of aij according to Eq. (1) takes in-degree of E Oi time, that
is altogether also linear time,4.

The hierarchy of the conditional branches can also be detected easily using
this table.

3.2. The CONCHECK Algorithm

To exploit the resource sharing possibilities of conditional branches even in pipeline
processing an algorithm should be given that decides whether two scheduled opera-
tions are compatible or concurrent, i.e. they can be allocated to the same processor
or not. (We examine only operation pairs mapped to the same processor type.)
This algorithm is called CONCHECK. This is the improved and simplified version
of the CONCHECK algorithm presented in [2]. It is important that CONCHECK
works without assuming anything about the branch probabilities. In the following
we outline the basic concepts of CONCHECK.

4A CDFG generally has only few edges, |E | = O(n), hence O(n + |E |) = O(n).

TIME-CONSTRAINED DESIGN 141

3.2.1. Without Conditional Branches

Assume two operations E O1 and E O2 that occupy their processing units in the
closed intervals [s1, e1], [s2, e2], respectively. If there is no pipelining (R = L),
the two operations are concurrent if and only if the intervals [s1, e1] and [s2, e2]
intersect. The possible arrangement of the intervals can be seen in Fig.3(a). It
is easy to see that the necessary and sufficient condition for the intersection is the
following:

s1 < e2 and s2 < e1 (2)

s2

e2

s1

e1

s1

e1

e1

s1

s1

e1

(a) The intersection of two inter-
vals within the same iteration

3R

2R

R

0

s1

e1
s1

e1 s1

e1

s2

e2

(b) The intersection of two inter-
vals between iterations

Fig. 3. Some possible positions of intersecting intervals (left) and intersecting intervals
modulo R (right)

If pipeline processing is allowed, these intervals should intersect modulo R.
This means that e.g. interval [s1, e1] can be shifted by a multiple of R so that the
two intervals intersect. Fig. 3(b) illustrates such situations. This can be expressed
as:

∃k ∈ Z : s1 − k · R < e2 and s2 < e1 − k · R (3)

142 A. ORBÁN et al.

The previous equation simplifies as (since R is a positive integer):

∃k ∈ Z : e1 − s2

R
> k >

s1 − e2

R
(4)

Our goal is to eliminate k. Eq. (4) holds if and only if the largest integer strictly
smaller than e1−s2

R still greater than s1−e2
R is. The use of the �·� operation almost

solves the problem with one exception: if e1−s2
R is by chance an integer, �e1−s2

R �
returns the same number and not the largest integer strictly smaller than that. The
desired behaviour can be achieved with the use of the floor operation and a small
trick: we subtract a sufficiently small number, 1

R+1 from e1−s2
R . If e1−s2

R is non-
integer, it will have the same integer part after subtraction as before. If it is integer,
the subtraction will decrease the integer part by one. To sum up, the operations are
concurrent if and only if the following equation holds:

⌊
e1 − s2

R
− 1

R + 1

⌋
>

s1 − e2

R
(5)

It is possible that more than one k values satisfy (3) (e.g. if one of the operations
lasts at least R, then surely), but this will not cause any problem, this case need not
to be handled specially5; for us it is only relevant that at least one such k exists.

3.2.2. With Conditional Branches

The situation is slightly different if the two operations are in separate branches of
the same conditional, i.e. if E O1 �� E O2. If there is no pipeline processing, then
the two operations are always compatible; this is the traditional mutual exclusivity
principle. However, with pipeline processing they are concurrent if the two inter-
vals intersect modulo R but they do not intersect within the same iteration. This
is because the two operations cannot be executed at the same time in the same it-
eration; the only way to operate simultaneously is between iterations, hence k, the
difference of the iterations of E O1 and E O2, cannot be zero. To be precise, the
previous condition of Eq. (4) is applicable with a small exception:

∃k ∈ Z, k 	= 0 : e1 − s2

R
> k >

s1 − e2

R
(6)

5If e.g. e1 ≥ s1 + R then the two operations are surely concurrent. It can be derived from (4) as

well: e1−s2
R ≥ s1−s2

R + 1 >
⌈

s1−s2
R

⌉
≥ s1−s2

R >
s1−e2

R , hence k :=
⌈

s1−s2
R

⌉
proves that they are

indeed concurrent.

TIME-CONSTRAINED DESIGN 143

We eliminate k the same way as before, but the case when k = 0 is the only
solution that should be forbidden.⌊

e1 − s2

R
− 1

R + 1

⌋
>

s1 − e2

R
(7)

and⌊
e1 − s2

R
− 1

R + 1

⌋
= 0 ⇒ s1 − e2

R
< −1 (8)

Eq. (8) ensures that if k = 0, then Eq. (6) does not have a solution.
The flowchart of the new CONCHECK algorithm incorporating both the con-

ditional and the non-conditional cases is illustrated in Fig.4.

A := s1−e2
R

A ≥ B
y

n

B :=
⌊

e1−s2
R − 1

R+1

⌋
e2 Re1 s2s1

concurrent compatible

y

n

B = 0

A ≥ −1
AND

AND

E O1 �� E O2

Fig. 4. The CONCHECK algorithm

3.2.3. Multiplied Operations

To achieve the desired throughput given by R, some operations need to be multi-
plied in several copies (see the restart algorithm in Section 2 and in [2]).
CONCHECK is able to handle multiple copies of operations as well. The orig-
inal CONCHECK algorithm given in [2] also handles multiplied operations, but
needs additional examination to achieve this. Our CONCHECK algorithm, on the
other hand, already incorporates the case of multiple operations and needs no fur-
ther questions to decide the compatibility in this special case.

144 A. ORBÁN et al.

Table 2. The benchmark problems

Name (size) Conditions Description
Nr. Depth

example1 (23) 7 2 Simple benchmark v1.
jian (28) 4 2 The benchmark of [15]
example2 (29) 9 2 Simple benchmark v2.
quad (36) 3 2 Quadratic equation solver
concheck1 (38) 6 2 The CONCHECK alg. v1.
concheck2 (51) 8 4 The CONCHECK alg. v2.
det (80) 4 2 Calculates a determinant
idea (230) 2 1 IDEA cryptographic alg.

3.3. New Scheduling Algorithms

PIPE contains two scheduling heuristics: a genetic scheduler and a force-directed
scheduler. The user can decide which scheduler to use.

The aim of scheduling is to find a good candidate for the allocation, that is to
select a schedule for which allocation finds a low-resource solution. Since alloca-
tion itself is anNP-hard problem [19], it is too expensive to evaluate each schedule
with that, hence another objective function for scheduling has to be chosen.

The genetic scheduler tries to find a schedule with a maximum number of
compatible pairs.

To extend the genetic scheduler to effectively handle conditional branches is
simply to calculate the number of compatible node pairs according to the
CONCHECK algorithm. (Previously the information of conditional branches was
completely ignored.)

The force-directed scheduler aims at finding a schedule for which the re-
source load at each time step is the most uniform possible. The resource load in a
time step is summed up by the resource needs of each operation. This is calculated
in a probabilistic way: each operation occupies every time step of its mobility do-
main with the same probability and the resource usage is this probability multiplied
with the full resource-need of this operation.

Due to conditional branches this calculation should be modified in such a
way, that instead of the sum of the resource-need of compatible node pairs sched-
uled to the same time the maximum should be considered. The resource-need of
an operation can be further on evaluated in a probabilistic way. To build this maxi-
mum properly, the tree representing the conditional hierarchy of the CDFG should
be traversed with a depth-first search.

TIME-CONSTRAINED DESIGN 145

3.4. Allocation

The allocation module uses a first-fit allocation heuristics. The nodes are consid-
ered in some heuristic order and each node is allocated into the first free processor
(note that the starting time of the node is already known) able to execute this oper-
ation. If none of the processors is free, a new processor instance is created.

Note that without conditional branches two operations scheduled to the same
time must always use two separate processors. Compatible operations in separate
branches of the same conditional that are scheduled to the same time are allowed to
share the same processor. The calculation of free processors has been modified ac-
cordingly. As a result, allocation employs this information to find a lower resource
utilization.

4. Experimental Results

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 p

ro
ce

ss
or

s

restart time

Fd
Gen

Fd new
Gen new

Fig. 5. The detailed results of the ‘det 48,[3-48]’ example

Since we could not find any paper reporting test results on exactly the same
problem as ours (time-constrained model, control-intensive behavior, functional
pipelining), we compared our improved algorithms to the previous version of PIPE.
Altogether four versions of PIPE were tested, the previous versions are called Fd
and Gen, corresponding to the type of the scheduler (force-directed or genetic) and
the improved versions are called Fd-new and Gen-new, respectively.

The list of benchmark problems can be found in Table 2. Note that the last
benchmark is significantly larger than the usual benchmarks in the literature, what
justifies our methods on big examples. Although it has only one conditional, this
conditional reaches across the whole problem, hence the resource-sharing becomes
vital in this example. On each benchmark we ran a complete scan of tests: we fixed

146 A. ORBÁN et al.

Table 3. The reduction with the new algorithms in the number of required ALUs

Name L ,[R range] Reduction Reduction
Fd new vs. Fd Gen new vs. Gen

example1 18,[3-18] 32.9% 38.6%
jian 24,[3-24] 9.3% 15.6%
example2 18,[3-18] 30.9% 37.5%
quad 72,[3-30] 20.6% 29.6%
quad 72,[30-70] 33.7% 35.6%
concheck1 33,[3-33] 17.7% 13.4%
concheck2 61,[3-30] 9.4% 17.6%
concheck2 61,[30-61] 15.7% 24.5%
det 48,[3-48] 54.5% 61.3%
idea 300,[11-30] 19.8% 35.3%
idea 300,[30-100] 28.6% 34.0%
idea 300,[100-300] 34.9% 40.9%

the latency of the benchmark to a concrete value and varied the restart time between
3 clock cycles and the latency. We refer to a test case in the form: ‘test_name
L_value,[R range]’, for example ‘det 48,[3–48]’ means, that the ‘det’ benchmark
has latency 48 and the restart time varied between 3 and 48. If this range was
very large, we divided the range into several pieces, since we expected different
behavior with smaller and with larger R values. To make the evaluation easier we
assumed that only one resource type, ALU was available, that is able to execute all
the operations. In all benchmarks the comparator operations (<,>,==, etc.) require
2 clock cycles, the addition and subtraction 4 clock cycles and multiplication and
division 8 clock cycles. The tests ran on 7 different PCs equipped with SuSE Linux
and 500MHz-1GHz processors.

The detailed results for a selected benchmark can be seen in Fig. 5. The
four functions indicate the required number of processing units of each algorithm
for various restart time values. One can clearly see, that the improved algorithms
perform significantly better than the previous ones, especially at higher R values.

It would be infeasible to show all the details for all test cases, hence a sum-
mary is given in Table 3. For each benchmark the average reduction to the previous
version of the algorithm in the number of required ALUs is presented. The average
is taken over the different restart time values of the given range. As we expected
the new algorithms could reduce significantly the required number of processors.
If R is not much lower than L (see e.g. the idea or the quad benchmark), the new
algorithms work especially effectively. The reason is that if R is very low, it is
nearly impossible to share a processing unit regardless of the conditional branches,
but if R is high enough, our resource-sharing mechanism starts working.

The average execution times of the algorithms can be studied in Table 4.

TIME-CONSTRAINED DESIGN 147

Table 4. The average execution times of the different algorithms in each benchmark

Name L ,[R range] Fd Gen Fd Gen
new new

example4 18,[3-18] 2.8 s 5.8 s 13.4 s 12.6 s
jian 24 [3-24] 2.5 s 5.6 s 11.7 s 13.0 s
example5 18,[3-18] 5.8 s 14.8 s 24.5 s 25.5 s
quad 72,[3-30] 55.1 s 73.9 s 43.2 s 48.8 s
quad 72,[30-70] 83.1 s 140.8 s 42.4 s 51.0 s
concheck1 33,[3-33] 12.2 s 27.6 s 48.6 s 50.8 s
concheck2 61,[3-30] 35.4 s 62.6 s 43.4 s 48.1 s
concheck2 61,[30-61] 43.6 s 171.0 s 40.8 s 45.1 s
det 48,[3-48] 41.0 s 89.2 s 283.6 s 249.6 s
idea 300,[11-30] 45.5 m 31.1 m 21.4 m 26.7 m
idea 300,[30-100] 26.9 m 56.9 m 44.8 m 57.1 m
idea 300,[100-300] 41.0 m 36.3 m 38.0 m 48.2 m

One can see that the new algorithms usually generate some overhead according to
the more complex calculation but it is not very significant since every algorithm
finishes within a couple of minutes in the small tests and within an hour in the
large idea benchmark.

Unfortunately the execution times are very rhapsodic in every version of the
algorithm, which is worth some explanation: The execution time of the force-
directed scheduler heavily depends both on the number of operations and the size of
the mobility domain of the operations. The mobility of an operation is continuously
changing during scheduling, which also depends on the algorithm itself. The old
and the new force-directed scheduling algorithm might result in different mobility
domains, which can cause both shorter and longer execution times. The running
time of the genetic scheduler is determined by its termination condition: on the one
hand, the number of iterations is bound by a minimum and a maximum value and,
on the other hand, the algorithm also stops if the population has not been improved
in the last 30% of the iterations. This important second termination condition is
responsible for the fluctuation of the running times.

5. Conclusion

This paper deals with control-intensive, pipelined high-level synthesis problems
with time constraints. It gives a simple algorithm for the detection of compatibility
of operations, which can be regarded as the generalization of mutual exclusivity
of conditional branches in non-pipeline processing. The two schedulers and the
allocation module in the HLS tool PIPE working in the time-constrained model has

148 A. ORBÁN et al.

been extended accordingly and a new module extracting the conditional hierarchy
has been added. The experimental results demonstrated that the new methodology
could reduce the required number of processing units in control-flow-dominated
problem instances significantly.

Our future research includes the analysis of inter-iteration-dependent loops
containing conditional branches and working in functional pipelining.

References

[1] ARATÓ, P. – MANN, Z. Á. – ORBÁN, A., Genetic Scheduling Algorithm for High-Level
Synthesis, in: Proceedings of the IEEE 6th International Conference on Intelligent Engineering
Systems, 2002.

[2] ARATÓ, P. – VISEGRÁDY, T. – JANKOVITS, I., High-Level Synthesis of Pipelined Datapaths,
John Wiley & Sons, Chichester, United Kingdom, first edition, 2001.

[3] BERGAMASCHI, R. – RAJE, A. – NAIR, I. – TREVILLYANET, L., Control-Flow Versus Data-
Flow Based Scheduling: Combining Both Approaches in an Adaptive Scheduling System,
IEEE Trans. Very Large Scale Integration Systems, 5 No. 1 (1997), pp. 82–100.

[4] BHATTACHARYA, S. – DEY, S. – BRGLEZ, F., Performance Analysis and Optimization of
Schedules for Conditional and Loop-Intensive Specifications, in: Design Automation Confer-
ence, (1994), pp. 491-496.

[5] CAMPOSANO, R., From Behaviour to Structure: High-Level Synthesis, IEEE Design and Test
of Computers, 10 (1990), pp. 8–19.

[6] CAMPOSANO, R., Path-Based Scheduling for Synthesis, IEEE Transactions on Computer-
Aided Design, 10 No. 1 (1991), pp. 85–93.

[7] DOS SANTOS, L. – HEIJLIGERS, M. – VAN EIJK, C. – VAN EIJNHOVEN, J. – JESS, J.,
A Code-Motion Pruning Technique for Global Scheduling, ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES), 5 No. 1 (2000), 1–38.

[8] EBCIOGLU, K. – NICOLAU, A., A Global Resource-Constrained Parallelization Technique,
ACM SIGARCH International Conference on Supercomputing, June, 1989.

[9] GAJSKI, D., High-Level Synthesis, Kluwer Academic Publishers, 1992.
[10] GUPTA, S. – SAVOIU, N. – DUTT, N. D. – GUPTA, R. K. – NICOLAU, A., Conditional Spec-

ulation and its Effects on Performance and Area for High-Level Synthesis, in: International
Symposium on System Synthesis, October, 2001.

[11] GUPTA, S. – SAVOIU, N. – KIM, S. – DUTT, N. D. – GUPTA, R. K. – NICOLAU, A.,
Speculation Techniques for High Level synthesis of Control Intensive Designs, in: Design
Automation Conference, June, 2001.

[12] HOLTMANN, U. – ERNST, R., Combining MBP-Speculative Computation and Loop Pipelin-
ing in High-Level Synthesis, in: European Design and Test Conference, 1995, pp. 550–556.

[13] KIFLI, A. – GOOSSENS, G. – DE MAN, H., A Unified Scheduling Model for High-Level
Synthesis and Code Generation, in: European Design and Test Conference, 1995, pp 234–238.

[14] YONEZAWA, K. N. – LIU, J. W. S. – LIU, C. L., A Scheduling Algorithm for Conditional
Resource Sharing – a Hierarchical Reduction Approach, IEEE Transactions on CAD, April,
1994.

[15] KOUNTOURIS, A. A. – WOLINSKI, C., Efficient Scheduling of Conditional Behaviors for
High-Level Synthesis, ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 7 No. 3 (2002), pp. 380–412

[16] KUCHCINSKI, K., An Approach to High-Level Synthesis Using Constraint Logic Program-
ming, in: Proceedings of the 24th Euromicro Conference, Workshop on Digital System Design,
1998.

TIME-CONSTRAINED DESIGN 149

[17] LAKSHMINARAYANA, G. – JHA, N. K., FACT: A Framework for the Application of Through-
put and Power Optimizing Transformations to Control Flow Intensive Behavioral Descriptions,
in: Design Automation Conference, 1998, pp. 102–107.

[18] LAKSHMINARAYANA, G. – RAGHUNATHAN, A. – JHA, N. K., Incorporating Speculative
Execution into Scheduling of Control-Flow Intensive Behavioral Descriptions, in: Design Au-
tomation Conference, (1998), pp. 108–113".

[19] MANN, Z. Á. – ORBÁN, A., Optimization Problems in System-Level synthesis, in: Proceed-
ings of the 3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications,
2003.

[20] MOON, S.-M. – EBCIOGLU, K., An Efficient Resource-Constrained Global Scheduling Tech-
nique for Superscalar and VLIW Processors, in: 25th Annual International Symposium on
Microarchitecture, 1992.

[21] PAULIN, P. G. – KNIGHT, J. P., Force-Directed Scheduling for the Behavioural Synthesis of
ASICs, IEEE Transations on Computer Aided Design, 1989.

[22] PRABHAKARAN, P. – BANERJEE, P., Parallel Algorithms for Force Directed Scheduling of
Flattened and Hierarchical Signal Flow Graphs, IEEE Transactions on Computers, 48 No. 7
(1999), pp. 762–768.

[23] RADIVOJEVIC, I. – BREWER, F., Analysis of Conditional Resource Sharing using a Guard-
based Control Representation, in: International Conference on Computer Design – ICCD’95,
(1995), pp. 434–439.

[24] WAKABAYASHI, K. – TANAKA, H., Global Scheduling Independent of Control Dependencies
Based on Condition Vectors, in: Design Automation Conference (DAC), (1992), pp. 112–115.

[25] WAKABAYASHI, K. – YOSHIMURA, T., A Resource Sharing and Control Synthesis Method
for Conditional Branches, in: International Conference on Computer-Aided Design (ICCAD),
1989, pp. 62–65.

[26] YU, T. – SHA, E. – PASSOS, N. – JU, R., Algorithm and Hardware Support for Branch
Anticipation, in: 7th Great Lakes Symposium on VLSI, 1997.

	Introduction
	Background
	Improved Algorithms
	Extracting Conditional Information
	The CONCHECK Algorithm
	Without Conditional Branches
	With Conditional Branches
	Multiplied Operations

	New Scheduling Algorithms
	Allocation

	Experimental Results
	Conclusion

