A best-first-search approach to constraint satisfaction

problems*
ZOLTAN ADAM MANN TAMAS SzEP
Department of Computer Science and Department of Computer Science and
Information Theory Information Theory
Budapest University of Technology and Budapest University of Technology and
Economics Economics
Magyar tudosok koratja 2., 1117 Budapest, Magyar tudosok kératja 2., 1117 Budapest,
Hungary Hungary

e-mail: =zoltan.mann@gmail.com e-mail: szep.tamas@Omail.datanet.hu

Abstract: Backtrack-style exhaustive search algorithms for NP-hard problems, such
as constraint satisfaction, tend to have large variance in their runtime. This is be-
cause fortunate” branching decisions can lead to finding a solution quickly, whereas
ysunfortunate” decisions in another run can lead the algorithm to a region of the search
space with no solutions.

In this paper, we show how a best-first-search heuristic can be used to mitigate this
problem and significantly speed up the algorithm, without sacrificing the optimality
of the output.

Keywords: best-first search, backtrack, branch-and-bound, constraint sat-
isfaction problem

1 Introduction

Constraint satisfaction problems (CSPs) often exhibit significant variability in their complexity.
Backtrack-style exhaustive search algorithms are especially prone to this kind of behaviour.
This is because ,fortunate” branching decisions can lead to finding a solution quickly, whereas
sunfortunate” decisions in another run can lead the algorithm to a region of the search space
with no solutions. This high variability in algorithm runtime poses a significant challenge on its
practical application, because it is hard to predict if the algorithm will solve a given problem
instance within a couple of seconds or will run for several days (or even longer). This phenomenon
is quite common in the case of exact algorithms for NP-hard problems |2, 1, 3, 5.

A possible remedy for this issue, that has been suggested in the literature, is restarting [4].
If an algorithm involves random choices, it might make sense to run it several times on a given
problem instance. For example, suppose that the median runtime of a random algorithm on
problem instances of a given size is 1 minute. Assume that it has been running on a problem
instance for 5 minutes without any results yet. Intuitively, one could think that the algorithm will

*This paper was published in: Proceedings of the 7th Hungarian-Japanese Symposium on Discrete Mathematics
and Its Applications, pages 409-418, 2011.



most probably finish very soon, so we should keep waiting. However, empirical evidence shows
that — for many exact algorithms for NP-hard problems — it is better to stop the current run of
the algorithm and restart it. The rationale is that it might actually happen with surprisingly
high probability that the current run of the algorithm will take several hours, days, or even
longer. On the other hand, if we restart the algorithm, chances are high that the next run will
be more fortunate and may finish in a minute or so.

Thinking of a backtrack search, the reason why restarting improves the performance of the
algorithm is that this way long useless searches in areas of the search tree with no solutions are
stopped; the restarted search might be more lucky and finds its way directly to a more promising
part of the search tree.

Although restarting works quite well in practice, it is a very simplistic approach to solve
the problems with backtrack search. In a way, it is a brute-force approach because there is
no guarantee whatsoever that the new run will be better; instead, the rationale is that among
several runs of the algorithm, there will be probably a lucky one.

In this paper, we propose a more sophisticated approach. We observed that the problem
with backtrack search is rooted in its depth-first-search nature. This is why it cannot ,give
up” searching a useless part of the search tree and move on to other, more promising areas.
Therefore, we propose to implement backtrack search with a best-first-search heuristic that will
guide it to different parts of the search tree, always aiming for the most promising area. It
should be noted though that this modified algorithm is also an exact algorithm. If there is no
solution, the modified algorithm will also search through the whole search tree and thus prove
the unsolvability. However, if the problem instance is solvable, then this modified algorithm
might find a solution much faster than a normal backtrack algorithm.

2 Preliminaries

2.1 Problem formulation

We consider a constraint satisfaction problem with variables x1,...,z,. The domain of z; is a
finite, non-empty set denoted by D;, consisting of the possible values for variable x;. We are also
given a set of constraints C1,...,Cy,. Each Cj is a pair (V}, R;), consisting of a subset of the
variables V; C {z1,...,2z,} and a relation R;. If V; = {x;,,..., 2.}, then R; C D, x ... x Dj,.
R; defines which tuples of possible values of the involved variables satisfy the given constraint.
The aim is to assign to each variable a value from its domain, such that all constraints are
satisfied. If a constraint Cj is not satisfied, then there is a conflict between the values of the
variables in V. The variables x; and x; are neighbours if there is a constraint containing both
of them.

2.2 The backtrack algorithm

The main idea of the algorithm is that it assigns values to the variables, one at a time, as long
as no conflict occurs. If all variables can be assigned a value this way, the algorithm terminates.
On the other hand, if there is a conflict, the algorithm backtracks, i.e. it goes back to the last
consistent state by undoing the last assignment. Then it proceeds to an unexplored branch by
trying a new value assignment for the currently selected variable. When all possible branches
from a given state have been tried without success, the algorithm backtracks.



The algorithm traverses the space of partial solutions in a tree structure. There are two
possible termination situations: either a solution is found, or the algorithm checks all branches
from the root of the tree without success, and tries to backtrack from the root. In this case, we
can be sure that the input problem instance is unsolvable. Clearly, the algorithm terminates in
finite time, since the size of the complete search tree is an upper bound on the number of steps
of the algorithm. Unfortunately, this number is exponentially high. However, in many cases
the algorithm can prune large subtrees of the search tree, which can considerably decrease its
runtime.

We use the number of backtracks to characterize the number of steps of a run of the algorithm
in a machine-independent manner.

3 Used improvement techniques

Beyond the basic backtrack algorithm described above, we used a number of techniques to make
our algorithm competitive [6]. In the following, we describe these techniques.

Variable selection: we use the MRV (Minimum Remaining Values) heuristic, which selects
the variable with the least remaining choosable values in its domain. In case of a draw, we use
the degree heuristic, which chooses the variable with the most free (not yet assigned and not
unimportant) neighbours. If there is still a draw, we choose simply the variable with the lowest
index. After choosing a variable to assign, we should sort its assignable values in ascending order
of possible conflicts after the assignment.

Initial assignments: in many CSP problems, we can easily find some heuristic algorithm
that returns a set of assignments, for which it holds that the problem is solvable if and only if it
is solvable after fixing this set of assignments. For example, in graph colouring, an initial set of
assignments is to colour a clique of the graph.

Unimportant variables: a variable, for which after any consistent assignment of the re-
maining variables surely a choosable value remains, is called an unimportant variable, and can
be removed without affecting solvability. Two simple examples are the following. If we can
surely state, that a variable has more choosable values in its domain than the number of values
that the remaining (not yet satisfied) constraints can possible remove, then it is an unimportant
variable, because we can surely satisfy all its constraints. In the second case, the variable X is
unimportant, if there is another variable Y, such that the domain of Y is a subset of the domain
of X and the constraint set of Y includes the constraint set of X. This is because in this case
the same assignment for X as the one for Y will satisfy all its constraints.

Maintaining edge consistency: the aim of this technique is to detect failures earlier. If in
a search state there is a variable X, to which it is only possible to assign one value, then we can
remove from each neighbour Y all those values that are not compatible with the only possible
value of X.

Symmetry breaking: in many CSP problems, two different assignment sets may describe
the same situation. For instance, in graph colouring all permutations of the colors describe
essentially the same colouring, creating many equivalent branches in the search tree. We should
search through one such branch and prune all the other equivalent branches.

Conflict driven backtracking: if the variable selection heuristic is not ,wise” enough in
the current situation, it is possible that an inconsistent state occurs in such a way, that some
ancestors of the current node (conflicted node) in the search tree are not responsible for failure



of the search subtree of the current node. In such a situation, we can directly backtrack to the
last conflicting node in the search tree, as shown in Figure 1. Using such a backtracking requires
to administrate the usual conflict sets of the free variables, in which the causers of their own
conflicts are stored, and the collecting conflict sets of the assigned variables, in which the causers
of their branch’s failure are stored.

After every forward step, we have to maintain the usual conflict sets of the currently free
variables. If we use edge consistency maintaining and a conflicted-conflicting relationship arises
between two free variables, then the usual conflict set of the conflicting node must be inserted
in the usual conflict set of the conflicted node.

Flow backtrack to
the last source of ..~~~
conflict .-~

Last conflicting node

Harmless nodes

Conflicted node

Figure 1: Schematic example of conflict-driven backtracking

If there is a direct conflict under the last assigned variable X, then we have to insert the
whole usual conflict set of the conflicted variable Y to the collecting conflict set of X. If there is
an indirect conflict under an assigned variable X and we backtrack to X, then we have to insert
the whole collecting conflict set of the variable Y, from which we directly backtracked to X, to
the collecting conflict set of X. (Note that in both cases the inserted conflict sets will surely
contain X as the last conflicting node, so before starting to backtrack from X, we first have to
remove it from its own collecting conflict set.)

If we have to backtrack from a node, then we first have to insert its usual conflict set into its
collecting conflict set that will represent the whole conflict set of the branch, and then start the
backtrack. Such a backtrack, which may include several normal backtracks, will be referred to
as a flow backtrack. A flow backtrack is stopped when we reach the last conflicting node in the
search tree.

In the example of Figure 1, conflicted node represents an assigned variable, and we returned
to it for some reason. If there is a direct inconsistency under conflicted node (right side), then
it is sure that we have to backtrack to conflicted node, because before assigning it, there was



no inconsistency. In other words, conflicted node surely belongs to the usual conflict set of a
free variable (or set of free variables). If there is no direct inconsistency under conflicted node
(left side), then conflicted node must be in the collecting conflict set of an assigned variable (not
necessarily directly) under it.

4 Best-first-search

If the given problem instance is solvable, then our aim is to find the solution quickly using a
best-first-search heuristic; if it is not solvable, then the algorithm should be capable to prove the
unsolvability.

Our best-first-search algorithm uses the backtrack algorithm described above. Informally, the
idea is that it should run as the backtrack algorithm would, but sometimes it can jump forward
in the search, so that it may find a solution faster. We implement this by launching several copies
of the backtrack algorithm at different points in the search tree. We start one of these searches
and let it run for a while. Afterwards, we pause this run and transfer control to another search
instance etc.

4.1 Creating search instances

We must be careful not to waste time by visiting the same node in the search tree more than
once. Hence, the algorithm should handle the situation when a search runs into another one.
Therefore we decided to implement it in the following manner. We create an initial search and
some normal searches.

For each search S, let sn(S) denote the start node of S, and let st(S) denote the subtree of
S, that is, the subtree with root sn(S) of the search tree. A normal search S is only allowed
to search within st(S). Moreover, for any two searches S; and S, sn(S1) must not be within
st(S2) and vice versa, sn(S2) must not be within st(S1). Because of these restrictions, the only
way that searches may run into each other is when the initial search runs into a normal search.
In this case, it has to merge its own knowledge with that of the normal search and continue with
its current state. (The merging will be explained in detail.)

It is important that all searches must run in the same search tree so that we can join them.
Hence, we use a deterministic backtrack algorithm, and so all search instances work in the same
way. Assuming such a backtrack algorithm, a node in the search tree can be exactly described
by the chosen values for the variables in the order as they were assigned, so we only have to
use the vector of chosen values to determine the actual search path. Checking whether a search
has run into another one is costly, so we decided to check it only after every forward step. This
works because it is not allowed to start a search from a node, the subtree of which contains the
start node of another search.

The creation of the searches is carried out by emulating the behaviour of the backtrack
algorithm and steering it by giving the chosen values to the assigned variables. This way, we
quickly get a number of different, with each other consistent search instances in the search tree.
For creating the initial search, we pick the first possible value for each variable, so that the start
node of the initial search will be in the left-most branch of the search tree. When creating other
searches, if we decide to emulate a forward step by assigning the ith value to the next variable,
we have to remove all of the preceding ¢ — 1 possible choices. The only problem, that will be
discussed later, is that we cannot maintain the collecting conflict set, which would be used to



store conflict information, that led to the removal of these choices. Note that it is not possible to
emulate a backtrack because of an external constraint by the problem creation, because in this
case we would not be able to create a consistent search regarding the collecting conflict sets.

4.2 Operating the search instances

We run one of the searches for a given number of steps. If it found a solution, we can return
with this solution. If it was a normal search and just got back to its start node, we are no longer
allowed to use this search. If it was the initial search (which is not stopped at its start node)
and it returned that it did not find a solution, then we also return unsolvable.

It is possible that, after a forward step, the initial search .S runs into the start node of another
search S. Without conflict-driven backtracking, we could simply remove IS and continue with S,
because it would mean that we searched through the whole search tree until the current position
of S; thus, we would get a completely consistent search instance. But because of conflict-driven
backtracking, S would become inconsistent after backtracking from its start node, because the
information about conflicts caused by variable assignments above sn(S) is not known, since S
did not actually visit those parts of the search tree. This is why only the initial search is allowed
to continue the search after getting back to its start node.

Therefore, we have to complete S with the knowledge of IS about the collecting conflict
sets encountered so far. By doing so, we get a fully consistent search object that includes the
knowledge of the initial and a now merged normal search. We can now continue S from its
current position, and this search will be the initial search from now on. That means we get to a
search state that is the same, as if we would have used only one search.

If the problem is unsolvable, then we merge most of the normal searches with the initial
search, but not necessarily all of them. Namely, assume the following situation: there are two
searches, an initial search IS and a normal search S. The normal search starts from node B in
the search tree. The parent of B is node Y, and the parent of Y is node X. Beside B, Y has
another child A. IS visits node X, then Y, but before visiting B, it goes to the subtree with
root A. This subtree contains no solution, therefore from node A the search must backtrack, but
because of conflict-driven backtracking, and assuming that the assignment represented by node
Y created no conflicts, I.S backtracks directly to node X and will never visit node B. Hence, S
will never be merged into I.S. This is not a problem, the algorithm still remains exact. This only
means that the subtree of B contains no solutions, thus S is useless. We decided not to address
this issue, because the described situation happens rarely, and thus the time wasted by such
useless searches is marginal. It should be noted that, if the given problem instance is unsolvable,
then the steps taken by such useless searches are the only overhead (in terms of the number of
backtracks) of the best-first-search algorithm compared to the underlying backtrack algorithm.
Our empirical results suggest that this overhead is minimal.

Now we can easily build the best-first-search logic upon this idea. In order to decide which
search to run, we have to evaluate the usefulness of each search based on information about its
start node and current node, used number of steps, estimated subtree size etc. This evaluation
will be referred to as the fitness value of the search. We can simply run the search with the
highest fitness value, or we can combine this technique with randomized selection. It is also
possible to create new searches during the algorithm, using the knowledge gathered so far.



5 An example

Now we show a simple scenario for an unsolvable problem instance, using 3 searches: an initial
and 2 normal searches. First, we let all searches run a little bit:

Legend
Not visited yet

isited, not
inished
Finished node

Finished search

(J @
OO
O
@
Comen

s i

Initial search

= Comnorsa
Comnz
O
O

The initial search finishes its original branch and searches further in the search tree. Search
1 finishes its own subtree, so it is not allowed to search further:

Legend
Not visited yet

isited, not
finished
Finished node

Finished search

Start of IS Search 1

Cemnorsa>
Initial search @
O

Then, the initial search arrives to Search 1:



Legend
Not visited yet

isited, not
inished ye

Finished node

Finished search

) L ot

<>
O

Start of IS

Search 1

Now, the initial search reaches the start node of Search 1, merges its own conflict knowledge
with that of Search 1, and continues with it, so the next track will be a backtrack:

Legend
Not visited yet

isited, not
inished ye
Finished node
Finished search ‘ ‘

Initial search

Start of IS

Next, the initial search arrives to the start node of Search 2:



Legend
Not visited yet

isited, not
inished ye

Finished node

Finished search ‘
Initial search

Comorsa

<>
O

Start of IS

Then, the initial search merges its own conflict knowledge into Search 2 and continues with it,
so the next step will be a forward track in the subtree of Search 2. See figure below. Afterwards,
the initial search will search through the whole search tree and will backtrack from all branches
to the root node with failure.

Legend
Not visited yet

isited, not
inished ye
Finished node

Finished search

Initial search

Start of IS

6 Empirical results

In a set of empirical measurements using graph coloring benchmarks, we compared the efficiency
of the basic backtrack algorithm, the backtrack algorithm with frequent restarts as suggested
previously in the literature, and the backtrack algorithm with the proposed best-first-search
heuristic. The results are shown in Figure 2. As can be seen, both restarts and best-first-search
are useful in decreasing the runtime of the backtrack algorithm. However, the best-first-search
clearly outperforms the restarts.



40

35 A

OBacktrack
20 - W Backtrack with restart
M Backtrack with best-first-search

Number of cases

0-60 60 - 200 200 - 600 >1000
Time (sec)

Figure 2: Histogram of the runtime distribution of three versions of the backtrack algorithm

Acknowledgements

This work was partially supported by the Hungarian National Research Fund and the National
Office for Research and Technology (Grant Nr. OTKA 67651).

References

1]

2]

3]

[5]

[6]

Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard problems
are. In 12th International Joint Conference on Artificial Intelligence (IJCAI ’91), pages
331-337, 1991.

Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. Journal of Automated Reasoning, 24(1-
2):67-100, 2000.

Tad Hogg and Colin P. Williams. The hardest constraint problems: A double phase transition.
Artificial Intelligence, 69(1-2):359-377, 1994.

Malik Magdon Ismail and Amir F. Atiya. The early restart algorithm. Neural Computation,
12(12):2991-3010, 2000.

Haixia Jia and Cristopher Moore. How much backtracking does it take to color random
graphs? Rigorous results on heavy tails. In Principles and Practice of Constraint Program-
ming (CP 2004), pages 742-746, 2004.

Tamés Szép and Zoltan Adam Mann. Graph coloring: the more colors, the better? In
Proceedings of the 11th IEEE International Symposium on Computational Intelligence and
Informatics, pages 119-124, 2010.

10



