
Asymptotic behaviour of the complexity of coloring
sparse random graphs∗

Zoltán Ádám Mann

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

Magyar tudósok körútja 2., 1117 Budapest,
Hungary

e-mail: zoltan.mann@gmail.com

Anikó Szajkó

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

Magyar tudósok körútja 2., 1117 Budapest,
Hungary

e-mail: szajko.aniko@gmail.com

Abstract: The behaviour of a backtrack algorithm for graph coloring is well under-
stood for large random graphs with constant edge density. However, sparse graphs,
in which the edge density decreases with increasing graph size, are more common
in practice. Therefore, in this paper we analyze the expected runtime of a usual
backtrack search to color such random graphs, when the size of the graph tends to
infinity. Contrary to the case of constant edge density, where the expected runtime
is known to be O(1), here we prove that the expected runtime tends to infinity in
this case. We also examine when the expected runtime grows polynomially or expo-
nentially, depending on the edge density function. Besides, we also investigate the
asymptotic behaviour of the expected number of solutions in this model.

Keywords: graph coloring, average-case complexity, search tree, random

graphs, backtracking

1 Introduction

Graph coloring is an important combinatorial optimization problem with many applications in
engineering, such as register allocation, frequency assignment, pattern matching and schedul-
ing [11, 4, 7]. Accordingly, graph coloring has been intensively researched.

One of the main tools to mathematically investigate graph coloring is to study the coloring
of random graphs. Usually, the Gn,p random graph model is used [5]. Through the research
results of the last couple of decades, we can almost exactly determine the chromatic number of
random graphs when the size of the graph tends to infinity [12, 6, 2, 1].

Another related question is the performance of graph coloring algorithms on random graphs.
In 1984, Wilf proved the surprising result that the expected runtime of a standard backtrack
algorithm is bounded even if the size of the graph tends to infinity [13]. That is, the average-case
complexity of this algorithm is O(1), although its worst-case complexity is exponential in the size

∗This paper was published in: Proceedings of the 7th Hungarian-Japanese Symposium on Discrete Mathematics

and Its Applications, pages 399-408, 2011.

1



of the graph. Bender and Wilf provided a more detailed analysis of the asymptotic distribution
of the algorithm’s runtime [3]. In our recent research, we refined the results of Bender and Wilf:
with detailed examinations, we can quite precisely predict the expected runtime of the usual
backtrack algorithm for a random graph, as a function of the number of vertices, the number of
colors, and the edge density [9, 10].

The above results apply to random graphs where the edge density p is constant. Note that
such graphs are with high probability very dense with Θ(n2) edges. However, sparse graphs
with varying edge density p = p(n) depending on their size are often a subject of research
work, since they are more common in practice [8]. Therefore, in this paper, we investigate the
asymptotic behavior of the expected runtime of the backtrack algorithm in cases of different
p(n) functions tending to 0. As a machine independent measure of complexity, we estimate the
expected number of visited nodes in the algorithm’s search tree. Our main results are:

• We prove that, in contrast to Wilf’s Theorem [13], the expected size of the search tree
tends to infinity in case of any arbitrary sequence p(n) → 0.

• We determine how rapidly the expected size of the search tree tends to infinity. In partic-
ular, it is exponential for p(n) = 1/n, but polynomial for p(n) = 1/ log n. That is, for the
latter case, the algorithm’s average-case complexity is polynomial.

• As a by-product, we also obtained the asymptotic behaviour of the expected number of
solutions for different p(n) sequences.

2 Preliminaries

We consider the decision version of the graph coloring problem, in which the input consists of an
undirected graph G = (V,E) and a number k, and the task is to decide whether the vertices of
G can be colored with k colors such that adjacent vertices are not assigned the same color. The
input graph is a random graph taken from Gn,p, meaning that it has n vertices and each pair of
vertices is connected by an edge with probability p independently from each other. The vertices
of the graph will be denoted by v1, . . . , vn, the colors by 1, . . . , k. A coloring assigns a color to
each vertex; a partial coloring assigns a color to some of the vertices. A (partial) coloring is
invalid if there is a pair of adjacent vertices with the same color, otherwise the (partial) coloring
is valid.

The backtrack algorithm considers partial colorings. It starts with the empty partial coloring,
in which no vertex has a color. This is the root – that is, the single node on level 0 – of the
search tree. Level t of the search tree contains the kt possible partial colorings of v1, . . . , vt. The
search tree, denoted by T , has n levels, the last level containing the colorings of the graph. Let
Tt denote the set of partial colorings on level t. If t < n and w ∈ Tt, then w has k children in
the search tree: those partial colorings of v1, . . . , vt+1 that assign to the first t vertices the same
colors as w.

In each partial coloring w, the backtrack algorithm considers the children of w and visits
only those that are valid. Note that T depends only on n and k, not on the specific input graph.
However, the algorithm visits only a subset of the nodes of T , depending on which vertices of G
are actually connected. The number of actually visited nodes of T will be used to measure the
complexity of the given problem instance.

2



As in [3, 10, 9], we assume that the algorithm doesn’t stop even if it found a proper solution.
Therefore, our results are accurate only for uncolorable graphs; for colorable graphs, they are
just upper estimates.

3 Notations and previous results

We define a random variable Y to be the number of visited nodes in T . In [10], we proved the
following lower bound:

E(Y ) ≥
n
∑

t=0

kt(1− p)
t2−t
2k , (1)

and an upper bound:

E(Y ) ≤
n
∑

t=0

kt · (1− p)
1
2

(

t2

k
−t

)

. (2)

Moreover, the number of solutions (S) is equivalent with the number of visited nodes in the last
level of the search tree. Accordingly,

kn(1− p)
n2−n
2k ≤ E(S) ≤ kn · (1− p)

1
2

(

n2

k
−n

)

.

4 Expected size of the search tree

The following two lemmas are a refinement of Lemma 3 in [3].

Lemma 1. For any a, b > 0

n
∑

t=0

e−at2ebt >















1√
a
e

b2

4a

(

∫

2a(n+1)−b

2
√

a

−b−2a
2
√

a

e−u2
du−

√
a

)

> b
2ae

−b−a if 2an− b > 0,

(n+1)
2

(

e−
a+an2+2b−2nb−2an

4 + e−b−a

)

> (n+ 1)e−b−a if 2an− b ≤ 0.

Proof. Let x = t − b
2a , hence −ax2 = −at2 + bt − b2

4a . Besides, let u =
√
ax, thus u2 = ax2.

Accordingly:

√
ae

−b2

4a

n
∑

t=0

e−at2ebt =
√
a

n
∑

t=0

e−ax2(t) =
√
a

n− b
2a

∑

x=− b
2a

e−ax2
=

√
a

√
an− b

2
√

a
∑

u=− b

2
√

a

e−u2
,

since −b
2a ≤ x ≤ n − b

2a ⇔ − b
2
√
a
≤

√
ax ≤

√
an − b

2
√
a
. x and u might denote fractions too,

the summations range over all x and u for which x = i− b
2a , u = i− b

2
√
a
, where i is an integer

between 0 and n. The received sum might be regarded as an upper estimation of an integral by
step

√
a and an optional rest term. Moreover, the area under the integral curve is greater than

the area of one or two rectangles under that.

3



If 2an−b
2
√
a

> 0 :

√
a

√
an− b

2
√

a
∑

u=− b

2
√

a

e−u2
>

∫ 2an−b

2
√

a
+
√
a

−b

2
√

a
−
√
a

e−u2
du− 1 ·

√
a >

>

(

b

2
√
a
+

√
a−

√
a

)

e
−
(

−b

2
√

a
−
√
a
)2

=
b

2
√
a
e−

b2+4ab+4a2

4a =
b

2
√
a
e−

b2

4a
−b−a.

If 2an−b
2
√
a

≤ 0 :

√
a

√
an− b

2
√

a
∑

u=− b

2
√

a

e−u2
>

∫

√
an− b

2
√

a

−b

2
√

a
−
√
a

e−u2
du >

>
(n+ 1)

2

√
a

(

e
−
(

−b−2a
4
√

a
+ 2an−b

4
√

a

)2

+ e
−
(

−b−2a
2
√

a

)2)

=

=
(n + 1)

2

√
a

(

e
−
(

−b−a+an

2
√

a

)2

+ e
−
(

−b−2a
2
√

a

)2)

=

=
(n+ 1)

2

√
a

(

e−
b2+a2+a2n2+2ab−2anb−2a2n

4a + e−
b2+4ab+4a2

4a

)

>

> (n+ 1)
√
ae

−
(

−b−2a
2
√

a

)2

= (n + 1)
√
ae−

b2+4ab+4a2

4a = (n+ 1)
√
ae−

b2

4a
−b−a.

Lemma 2. For any a, b > 0

n
∑

t=0

e−at2ebt <
1√
a
e

b2

4a

(

∫ 2an−b

2
√

a

−b

2
√

a

e−u2
du+

√
a

)

.

Proof. Similar to the proof of Lemma 1 and using its notations, the received sum is a lower
estimation of the summation of integrals by step

√
a and a rest term.

√
ae

−b2

4a

n
∑

t=0

e−at2ebt =
√
a

√
an− b

2
√

a
∑

u=− b

2
√

a

e−u2
<

∫

√
an− b

2
√

a

−b

2
√

a

e−u2
du+ 1 ·

√
a

Theorem 3. In case of any sequence 0 ≤ p(n) = pn ≤ 1 tending to 0, the expected size of the
search tree tends to infinity when n → ∞.

Proof. From inequality (1),

E(Y ) ≥ lim
n→∞

n
∑

t=0

kt · (1− pn)
t2−t
2k = lim

n→∞

n
∑

t=0

(

(1− pn)
1
2k

)t2

·
(

k (1− pn)
−1
2k

)t

.

4



In this formula, (1− pn)
1
2k < 1 and k (1− pn)

−1
2k > 1. Therefore, ∃a, b > 0, so that (1− pn)

1
2k =

e−a and k (1− pn)
−1
2k = eb. In this way, a = − ln (1− pn)

1
2k , b = ln k (1− pn)

−1
2k . It follows that

limn→∞ a = limn→∞− ln (1− pn)
1
2k = +0 and limn→∞ b = limn→∞ ln k + ln (1− pn)

−1
2k = ln k.

Applying Lemma 1, we obtain

n
∑

t=0

(

(1− pn)
1
2k

)t2

·
(

k (1− pn)
−1
2k

)t

=

n
∑

t=0

e−at2ebt >

{

b
2ae

−b−a if 2an−b
2
√
a

> 0,

(n+ 1)e−b−a if 2an−b
2
√
a

≤ 0.

Therefore,

lim
n→∞

E(Y ) >

{

limn→∞
b
2ae

−b−a = ∞ if limn→∞
2an−b
2
√
a

> 0,

limn→∞(n+ 1)e−b−a = ∞ if limn→∞
2an−b
2
√
a

≤ 0.

In the next theorem, we examine the rate by which the expected number of visited nodes of
the search tree tends to infinity.

Theorem 4.

E(Y ) =

{

Θ
(

1√
pn

(c)
1
pn

)

if limn→∞ npn > k ln k (where c = k
k ln k

2 ),

O (nkn) and Ω (ncn) if limn→∞ npn ≤ k ln k (where c = k
3
8 ).

Proof. limn→∞ 2an− b = limn→∞−2n ln (1− pn)
1
2k − ln k = limn→∞

−npn
k

ln (1− pn)
1
pn − ln k =

limn→∞
npn
k

− ln k > 0 ⇔ limn→∞ npn > k ln k.

1. Case 2an− b > 0 :

From Lemma 1 and Theorem 3,

E(Y ) >
1√
a
e

b2

4a

(

∫
2a(n+1)−b

2
√

a

−b−2a
2
√

a

e−u2
du−

√
a

)

.

In view of limn→∞
−b−2a
2
√
a

= −∞ and 2a(n+1)−b

2
√
a

> 0,

√
π

2
= lim

n→∞

∫ 0

−∞
e−u2

du− 0 < lim
n→∞

∫
2a(n+1)−b

2
√

a

−b−2a
2
√

a

e−u2
du−

√
a ≤ lim

n→∞

∫ ∞

−∞
e−u2

du =
√
π.

Thus,

E(Y ) = Ω

(

1√
a

(

eb
2
) 1

4a

)

= Ω





1
√

−pn
2k ln (1− pn)

1
pn

(

kln k
)

2k

−4pn ln(1−pn)
1
pn



 =

= Ω

(
√

2k

pn

(

k
k ln k

2

) 1
pn

)

= Ω

(

1
√
pn

(c)
1
pn

)

.

In a similar way, from Lemma 2, we get E(Y ) = O
(

1√
pn

(c)
1
pn

)

.

5



2. Case 2an− b ≤ 0 :

Applying Lemma 1, E(Y ) > (n+1)
2

(

e−
a+an2+2b−2nb−2an

4 + e−b−a

)

.

As 0 < npn ≤ k ln k ⇔ 0 > −n2pn
8k ≥ −n ln k

8 ,

E(Y ) = Ω

(

n

(

e−
a+an2−2nb−2an

4 + e−b−a

))

= Ω

(

ne−
a+an2−2nb−2an

4

)

+Ω(n) =

= Ω
(

ne
−pn
8k

− pn
8k

n2+n ln k
2

+ pn
4k

n
)

+Ω(n) = Ω

(

ne
−n2pn

8k k
n
2

)

+Ω(n) =

= Ω
(

ne
−n ln k

8 k
n
2

)

+Ω(n) = Ω
(

nk
−n
8 k

n
2

)

+Ω(n) = Ω
(

n
(

k
3
8

)n)

= Ω(ncn) .

In addition, E(Y ) = O (nkn), since the search tree has n + 1 levels and at most kn nodes on
each level.

As a consequence, the complexity of the algorithm is exponential invariably in the second
case, but can be polynomial in the first case.

E. g. assuming pn = d
nα , where d and α are positive constants:

limn→∞
d

nα−1 > k ln k ⇔ d
k ln k

> limn→∞ nα−1 ⇔ 0 < α < 1, or α = 1 and d > k ln k. Therefore,

E(Y ) =















Θ

(

√

nα

d

(

k
k ln k

2

)nα

d

)

if 0 < α < 1, or α = 1 and d > k ln k,

O (nkn) and Ω
(

nk
3n
8

)

if 1 < α, or α = 1 and d ≤ k ln k.

An example for the polynomial case is pn = d
lnn

.Here, we have limn→∞
d

lnn
n = limn→∞

d
ln n

√
n
=

∞. Thus,

E(Y ) = Θ

(
√

lnn

d

(

k
k ln k

2

) lnn
d

)

= Θ

(
√

lnn

d
n

k ln2 k
2d

)

,

which is indeed polynomial in n.

5 Expected number of solutions

We can also use the presented machinery to estimate the asymptotic number of expected solu-
tions:

Proposition 5.

lim
n→∞

E(S) =

{

∞ if pn < 2k ln k
n−1

0 if pn > 2k ln k
n−k

(for all sufficiently large n).

Proof. Applying the results of Section 3, E(S) ≥ kn (1− pn)
n2−n
2k . Therefore,

lim
n→∞

E(S) ≥ lim
n→∞

kn (1− pn)
pn

n2−n
2kpn = lim

n→∞
kn (e)−pn

n2−n
2k = lim

n→∞

(

k

epn
n−1
2k

)n

.

6



limn→∞
k

e
pn

n−1
2k

> 1 ⇔ ln k > pn
n−1
2k ⇔ 2k ln k

n−1 > pn as n → ∞.

Analogously,

lim
n→∞

E(S) ≤ lim
n→∞

kn (1− pn)
pn

n2−nk
2kpn = lim

n→∞
kne−pn

n2−nk
2k = lim

n→∞

(

k

epn
n−k
2k

)n

.

limn→∞
k

e
pn

n−k
2k

< 1 ⇔ 2k lnk
n−k

< pn as n → ∞.

For a given pn, the 2k ln k
n−1 ≤ pn ≤ 2k lnk

n−k
(for all sufficiently large n) case might also be

estimated in a similar way.
E.g., let pn = d

nα , where d and α are positive constants. Assuming n → ∞,
d
nα < 2k lnk

n−1 ⇔ n1−α − n−α < 2k ln k
d

is valid, if and only if α > 1, or α = 1 and d < 2k ln k,
d
nα > 2k lnk

n−k
⇔ n1−α − kn−α > 2k ln k

d
is valid, if and only if 0 < α < 1, or α = 1 and d > 2k ln k.

Analyzing the α = 1, d = 2k ln k case separately:

limn→∞E(S) ≥ limn→∞ kn
(

1− d
n

)nn−1
2k = limn→∞

(

k
2k√

ed

)n
2k
√
ed =

2k
√
ed = k and

limn→∞E(S) ≤ limn→∞ kn
(

1− d
n

)nn−k
2k =

(

k
2k√

ed

)n√
ed =

√
ed = kk.

To sum up:

lim
n→∞

E(S) =

{

∞ if α > 1, or α = 1 and d < 2k ln k,

0 if 0 < α < 1, or α = 1 and d > 2k ln k.

If α = 1 and d = 2k ln k, then we have k ≤ E(S) ≤ kk.

6 Uncolorability and the chromatic number

In this section, we mention some implications of the second part of Proposition 5. Let us assume
that pn > 2k lnk

n−k
for all sufficiently large n. Then, by Proposition 5, limn→∞E(S) = 0. Applying

Markov’s inequality, limn→∞ Pr(∃ solution) = limn→∞ Pr(S ≥ 1) ≤ limn→∞E(S) = 0. In other
words, such graphs are uncolorable with probability tending to 1.

As mentioned earlier, our model is precise only for uncolorable graphs. We can now conclude
that in this case, our results are accurate.

The second implication is that, with probability tending to 1, the chromatic number must
be higher than any k for which pn > 2k ln k

n−k
holds. In the case pn = d

n
, this condition reduces to

d > 2k ln k. This is perfectly in line with Achlioptas and Naor’s result [1]: the chromatic number
of a graph with edge density d

n
is either k or k + 1, where k is the smallest integer such that

d < 2k ln k, with probability tending to 1 as n → ∞.

7 Numerical examinations

Using the presented approach and the technique for efficiently computing E(Y ) and E(S) values
that we developed in [9], we can also show the behaviour of these quantities for some represen-
tative pn functions. See Figure 1 for the behaviour of E(Y ) and Figure 2 for the behaviour of
E(S). Please note the exponential scale on the vertical axis in both figures.

As can be seen, for pn = 1/n5 and pn = 1/n, both E(Y ) and E(S) tend rapidly to infinity.
For pn = 1/n0.5, E(Y ) grows significantly more slowly, but as we know, still exponentially.

7



0 50 100 150 200 250 300
10

0

10
50

10
100

10
150

10
200

10
250

n: number of vertices

E
xp

ec
te

d 
tr

ee
si

ze

p=1/n5

p=1/n

p=1/n0.5

p=1/ln n

Figure 1: Expected search tree size for different edge density functions (k = 6).

0 50 100 150 200 250 300
10

−200

10
−150

10
−100

10
−50

10
0

10
50

10
100

10
150

10
200

10
250

n: number of vertices

E
xp

ec
te

d 
nu

m
be

r 
of

 s
ol

ut
io

ns

p=1/n5

p=1/n

p=1/n0.5

p=1/ln n

Figure 2: Expected number of solutions for different edge density functions (k = 6).

E(S) starts as a monotonously increasing function, but has its maximum at around n = 200
and decreases afterwards. As we know, E(S) tends to 0 in this case, but it is interesting to note

8



that E(S) is quite high for graphs with approximately 200 nodes. Finally, when pn = 1/ ln n,
then E(S) tends to 0 in a much quicker manner. Also the growth of E(Y ) is quite moderate in
this case – as we know, it is polynomial in n.

Acknowledgements

This work was partially supported by the Hungarian National Research Fund and the National
Office for Research and Technology (Grant Nr. OTKA 67651).

References

[1] Dimitris Achlioptas and Assaf Naor. The two possible values of the chromatic number of
a random graph. In 36th ACM Symposium on Theory of Computing (STOC ’04), pages
587–593, 2004.

[2] Noga Alon and Michael Krivelevich. The concentration of the chromatic number of random
graphs. Combinatorica, 17(3):303–313, 1997.

[3] Edward A. Bender and Herbert S. Wilf. A theoretical analysis of backtracking in the graph
coloring problem. Journal of Algorithms, 6(2):275–282, 1985.

[4] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring
register allocation. ACM Transactions on Programming Languages and Systems, 16(3):428–
455, 1994.

[5] Pál Erdős and Alfréd Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat.
Kutató Int. Közl., 5:17–61, 1960.

[6] Tomasz Luczak. A note on the sharp concentration of the chromatic number of random
graphs. Combinatorica, 11(3):295–297, 1991.

[7] Zoltán Ádám Mann and András Orbán. Optimization problems in system-level synthesis. In
3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, pages
222–231, 2003.

[8] Zoltán Ádám Mann, András Orbán, and Viktor Farkas. Evaluating the Kernighan-Lin
heuristic for hardware/software partitioning. International Journal of Applied Mathematics
and Computer Science, 17(2):249–267, 2007.

[9] Zoltán Ádám Mann and Anikó Szajkó. Determining the expected runtime of exact graph
coloring. In Mini-conference on Applied Theoretical Computer Science (MATCOS), 2010.

[10] Zoltán Ádám Mann and Anikó Szajkó. Improved bounds on the complexity of graph
coloring. In Proceedings of the 12th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pages 347–354, 2010.

[11] Nirbhay K. Mehta. The application of a graph coloring method to an examination schedul-
ing problem. Interfaces, 11(5):57–65, 1981.

9



[12] Eli Shamir and Joel Spencer. Sharp concentration of the chromatic number on random
graphs Gn,p. Combinatorica, 7(1):121–129, 1987.

[13] Herbert S. Wilf. Backtrack: an O(1) expected time algorithm for the graph coloring prob-
lem. Information Processing Letters, 18:119–121, 1984.

10


