
Time-constrained scheduling of large pipelined datapaths∗

Péter ARATÓ, Zoltán Ádám MANN, András ORBÁN

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

arato@iit.bme.hu,{zoltan.mann,andras.orban}@cs.bme.hu

Abstract

This paper addresses the most crucial optimization problem of high-level synthesis: schedul-

ing. A formal framework is described that was tailored speci�cally for the de�nition and

investigation of the time-constrained scheduling problem of pipelined datapaths. Theoretical

results are presented on the complexity of the problem. Moreover, two new heuristic algo-

rithms are introduced. The �rst one is a genetic algorithm, which, unlike previous approaches,

searches the space of schedulings directly. The second algorithm realizes a heuristic search

using constraint logic programming methods. The performance of the proposed algorithms

has been evaluated on a set of benchmarks and compared to previous approaches.

Keywords: scheduling, high-level synthesis, allocation, pipeline

1 Introduction

In order to cope with the growing complexity of chip design, high-level synthesis (HLS, [15, 6]) has
been proposed, which aims at automatically designing the optimal hardware structure from the
high-level (yet formal) speci�cation of a system. A high-level speci�cation may be e.g. a description
in a third-generation programming language such as C or pseudo-code. The optimality criteria may
di�er according to the particular application. In the time-constrained case, the most important
aspects are: hardware cost, chip size, heat dissipation, and energy consumption.

We consider pipeline systems which are of great importance because pipeline processing can
boost the performance of algorithms that are otherwise di�cult to parallelize. For instance in
many signal processing applications pipeline processing is used to improve the most important
performance measure: throughput.

The previous work on scheduling and allocation in HLS is reviewed in Section 2. However, the
following problems and weaknesses can be identi�ed in the case of most previous approaches:

• Mostly resource-constrained scheduling has been addressed. Even in the works that dealt
with time-constrained scheduling, the problem was often solved by reducing it to a set of
resource-constrained scheduling problems, and few direct approaches to time-constrained
scheduling have been presented. However, time-constrained scheduling is very important for
many real-time applications, in which timing constraints on latency and/or restart time are
given in advance. Also in hardware-software co-design [3, 5], which has gained signi�cant
importance in recent years, the precise resource constraints on hardware components are
usually not known in advance, but rather behavioral and time constraints are given.

• The complexity of the problem was not studied formally in most works. This is very im-
portant because there are many di�erent �avors of the scheduling/allocation problem, some
of which are NP-hard, but some are polynomially solvable. Some authors talk about the

∗This paper has been published in Elsevier Journal of Systems Architecture, volume 51, issue 12, pages 665-687,
December 2005

1

'NP-hard nature' of the scheduling problem (e.g. [19]), but few theoretical contributions
have been made.

• Also, few e�orts have been made to investigate the complexity of scheduling and allocation
separately. This has lead to the misbelief that allocation is an easy problem and thus it can
be solved as a part of scheduling to calculate the objective function. However, as it turns
out, allocation is easy only for non-pipeline systems. For pipeline systems, it is NP-hard.

• The algorithms presented in the literature were tested on graphs with some dozens of vertices.
However, real design problems often consist of several hundred vertices. This also means
that exact methods are not appropriate for real-world problems. Generally, the asymptotic
complexity of the presented algorithms was not investigated either. From the reported test
results, the behavior of the algorithms on real-world problems can hardly be inferred.

In this paper, we investigate the problem of time-constrained scheduling of large datapaths.
Two new scheduling algorithms are presented. The �rst one is a genetic algorithm (GA), which�
in contrast to previous approaches�is a direct application of GA to the scheduling problem, i.e.
GA is not only used to generate good node orders for a list scheduler. The second algorithm
is based on constraint logic programming (CLP), and it is an enhanced list scheduler in which
the trade-o� between speed and e�ciency can be tuned. It is di�erent from previously suggested
CLP-based methods in that it also speci�es a heuristic search strategy instead of relying on the
built-in exhaustive search of the CLP engine.

We implemented the new algorithms and integrated them into the HLS tool PIPE [6]. Beside
calculating their asymptotic running time, we have run several empirical tests on large benchmark
problems. For comparison, an enhanced version of the force-directed scheduler was also run on
the benchmarks. We chose this modi�ed force-directed scheduler, because it was shown in [6] that
it outperformed other scheduling algorithms that are suitable for our scheduling model. However,
our tests show that the two new algorithms almost always produce better results, and often even
in shorter running time.

The rest of the paper is organized as follows. Previous work is presented in Section 2. Sec-
tion 3 introduces the formal model of the problem and explains its most important characteristics.
Section 4 and 5 present the new algorithms. In Section 6 the empirical evaluation of the new
algorithms is described. Section 7 concludes the paper, and the proofs of the theorems can be
found in the Appendix.

2 Previous work

In recent years, many scheduling approaches have been suggested, both optimal and heuristic.
Optimal scheduling algorithms have been typically based on integer linear programming (ILP).
For instance [20] presents an ILP model for resource-constrained scheduling, but since it takes
much too long to schedule even small graphs with this method, it also presents another algorithm,
based on a set of ILP models, that performs signi�cantly better in practical cases.

Optimal scheduling algorithms based on constraint logic programming (CLP) have been sug-
gested in [25, 29]. These methods make use of a CLP engine which guarantees that the speci�ed
constraints will be maintained throughout the search. The search procedure is typically the built-in
branch-and-bound procedure of the CLP engine, which is a smart, but exhaustive search strategy.
[25] also supports partial branch-and-bound.

A di�erent optimal method was suggested in [41], based on bipartite graph matching and
branch-and-bound, for problems that are constrained both in time and in resources. This method
was found superior in performance to previous exact approaches.

Nevertheless, scheduling is NP-hard in general (the complexity of the problem will be studied
thoroughly in this paper), so that the applicability of exact scheduling algorithms is restricted to
only small problem instances. In order to handle bigger problem instances, heuristic scheduling
algorithms have been proposed.

2

The most popular heuristic schedulers are the list schedulers because of their low running time.
For instance, [22] describes a list scheduler for a scheduling model that is very similar to ours.
It starts from a set of resources that is surely a lower bound on the required resources. It then
takes the nodes one after another in a heuristic order, and checks if it can schedule the node using
the given resources. If this is possible, it schedules the node in the �rst possible time slot, and
continues. Otherwise it augments the set of resources and restarts.

Although list schedulers are fast, they are in many cases not su�cient because their per-
formance depends heavily on the node order, and very often they give disappointing results.
Therefore, some works have tried to use list schedulers together with another heuristic which aims
at �nding good node orders for the list scheduler. [19] investigates such solutions for the time-
constrained scheduling of non-pipeline systems. It presents and evaluates four di�erent algorithm
variants (one of them is taken from [43]), in which the node order of the list scheduler is optimized
using a genetic algorithm. A similar approach is presented in [1], in which tabu search is used for
the optimization of the node order of the list scheduler.

A more complex approach, that is nevertheless similar in its base idea, is the system in [8, 36].
It deals with the resource-constrained case, what is more, it assumes that a full description of the
target architecture including available communication links is known, so that scheduling includes
not only allocation of functional units, but also that of communication links, as well as message
routing on the communication links. The solution is the interplay of three di�erent heuristics: a
genetic algorithm optimizes the node order of a greedy scheduler (which is more complex than
typical list schedulers), but the greedy scheduler has only an abstract, simpli�ed view on the target
architecture. The detailed allocation and routing is generated using a third heuristic, which has
all the information about the target architecture.

Another popular algorithm is the force-directed scheduler, which was originally proposed in [35],
and used and enhanced in many later works, e.g. [32, 6, 40, 2]. Although force-directed scheduling
is just a special list scheduling algorithm, it is much more complex than standard list schedulers,
and also it has been reported to produce far better results. The force-directed scheduler tries to
schedule approximately the same number of concurrent nodes for each time cycle, using a prob-
abilistic approach. It is called force-directed because it always makes modi�cations proportional
to the deviation from the optimum, resembling the law of Hooke in mechanics.

Path-based resource-constrained scheduling is presented in [30]. This approach takes in each
iteration a new path which is not yet fully scheduled, and schedules it using an algorithm for
�nding longest paths in a directed acyclic graph. This method contains as special case several
other algorithms including list scheduling.

Rotation scheduling [10] is a method for the minimization of restart time for data �ow graphs
(DFGs) with loops and inter-iteration dependencies through registers. The main idea of the
algorithm is a technique called retiming, which is used to move the boundary between iterations.
Using retiming, some intra-iteration dependencies can be eliminated, which can lead to a shorter
restarting period.

Another interesting approach is described in [37], called rephasing. It aims at decreasing both
latency and area by changing the phase of delay elements in the control data �ow graph (CDFG).
Thus, it is explicitly determined, in which time step the state variables are refreshed, instead of
assuming that each state variable value is available from the beginning of the iteration, and has
to be refreshed by the end of the iteration.

A somewhat di�erent scheduling model is investigated in [31]. This work aims at improving
design robustness against estimation errors by a special scheduling approach, called slack-oriented
scheduling. The slack of a node is the amount of time by which its duration can increase without
violating consistency constraints. The aim of this work is to schedule the nodes in such a way
that the overall slack is maximized. Another work to handle uncertainty in scheduling is presented
in [9, 42]. However, a completely di�erent solution is given, based on fuzzy logic. Namely, the
duration of the operations is given as fuzzy numbers, and fuzzy operations are used to calculate
the sum of the durations. This fuzzy approach is combined with rotation scheduling to obtain a
scheduler that can handle imprecise data. Unbounded delay operations were considered in [23, 24].

Another related scheduling model is that of register-constrained scheduling [11], which is ac-

3

tually an enhanced resource-constrained model, which also takes registers into account, not only
functional units. In this case, it makes sense to move some data from registers to memory, with
automatically inserting load/store operations.

Scheduling of control-�ow intensive applications is considered in [27]. This approach starts from
a CDFG, and presents a heuristic scheduler that performs loop unrolling implicitly. [18] presents a
method to schedule a DFG with loops by applying model checking algorithms to �nd the minimal
cycle length. States are represented using a reduced ordered binary decision diagram (ROBDD),
taking into account potential dependencies between subsequent iterations. This is accomplished by
encoding the parity of the iteration for each operation. The edges of the state machine are marked
with the set of operations that can be executed simultaneously during that state transition. The
task is to �nd a shortest cycle in this state machine that executes all operations.

Our previous work includes [28], where the basic de�nitions of our HLS model have already
been de�ned; this paper extends and sometimes modi�es this previous model (e.g. the notion
of allocation has changed). Furthermore, in [4] we published the �rst version of our genetic
scheduling algorithm. This work can be regarded as an extension of [4]: the genetic algorithm has
been improved (e.g. �tness function), another scheduling algorithm has been invented and a more
thorough comparison has been given.

3 De�nitions and notations

In this paper, we use the model of [6], in which the system is speci�ed with a so-called elementary
operation graph (EOG), which is an attributed data-�ow graph. Its nodes represent elementary
operations (EOs). An EO might be e.g. a simple addition but it might also be a complex function
block. The edges of the EOG represent data �ow�and consequently precedences�between the
operations. The system is assumed to work synchronously and each EO has a given duration
(determined by its type).

A pipeline system is characterized by two numbers: latency, denoted by L, is the time needed
to process one data item, while restart time, denoted by R (also called iteration interval), is the
period of time before a new data item is introduced into the system. Generally R ≤ L. Thus,
non-pipeline systems can be regarded as a marginal case of pipeline systems, with R = L. If a
large amount of data has to be processed, then minimizing R at the cost of a reasonable increase
in L or hardware cost is an important objective of HLS.

In addition to the EOG, the restart time and the latency are also given as input for HLS in
the time-constrained case. [6] describes algorithms to transform the EOG so that the given time
constraints can be met. Afterwards, time-constrained scheduling is performed, i.e. the starting
times of the EOs are determined, and allocation, in which they are allocated in physical processing
units (PUs). PU types are associated with a cost (which may capture e.g. area, energy consumption
etc.), and the cost of the solution is measured by the sum of the costs of the needed PUs.

To sum up: the used model supports pipeline operation, multi-cycle operations, weighted costs,
timing constraints speci�ed in advance. Also, multiple EO types can be mapped to the same PU
type. On the other hand, only datapath synthesis is considered, i.e. control structures are not
supported directly. (For the handling of conditional branches during datapath synthesis, see [34].)

There is one more important characteristic of this model that is not present in other scheuduling
models. In order to avoid hazards a priori, it is assumed that an EO has to hold its outputs
constant during the operation of its direct successors (which might be implicit bu�ers if no real
EO is scheduled directly after it). Therefore the busy time of an EO (i.e. the time it keeps a PU
busy) is the sum of its duration and that of its longest direct successor.

Now these notions will be de�ned formally.

De�nition 1. Let EO_TYPE denote the �nite set of all possible EO types. dur : EO_TY PE →
IN speci�es the duration of EOs of a given type.

De�nition 2. An Elementary Operation Graph (EOG) is a 4-tuple: EOG = (G, type, L,R),
where G = (V,E) is a directed acyclic graph (its nodes are EOs, the edges represent data �ow),

4

type : V → EO_TY PE is a function specifying the types of the EOs, L speci�es the maximal
latency of the system, and R is the restart time. The number of EOs is denoted by n.

Note that L must not be smaller than the sum of the execution times on any execution path
from input to output.

De�nition 3. The duration (execution time) of an EO is: d(EO) = dur(type(EO)).

b

mul2

add1

neg1

c

mul4

a

mul1

mul3

const_4const_2

x2

div2

x1

div1

sub1

sqrt1

sub2

double a,b,c;

double x1,x2;

x1=(-b-sqrt(b*b-4*a*c))/(2*a);

x2=(-b+sqrt(b*b-4*a*c))/(2*a);

Figure 1: The EOG calculating the roots of a quadratic equation

Figure 1 shows an example EOG calculating the roots of a quadratic equation. This EOG was
generated from the code segment on the right side of the �gure. This example will guide through
the whole article to visualize the used notions. In this example EO_TY PE = {mul, add, sub, neg, sqrt, div},
and the function dur is speci�ed as in Table 1. Hence e.g. d(mul1) = 8, d(sub1) = 4 etc.

type duration

add 4
sub 4
neg 4
mul 8
div 8
sqrt 10

Table 1: Example durations

The following axioms [6] provide a possible description of the correct operation of the system:

Axiom 1: EOj must not start its operation until all of its direct predecessors (i.e. all EOi-s, for
which (EOi, EOj) ∈ E), have ended their operation;

Axiom 2: The inputs of EOi must be constant during the total time of its operation (d(EOi));

Axiom 3: EOi may change its output during the total time of its operation (d(EOi));

Axiom 4: The output of EOi remains constant from the end of its operation to its next invocation.

5

We denote the ASAP (As Soon As Possible) and ALAP (As Late As Possible) starting times
of the EOs by asap : V → IN and alap : V → IN, respectively.

De�nition 4. The mobility domain of an EO is: mob(EO) = [asap(EO), alap(EO)] ∩ IN. The
starting time of an EO is denoted by s(EO).

The mobility domain is the set of possible starting times from which the scheduler has to
choose, i.e. s(EO) ∈ mob(EO).

Now consider again the example of Figure 1. Bold arrows indicate edges belonging to one of
the longest paths. This implies that the minimum latency is 42. Assuming that L = 42, the length
of the mobility domain of the nodes on a longest path is 0, the mobility domain of other nodes
are mob(mul2) = [0, 8],mob(mul3) = [0, 26],mob(neg1) = [0, 26]. If one increased the latency to
L = 42+δ, δ ∈ IN, all mobility domains would increase with δ (ASAP will be the same, and ALAP
will increase with δ).

De�nition 5. A scheduling σ assigns to every EOi a starting time sσ(EOi) ∈ mob(EOi). The
EOG together with the scheduling σ is called a scheduled EOG, denoted by EOGσ.

De�nition 6. A valid scheduling is a scheduling that ful�lls the above four axioms.

Proposition 1. Not every scheduling is valid.

Proof. In the example of Figure 1 let L = 43. It can be easily calculated that mob(mul1) = [0, 1]
and mob(mul4) = [8, 9]. However, if mul1 were started in cycle 1 and mul4 were started in cycle
8, this would violate the axioms, since mul4 needs the result of mul1.

Consequently, the starting times of the EOs cannot be chosen arbitrarily in their mobility
domains, but the axioms have to be assured explicitly.

Remark 1. The scheduling de�ned by the ASAP starting times is valid. Similarly, the scheduling
de�ned by the ALAP starting times is also valid.

De�nition 7. Let Σ denote the set of all schedulings, and Σ′ ⊂ Σ the set of all valid schedulings.

Fixing an objective function Obj : Σ→ IR, we can now de�ne the general scheduling problem:

De�nition 8. The General Scheduling Problem (GSP) consists of �nding a valid scheduling
σ ∈ Σ′ for a given EOG that maximizes Obj over Σ′.

The only remaining question concerning the de�nition of the scheduling problem is: how to
choose the objective function Obj?

The most logical choice would be: Obj0(σ) = − <the minimum number of PUs required to
realize EOGσ>. (The minus sign is caused by the fact that GSP tries to maximize Obj.)

Remark 2. It is straight-forward to assign weights to the PU types, and calculate the weighted
sum of the required PUs. Although our tool supports this, we present here the theoretical model
without weights for the sake of simplicity.

Clearly, EOs whose operation does not overlap in time, can be realized in the same PU. This
depends on the restart time and the scheduling (and thus Obj0 is really a function of σ). More
precisely it depends on the busy time of each operation. The consequence of Axioms 2 and 3 is
that if EOj uses the output of EOi, then EOi should hold its output stable until the �nish of
EOj , hence EOi is busy during the whole d(EOi) + d(EOj) period. This can be reduced using
a bu�er to store the result of EOi and EOj can read this bu�er afterwards. In this case EOi is
busy only in its real operation time and during the writing of the bu�er, which is considered to be
one clock-cycle. Note, that in this case EOi and EOj must not be scheduled directly after each
other, because the bu�er must be written. To sum up: the busy time is determined by the longest
successor scheduled directly after the EO, which can also be a bu�er.

6

De�nition 9. Let Dσ(EOi) be the set of direct successors of EOi scheduled directly after it, i.e.
Dσ(EOi) := {EOj : (EOi, EOj) ∈ E and s(EOj) = s(EOi) + d(EOi)}. The busy time interval
of an EO is:

busy(EOi) =

[s(EOi), s(EOi) + d(EOi) + 1] if Dσ(EOi) = ∅
[s(EOi), s(EOi) + d(EOi) + max

Dσ(EOi)
d(EOj)] otherwise

.

De�nition 10. Two closed intervals [x1, y1] and [x2, y2] intersect modulo R, i� ∃z1 ∈ [x1, y1] and
z2 ∈ [x2, y2], such that z1 ≡ z2 (mod R).

De�nition 11. Let PU_TYPE denote the �nite set of all possible PU types. κ : EO_TY PE →
PU_TY PE is a function that speci�es which PU type can execute a given EO type.

A PU type might execute di�erent EOs, e.g. an ALU can realize all the arithmetic operations.

De�nition 12. EOi and EOj are called compatible i� κ(type(EOi)) = κ(type(EOj)) and
busy(EOi) and busy(EOj) do not intersect modulo R. Otherwise they are called incompatible
(sometimes also called concurrent).

It can be proven (see [6]) that this is indeed a compatibility relation, moreover, two EOs can
be realized in the same PU i� they are compatible. Note that if EOj is started immediately after
EOi has �nished, then they are incompatible. Most related works de�ne the compatibility slightly
di�erently: they use the operation interval instead of the busy time interval. However, to schedule
two dependent operations directly after each other is not realistic, because it can cause hazards.
In our approach these hazards are a priori eliminated [6].

Now we are ready to de�ne the allocation problem formally.

De�nition 13. An allocation is a mapping between the EOs and the PUs so that the PUs are able
to execute the EOs mapped to them and each PU has at most one EO to execute in each time step.
Formally an allocation is a function α : V → PU_TY PE × IN with the following characteristics:

(i) If α(EOi) = (pu, k), then κ(type(EOi)) = pu (pu ∈ PU_TY PE, k ∈ IN)

(ii) If EOi, EOj ∈ α−1(pu, k), then busy(EOi) and busy(EOj) do not intersect modulo R
(pu ∈ PU_TY PE, k ∈ IN)

k means the kth copy of the PU.

The aim of allocation is to calculate the minimum number of PUs required for a given schedule,
i.e. to calculate Obj0 is equal to solving the allocation problem.

Proposition 2. In the special case when pipeline processing is not allowed (R = L), the allocation
problem can be solved in polynomial time.

Proof. Based on EOGσ, we can de�ne a new undirected graph G′ = (V ′, E′), called the con-
currency graph (or con�ict graph) of EOGσ. V ′ = V , but the edges have a di�erent meaning:
(EOi, EOj) ∈ E′ i� EOi and EOj are incompatible in EOGσ.

Let Vt be the set of EOs that can be realized by PU type t. It can be seen easily that �nding a
realization of EOGσ[Vt] (the induced subgraph of EOGσ by Vt) corresponds to a vertex coloring
of G′[Vt]. Consequently, calculating Obj0 in G′[Vt] means calculating its chromatic number.

If pipeline processing is not allowed, then G′[Vt] is an interval graph, and the chromatic number
of interval graphs can be found in polynomial time [17]. Clearly, all types can be handled this way,
independently of each other. (However, it is not true that G′ itself would be an interval graph,
but rather a set of interval graphs, between which all edges are present.)

Proposition 3. The allocation problem of pipeline systems is NP-hard, even if only EOGs with
a single type and no edges are considered.

7

Proof. Because of pipeline processing, the class of possible G′-s is not that of interval graphs, but
that of circular arc graphs, for which �nding the chromatic number is NP-hard. (For a proof,
see [16].)

Therefore, we settled for another objective function, namely the number of compatible pairs
(i.e., the number of edges in the complement of the concurrency graph). We had two reasons for
this: (i) Calculating the number of compatible pairs (NCP) is much easier than calculating the
number of required PUs; and (ii) The above two numbers correlate signi�cantly, i.e. if the NCP
is high, this usually results in a lower number of required PUs.

We have already seen that it is di�cult to calculate the number of required PUs. On the other
hand, the Concheck algorithm [6] can determine the compatibility of two EOs in O(1) steps,
and so the NCP of EOGσ can be calculated in O(n2) time.

Now we will formally elaborate on claim (ii). Intuitively it seems to be logical that the chromatic
number of graphs with many edges is higher than that of graphs with few edges, but this is not
always true. However, it is true in a statistical sense.

De�nition 14. Let Gn,M denote the set of all graphs with n vertices and M edges. This can be
regarded as a probability space, in which every graph has the same probability. Gn,p denotes the
set of all graphs with n vertices, provided with the following probability structure: every edge is
present with probability p, independently from the others.

De�nition 15. Let Q be a graph property (that is, a set of graphs). We say that Q is almost sure
with respect to Gn,p , i� limn→∞ Prob(G ∈ Q | G ∈ Gn,p) = 1. (The same notion with respect to
Gn,M is similarly de�ned.)

It is known [7], that the chromatic number

χ(G) = Θ

(
n

logd n

)
is almost sure with respect to Gn,p, where d = 1/(1− p). Our aim is to reason about Gn,M .

De�nition 16. The graph property Q is said to be convex, i� (G1 ∈ Q, G2 ∈ Q, V (G1) =
V (G) = V (G2), E(G1) ⊆ E(G) ⊆ E(G2)) ⇒ G ∈ Q.

It is also known [14] that if Q is almost sure in Gn,p, and Q is convex, then Q is also almost
sure in Gn,M , where M = p ·

(
n
2

)
(i.e. the expected number of edges).

Clearly, the property that �χ(G) equals a given value� is convex, so we can write with the
appropriate p and M values:

χ(G) = Θ

(
n

logd n

)
= Θ

 n

lnn
ln

1

1− M

(n2)

is almost sure in Gn,M .

It can be seen easily that this function is monotonously increasing in the number of edges.
This can also be seen in Figure 2 for n = 100.

This shows that maximizing the NCP almost surely induces solutions requiring fewer PUs.
Now we can de�ne the special version of the above general scheduling problem which we are

concerned with:

De�nition 17. The Scheduling Problem (SP) consists of �nding a valid scheduling with a maxi-
mum number of compatible pairs, given an EOG (G, type, L,R).

Figure 3 shows a possible scheduling and allocation for our example with R = L = 42 (without
pipelining). A column represents a PU and the rectangles depict the EOs. We assumed two PU
types (PU_TYPE = {pu_type_1, pu_type_2}), the EO types are assigned to them as shown
in Table 2. According to the �gure we need two PUs of type one and three PUs of type two.

8

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
hr

om
at

ic
 n

um
be

r

Number of edges

Figure 2: The chromatic number of 'almost all graphs' as a function of the number of edges

0

10

20

30

40

pu_type_1 pu_type_2

sqrt1

mul2 mul4

mul3

div1 div2

mul1

add1

sub1
neg1

sub2

2 1 2 31

Figure 3: A possible scheduling and allocation for the example of Figure 1 with R = L = 42

EO type PU type

add pu_type_1
sub pu_type_1
neg pu_type_1
mul pu_type_2
div pu_type_2
sqrt pu_type_2

Table 2: Mapping of EO types to PU types

The allocation α can be read from the �gure, e.g. α(mul1) = (pu_type_2, 3) or α(sub2) =
(pu_type_1, 2).

The time is represented on the y axis. The dark-gray boxes indicate the processing time of the
EO, the light-gray part shows the time the EO must hold its output constant, i.e. the two parts
together build the busy time of the EO. For example sub1 needs the output of mul2, and sub1

9

and mul2 are scheduled directly after each other, hence mul2 should hold its output stable during
the whole duration of sub1. The situation is di�erent in case of neg1 and sub2: since they are not
scheduled directly after each other, it is possible to store the output of neg1 in an intermediate
bu�er, thus neg1 should hold its output only for one clock cycle.

pu_type_1 pu_type_2

0

2

4

6

8

10

1 2 1 2 3 4 5 6 7

mul3

sub2

mul1

sqrt1

mul4

neg1

mul2

sub1

add1

mul4
div2 div1mul3

div2 div1

Figure 4: A possible scheduling and allocation for the example of Figure 1 with R = 11 and L = 47

��

��

��

10

0

20

30

40

50

60

70

80
��
��
��
��

���
���
���

���
���
���

����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

����

������

����
����
����
����

������

������

����

���
���
���
���

����
����
����

����
����
����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����

���
���
���
���

���
���
���
���

��
��
��
��

�����
�����
�����

�����
�����
�����

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�����
�����
�����
�����

������

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��

��
��
��

�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

������

����

�����
�����
�����
�����

����

����

������

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����

����
����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

����

��������

��
��
��
��

����

����

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

����
����
����
����
����

����
����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

����

��
��
��
��

������

����
����
����
����

����

������

������

���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

������

��
��
��
��

����������

������

��
��
��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
������
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��������

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

����
����
����
����

����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����

��
��
��
��

������

����
����
����
����

����

������

������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����

����
����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

Figure 5: The �rst couple of iterations for the schedule of Figure 4

Now consider the case when functional pipelining is used to increase the performance. In
Figure 4 a possible scheduling and allocation for the R = 11, L = 47 case can be seen. According

10

to the tighter timing constraints the resource usage has increased: two PUs of type one and 7 PUs
of type two. The �gure depicts a period of R clock cycles in a general state when already several
iterations have been made. Figure 5 illustrates the beginning of the process. Here the operations
�lled with the same pattern belong to the same iteration. The framed part�and all the periods
afterwards�correspond to the period of R of the previous �gure. Operation dependencies are
skipped here for clarity. Figure 4 also helps determine the compatibility relation: if the busy time
of two nodes intersect in this period of R clock cycles, then they are concurrent. One can easily
see that nodes far from each other in the original EOG become incompatible due to pipelining,
e.g. mul1 and div1. Note that to reach a restart time of 11 clock cycles each operation should have
a busy time not greater than 11, thus the scheduler did not schedule long dependent operations
after each other, but rather bu�ers were inserted between them to reduce the busy time.

Now that we have de�ned the scheduling problem, we can present one of the main theoretic
contributions of the paper:

Theorem 1. SP is NP-hard.

The proof can be found in Appendix A. This result shows that it is infeasible to strive for a
perfect solution for large inputs. Rather, we have implemented two di�erent heuristic scheduling
methods, which are presented in the next sections.

4 Genetic scheduling algorithm

In this section we propose an heuristic scheduling method based on genetic algorithms [13, 21].
In general, a genetic algorithm starts with an initial population of individuals representing the
(approximate) solutions of the problem. After that, in each iteration a new population is generated
from the previous one using the genetic operations: recombination, mutation and selection. So in
each step there are two populations. The new population is �rst partially �lled using recombination
(usually there is a prede�ned recombination rate, rr), then the rest using selection. Mutation is
then used on some individuals of the new population (their number is de�ned by the mutation
rate, mr).

The scheduling problem is a good candidate for applying a genetic algorithm. The applicability
of genetic algorithms requires that the solutions of the optimization problem can be represented
by means of a vector with meaningful components: this is the condition for recombination to work
on the actual features of a solution. Fortunately, there is an obvious vector representation in the
case of the scheduling problem: genes are the starting times of the elementary operations. That
is, the individual corresponding to scheduling σ is xσ = (sσ(EO1), . . . , sσ(EOn)).

Identifying the state space is not this straight-forward. The question is whether non-valid
schedulings should be permitted. Since non-valid schedulings cannot be realized, it seems to be
logical at �rst glance to work with valid schedulings only. Unfortunately, there are two major
drawbacks to this approach. First, this may constrain e�ciency severely. Namely, it may be
possible to get from a valid individual to a much better valid individual by genetic operations
through a couple of non-valid individuals, whereas it may not be possible, or perhaps only in
much more steps to get to it through valid ones only. In such a case, if non-valid individuals are
not permitted, one would hardly arrive to the good solution. An example for such a situation is
shown in Appendix B.

The other problem is that it is hard to guarantee that genetic operations do not generate non-
valid individuals even from valid ones. This holds for both mutation and recombination. Thus,
if non-valid individuals are not permitted, the recombination operation cannot be used in the
form of cross-over. Rather, it should be de�ned as averaging. But this method does not help to
maintain variety in the population so it can cause degeneration. In the case of mutation it seems
that the only way to guarantee validity is to immediately get rid of occasional invalid mutants.
However, this would contradict the principle of giving every individual the possibility to propagate
its characteristics.

11

For these reasons we decided to permit any individual (between ASAP and ALAP) in the
population, not only valid ones. That is, the state space is {(x1, . . . , xn) ∈ INn : asapi ≤ xi ≤
alapi (1 ≤ i ≤ n)} and the population always contains N such individuals. Of course the scheduler
must produce a valid scheduling at the end. In order to guarantee this, there must be valid
individuals in the initial population and the �tness function must be chosen in such a way that
it punishes invalidity. Moreover, the best-so-far valid scheduling is also stored separately, and can
be returned at any time.

Remark 3. Because of the above problems, it was stated in [8] that genetic algorithms cannot be
applied directly to scheduling. However, as can be seen, this is indeed possible.

If only valid individuals were allowed, the �tness would be equal to NCP. Since non-valid
individuals are also allowed, but they should be motivated to be less and less invalid, the �tness
has a second component (beside NCP), which is a measure of invalidity, namely the number of
collisions (NoC), i.e. the number of precedence rules (edges of the EOG) that are corrupted.
So the �tness is monotonously increasing in the number of compatible pairs and monotonously
decreasing in the number of collisions. In choosing the appropriate �tness function one can have
two di�erent strategies:

1. To motivate the individuals towards validity has the highest priority, i.e. any increase in
NCP cannot compensate the smallest increase in NoC. This strategy would imply a �tness
function:

f1 =
NCP

maxNCP
−NoC (1)

where maxNCP denotes the maximal possible NCP value. Decreasing the number of col-
lisions corresponds to a big improvement because it increases the �tness by 1. Increasing
the NCP corresponds to a small step: it increases the �tness by 1

maxNCP . This means that
decreasing the number of collisions by 1 is worth more than any increase in the NCP. Thus,
valid individuals are surely preferred over invalid ones.

2. An alternative strategy might be to allow the compensation of the increase of NoC by a
su�cient increase in NCP:

f2 =
NCP

maxNCP
− µ ·NoC

where µ has a value smaller than 1. The smaller µ is, the easier it is to compensate the
increase of NoC by the increase of NCP. The question is what should µ depend on and how.

Obviously an increase of NoC is the worst if it was previously 0, i.e. a valid individual has
become invalid by that. An increase from, say, 7 to 8 is less important, thus µ should be
decreasing in NoC. A logical choice would be (to also avoid the division by zero): µ(NoC) =
1/(1 + c ·NoC), where c is a constant.

Another observation concerning µ is that it should depend on the grade of pipelining, i.e.
on the L

R value. Namely, if R is small compared to L, then there are lots of incompatible
pairs and decreasing their number tends to increase the number of collisions, i.e. it is hard to
�nd valid individuals. In order to avoid this, an increase in the number of collisions is only
acceptable if there is a signi�cantly large increase in the number of compatible pairs. On
the other hand, if R is not much smaller than L, then it is not necessary to be that strict,
since a lot of valid individuals can be found. µ should re�ect this:

µ(NoC,R,L) =
L

R
· 1

1 + c ·NoC

hence the �tness function:

f2 =
NCP

maxNCP
−
(
L

R
· 1

1 + c ·NoC

)
·NoC (2)

12

Figure 6: Recombination of two individuals

We implemented and tested both (1) and (2) as �tness function.
In order to be sure that we get a valid scheduling at the end, some valid individuals must

be placed into the initial population. (The �tness function will make sure that they will not be
replaced by invalid ones.) It seems to be a good idea to have several valid individuals in the
initial population so that computational power is not wasted on individuals with many collisions.
Now the question is how to generate those valid individuals? Two valid schedulings are known
in advance: ASAP and ALAP. (See Remark 1 in Section 3.) It can be proven that any weighted
average of two valid schedulings is also valid:

Theorem 2. Let the starting time of the nodes in the �rst valid scheduling be: v1, v2, . . . , vn and
in the second w1, w2, . . . , wn. Then for arbitrary 0 ≤ λ ≤ 1, the scheduling

bλw1 + (1− λ) v1c , . . . , bλwn + (1− λ) vnc

is also valid.

(The proof can be found in Appendix A.) This way, additional valid individuals can be
generated. Suppose that Z valid individuals are needed (Z = [vr · N], where vr is the ratio of
valid individuals in the initial population). Then individual i (i = 0, . . . , Z − 1) has the form

asap+ (alap− asap) · i

Z − 1

where asap = (asap(EO1), . . . , asap(EOn)), alap = (alap(EO1), . . . , alap(EOn)) and the opera-
tions are de�ned component-wise.

Of course this method will not always generate Z di�erent individuals. It has the advantage
though that it is very simple and the generated individuals are homogeneously varied between the
two extremes ASAP and ALAP. So it is likely that subsequent mutations and recombinations will
generate very di�erent valid individuals from these.

As genetic operations, mutation, recombination and selection are used. Mutation is done in the
new population; each individual is chosen with the same probability. Selection is realized as �lling
some part of the new population with the best individuals of the old population. This is done by
�rst sorting the individuals according to their �tness with quick sort and then simply taking the
�rst ones. Thus, selection takes on average O(N logN) steps. Recombination is realized as cross-
over: from two individuals of the old population two new individuals are generated as illustrated
in Figure 6. The roulette method is used for choosing the individuals to recombinate.

The aim of the roulette method is to choose an individual with a probability distribution
proportional to the �tness values. It is realized as follows. Assume that the �tness (f) is always
positive (if not, this can be guaranteed by adding a su�ciently large constant to it) and let the
individuals be denoted as I0, . . . , IN−1. Let Fi =

∑i−1
j=0 f(Ij) (1 ≤ i ≤ N); F0 = 0. Choose an

arbitrary number 0 < m < FN . Suppose that m lies in the interval [Fj , Fj+1) (clearly, there is
exactly one such interval). Then the chosen individual is Ij .

Since the length of the [Fj , Fj+1) interval is equal to f(Ij), individuals are indeed chosen with
probabilities proportional to their �tness. The method is called roulette because the intervals
may be visualized on a roulette wheel, with the roulette ball �nishing in them with probabilities
proportional to their sizes.

Building the Fi values requires O(N) time, but this has to be done only once in an iteration.
The last step, namely �nding the interval containing m, can be accelerated signi�cantly as com-
pared to the obvious linear search. Since the Fi values are monotonously increasing, binary search

13

can be used, requiring only O(logN) steps. Since cN individuals are chosen (where c = 2 · rr),
the whole process requires O(N) + cNO(logN) = O(N logN) time.

Optimization can be made more e�cient by means of a large population, but the scheduler
must give only one solution at the end. However, there may be dozens of valid individuals with
a high objective value in the last population. So we choose the best valid individuals and run
the allocation process on all of them. Then the best one is chosen (in terms of used PUs and not
compatible pairs anymore) as output.

According to previous notations let N denote the size of the population, let n denote the
number of vertices in the EOG and let m denote the number of iterations of the GA. The time
complexity of each task of an iteration can be seen in Table 3. The time complexity of the whole
algorithm is O(mn2N + mnN logN), which is quadratic in the size of the input, assuming that
m and N are constant. Also note that if n� logN then the �rst term is the dominant one.

selection O(N logN)
recombination O(nN logN)
mutation O(N)
calculating the �tness O(n2N)

Table 3: Time complexity of each task in one iteration of the GA

5 CLP-based scheduling algorithm

In this section our second scheduling algorithm will be introduced. The CCLS (Compatibility
Controlled List Scheduling) is a member of list scheduling algorithms (see Section 2). The advan-
tage of these methods is their speed, while the major disadvantage is that they examine only a
minor part of the search space.

Our method realizes a good compromise. Instead of taking every node in the EOG one by one
as in the traditional list scheduling procedure, we form groups of size grp (1 ≤ grp, grp ∈ IN)
from the nodes and optimize these groups separately. In each step the next group according to
a heuristic order is considered and the nodes within this group are �xed to their optimal place
considering the aspect of the whole group. This is determined with exhaustive search, i.e. all
possible valid starting time combinations of the nodes in the group are evaluated. After the
�xation the group will be unchanged during the rest of the algorithm.

With this change we advert more possibilities in the search space, but we still go through
the nodes only once, so the algorithm remains reasonably fast. Naturally the e�ectiveness of
the algorithms signi�cantly depends on the value of grp. If grp = 1 we obtain the original list
scheduling as a marginal case; if grp = n, then the whole state space will be scanned. By changing
the value of grp we can exactly adjust the trade-o� between e�ectiveness and required time.

Apparently this is a realization of a monotone local search, so the algorithm �nds a better
state in every step. It also has the property that if there is not enough time to wait until the end
of the algorithm, it can be interrupted at any time and it will still produce a fairly good result.

The criterion of optimality among the possible schedulings in the current group is the NCP.
In order to determine the NCP in a given state of the algorithm, every EO has to be �xed, i.e.
the starting time of each node should be exactly speci�ed. As a consequence, we need an initial
scheduling to be able to start the algorithm; we used the ALAP scheduling which is guaranteed
to be valid (see Remark 1 in Section 3). In a general step of the algorithm we consider all the
possible schedulings of the current group and choose the best according to the NCP. Thus, we
consider in every step a set of concrete, valid schedulings. The algorithm terminates when every
EO has once been optimized.

Because of non-recurrent optimization, the order of the nodes may have large e�ect on the
quality of the �nal scheduling. One logical idea would be to put the neighboring nodes into one

14

group because they are likely to in�uence each other and the distant ones in di�erent groups
because they are almost independent. Unfortunately this is only true in sequential processing but
in pipeline mode far nodes also a�ect each other.

So we used another approach: the order of the nodes is determined by a heuristic derived from
former engineer experience The main idea of the heuristic can expressively be summarized as:
make the big decisions as late as possible. (For other node orders, see e.g. [1, 36].) Technically
it means that we assign to every node a number λ ∈ IN which indicates the loss of freedom by
�xing that particular node. We order the nodes based on λ, that is from the 'least signi�cant' to
the 'most important' one. The value of λ depends on two factors: the size of the mobility domain
and the duration of the given node. Obviously we loose a big amount of freedom by �xing a node
with large mobility. A long operation is likely to be concurrent with many other nodes, so it is a
big decision where to place it. So λ has to be monotonously increasing in both of its parameters.
We chose therefore: λ(EOi) = |mob(EOi)| · d(EOi), i ∈ {1, . . . , n}.

The biggest problem in the implementation of the outlined algorithm is that the �xation of a
node can a�ect other nodes' mobility domain, and these changes have to be updated continuously
in every step of the algorithm. By changing the starting time of a node, the precedences de�ned by
the elementary operation graph can be violated. To correct this error, some of its neighbors may
have to be rescheduled as well, so the shift of a node can result in a chain of other moves through
the constraints, until we can decide whether the original step was allowed or not. To update all
the changed mobility domains is quite a di�cult task in a traditional programming language like
C. That is why we utilized the resorts of logic programming, the CLP(FD) (Constraint Logic
Programming Finite Domain) library of SICStus Prolog 3.8.4 to be exact.

The CLP(FD) library of SICStus handles �nite domain integer variables. A set of possible
integer values should be assigned to every variable, that forms the starting domain of the variable.
Furthermore we can de�ne a set of constraints that must be held between the variables. The
inductive mechanism of Prolog guarantees that all the de�ned constraints will be held through the
whole computing procedure. For more details please refer to [33].

The task of scheduling is to determine the starting time s(EOi) of each node. Therefore
we order a constraint variable S(EOi) to every node EOi in the EOG (i ∈ {1, . . . , n}) that
denotes the starting time of that node. The initial domain of the variables is obviously the closed
[asap(EOi), alap(EOi)] interval.

We need to de�ne appropriate constraints on these variables to �nd a valid scheduling: we
have to de�ne the conditions that adjacent nodes in the elementary operation graph should be run
sequentially. Let us assume that (EOi, EOj) ∈ E. The following constraint expresses that EOj
should be started only after �nishing EOi: S(EOi) + d(EOi) ≤ S(EOj). This kind of constraint
is de�ned for every edge in the EOG.

Our next aim is to specify a set of constraints that given a valid scheduling automatically
calculate the value of NCP. The calculation of NCP, i.e. the implementation of the Concheck
algorithm is far from straight-forward. We introduced Boolean variables Bij representing the
compatibility of each node pair. Concheck is implemented as a set of constraints which set Bij
according to the particular scheduling. NCP can then be calculated as

∑
i,j∈V Bij . The problem

is that Concheck itself is quite complex, so its formulation using CLP is hard and requires a huge
number of constraints. Moreover, Concheck uses the busy times of the EOs, the determination
of which again requires a large number of constraints.

After all the constraints have been de�ned, the CLP engine makes sure that they will not
be hurt. The last (but most time-consuming) step is to search for the optimum, or at least for
better and better objective values in the constrained state space. Prolog provides a default search
mechanism which is based on branch-and-bound. Most previous works used this built-in method,
however, this was too slow for our larger test cases, so we used the CCLS algorithm instead.
Algorithm 1 gives a Pascal-style pseudocode of our CLP scheduler.

The algorithm performs n/grp optimization steps, and scans at mostmaxmobgrp states in each
step, where maxmob is the maximum of the mobility of the nodes. In each state, the calculation
of the NCP takes O(n2) time. So the total time is O(n3 · maxmob

grp

grp).

15

Algorithm 1 The CCLS algorithm
for i := 1 to n do

domain(S(EOi)) := mob(EOi);
end for

add_edge_constraints(); {de�ne a constraint for each dependecy in the EOG}
add_busy_time_constraints(); {de�ne constraints setting the busy time variables

provided all nodes have been scheduled}
add_concurrence_constraints(); {de�ne constraints on the number of compatible node

pairs depending on the current partial schedule}
sort_nodes_by_lambda();
while ∃ unscheduled EO do

group := next_group_to_schedule(); {select a group of unscheduled EOs according to the
ordering}

schedule_group(group); {�nd the best scheduling of the group with an exhaus-
tive search}

end while

6 Experimental results

Our goal was to achieve better results than state-of-the-art schedulers dealing with the time-
constraint scheduling problem. The force-directed scheduler of [6] was found superior to previous
approaches in this problem domain, so we took this scheduler as reference. Our results can be
compared to other schedulers to a limited extent only, since our model contains some important
modi�cations compared to standard approaches. The most important is the utilization of busy
time, which is crucial in our model: it guarantees the hazard�free operation of the designed circuit.
We would like to illustrate this problem on an example: an attempt of a comparison with the recent
TLS scheduler [1].

The largest benchmark that TLS was tested on is the data �ow graph of the inverse discrete
cosine transform (IDCT) which has 46 EOs: 16 multiplications and 30 additions/subtractions.
We adopted the assumptions of [1] that additions and subtractions can be mapped to ALUs and
last 1 cycle, whereas multiplications are mapped to multipliers and take 2 cycles. The minimum
latency of the system is 7 cycles. An example run of our genetic scheduler with R = 4 and L = 10
resulted in a solution that required 14 ALUs and 16 multipliers. The �rst problem is that TLS is
not a time-constrained scheduler, and hence it cannot be run with the same time limits to compare
the resource usage. The only meaningful comparison can be achieved by running TLS with the
resource constraint of 14 ALUs and 16 multipliers. From [1] it is clear that TLS yields R = 3 and
L = 7 for this resource constraint. Therefore it seems that TLS is clearly better than our genetic
scheduler since it o�ers lower R and L values for the same set of resources. However, this is due
to our concept of busy times. Namely, the average execution time of a node in IDCT is 1.348; the
average busy time in the schedule found by our genetic scheduler is 2.174. Therefore, the duration
of the nodes became longer by a factor of 1.613 on average. On the other hand, R grew only by a
factor of 1.333 and L grew only by a factor of 1.429. So in this respect, the relative performance
of our genetic scheduler was better than that of TLS.

Because of these problems, we persisted in the comparison with the force-directed scheduler
of [6]. The algorithms were tested on three benchmarks:

• Fast Fourier Transformation (FFT, [12]), 25 EOs

• IDEA cryptographic algorithm ([26]), 116 EOs

• RC6 cryptographic algorithm ([38]), 328 EOs

Note that the last two benchmarks are signi�cantly larger than the common benchmarks of
the literature where mostly examples of some dozens of EOs are used.

16

The genetic algorithm can be con�gured with seven parameters: size of the population, recom-
bination rate, mutation rate, rate of valid individuals in the initial population, number of steps
(generations), restart time, latency (only for the second version of the �tness function). The aim
of the �rst test series was to con�gure the �ve internal parameters of the genetic scheduler. In the
comparative test cases these values are already �xed.

A small calculation should illustrate the di�culty of testing. Assuming that we only try 3
values for each parameter on the 3 benchmark problems with the two versions of the objective
function results in 37 · 3 · 2 ≈ 13000 executions. We implemented a TCL script to coordinate the
test cases, used 4-8 computers simultaneously and this way we managed to complete the tests in
two weeks. Most computers were working with Pentium II processors on Debian GNU/Linux.

Testing the CCLS algorithm was easier, since fewer parameters had to be taken into consider-
ation: only the ideal value of grp had to be determined during testing.

Figure 7: The e�ect of di�erent con�gurations on the result of the genetic scheduler. The x axis
shows di�erent con�gurations, while the y axis shows the corresponding number of required PUs.

Figure 7 illustrates the in�uence of changing the parameters within the test case RC6 R=10
L=211. We gave each con�guration in the form (broken into �ve lines because of space constraints):
N − mr − rr − m − vr. Obviously the two versions show di�erent behavior, so selecting the
appropriate objective function has signi�cant e�ect on the quality of the result. Generally the �rst
version had better results, but there were exceptions where the second version was more e�ective.
Therefore we kept both versions in the comparative tests.

Concerning only the number of steps, it can be derived from the diagram that after 100 steps
we generally get the same results as after 300 or 500 steps. Another interesting observation is that
increasing the size of the population from 150 to 300 leads sometimes to worse results, however,
the best result has been reached with a population of 300 individuals. It can be seen that changing
the mutation and recombination rate a�ects rather irregularly the number of used processors. The
best recombination rate1 was around 0.3− 0.35, the mutation rate2 was in the range of 0.1− 0.2.
Producing some initial valid individuals resulted in better �gures, but this ratio should be relatively
small, around 10 percent.

In the next test series the size of the population is 300, the number of iterations is 150, the
recombination rate is 0.32, the mutation rate is 0.15, and the rate of valid individuals in the initial
population is 0.1.

The summary of the results concerning the number of required processors can be seen in Table

1In our implementation this means that 60-70 percent of the new population will be generated by recombination.
2This means that 10-20 percent of the individuals will mutate in one position.

17

Force-
directed

Genetic v1 Genetic v2 CCLSProblem

FFT R=20 L=20 9 9 9 9
FFT R=20 L=30 11 6 7 7
IDEA R=10 L=316 75 74 74 74
IDEA R=100 L=268 17 15 15 16
IDEA R=100 L=278 16 15 16 16
IDEA R=200 L=268 13 10 11 11
IDEA R=268 L=268 6 6 6 6
IDEA R=278 L=278 8 7 7 6
IDEA R=50 L=268 25 25 25 26
IDEA R=50 L=278 29 23 23 25
RC6 R=10 L=201 210 207 207 208
RC6 R=10 L=211 23 15 15 17
RC6 R=100 L=201 25 23 23 24
RC6 R=201 L=201 13 11 11 11

Table 4: The required number of processors

4. It can be seen that the new algorithms have reached the previous results in every case, moreover,
in most tests they could improve them. This improvement is often remarkable, for example in the
FFT R=20 L=30 test the genetic algorithm could reduce the number of allocated PUs to ≈ 55%.
Apparently the genetic algorithm can cope with bigger tests as well, since it could lessen the
required number of processors from 23 to 15 in the RC6 R=10 L=211 case. Another interesting
observation is that by increasing the latency from 201 to 211 in the RC6 R=10 test we could
reduce the number of PUs to approximately 10 percent of its previous value!

The results of CCLS are also relatively good, in the IDEA R=278 L=278 test this algorithm
has achieved the best result. The optimal value of grp is around three.

Force-
directed

Genetic v1 Genetic v2 CCLSProblem

FFT R=20 L=20 0.99 s 1.27 s 0.51 s 3.99 s
FFT R=20 L=30 2.91 s 13,22 s 11,34 s 29.78 s
IDEA R=10 L=316 51.1 s 98.24 s 93.76 s 503.22s
IDEA R=100 L=268 56.29 s 54,18 s 51.72 s 312.07 s
IDEA R=100 L=278 1779.3 s 49.77 s 26.12 s 687.25 s
IDEA R=200 L=268 158.08 s 432,55 s 32.31 s 564.15 s
IDEA R=268 L=268 118.68 s 28.74 s 57.88 s 95.22 s
IDEA R=278 L=278 1149.11 s 9.14 s 8.55 s 737.18 s
IDEA R=50 L=268 37.14 s 28.3 s 10.71 s 550.02 s
IDEA R=50 L=278 519.61 s 315.12 s 882.59 s 1022.32 s
RC6 R=10 L=201 165.67 s 17.79 s 35.83 s 845.60 s
RC6 R=10 L=211 1069.23 s 1984.02 s 1101.48 s 2336.67 s
RC6 R=100 L=201 399.73 s 50.28 s 54.23 s 761.09 s
RC6 R=201 L=201 1661.60 s 247.70 s 249.31 s 2072.17 s

Table 5: Running times

Table 5 shows the running times for the results of Table 4. Since the algorithms have been

18

implemented in di�erent programming languages and tested on di�erent computers, the running
times re�ect only the order of magnitude. It is also important to note that in practice, the running
time is typically not critical, the number of required PUs is more important. During a typical
design procedure, the scheduler is invoked a couple of times only, so it is acceptable if it can �nish
in a few hours. Both algorithms are far below this limit.

It is not unequivocal to decide which of the genetic and the force-directed algorithm is faster.
Surprisingly, there were test cases providing signi�cant di�erences in favor of both algorithms. On
the other hand, the genetic algorithm often found a relatively good solution quite fast and it took
much more time to reach the slightly better �nal result. In other words: if we stop the genetic
algorithm much earlier, it is likely to give a solution that is only one PU worse than the best one.

7 Conclusion

In our research we focused on the time-constrained scheduling problem of HLS. We have presented
two new scheduling algorithms and tested their performance on large industrial benchmarks. The
empirical results show that both algorithms could e�ectively minimize the cost of the designed
system compared to the force-directed scheduler, which was previously found superior to other
approaches on the given problem domain. Furthermore the genetic algorithm proved to be unex-
pectedly fast, but CCLS also provided reasonable running times.

As future research, it should be investigated how the new scheduling algorithms could be used
in other domains, such as instruction scheduling or project planning.

8 Acknowledgments

The work of the authors was supported by the grants OTKA T030178, T043329, and T042559.
The work of Zoltán Ádám Mann and András Orbán was also supported by a grant of Timber Hill
LLC and by the PRCH Student Science Foundation. We would also like to thank Gábor Simonyi
for pointing us to some useful literature.

A Proof of the theorems

Theorem 1. The scheduling problem as de�ned in Section 3 is NP-hard.

Proof. We show a Karp-reduction of the 3-SAT problem to this problem.
Suppose we have a Boolean satis�ability problem with variables xl of the form F = (y11 +

y12 + y13)(y21 + y22 + y23) . . . (yt1 + yt2 + yt3) where yij stands for either some xl or ¬xl. (If both
xl and ¬xl occur in the same term, then we can neglect that term, because it has always the value
1.) Now let us construct an EOG from this satis�ability problem. First make two nodes for each
variable xl: one for xl and one for ¬xl. The mobility range of these variables is the [1, 2] interval. If
one of these nodes is scheduled for the �rst time cycle, this means that the corresponding variable
has the value 0, otherwise the value 1. The nodes corresponding to xl and ¬xl will have the same
type so that they are guaranteed to have di�erent values in an optimal schedule.

Now take one term of the conjunction: yi1 +yi2 +yi3. There are already 3 nodes corresponding
to the variables; now we construct 6 more as shown in Figure 8.

Here the same symbol means the same PU type, whereas di�erent symbols mean di�erent PU
types. The mobility range of nodes A, B and C is the [0, 1] interval, for D it is [0, 0] and for E
and F [1, 1].

The value of the term should be 1, i.e. at least one of the variables yi1, yi2, yi3 should have
the value 1. If all of them have the value 0 (which is the bad case) then we have the situation
of Figure 8(a) with 8 compatible pairs (concerning the type denoted by circles). If, on the other
hand, at least one of the variables has the value 1, then one of the nodes A, B, C may be scheduled

19

0

1

2

D C B A

E F y yy
i3 i1i2

(a) 8 compatible pairs

C

y
i3

0

1

2

D B A

E F y y
i1i2

(b) 9 compatible pairs

Figure 8: The EOG belonging to a term of the 3-SAT formula

in cycle 1, making the NCP 9 (see Figure 8(b)). It can also be seen that the NCP cannot be more
than 9.

So the reduction works as follows. First, we create the EOG using the rules just described.
Suppose that there are v variables and t terms. Then we ask if the optimal number of compatible
pairs is v+9t. More than this is not possible because the number of compatible pairs corresponding
to the variables is at most v and the number of compatible pairs corresponding to the terms is at
most 9t. If the answer is yes, then the optimal schedule provides the solution of the satis�ability
problem. If not, then this means that the satis�ability problem cannot be solved.

So we have shown a Karp-reduction of a well-known NP-complete problem to our problem.
This means that it is NP-hard.

Theorem 2. Let the starting time of the nodes in the �rst valid scheduling be: v1, v2, . . . , vn and
in the second w1, w2, . . . , wn. Then for arbitrary 0 ≤ λ ≤ 1, the

bλw1 + (1− λ) v1c , . . . , bλwn + (1− λ) vnc

scheduling is also valid.

Proof. In order to prove the validity of a scheduling, we have to check whether the precedences
de�ned in the EOG hold. Obviously it is enough to show that an arbitrary pair of nodes connected
in the EOG will be scheduled correctly.

Let (i, j) ∈ E. Since the two original schedulings are correct, vi + di ≤ vj and wi + di ≤ wj
hold. It follows that: di ≤ min(vj − vi, wj − wi) =: δ Introducing the ui := bλwi + (1− λ) vic
notation, we have to prove that ui + di ≤ uj holds. It is enough to show that

uj − ui ≥ δ (3)

Expressively it means that in the new scheduling the distance of the ith and jth node should be
at least the minimum of the distances in the two original schedulings. In the following part we
prove (3).

Without the loss of generality we can assume that vi ≤ wi. Depending on the relationship
of the values of vi, vj , wi, wj we distinguish the following cases. Every case is illustrated by a
sub�gure in Figure 9. In each �gure the same symbols belong to nodes of the same scheduling.

1. vj ≥ wj (Figure 9(a)). In this case δ = wj − wi and just using that vi ≤ ui ≤ wi and
wj ≤ uj ≤ vj it follows that uj − ui ≥ wj − wi = δ what our objective was.

2. vj < wj . Let us introduce the following notations: ∆i := wi − vi and ∆j := wj − vj .

(a) ∆i ≤ ∆j (Figure 9(b)). It follows immediately that λ∆i ≤ λ∆j , and so bλ∆ic ≤ bλ∆jc .
The conditions imply that: δ = vj − vi and since ui = vi + bλ∆ic and uj = vj + bλ∆jc
therefore uj − ui = vj + bλ∆jc − vi − bλ∆ic ≥ δ. So it is a valid scheduling.

20

time

v

w

w

u

v

u

j

j

j

i

i

i

(a) vj ≥ wj

u
j

j

v

time

v

u

j

i

i

w

i

j

w
i

λ∆

λ∆

∆i

j∆

(b) vj ≤ wj and ∆i ≤ ∆j

u
j

j

v

time

v

u

j

i

i

w

w
i

∆ −

∆ −

i

j

λ∆

λ∆

i

j

∆i

∆j

(c) vj ≤ wj and ∆i > ∆j

Figure 9: The possible arrangements of the EOs in the di�erent schedulings.

(b) ∆i > ∆j (Figure 9(c)). Similarly to the previous case: λ∆i > λ∆j meaning that
bλ∆ic ≥ bλ∆jc . Now δ = wj − wi and ui = wi − (∆i − bλ∆ic) and uj = wj −
(∆j − bλ∆jc). On the other hand it follows from the condition ∆i > ∆j that (1 −
λ)∆i > (1 − λ)∆j . If we do not decrease the left-hand side of this inequality it still
holds: ∆i−bλ∆ic > ∆j−λ∆j . As the left side is an integer, ∆i−bλ∆ic ≥ ∆j−bλ∆jc
also holds. Bringing everything to the left-hand side: (∆i − bλ∆ic)−(∆j − bλ∆jc) ≥ 0.
So uj − ui = wj − (∆j − bλ∆jc) − (wi − (∆i − bλ∆ic)) = wj − wi + (∆i − bλ∆ic) −
(∆j − bλ∆jc) ≥ wj − wi = δ which proves the claim.

Remark 4. Since the validity of schedulings is de�ned by linear inequalities, the set of valid
schedulings is a convex polyhedron [39]. Therefore it is obvious that the convex combination of two
points in the polyhedron is also inside the polyhedron. So the actual result of this theorem is that
the rounded convex combination is also inside the polyhedron.

B An example of the usefulness of invalid individuals

In Section 4 it was mentioned that not allowing invalid individuals would constrain the e�ciency
of the genetic algorithm heavily, because sometimes an optimal valid individual can be reached
from valid individuals easier through invalid ones than through valid ones only. Now an example
is shown, in which this is really the case: we show a concrete population, from which the optimal
scheduling can be reached using 2 recombinations if invalid individuals are also allowed; however,
this is not possible if invalid individuals are not allowed. Consider the EOG in Figure 10.

Suppose the operation is not pipelined (R = L). There are six types of elementary operations,
labelled as A, B, C, D, E, F. To each EO type there is a PU type that can only realize that
particular EO type. Each EO takes 1 clock cycle, and the latency is L = 9. There are �ve nodes
whose starting time is not �xed; they are numbered from 1 to 5. Their mobility domains are:
mob1 = [0, 6], mob2 = [0, 6], mob3 = [0, 7], mob4 = [1, 7], mob5 = [1, 7].

The population consists of three individuals, namely (clearly it is su�cient to specify the
starting times of the �ve mobile operations): x = (2, 3, 1, 4, 4), y = (1, 5, 2, 2, 6), z = (1, 4, 1, 3, 5).

All of them are valid individuals. The optimal scheduling would be the following: opt =
(2, 3, 2, 3, 5). To see this, note that the nodes in the 'column' containing the �ve �xed 'A'-s of the
EOG guarantee that the optimal position for node 1 is clock cycle 2, similarly and independent

21

A1

D4

B2

E5 C3

A B C D E

B D E

E

E

A C

A B C D

A B C D

A B C D E

F

F

F

F

F

F

F

Figure 10: Example EOG

from node 1, it is the 'column' containing the �ve �xed 'B'-s that guarantees that the optimal
position for node 2 is clock cycle 3 and so on.

The optimal individual can be combined from the current population in one way only: the �rst
two genes of x, the third gene of y and the fourth and �fth gene of z have to be combined. Since
three di�erent pieces have to be assembled, this requires at least two recombinations, one cutting
between the second and third gene and one cutting between the third and fourth gene. This yields
the following two possibilities to reach opt from the current population with two recombinations:

1. First x and y are recombinated, cutting between the second and third gene. The result is:
u = (2, 3, 2, 2, 6), v = (1, 5, 1, 4, 4). After that, u and z are recombinated, cutting between
the third and the fourth gene.

2. First y and z are recombinated, cutting between the third and the fourth gene. The result
is: s = (1, 5, 2, 3, 5), t = (1, 4, 1, 2, 6). After that, s and x are recombinated, cutting between
the second and third gene.

In both cases the intermediatory individual (u in the �rst scenario and s in the second) is
invalid. This proves the usefulness of invalid individuals.

References

[1] I. Ahmad, M. K. Dhodhi, and F. M. Ali. TLS: a tabu search based scheduling algorithm for
behavioral synthesis of functional pipelines. The Computer Journal, 43(2):152�166, 2000.

[2] C. Akturan and M. F. Jacome. CALiBeR: A software pipelining algorithm for clustered
embedded VLIW processors. In Proceedings of ICCAD, pages 112�118, 2001.

[3] P. Arató, S. Juhász, Z. Á. Mann, A. Orbán, and D. Papp. Hardware/software partitioning in
embedded system design. In Proceedings of the IEEE International Symposium on Intelligent
Signal Processing, 2003.

[4] P. Arató, Z. Á. Mann, and A. Orbán. Genetic scheduling algorithm for high- level synthesis.
In Proceedings of the IEEE 6th International Conference on Intelligent Engineering Systems,
2002.

22

[5] P. Arató, Z. Á. Mann, and A. Orbán. Algorithmic aspects of hardware/software partitioning.
ACM Transactions on Design Automation of Electronic Systems, accepted.

[6] P. Arató, T. Visegrády, and I. Jankovits. High-Level Synthesis of Pipelined Datapaths. John
Wiley & Sons, Chichester, United Kingdom, 2001.

[7] B. Bollobás. The chromatic number of random graphs. Combinatorica, 8(1):49�55, 1988.

[8] E. Bonsma and S. Gerez. A genetic approach to the overlapped scheduling of iterative data-
�ow graphs for target architectures with communication delays. In Proceedings of the ProRISC
Workshop on Circuits, Systems and Signal Processing, 1997.

[9] C. Chantrapornchai, S. Tongsima, and E. H.-M. Sha. Imprecise task schedule optimization.
In Proceedings of the International Conference on Fuzzy Systems, 1997.

[10] L.-F. Chao, A. S. LaPaugh, and E. H.-M. Sha. Rotation scheduling: A loop pipelining
algorithm. In Design Automation Conference, pages 566�572, 1993.

[11] F. Chen, S. Tongsima, and E. H.-M. Sha. Register-constrained loop scheduling for optimizing
time and memory operations. In Proceedings of the IEEE Workshop on Signal Processing
Systems (SiPS), 1998.

[12] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation, pages 297�301, 1965.

[13] L. Davis. Handbook of genetic algorithms. Van Nostran Reinhold, 1991.

[14] M. Daws. Probabilistic combinatorics, part III. http://members.tripod.com/matt_daws/
maths/ pc.ps, 2001. Based on the lectures of Dr. Thomason, Cambridge University.

[15] D. Gajski. High-Level Synthesis. Kluwer Academic Publishers, 1992.

[16] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of coloring
circular arcs and chords. SIAM Journal on Algebraic and Discrete Methods, 2(1):216�227,
1980.

[17] M. Ch. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

[18] S. Haynal and F. Brewer. Representing and scheduling looping behavior symbolically. In
IEEE International Conference on Computer Design, 2000.

[19] M. J. M. Heijligers and J. A. G. Jess. High-level synthesis scheduling and allocation using
genetic algorithms based on constructive topological scheduling techniques. In Proceedings of
ICEC-95, 1995.

[20] K. Ito, T. Iwata, and H. Kunieda. An optimal scheduling method for parallel processing
system of array architecture. In Asia and South Paci�c Design Automation Conference,
ASP-DAC '97, pages 447�454, 1997.

[21] W. Kinnebrock. Optimierung mit genetischen und selektiven Algorithmen. Oldenburg, 1994.

[22] M. Koster and S. H. Gerez. List scheduling for iterative data�ow graphs. In Proceedings of
the Groningen Information Technology Conference for Students, pages 123�130, 1995.

[23] D. Ku and G. De Micheli. Constrained resource sharing and con�ict resolution in Hebe.
Integration: the VLSI Journal, 12(2):131�166, December 1991.

[24] D. Ku and G. De Micheli. Relative scheduling under timing constraints: algorithms for
high-level synthesis of digital circuits. Technical Report CSL-TR-91-477, Stanford, 1991.

23

[25] K. Kuchcinski. An approach to high-level synthesis using constraint logic programming. In
Proceedings of the 24th Euromicro Conference, Workshop on Digital System Design, 1998.

[26] X. Lai, J. L. Massey, and S. Murphy. Markov ciphers and di�erential cryptanalysis. Lecture
Notes in Computer Science, 547:17�38, 1991.

[27] G. Lakshminarayana, K. S. Khouri, and N. K. Jha. Wavesched: a novel scheduling technique
for control-�ow intensive behavioral descriptions. In Proceedings of ICCAD '97, pages 244�
250, 1997.

[28] Z. Á. Mann and A. Orbán. Optimization problems in system-level synthesis. In Proceedings
of the 3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications,
2003.

[29] I. Markhof. High-level-synthesis by constraint logic programming. In GI/ITG-Workshop
'Anwendung formaler Methoden im Systementwurf', 1994.

[30] S. O. Memik, E. Bozorgzadeh, R. Kastner, and M. Sarrafzadeh. A super-scheduler for em-
bedded recon�gurable systems. In Proceedings of ICCAD 2001, 2001.

[31] S. O. Memik, A. Srivastava, E. Kursun, and M. Sarrafzadeh. Algorithmic aspects of uncer-
tainty driven scheduling. In Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), 2002.

[32] M. C. Molina, J. M. Mendías, and R. Hermida. High-level synthesis of multiple-precision
circuits independent of data-objects length. In Proceedings of the 39th conference on Design
automation, pages 612�615. ACM Press, 2002.

[33] Swedish Institute of Computer Science. SICS Quintus Prolog Manual, 1999.

[34] A. Orbán, Z. Á. Mann, and P. Arató. Time-constrained design of pipelined control-intensive
systems. Periodica Polytechnica, Series Electrical Engineering, accepted.

[35] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioural synthesis of
ASICs. IEEE Transations on Computer Aided Design, 1989.

[36] Poiesz, S. H. Gerez, and E. R. Bonsma. Generation, genetic optimization and VHDL-based
veri�cation of detailed iterative static schedules for multiprocessor systems. In Proceedings of
the ProRISC 10th Annual Workshop on Circuits, Systems and Signal Processing, 1999.

[37] M. Potkonjak and M. Srivastava. Behavioral optimization using the manipulation of tim-
ing constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 17(10), October 1998.

[38] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6 block cipher. http:
// theory.lcs.mit.edu/ rivest/ rc6.pdf .

[39] A. Schrijver. Theory of linear and integer programming. Wiley, 1998.

[40] J. Seo, T. Kim, and P. R. Panda. An integrated algorithm for memory allocation and assign-
ment in high-level synthesis. In Proceedings of DAC '02, pages 608�611, 2002.

[41] A. H. Timmer and J. A. G. Jess. Exact scheduling strategies based on bipartite graph
matching. In Proceedings of EDAC'95, pages 42�47, 1995.

[42] S. Tongsima, Ch. Chantrapornchai, N. Passos, and E. H.-M. Sha. Probabilistic list scheduling:
an algorithm for producing initial schedules for probabilistic rotation scheduling. Technical
Report TR 96-16, University of Notre Dame, 1996.

[43] N. Wehn, M. Held, and M. Glesner. A novel scheduling/allocation approach for datapath
synthesis based on genetic paradigms. In Proceedings of the IFIP TC10/WG10.5 Workshop
on Logic and Architecture Synthesis, pages 47�56, 1990.

24

