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Abstract. A self-adaptive service can maintain its QoS requirements in
the presence of dynamic environment changes. To develop a self-adaptive
service, service engineers have to create self-adaptation logic encoding
when the service should execute which adaptation actions. However, de-
veloping self-adaptation logic may be difficult due to design time un-
certainty; e.g., anticipating all potential environment changes at design
time is in most cases infeasible. Online reinforcement learning addresses
design time uncertainty by learning suitable adaptation actions through
interactions with the environment at runtime. To learn more about its
environment, reinforcement learning has to select actions that were not
selected before, which is known as exploration. How exploration happens
has an impact on the performance of the learning process. We focus on
two problems related to how a service’s adaptation actions are explored:
(1) Existing solutions randomly explore adaptation actions and thus may
exhibit slow learning if there are many possible adaptation actions to
choose from. (2) Existing solutions are unaware of service evolution, and
thus may explore new adaptation actions introduced during such evolu-
tion rather late. We propose novel exploration strategies that use feature
models (from software product line engineering) to guide exploration in
the presence of many adaptation actions and in the presence of service
evolution. Experimental results for a self-adaptive cloud management
service indicate an average speed-up of the learning process of 58.8% in
the presence of many adaptation actions, and of 61.3% in the presence
of service evolution. The improved learning performance in turn led to
an average QoS improvement of 7.8% and 23.7% respectively.
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1 Introduction

A self-adaptive service is capable of modifying its own structure and behavior at
runtime based on its perception of the environment, of itself and of its require-
ments [9,28,20]. As an example, take a self-adaptive web service. Faced with a
sudden increase in workload, the web service may reconfigure itself by deacti-
vating optional system features. An online store, for instance, may deactivate its
resource-intensive recommender engine in the presence of a high workload. By
adapting itself at runtime, the web service is able to maintain its QoS require-
ments (here: performance) under changing workloads.

To develop a self-adaptive service, service engineers have to develop self-
adaptation logic that encodes when and how the service should adapt itself.
Among other concerns, this requires anticipating the potential environment
states the service may encounter at runtime to define when the service should
adapt itself. However, anticipating all potential environment states at design time
is in most cases infeasible due to design time uncertainty [8,10]. In addition, due
to simplified design assumptions, the precise effect of an adaptation action may
not be known and thus accurately determining how the service should adapt
itself is difficult [10]. As an example, while service engineers may know in prin-
ciple that activating more features will have a negative impact on performance,
exactly determining the performance impact is more challenging [30].

Online reinforcement learning (RL) is an emerging approach to address de-
sign time uncertainty of self-adaptive services by employing RL at runtime (see
existing solutions discussed in Sec. 6). In general, RL aims to learn suitable ac-
tions via an agent’s interactions with its environment [31]. The agent receives a
reward for executing an action. The reward expresses how suitable that action
was. The goal of RL is to optimize cumulative rewards.

1.1 Problem Statement

RL faces the exploration-exploitation dilemma [31]. To optimize cumulative re-
wards, actions should be selected that have shown to be suitable, which is known
as exploitation. However, to discover such actions in the first place, actions that
were not selected before should be selected, which is known as exploration. How
exploration happens has an impact on the performance of the learning pro-
cess [31,4,13]. We focus on two problems related to how a service’s set of possible
adaptation actions, i.e., its adaptation space, is explored.

Random exploration of adaptation space. Existing online RL solutions for
self-adaptive services propose randomly selecting adaptation actions for explo-
ration (see Sec. 6). The effectiveness of exploration therefore directly depends
on the size of the adaptation space, because each adaptation action has an equal
chance of being selected. Some RL algorithms can cope with a large space of
actions, but require that the space of actions is continuous in order to gener-
alize over unseen actions [23]. Self-adaptive services may have large, discrete
adaptation spaces; e.g., if their adaptation actions entail changes of service com-
positions [22] or reconfigurations of service features [19]. A simple example is



a service composition consisting of eight abstract services that may allow dy-
namically binding 2 concrete services each. Assuming no temporal or logical
constraints on adaptation, this constitutes 28 = 256 possible adaptation actions.
In the presence of such large, discrete adaptation space, random exploration thus
may lead to slow learning at runtime [31,4,13].

Evolution-unaware exploration of adaptation space. Existing online RL
solutions are unaware of service evolution [16,29]. They do not consider that a
self-adaptive service – like any service – may undergo evolution [25]. In contrast
to self-adaptation, which refers to the automatic modification of the service by
itself, evolution refers to the modification of the service by humans [20]. During
evolution, service engineers may modify the service to correct bugs, remove no
longer used features, or introduce new features. Service evolution means that the
adaptation space may change, e.g., existing adaptation actions may be removed
or new adaptation actions may be added. Some RL algorithms can cope with en-
vironments that change over time, so called non-stationary environments [31,23].
However, a change of the adaptation space cannot be determined by observing
the environment, as the adaptation space is an intrinsic property of the RL agent.
As a result, existing solutions may explore new adaptation actions only with low
probability (as all adaptation actions have an equal chance of being selected). It
may thus take quite long until the new adaptation actions have been explored.

1.2 Contributions

We introduce exploration strategies for online RL that address (1) a service’s
potentially large adaptation space, and (2) changes of its adaptation space due
to evolution. Our exploration strategies use feature models [21] to give structure
to the service’s adaptation space and thereby leverage additional information
to guide exploration. A feature model is a tree or a directed acyclic graph of
features, organized hierarchically. An adaptation action is represented by a valid
feature combination specifying the target run-time configuration of the service.

Our strategies traverse the feature model to select the next adaptation action
to be explored. By leveraging the structure of the feature model, our strategies
guide the exploration process. In addition, our strategies detect added and re-
moved adaptation actions by analyzing the change of the feature model due to
evolution. Adaptation actions removed as a result of evolution are no longer
explored, while added adaptation actions are explored first.

We implement our strategies as part of the Q-Learning RL algorithm [31]
widely used in the related work (see Sec. 6). We experimentally assess our strate-
gies using an actual cloud resource management service and compare the learning
performance with that of the widely used ε-greedy random exploration strategy.

In what follows, Sec. 2 explains fundamentals and a running example. Sec. 3
describes our exploration strategies and how they are integrated with RL algo-
rithms. Sec. 4 presents the design and results of our experiments. Sec. 5 provides
a critical discussion. Sec. 6 analyzes related work.



2 Fundamentals

Feature Models and Self-adaptation. A feature model is a tree of features
organized hierarchically [21]. A feature can be decomposed into mandatory, op-
tional or alternative sub-features. A mandatory sub-feature has to be activated if
its parent feature is activated. While an optional sub-feature may or may not be
activated, at least one of the alternative sub-features has to be activated if their
parent feature is activated. Additional constraints, such as “excludes” or “re-
quires”, express inter-feature dependencies. Thereby, a feature model describes
the possible and allowed feature combinations.

Feature models are traditionally used in software product line engineering to
define the set of system variants at design time [21]. Dynamic software product
lines extend the use of feature models to describe possible run-time configura-
tions of a system [14]. A feature model thereby can be used to define a self-
adaptive system’s adaptation space, where each adaptation action is expressed
in terms of a possible runtime configuration, i.e., feature combination [12].

Fig. 1 shows the feature model of a self-adaptive web service as an example.
The DataLogging feature is mandatory (which means it is always active), while the
ContentDiscovery feature is optional. The DataLogging feature has three alternative
sub-features, i.e., at least one data logging sub-feature must be active: Min,
Medium or Max. The ContentDiscovery feature has two optional sub-features Search

and Recommendation. The constraint Recommendation ⇒ Max ∨ Medium specifies
that a sufficient level of data logging is required to collect enough information
about the web service’s users and transactions to make good recommendations.
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Fig. 1: Feature model and adaptation of example web service

Let us consider the above web service should adapt to changing number of
concurrent users to keep its response time below 500ms. A service developer
may express an adaptation rule for the web service such that it turns off some
of the features in the presence of more users, thereby reducing the resource
needs of the service. The right-hand side of Fig. 1 shows a concrete example for
such an adaptation. If the service faces an environment state of more than 1000
concurrent users, the service self-adapts by deactivating the Search feature.

Reinforcement Learning (RL). RL aims to learn suitable actions via an
agent’s interactions with its environment [31]. At a given time step t, the agent
selects an action a (from its adaptation space) to be executed in environment



state s (see Fig. 2). As a result, the environment transitions to s′ at time
step t + 1 and the agent receives a reward r for executing the action. The
reward r together with the information about the next state s′ are used to
update the knowledge of the agent. The goal of RL is to optimize cumulative
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Knowledge 

Update

Action 

Selection

Next state s

Agent



Fig. 2: RL concept

rewards. As mentioned in Sect. 1,
a trade-off between exploitation (us-
ing current knowledge) and exploita-
tion (gathering new knowledge) must
be made. For a self-adaptive service,
“agent” refers to the self-adaptation
logic of the service and “action” refers
to an adaptation action [24].

3 Feature-Model-Guided Exploration

As motivated in Sec. 1, our exploration strategies use feature models (FM) to
guide the exploration process. We first explain how our FM-guided exploration
strategies can be integrated into an existing RL algorithm and then introduce
the realization of these strategies.

3.1 Integration into Reinforcement Learning

Algorithm 1 shows how our FM-guided strategies can be integrated into RL
by using the well-known Q-Learning algorithm as basis. We chose Q-Learning
because it is the most widely used algorithm in the related work (see Sec. 6).

Algorithm 1 Q-Learning with FM-guided Exploration

1: function FMQ-Learning(FeatureModel M; Double α, γ, ε, δ)
2: Initialize Q(s, a) for all s ∈ S (state space) and a ∈ A (adaptation space);
3: Determine current state s;
4: repeat
5: Set<Feature> a = getNextAction(M, s); // Action Selection
6: Adapt service to configuration a; Observe reward r; Observe new state s′;
7: Q(s, a)← Q(s, a) + α[r + γmaxa′∈AQ(s′, a′)−Q(s, a)]; // Knowledge Update

8: s← s′;
9: until last time step

10: end function
11:
12: function getNextAction(FeatureModel M, State s)
13: Set<Feature> a← argmaxaQ(s, a); // Exploit existing knowledge
14: InitFMExploration(M, a); // initialize the FM-guided strategies, see Algorithm 2
15: if random() < ε then // Explore new actions
16: if random() < δ then return getRandomConfiguration(M);
17: else
18: return getNextConfiguration(); // see Algorithm 2
19: end if
20: end if
21: return a;
22: end function

Q-Learning employs a value function for representing the learned knowledge.
The value function Q(s, a) gives the expected cumulative reward when perform-



ing a particular action a in a given state s [31]. Q-Learning offers two hyper-
parameters: the learning rate α, which defines to what extent newly acquired
knowledge overwrites old knowledge, and the discount factor γ, which defines
the relevance of future rewards (see knowledge update in line 7).

Our strategies are integrated into RL within the getNextAction function,
which selects the next adaptation action while trading off exploration and ex-
ploitation. To make this trade-off we use the ε-greedy strategy as a baseline,
as it is a standard action selection strategy in reinforcement learning and the
most widely used strategy in the related work (see Sec. 6). With probability
1− ε, ε-greedy exploits existing knowledge by selecting the action a that has the
highest Q value and thus highest expected reward (line 13). With probability ε,
ε-greedy randomly explores a new action. In contrast to this random exploration,
we use our FM-guided exploration strategies by calling the getNextConfigu-

ration function (line 18). The different realizations of getNextConfiguration

are explained below. To prevent FM-guided exploration from prematurely con-
verging to a local minimum, we follow the literature and use a small amount of
randomness [26], i.e., we perform random exploration with probability δ · ε.

3.2 Leveraging the Feature Model Structure for Exploration

Incremental Exploration Strategy. This strategy takes advantage of the se-
mantics typically encoded in the structure of feature models. Non-leaf features
in a feature model are usually abstract features used to better structure variabil-
ity [36]. These abstract features often do not have an impact at implementation
level, but delegate their realization to their sub-features. Sub-features thus may
offer different realizations of their abstract parent feature. The sub-features of
a common parent feature, i.e., sibling features, can thus be considered semanti-
cally connected. In the example from Sec. 2, the ContentDiscovery feature has two
sub-features Search and Recommendation offering different concrete ways how a
user may discover online content. The idea behind the Incremental strategy is to
exploit the information about these potentially semantically connected sibling
features and explore them first before exploring other features. Note that this
entails a random selection of the order of sub-features. Table 1 shows an excerpt
of a typical exploration sequence of the Incremental strategy with the step-wise
exploration of sibling features highlighted in gray.

 

 Logging Min Medium Max Content Disc. Search Recommend. 
1 ✓   ✓ ✓  ✓ 

2 ✓  ✓  ✓  ✓ 

3 ✓  ✓  ✓ ✓ ✓ 

4 ✓   ✓ ✓ ✓ ✓ 

5 ✓  ✓  ✓ ✓  

6 ✓ ✓   ✓ ✓  

7 ... … … … … ... … 

  

Table 1: Example exploration via Incremental strategy (excerpt)

The Incremental strategy is realized by Algorithm 2, which starts by ran-
domly selecting an arbitrary leaf feature f (i.e., a feature with no sub-features)
among all leaf features that are part of the current configuration (lines 5– 6).



Then, the set of configurations Cf containing feature f is computed, while the
sibling features of feature f are gathered into a dedicated siblings set (line 7).

Algorithm 2 Incremental Strategy

1: Set<Feature> leaves, configuration, siblings;
2: Set<Set<Feature>> Cf ; Feature f ;
3:
4: function InitFMExploration(FeatureModel M, Set<Feature> currentConfiguration)
5: leaves ← getLeaves(currentConfiguration);
6: f ← randomSelect(leaves);
7: Cf ← getConfigurationsWithFeature(f); siblings ← siblings(f);
8: end function
9:

10: function getNextConfiguration()
11: if Cf 6= ∅ then
12: configuration ← randomSelect(Cf ); Cf ← Cf \ {configuration};
13: return configuration;
14: else
15: if siblings 6= ∅ then
16: f ← randomSelect(siblings);
17: siblings ← siblings \ {f}; Cf ← getConfigurationsWithFeature(f);
18: else
19: if parent(f) 6= ∅ then
20: f ← parent(f); siblings ← siblings(f);
21: Cf ← getConfigurationsWithFeature(f);
22: else // Root feature reached
23: return ∅;
24: end if
25: end if
26: return getNextConfiguration();
27: end if
28: end function

While Cf is non-empty, the strategy explores one randomly selected config-
uration from Cf and removes the selected configuration from Cf (lines 11–13).
If Cf is empty, then a new set of configurations containing a sibling feature of
f is randomly explored, provided such sibling feature exists (lines 15–17). If no
configuration containing f or a sibling feature of f is found, then the strategy
moves on to the parent feature of f , which is repeated until a configuration is
found (line 13) or the root feature is reached (line 22).

Feature Degree Exploration Strategy. Even though the Incremental strat-
egy makes use of the structure of the feature model, it still randomly determines
the order in which leaf and sibling features are explored. To better guide the
decision about which of these features to explore, we make use of the concept of
feature degree. We define the feature degree for a given feature f as the num-
ber of configurations that contain f . The intuition here is that there may be a
higher probability of finding a suitable configuration when considering features
with high feature degrees, as they are present in more configurations.

In our example, the feature degree of Search is 5, while of Recommendation

it is only 4 (due to the constraint requiring at least the Medium logging level).
The Feature Degree strategy thus first explores all configurations involving the
Search feature before exploring other configurations. Table 2 shows an excerpt of



a typical exploration sequence of the Feature Degree strategy (the exploration
of the sibling feature with highest feature degree highlighted in gray).

 

 Logging Min Medium Max Content Disc. Search Recommend. 
1 ✓   ✓ ✓  ✓ 

2 ✓  ✓  ✓ ✓ ✓ 

3 ✓   ✓ ✓ ✓ ✓ 

4 ✓  ✓  ✓ ✓  

5 ✓ ✓   ✓ ✓  

6 … … … … … … … 

 

  Table 2: Example exploration via Feature Degree strategy (excerpt)

The Feature Degree strategy is realized by modifying Algorithm 2 to make
use of the feature degree as shown in Algorithm 3. On the one hand, the feature
degree is used to determine which leaf feature to start exploring from. Instead
of randomly selecting a leaf feature as done in Algorithm 2 (line 6), the Feature
Degree strategy selects a leaf feature with the highest feature degree. On the
other hand, instead of randomly choosing sibling features as done in Algorithm 2
(line 16), the Feature Degree strategy explores the sibling in descending order of
their feature degrees. To realize the featureDeg function, existing feature model
analysis tools, such as [35], can be used to efficiently compute the number of
possible configurations containing f .

Algorithm 3 Feature Degree Strategy

5: leaves ← getLeaves(currentConfiguration);
6: f ← argmaxf∈leaves(featureDeg(f));

[...]
16: if siblings 6= ∅ then
17: f ← argmaxf∈siblings(featureDeg(f));

3.3 Leveraging Feature Model Differences for Exploration

To capture changes in the service’s adaptation space due to evolution, we pro-
pose analyzing the differences in feature models before (M) and after (M′) an
evolution step. Following the product line literature, we consider two main types
of changes of feature models [34]:

Added configurations (feature model generalization). New configurations may
be added to the adaptation space by (i) introducing new features toM′, or (ii)
removing or relaxing existing constraints (e.g., by changing a sub-feature from
mandatory to optional, or by removing “requires” or “excludes” constraints).
In the example from Sec. 2, a new sub-feature Optimized might be added to
the DataLogging feature, providing a more resource efficient logging implemen-
tation. Thereby, new configurations are added to the adaptation space, such as
{DataLogging, Optimized, ContentDiscovery, Search}. As another example, the Rec-

ommendation implementation may have been improved and it now can work with
the Min logging feature. This removes the constraint shown in Fig. 1, and adds
new configurations such as {DataLogging, Min, ContentDiscovery, Recommendation}.



Removed configurations (feature model specialization). Symmetrical to above,
configurations may be removed from the adaptation space by (i) removing fea-
tures from M, or (ii) by adding or tightening constraints in M′.

To determine these changes of feature models, we compute a set-theoretic
difference between valid configurations expressed by feature model M and fea-
ture model M′. Detailed descriptions of feature model differencing as well as
efficient tool support can be found in [1,5]. The feature model differences pro-
vide us with adaptation actions added to the adaptation space (M′ \ M), as
well as adaptation actions removed from the adaptation space (M\M′).

Our evolution-aware strategies thus first explore the configurations that were
added to the adaptation space, and then explore the remaining configurations
if needed. The rationale is that added configurations might offer new opportu-
nities for finding suitable adaptation actions and thus should be explored first.
Configurations that were removed are no longer executed and thus the learning
knowledge can be pruned accordingly. In the Q-Learning realization (Sec. 3.1),
we remove all tuples (s, a) from Q, where a represents a removed configuration.

Such evolution-aware exploration can also be introduced to ε-greedy. Instead
of randomly exploring the whole new adaptation space, exploration is limited to
first randomly exploring the set of new configurations.

4 Experiments

We experimentally assess our FM-guided exploration strategies and compare
them with ε-greedy as the strategy used in the related work (see Sec. 6).

Research Questions. We aim to answer the following research questions:
RQ1: How does learning performance using FM-guided exploration compare

to using ε-greedy and how does it impact on QoS?
RQ2: How does learning performance using evolution-aware exploration strate-

gies compare to evolution-unaware exploration and how does it impact on QoS?

Experiment Setup. We use a self-adaptive cloud resource management ser-
vice, CloudRM4, as subject system [17]. CloudRM controls the allocation of
computational tasks to virtual machines (VMs) and the allocation of virtual
machines to physical machines in a cloud data center. CloudRM can be adapted
by reconfiguring it to use different allocation algorithms, and the algorithms
can be adapted by using different sets of parameters. We implemented a sepa-
rate adaption logic for CloudRM by using the extended Q-Learning algorithm
as introduced in Sec. 3.1. In total, CloudRM provides 344 possible adaptation
actions. These are structured in a feature model that is four levels deep and
includes 65 different features. The feature model together with the code of our
algorithms and the data of our experiments are available online5.

Our experiments are based on a real-world workload trace with 10,000 tasks,
in total spanning over a time frame of 29 days [18]. The CloudRM algorithms
decide on the placement of new tasks whenever they are entered into the system

4
https://sourceforge.net/p/vm-alloc/task_vm_pm

5
https://git.uni-due.de/online-reinforcement-learning/icsoc-2020-artefacts

https://sourceforge.net/p/vm-alloc/task_vm_pm 
https://git.uni-due.de/online-reinforcement-learning/icsoc-2020-artefacts


(as driven by the workload trace). To allow sufficient time in the experiment
to observe the impact of an adaptation, CloudRM is allowed to run one hour
before the next adaptation action is executed. For RQ2, the same workload was
replayed after each evolution step to ensure consistency among the results.

We define the reward function for online RL as r = −(ρ ·e+(1−ρ) ·m), with
e being the energy consumption and m being the number of VM manipulations
(i.e., migrations and launches), each normalized to be on the same scale. We
use ρ = 0.8, meaning we give priority to reducing energy consumption, while
still maintaining a low number of VM manipulations. If several adaptation ac-
tions show similar energy consumption, the one that achieves this with less VM
manipulations receives a higher reward.

To determine suitable hyper-parameter values (see Sec. 3.1), we performed
hyper-parameter tuning (via grid search). We used the best performing learning
rate α = 0.85 and discount factor γ = 0.2 for ε-greedy and used this also for
our FM-guided strategies. To facilitate convergence of the learning process, we
used an ε decay approach. This is a typical approach in RL, meaning that ε
starts at 1 and diminishes with a predefined rate after each time step. We used
an ε decay rate of 0.97 (i.e., ε < 1% after time step 150), as this led to fastest
convergence with highest asymptotic rewards for ε-greedy. For the FM-guided
strategies we used a δ decay rate of 0.9 (i.e., δ < 1% after time step 45). Due
to the stochastic nature of the learning strategies (both ε-greedy and to a lesser
degree our strategies involve random decisions), we repeated the experiment 100
times and averaged results.

Results for RQ1. Fig. 3 visualizes the learning process for the different explo-
ration strategies by showing how rewards develop over time. As visible, the FM-
guided exploration strategies (Incremental and Feature Degree) more quickly
reach maximum rewards than ε-greedy (our baseline).
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Fig. 3: Learning curves (RQ1)

Table 3 characterizes the learning process of the different strategies by using
the metrics presented in [32]: Asymptotic performance (maximum reward at end
of learning process, here: average rewards of time steps 200–250), total reward
(area between reward curve and asymptotic reward), time to threshold (time



step when x% of asymptotic reward is reached for first time, here: x = 90),
jumpstart (rewards at beginning of learning process, here: at time step 10). In
addition, the table shows how the learning performance of the different strategies
impact on the QoS characteristics of CloudRM.

Results indicate that our FM-guided exploration strategies lead to a con-
sistent improvement of the learning process. In addition, the Feature Degree
strategy performs better than the Incremental strategy, suggesting that con-
sidering additional information about the service’s features has an effect. Our
FM-guided strategies perform better when compared with ε-greedy wrt. total re-
ward (58.8% on average), time to threshold (48.6% on average), and jumpstart
(1.3% on average), while performing comparably wrt. asymptotic performance.
Considering the impact on QoS, FM-guided learning consistently leads to less
VM manipulations and sightly lower energy consumption. While savings in en-
ergy are rather small (less than 1%), FM-guided learning reduces the number
of virtual machine manipulations by 7.8% on average. This is caused by the
different placement algorithms having a rather small difference wrt. energy op-
timization, but having a much larger difference wrt. optimizing the number of
virtual machine manipulations.

Learning performance QoS impact
Asymptotic Time to Total Number VM
performance threshold Jumpstart reward Energy (kWh) Manipulations

ε-greedy -0.6873 74 -0.7474 -2.0110 2511 761

Incremental -0.6868 47 -0.7407 -0.9946 2507 713
Improvement 0.1% 36.5% 0.9% 50.5% 0.1% 6.2%

Feature Degree -0.6878 29 -0.7351 -0.6644 2508 690
Improvement -0.1% 60.8% 1.7% 67.0% 0.1% 9.3%

Avg. improvement 0.0% 48.6% 1.3% 58.8% 0.1% 7.8%

Table 3: Comparison of exploration strategies (RQ1)

Results for RQ2. We compare three evolution-aware strategies (evolution-
aware ε-greedy, evolution-aware Incremental, and evolution-aware Feature De-
gree) with their respective evolution-unaware counterparts (i.e., the strategies
used for RQ1). It should be noted that even though we provide the evolution-
unaware strategies with the information about the changed adaptation space (so
they can fully explore it), we have not modified them such as to differentiate
between old and new adaptation actions.

We use a 3-step evolution scenario incrementally adding features and thus
adaptation actions to CloudRM. Initially, CloudRM offers the Simple placement
feature (creating a dedicated virtual machine for each task) and Multiple place-
ment features (allowing a given number of tasks to be deployed on a virtual
machine), offering 26 adaptation actions. In evolution step #1, the Maxsize place-
ment feature is added, which creates virtual machines of a fixed capacity and
selects virtual machines using the First-Fit (FF) heuristic, adding 30 adaptation
actions. In evolution step #2, the Maxsize placement feature is enhanced by al-
lowing different VM capacities and adding two new virtual machine selection
heuristics: Best-Fit (BF) and Worst-Fit (WF), adding 72 adaptation actions. In
evolution step#3, the Consolidation Friendly placement feature is added, which se-



lects a physical machine that can accommodate the given task, and then selects a
virtual machine hosted on the physical machine, adding 216 adaptation actions.

Like for RQ1, Fig. 4 visualizes the learning process for the different explo-
ration strategies. After each evolution step, we observe the learning process for
250 time steps, before moving to the next step of the evolution scenario.

0 200 400 600

−
0.

90
−

0.
85

−
0.

80
−

0.
75

−
0.

70

Time Step

R
ew

ar
d

← Evolution

step #1

← Evolution

step #2

← Evolution

step #3

red: Evo.-aware ε-greedy
blue: Evo.-aware Incremental
green: Evo.-aware Feature Degree

brown: Evo.-unaware ε-greedy
black: Evo.-unaware Incremental
cyan: Evo.-unaware Feature Degree

Fig. 4: Learning curves across evolution steps (RQ2)

Table 4 shows the results of learning performance and QoS impact across
all three evolution steps. We computed the metrics separately for each of the
evolution steps and report their averages.

Learning performance QoS impact
Asymptotic Time to Total Number VM
performance threshold Jumpstart reward Energy (kWh) Manipulations

ε-greedy:
Evo.-aware -0.6964 35.33 -0.7645 -1.2623 2616 1028

Evo.-unaware -0.7012 75.00 -0.8437 -4.8926 2615 1482
Improvement 0.7% 52.9% 9.4% 74.2% -0.1% 30.6%

Incremental:
Evo.-aware -0.6997 32.33 -0.8027 -1.5256 2611 1054

Evo.-unaware -0.7013 59.33 -0.8161 -3.0479 2618 1316
Improvement 0.2% 45.5% 1.6% 49.9% 0.3% 19.9%

Feature Degree:
Evo.-aware -0.6996 39.00 -0.8098 -2.1185 2614 1033

Evo.-unaware -0.7013 85.67 -0.8455 -5.2652 2616 1301
Improvement 0.3% 54.5% 4.2% 59.8% 0.1% 20.5%

Avg. Improvement 0.4% 51.0% 5.1% 61.3% 0.1% 23.7%

Table 4: Comparison of exploration strategies across evolution steps (RQ2)

The evolution-aware strategies consistently perform better than their evolution-
unaware counterparts wrt. total reward (61.3% on average), time to threshold
(51.0% on average), jumpstart (5.1% on average), and asymptotic performance
(0.4% on average). With respect to the impact on QoS, the evolution-aware



strategies reduce the number of virtual machine manipulations by 23.7% on av-
erage, while keeping energy consumption around the same as the non-evolution-
aware strategies. As can be seen, the evolution-unaware FM-guided strategies
(from RQ1) may perform much worse than any of the evolution-aware ones.
This is because they again explore old adaptation actions, many of which were
not suitable. Finally, it can be observed that evolution-aware ε-greedy may even
outperform the other evolution-aware strategies. This suggests that, during evo-
lution, considering the changes of the adaptation space has a much larger effect
than considering the structure of the adaptation space.

5 Discussion

Validity Risks. We used an actual cloud resource management service and a
real-world workload trace to measure learning performance and the impact of
the different exploration strategies on QoS characteristics. Still results are only
for a single system, which limits generalizability.

We purposefully chose ε-greedy as a baseline, because it was the exploration
strategy used in existing online RL approaches for self-adaptive services (see
Sec. 6). Alternative exploration strategies were proposed in the field of machine
learning. Examples include Boltzmann exploration, where actions with a higher
expected reward (e.g., Q value) have a higher chance of being explored, or UCB
action selection, where actions are favored that have been less frequently ex-
plored [31]. Another alternative is to use policy-based RL, which in contrast to
value-based RL such as Q-Learning, directly represents the policy as a neural
network, and thus intrinsically exhibits stochastic action selection behavior [24].
A comparison among those alternatives is beyond the scope of the current paper,
because a fair comparison would require the careful variation and analysis of a
range of many additional hyper-parameters.

We focused on evolution steps that increase the size of the adaptation space
to assess to what extent our strategies are able to capture adaptation spaces
of increasingly larger size. Our experiments may be complemented by analyzing
how the different strategies compare to each other when the size of the adaptation
space is reduced. Even though in an adaptation space of reduced size, fewer
configurations have to be explored – thus leading in principle to faster learning
– there still may be differences in the way these fewer configurations are explored.

Limitations and Assumptions. We assume that feature models are complete
with respect to the coverage of the adaptation space and that during an evolution
step they are always consistent and up to date. A further possible change during
service evolution can be the modification of a feature’s implementation, which is
currently not visible in the feature models. Encoding such kind of modification
thus could further improve our online learning strategies.

One aspect that impacts FM-guided exploration is the depth of the feature
models. On the one hand, if the feature model has only few levels, the FM-guided
exploration strategies behave very similar to random exploration, because such
models do not provide enough structure. On the other hand, based on initial



experiments with the RL approach in [24], providing an RL agent with too struc-
tured knowledge might in fact hinder learning an optimal policy. How to define
feature models at the right level of detail thus deserves further investigation.

In the realization of the exploration strategies (both ε-greedy and FM-guided),
we assumed we can always switch from a configuration to any other possible con-
figuration. We were not concerned with the technicalities of how to reconfigure
the running service (which, for example, is addressed in [7]). We also did consider
constraints concerning the order of adaptations. In practice, only certain paths
may be permissible to reach a configuration from the current one. To consider
such paths, online RL may be enhanced by building on work such as [27].

6 Related Work

The following authors applied online RL to self-adaptive services and considered
different approaches to improve the performance of the learning process. Yet,
they did not consider large adaptation spaces nor service evolution. Tesauro et
al. use Q-Learning for autonomic resource allocation in data centers [33]. Xu et
al. employ Q-Learning (with ε-greedy) for the automatic configuration of cloud
virtual machines and applications [39]. Both suggest offline learning to increase
the jumpstart at runtime. Barrett et al. propose using Q-Learning with ε-greedy
for autonomic cloud resource allocation [3]. They propose parallel learning to
speed up the learning process. Caporuscio et al. propose using two-layer hier-
archical RL for multi-agent service assembly [6]. They observe that by sharing
monitoring information, learning happens faster than when learning in isolation.
Arabnejad et al. apply fuzzy RL with ε-greedy to learn fuzzy adaptation rules [2].
They also demonstrate that transfer learning may speed up learning [15]. Wang et
al. use Q-Learning (using ε-greedy) together with function approximation. They
use neural networks to generalize over unseen environment states and thereby
facilitate learning in the presence of many environment states, i.e., they address
large state spaces but not large action spaces [38]. Moustafa and Zhang propose
multi-agent Q-Learning with ε-greedy for adaptive service compositions [22]. To
speed up learning, they use collaborative learning, where multiple systems simul-
taneously explore the set of concrete services to be composed. Zhao et al. propose
using RL (using ε-greedy) combined with case-based reasoning to generate and
update adaptation rules for web applications [40]. Their approach may take as
long to converge as learning from scratch, but it may offer a higher jumpstart.

Bu et al. explicitly consider large adaptation spaces [4]. They employ Q-
Learning (using ε-greedy) for self-configuring cloud virtual machines and ap-
plications. They reduce the size of the adaptation space by splitting it into
coarse-grained sub-sets for each of which they find a representative adaptation
action using the simplex method. Their experiments indicate that their approach
indeed can speed up learning. Yet, they do not consider service evolution.

Dutreilh et al. explicitly consider service evolution [11]. They employ Q-
Learning for autonomic cloud resource management and speed up learning by
providing a good initial estimate for the Q-function, as well as by using statistical
estimates about the environment behavior. They indicate that system evolution



may imply a change of system performance and sketch an idea on how to detect
such drifts in system performance. Yet, they do not consider that evolution may
also introduce or remove adaptation actions. As explained in Sec.1, such a change
in the adaptation space cannot be determined by observing the environment, as
the adaptation space is an intrinsic property of the RL agent.

In our previous work, we used online RL for a self-adaptive cloud service [24].
We addressed the problem of large environment spaces (similar to Wang et al.)
but did neither consider large action spaces nor service evolution. In earlier work,
we sketched the principal dependencies between learning and evolution, but did
not provide concrete technical solutions [29].

A different line of work uses supervised machine learning to reduce the size of
the adaptation space. As an example, Van Der Donckt et al. use deep learning to
determine a representative and much smaller subset of the adaptation space [37].
Supervised learning requires sufficient labeled training data representative of the
service’s environment, which may be challenging due to design time uncertainty.

7 Conclusion

We introduced feature-model-guided exploration strategies for online reinforce-
ment learning that address potentially large adaptation spaces and the change
of the adaptation space due to service evolution. Experimental results for an
adaptive cloud management service indicate a speed up of the learning process
and an improvement of QoS characteristics.

As part of our future work, we will perform additional experiments, consid-
ering further types of services and the comparison with alternative exploration
strategies. We also aim to integrate our strategies with more advanced rein-
forcement learning algorithms, such as policy-based reinforcement learning. In
addition, we aim to address the current limitations of our strategies and will, for
instance, also consider feature modifications during evolution.
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