
Finding optimal hardware/software partitions∗

Zoltán Ádám Mann, András Orbán, Péter Arató
Budapest University of Technology and Economics

Department of Control Engineering and Information Technology
H-1117 Budapest, Magyar tudósok körútja 2, Hungary

{zoltan.mann, andras.orban}@cs.bme.hu, arato@iit.bme.hu

Abstract

Most previous approaches to hardware/software partitioning considered heuristic solutions.
In contrast, this paper presents an exact algorithm for the problem based on branch-and-bound.
Several techniques are investigated to speed up the algorithm, including bounds based on linear
programming, a custom inference engine to make the most out of the inferred information, ad-
vanced necessary conditions for partial solutions, and different heuristics to obtain high-quality
initial solutions. It is demonstrated with empirical measurements that the resulting algorithm can
solve highly complex partitioning problems in reasonable time. Moreover, it is about ten times
faster than a previous exact algorithm based on integer linear programming. The presented meth-
ods can also be useful in other related optimization problems.

1 Introduction

The requirements towards today’s computer systems are tougher than ever. Parallel to the growth in
complexity of the systems to be designed, the time-to-market pressure is also increasing. In most
applications, it is not enough for the product to be functionally correct, but it has to be cheap, fast,
and reliable as well. With the wide spread of mobile systems,size, heat dissipation, and energy
consumption are also becoming crucial aspects for a wide range of computer systems [21], especially
embedded systems.

These computer systems typically consist of both hardware and software. In this context, hardware
means application-specific hardware units,i.e., hardware designed and implemented specifically for
the given system, whereas software means a program running on a general-purpose hardware unit,
such as a microprocessor.

For much of the functionality of embedded systems, both a hardware and a software imple-
mentation is possible. Both possibilities have advantagesand disadvantages: software is typically
cheaper, but slower; moreover, general-purpose processors consume more power than application-
specific hardware solutions. Hardware on the other hand is fast and energy-efficient, but significantly
more expensive.

Consequently, it is beneficial to implement performance-critical or power-critical functionality in
hardware, and the rest in software. This way, an optimal trade-off can be found between performance,
power, and costs [4]. This is the task of hardware/software partitioning: deciding which parts of the
functionality should be implemented in hardware and which ones in software. Unfortunately, finding

∗This paper has been published inFormal Methods in System Design, volume 31, issue 3, pages 241-263, Springer, 2007.

1



such an optimal trade-off is by no means easy, especially because of the large number and different
characteristics of the components that have to be considered. Moreover, the communication overhead
between hardware and software has to be taken into account aswell [33].

Traditionally, partitioning was carried out manually. However, as the systems to design have be-
come more and more complex, this method has become infeasible, and many research efforts have
been undertaken to automate partitioning as much as possible. Most presented algorithms are heuris-
tics, but some are exact (i.e. non-heuristic, optimal) algorithms. Section 2 presents a survey of the
related work.

Although heuristic partitioning algorithms are typicallyvery fast and produce near-optimal or even
optimal results for small systems, their effectiveness (interms of the quality of the found solution)
degrades drastically as the size of the problem increases [3]. This is due to the fact that—in order
to be fast—such heuristics evaluate only a small fraction ofthe search space. As the size of the
problem increases, the search space grows exponentially (there are2n different ways to partitionn
components), which means that the ratio of evaluated pointsof the search space must decrease rapidly,
leading to worse results. Consequently, if the system that has to be partitioned is big and constraints
on its cost, performance etc. are tight (and they usually are), then chances are high that a heuristic
partitioner will find no valid partition. What is even worse,the designer will not know if this is due to
the weak performance of the partitioning algorithm or because there is no valid partition at all. This
shows that in partitioning, it makes sense to strive for an optimal solution, because it makes a major
difference whether or not all constraints on a design can be fulfilled.

The above problems can be overcome using exact algorithms. However, since most formulations
of the hardware/software partitioning problem areNP-hard, such algorithms have exponential run-
times which makes them inappropriate for large problem instances. Consequently, previous exact
algorithms were used either for very small problem instances only [9, 32, 37], or have been used
inside heuristics, thus sacrificing their optimality [35, 36].

Most previous algorithms were tested on systems with some dozens of components. The aim of
this paper is to present an exact partitioning algorithm that can optimally partition systems with hun-
dreds of components in reasonable time. We believe that suchan algorithm can be used in practical,
industrial projects. Notice though that developing such analgorithm is by no means straight-forward
because partitioning a system of, say, 300 components optimally means scanning a search space of
size2300, which is enormous. In this paper, several techniques are presented with which this task
becomes feasible.

Specifically, we start with the integer linear program (ILP)formulation of hardware/software par-
titioning that we presented in an earlier work [3]. This ILP program can be solved using any ILP
solver; however, our tests have shown that this requires toomuch time [3]. Hence, the search strat-
egy of the ILP solver has to be tuned. Note that general-purpose ILP solvers use general solution
algorithms. Using problem-specific knowledge, an improvement is often possible.

Most ILP solvers use branch-and-bound for exploring the solution space [43]. They use the bound
received by solving the LP-relaxation of the problem for cutting off unpromising branches of the
search tree. This suggests that the solution process can be accelerated if, in a specialized branch-
and-bound algorithm we can exploit extra knowledge on the partitioning problem, in addition to LP-
relaxation which is applicable to all ILP programs.

Specifically in Section 5, we present a problem-specific inference engine that applies every in-
formation extractable during the branch-and-bound procedure to infer additional knowledge. Several
constraints and implications on variable values are storedin an appropriate graph structure that can be
used in later steps of the branch-and-bound search procedure to reason about unsubstituted variables.

Besides the inference mechanism, we identify several necessary conditions in Section 6 that must

2



hold in the optimal solution. These conditions help cut off large subtrees of the search tree speeding
up the whole branch-and-bound procedure.

Furthermore, the effectiveness of branch-and-bound can besignificantly improved using a high-
quality initial solution. Thus, further acceleration is possible by making use of efficient heuristics to
produce such an initial solution. We utilize three different heuristics described in Section 7: the first
one is a genetic algorithm, the second is a minimum cut-basedalgorithm, while the third one uses
hierarchical clustering.

As a result of all these techniques, the algorithm is significantly faster than a simple ILP solver.
Our experience with industrial benchmark problems showed an acceleration of about a factor of 10
for the biggest problem instances (see Section 8).

2 Previous work

In a number of related papers, the target architecture is supposed to consist of a single software
and a single hardware unit [13, 17, 18, 20, 31, 32, 34, 37, 40, 44, 45, 49], whereas others do not
impose this limitation [10, 12, 25, 36]. Some limit parallelism inside hardware or software [44, 49]
or between hardware and software [20, 32]. The system to be partitioned is usually given in the form
of a task graph, or a set of task graphs, usually assumed to be directed acyclic graphs describing the
dependencies between the components of the system.

Concerning the scope of hardware/software partitioning, further distinctions can be made. In par-
ticular, many researchers consider scheduling as part of partitioning [10, 12, 24, 31, 34, 36], whereas
others do not [13, 17, 32, 37, 49, 47]. Some even include the problem of assigning communication
events to links between hardware and/or software units [12,34].

The proposed methods also vary significantly concerning model granularity,i.e. the semantics of
a node. There have been works on low granularity, where a noderepresents a single instruction or
a short sequence of instructions [6, 8, 40, 21], middle granularity, where a node represents a basic
block [22, 27, 38], and high granularity, where a node represents a function or procedure [18, 36, 48,
2], as well as flexible granularity, where a node can represent any of the above [20, 47].

The majority of the previously proposed partitioning algorithms is heuristic. This is due to the fact
that partitioning is a hard problem, and therefore, exact algorithms tend to be quite slow for bigger
inputs. More specifically, most formulations of the partitioning problem areNP-hard [23, 5], and the
exact algorithms for them have exponential runtimes.

Many researchers have applied general-purpose heuristicsto hardware/software partitioning. In
particular, genetic algorithms have been extensively used[3, 12, 34, 41, 44], as well as simulated
annealing [13, 14, 15, 20, 28]. Other, less popular heuristics in this group are tabu search [13, 14]
and greedy algorithms [10, 17]. Some researchers used custom heuristics to solve hardware/software
partitioning. This includes the GCLP algorithm [24, 25] andthe expert system of Lopez-Vallejo and
Lopez [29, 31], as well as the heuristics of Gupta and de Micheli [18] and Wolf [50]. There are also
some families of well-known heuristics that are usually applied to partitioning problems. The first
such family of heuristics is hierarchical clustering [1, 7,30, 47, 48]. The other group of partitioning-
related heuristics is the Kernighan-Lin heuristic [26], which was substantially improved by Fiduccia
and Mattheyses [16], and later by many others [11, 42]. Theseheuristics have been found to be
appropriate for hardware/software partitioning as well [31, 46, 49].

A couple of exact partitioning algorithms have also been proposed. Branch-and-bound has been
presented for partitioning in the design of ASIPs (Application-Specific Instruction set Processors) [9].
Although the design of ASIPs is a related problem, it is very different in its details from the partitioning

3



problem that we address, thus that algorithm is also very different from ours.
Algorithms based on the dynamic programming paradigm were used by Madsen et al [32] and

by O’Nils et al [37]. However, both algorithms were applied to only very small problem instances
(with some dozens of components only), and so it is quite doubtful whether they are scalable enough
for larger problems as well. Conversely, we focus our efforts on making our algorithm scalable for
systems with several hundreds of components.

The usage of integer linear programming (ILP) was first suggested in the early work of Prakash
and Parker [39]. Their approach handled the whole co-designproblem—including scheduling and
optimization of the communication topology—in the form of asingle integer program. This resulted
in an algorithm that was very slow even for small problem instances and practically unusable for
bigger ones. In contrast, our aim is to develop a fast exact algorithm for a more limited problem.

Integer linear programming was later also used by Niemann etal [35, 36]. However, that algorithm
is only a heuristic, although it makes use of an exact ILP solver. We assume that the pure ILP algorithm
would not have been scalable enough, and therefore the authors combined it with a heuristic to make
it faster. However, this way the optimality of the algorithmis sacrificed.

For a more detailed survey on hardware/software co-design,see [51].

3 Problem formalization

We use the model that was presented in [5]. Here, we review itsmost important characteristics.
The system to be partitioned is modeled by acommunication graph, the nodes of which are the

components of the system that have to be mapped to either hardware or software, and the edges rep-
resent communication between the components. Unlike in most previous works, it is not assumed
that this graph is acyclic in the directed sense. The edges are not even directed, because they do not
represent data flow or dependency. Rather, their role is the following: if two communicating compo-
nents are mapped to different contexts (i.e. one to hardware and the other to software, or vice versa),
then their communication incurs a communication penalty, the value of which is given for each edge
as an edge cost. This is assumed to be independent of the direction of the communication (whether
from hardware to software or vice versa). If the communication does not cross the hardware/software
boundary, it is neglected.

Similarly to the edge costs mentioned above, each vertex is assigned two cost values called hard-
ware cost and software cost. If a given vertex is decided to bein hardware, then its hardware cost is
considered, otherwise its software cost. We do not impose any explicit restrictions on the semantics
of hardware costs and software costs; they can represent anycost metrics, like execution time, size, or
power consumption. Likewise, no explicit restriction is imposed on the semantics of communication
costs. Nor do we impose explicit restrictions on the granularity of partitioning (i.e. whether nodes
represent instructions, basic blocks, procedures or memory blocks).

However, we assume that the total hardware cost with respectto a partition can be calculated
as the sum of the hardware costs of the nodes that are in hardware, and similarly, the software cost
with respect to a partition can be calculated as the sum of thesoftware costs of the nodes that are in
software, just as the communication cost with respect to a partition, which is the sum of the edge costs
of those edges that cross the boundary between hardware and software.

While the assumption of additivity of costs is not always appropriate, many important cost factors
do satisfy it. For example, power consumption is usually assumed to be additive, implementation
effort is additive, execution time is additive for a single processing unit (and a multi-processor system
can also be approximated by an appropriately faster single-processor system), and even hardware size

4



is additive under suitable conditions [32].
Furthermore, although it is a challenging problem how the cost values can be obtained, it is beyond

the scope of this paper. Rather, we focus only on algorithmicissues of partitioning.
We now formalize the problem as follows. An undirected graphG = (V,E), V = {v1, . . . , vn},

s, h : V → IR+ and c : E → IR+ are given. s(vi) (or simply si) and h(vi) (or hi) denote the
software and hardware cost of nodevi, respectively, whilec(vi, vj) (or ci,j) denotes the commu-
nication cost betweenvi andvj if they are in different contexts.P is called a hardware-software
partition if it is a bipartition ofV : P = (VH , VS), whereVH ∪ VS = V and VH ∩ VS = ∅.
(VH = ∅ or VS = ∅ is also possible.) The set of crossing edges of partitionP is defined as:EP =
{(vi, vj) : vi ∈ VS, vj ∈ VH or vi ∈ VH , vj ∈ VS}. The hardware cost ofP is: HP =

∑

vi∈VH
hi; the

software cost ofP is: SP =
∑

vi∈VS
si; the communication cost ofP is: CP =

∑

(vi,vj)∈EP
c(vi, vj).

Thus, a partition is characterized by three metrics: its hardware cost, its software cost, and its com-
munication cost.

Hardware Software

A B

C

D

E

Figure 1: Example communication graph

An example for a communication graph and a possible hardware/software partition can be seen in
Figure 1. The crossing edges are bold. Suppose that for each vertex, hardware and software costs are
both 1, and the communication cost of each edge is 1. Then the hardware cost of the given partition
is 2, its software cost is 3, and its communication cost is also 3.

Now we consider a version of the hardware/software partitioning problem, in which two of the
three metrics are added. For instance, if software cost captures execution time, and communication
cost captures the extra delay generated by communication, then it makes sense to add them. (Another
example would be the following: ifh denotes hardware implementation effort, andc denotes the effort
of implementing communication modules, then it makes senseto add them.) That is, we define the
running time of the system with respect to partitionP asRP = SP + CP .

A very important and frequently studied problem is the following: design the cheapest system re-
specting a given real–time constraint, that is the overall system execution time is limited by a constant
R0. Since the dominant cost factor of the system is the cost of the hardware units, so the aim of the
designer is to minimize the hardware costHP

1 while satisfying the real–time constraintRP ≤ R0.
One might note that the hardware execution time is neglectedin this model and it does not con-

tribute to the overall system execution time. The followingtransformation shows that in case of
additive costs this can be assumed without loss of generality: let first assume that to each nodev both
a software execution timets(v) and a hardware execution timeth(v) are assigned and the system ex-
ecution time is the sum of the software times plus the hardware times and the communication times.

1Note that in this problem formulationSP andCP are time-dimensional, butHP is not.

5



We now show an equivalent system with zero hardware times. Consider a system with hardware time
everywhere zero and with a modified software execution timets(v) − th(v) for a nodev (here we
further assume thatts(v) − th(v) ≥ 0 which generally holds). This system behaves exactly the same
way, but for each partition the system running time is decreased byTh :=

∑

v∈V th(v) which is a con-
stant. So by prescribing a limit ofR0 − Th, the modified problem becomes equivalent to the original
one and has zero hardware times.

To sum up, the partitioning problem we are dealing with can beformulated as follows:

Given the graphG with the cost functionsh, s, andc, andR0 ≥ 0, find a hardware/software
partitionP with RP ≤ R0 that minimizesHP among all such partitions.

In an earlier work [3], we proved that this problem isNP-hard. Moreover, the following ILP
formulation was suggested.

h, s ∈ (IR+)n, c ∈ (IR+)e are the vectors representing the cost functions (n is the number of
nodes,e is the number of edges).E ∈ {−1, 0, 1}e×n is the transposed incidence matrix:

Ei,j :=







−1 if edgei starts in nodej
1 if edgei ends in nodej
0 if edgei is not incident to nodej

The definition ofE suggests a directed graph, although so far we spoke about undirected graphs only.
The undirected incidence matrix ofG would result in a slightly more complex ILP program, so an
arbitrary direction of the edges should be chosen and the directed incidence matrix should be used.

Let x ∈ {0, 1}n be a binary vector indicating the partition:

xi :=

{

1 if nodei is realized in hardware
0 if nodei is realized in software

Finally, lety ∈ {0, 1}e be a binary vector indicating which edges are crossed by the partition:

yi :=

{

1 if edgei crosses the hardware/software boundary
0 if edgei does not cross the hardware/software boundary

Using these notations, the integer program is as follows:

min hx (1a)

s(1− x) + cy ≤ R0 (1b)

Ex ≤ y (1c)

−Ex ≤ y (1d)

x ∈ {0, 1}n (1e)

It can be easily proven that the optimal solution of this integer program is also the optimum of the
hardware/software partitioning problem [3]. An interesting property of this integer program is that
there is no integrality constraint ony, just onx. However, it can also be proven thaty will be integral
in the optimal solution of the ILP problem [3].

Although the cost valueshi, si, ci,j can be arbitrary positive numbers, it will be assumed for the
sake of simplicity in the rest of this paper that they are integers. This assumption is not very strict and
can be exploited in finding good necessary conditions to speed up our algorithm. See Section 6 for
details.

This ILP program can be solved using any ILP solver, yieldingan algorithm for solving the parti-
tioning problem. However, our experience has shown that this is quite slow [3].

6



4 Branch-and-bound framework

An ILP solver typically uses branch-and-bound to intelligently search the space of possible solutions.
Note that there are2n possible partitions, which makes it intractable to check all partitions even for
graphs of moderate size.

1

6 10

8 11754 12 14 15

133

2 9

x1 = 1

x3 = 0

x2 = 0 x2 = 1

x1 = 1 x3 = 1

x3 = 1 x3 = 0
x3 = 1

x1 = 0
x1 = 1

x1 = 0

x1 = 0

x3 = 0

Figure 2: Example search tree

The branch-and-bound algorithm traverses asearch tree. Each leaf of the search tree corresponds
to a possible solution,i.e. an assignment of values to the variables.2 The internal nodes of the search
tree correspond to partial solutions,i.e.assignment of values to some of the variables. In each internal
node, a new, unfixed variable is chosen, and branching is performed according to the value of this
variable. In our case, each variable has two possible values(0 and 1), hence each internal node of the
search tree has two children. If the original communicationgraph hasn vertices, the search tree has
2n leaves and2n − 1 internal nodes.

An example with three variables is shown in Figure 2. The nodes of the search tree are numbered
according to the order in which the branch-and-bound algorithm visits them. Note that, when consid-
ering a new variable, the algorithm can either first assign the value 0 to it, and only later the value 1, or
vice versa. Furthermore, the algorithm does not have to follow the same variable order in each branch
of the search tree. These decisions can be made based on a static order, randomly, or according to
some heuristic run-time decisions.

Branch-and-bound works well if large portions of the searchtree can be cut off. For instance,
using the example of Figure 2, suppose that we are currently in node 9,i.e. x2 is fixed to 1, but the
other variables are not fixed. We have already evaluated fourdifferent partitions (nodes 4, 5, 7, and 8).
Suppose that the best valid partition that has been encountered so far had a hardware cost ofH0. This
means that we are looking for partitions withRP ≤ R0 andHP < H0. Suppose furthermore that
some mechanism tells us that these two constraints cannot befulfilled with x2 = 1. Then the branch
starting at node 9 can be cut off, thus saving us a lot of time.

In the case of ILP, this mechanism is typicallyLP-relaxation. The LP-relaxation of an ILP pro-
gram is defined as the same integer program without integrality constraints. This yields an LP problem
instance, which can be quickly solved using a standard LP solver, because LP is much simpler than
ILP. Clearly, if not even the LP-relaxation can be solved in agiven node of the search tree (i.e. after

2By variables, thexi variables are meant in this section. This is because there isno integrality constraint ony, and thus
branching is only performed with respect to thexis.

7



some variables were fixed), then the ILP is not solvable either, so that the current branch can be cut
off.

As we will see later, other mechanisms can also be used at thispoint beside LP-relaxation, and
this way the algorithm can be further accelerated.

Algorithm 1 Skeleton of the branch-and-bound algorithm
procedure backtrack
{

while both possible values of the lastly fixed variable have been checked
{

undo last fixation;
if there are no more fixed variables
{

STOP; //finished searching the tree
}

}
change the lastly fixed variable to its other possible value;

}

procedure branch-and-bound
{

repeat // the stopping condition is in the backtrack procedure
{

if all variables are fixed //found a leaf of the search tree
{

evaluate found partition;
backtrack;
skip to next iteration;

}
check feasibility;
if not feasible //cut off current branch
{

backtrack;
skip to next iteration;

}
//we are not in a leaf, nor can we cut the branch off
//this means we have to go deeper in the search tree
choose a variable that is not yet fixed;
fix it to one of its possible values;

}
}

The skeleton of our branch-and-bound algorithm is shown in Algorithm 1. This algorithm is used
as a framework for incorporating further algorithms, as described in the next sections.

The algorithm may need some explanation. The idea of thebacktrackroutine can be illustrated
easily on the example of Figure 2. Suppose for instance that we are currently in node 5, and we

8



perform a backtrack. We have to go back on the tree (and undo the fixations), as long as both possible
values of the lastly fixed variable are checked. This holds for node 3 because both of its children have
already been visited. But it does not hold for node 2, becauseonly one of its children has been visited.
So we stop the cycle of the backtrack procedure at this point,and change the current variable, which
is x1 in the case of node 2, to its other value, which is 1. This is howwe get to the next node, which
is node 6.

As already mentioned, the feasibility check involves solving an LP problem instance. This LP
is obtained from the original ILP by abandoning the integrality constraints and taking into account
the variable fixations and any other inferred information. Moreover, the following inequality can be
added to the LP:hx ≤ H0 − 1 (whereH0 is the best objective value found so far), because all costs
are assumed to be integers, and we are only interested in finding solutions that are better than the best
one found so far. Actually, it would be sufficient to test if the resulting LP can be solved at all (instead
of minimizinghx) in order to decide whether to go deeper in the search tree or to backtrack. However,
we did not choose this alternative for the following reasons:

• It is in general not easier to test the solvability of a set of inequations than to optimize a linear
function subject to those constraints [43].

• Optimizing hx has the advantage that if accidentally all variables are integral in the optimum
of the LP3, then the optimum of the ILP in that branch is found as well.

• Even if not all variables are integral in the optimum of the LP, their value carries important
information. Namely, the strategy of fixing a variable in thenext round that is not integral in
the optimum of the current LP, is known to yield faster termination than the strategy of fixing a
random variable.

Note that there are two possibilities for creating the LP problem instance. It can be either built
from scratch, or by modifying the last one. If backtracking has been performed since the last LP, then
the new LP should be built from scratch. However, if the difference since the last LP is only additional
information that can be captured with linear equalities or inequalities then it is quicker to supplement
the last LP with these new pieces of information. Conversely, if we keep on adding new rows to the
LP, this adds to its complexity. In our algorithm, we use a trade-off: after a predefined number of
modified LPs, the next LP is built from scratch.

5 Improvement by inference

Eachround of the branch-and-bound starts by fixing a variable to either0 or 1. In a general-purpose
ILP solver, this would be followed by the solution of the slightly changed LP that takes into account
the new information. However, problem-specific knowledge can be incorporated into the algorithm
at this point in order to infer additional information. The following rules can be used for this (in the
following, u andv denote two vertices of the communication graph connected byedgee; xu, xv, and
ye are the corresponding variables):

Rule 1: If xu andxv are both fixed to the same value, thenye = 0.

Rule 2: If xu andxv are fixed to different values, thenye = 1.

3For reasons that are beyond the scope of the paper, this happens much more often than one might expect, especially in
the lower levels of the search tree when the majority of the variables are already fixed to integer values.

9



Rule 3: If xu is fixed to 0, butxv is not yet fixed, thenye = xv.

Rule 4: If xu is fixed to 1, butxv is not yet fixed, thenye = 1 − xv.

All of the above rules are obvious based on problem-specific knowledge (i.e. based on the un-
derstanding of the hardware/software partitioning problem). On the other hand, these rules are very
useful because they all reduce the number of variables and thus the complexity of the problem. It
would be possible to use a full-fledged, general-purpose inference engine (such as the Sicstus Prolog
CLP library) to make use of these rules. However, these rulesare very special, so that they can be
handled more efficiently in a proprietary way. This is going to be described next.

5.1 Knowledge representation

As can be seen from the above rules, our knowledge on a variable can be one of the following: (i) no
knowledge; (ii) the variable is fixed to a value; (iii) the variable has the same value as another variable;
(iv) the variable has the other value than another variable.

The first two kinds of knowledge can be easily represented andhandled. For the last two kinds of
knowledge, we will present a novel, very compact data structure, called thestar representation. But
first, some notations are defined.

Let V ar denote the set of all variables,i.e.V ar = {xi : i = 1, 2, . . . , n}∪ {yj : j = 1, 2, . . . , e}.
Two relationsR1 andR2 are defined onV ar: for any z1, z2 ∈ V ar, R1(z1, z2) ⇔ we know that
z1 = z2. Similarly, R2(z1, z2) ⇔ we know thatz1 = 1 − z2. Clearly,R1 andR2 have to be disjoint.
It is easy to see that bothR1 andR2 are symmetric relations, and therefore they define two undirected
graphs onV ar: H1 = (V ar,R1) andH2 = (V ar,R2). Furthermore,R1 andR2 have the following
additional properties:

Rule 5: R1(z1, z2) ∧ R1(z2, z3) ⇒ R1(z1, z3) (i.e.R1 is transitive)

Rule 6: R2(z1, z2) ∧ R2(z2, z3) ⇒ R1(z1, z3)

Rule 7: R1(z1, z2) ∧ R2(z2, z3) ⇒ R2(z1, z3)

Rule 8: R2(z1, z2) ∧ R1(z2, z3) ⇒ R2(z1, z3)

Let R1,2 = R1 ∪ R2 andH1,2 = (V ar,R1,2) be the corresponding undirected graph. In this
graph, each edge is marked either with the labelR1 or with the labelR2, according to which relation
it belongs to. Rules 5-8 imply the following for this graph:

Proposition 1. (i) Let z1, z2, . . . , zk (k > 1) be a path inH1,2. Then(z1, zk) ∈ R1,2. Furthermore,
the label of(z1, zk) can be deduced from the labels of the edges of the path.

(ii) Each connected component ofH1,2 is a complete graph.

(iii) A(n arbitrary) spanning forest ofH1,2 with the associated labels represents it in the sense that
all other information present inH1,2 can be deduced from the spanning forest.

Proof. We prove (i) by induction. Fork = 2 the statement is trivial. For the induction step assume
that it holds fork − 1. That means that(z1, zk−1) ∈ R1,2 and(zk−1, zk) ∈ R1,2. Furthermore, the
labels of(z1, zk−1) and (zk−1, zk) are known. Rules 5-8 together imply that(z1, zk) ∈ R1,2 and
define its label.

10



(ii) is an easy consequence of (i). LetC be a connected component ofH1,2 andu, v ∈ C two
arbitrary vertices in it. SinceC is connected, there is a pathu = z1, z2, . . . , zk = v betweenu andv.
Applying (i) to this path yields that(u, v) is an edge inC, henceC is complete.

(iii) From (i) it follows that each connected component ofH1,2 can be represented with a spanning
tree, thusH1,2 can be represented with a spanning forest.

Let us consider an example with seven variables:z1, . . . , z7. Assume that the following informa-
tion has been inferred:R1(z1, z2), R2(z2, z3), R1(z4, z5), R2(z5, z7), R2(z6, z7). This information is
shown in Figure 3.

z1 z6 z7z3

z2 z4 z5

Figure 3: Example: directly inferred information. Solid lines indicate the relationR1, dashed lines
indicate the relationR2

The correspondingH1,2 graph contains this information, but also those pieces of information that
can be inferred from this knowledge. For instance, it can be inferred using Rule 7 thatR2(z1, z3)
holds. The correspondingH1,2 graph is shown in Figure 4. This graph possesses indeed the property
of Proposition 1/(ii).

z1 z6 z7z3

z2 z4 z5

Figure 4: TheH1,2 graph corresponding to the example of Figure 3

As can be seen from the above, the graphH1,2 contains all the information that has been inferred
or can be inferred indirectly. Proposition 1/(iii) suggests that spanning trees of the connected compo-
nents of the graph can be used for the compact representationof all this knowledge. It is also clear that
at least a spanning tree has to be stored from each component because otherwise some information
would be lost. Therefore, storing a spanning tree for each component is optimal concerning the size of
the data structure. It only remains to decide which spanningtrees to use. A complete graph has several
spanning trees, which have of course the same number of edges, i.e. the size of the data structure does
not depend on the choice of the spanning tree. However, the time needed to retrieve the information
from the data structure does depend on the choice of the spanning tree. Specifically, determining the
relation between two variables involves examining the pathbetween them in the spanning tree, and so
the time needed to retrieve the information correlates to the length of the paths in the spanning tree. It

11



follows that the spanning tree has to be chosen in such a way that all paths in it are short. This is ac-
complished by a star, in which each path consists of at most two edges. This way, the relation between
two variables can be retrieved inO(1) time4. We refer to this representation as thestar representa-
tion. Note that there are several possible star representations, because each component has several
star-shaped spanning trees. However, all representationsyield the same, optimal performance, so we
can choose one arbitrarily. Figure 5 shows a possible star representation of the previous example.

z1 z6 z7z3

z2 z4 z5

Figure 5: A possible star representation corresponding to the example of Figure 4

The following rules describe how the data structure is updated whenever new information is avail-
able:

Rule 9: If z1 = z2 is inferred, andz1 andz2 are in different components ofH1,2, then unify the two
stars to a single one.

Rule 10: If z1 = 1− z2 is inferred, andz1 andz2 are in different components ofH1,2, then unify the
two stars to a single one.

Rule 11: If the value ofz gets fixed, then fix all variables in the component ofz appropriately.

Note that the newly inferred knowledge cannot lead to a contradiction in theH1,2 graph—such as
R1(z1, z2) andR2(z1, z2) holding at the same time—because all inferred information corresponds to
a consistent labeling of the variables.

Unifying two stars involves detaching all nodes in the smaller star from its root and attaching them
using the appropriate relation to the root of the bigger star, plus attaching the root of the smaller star to
the root of the bigger star. Therefore, this operation takestime proportional to the size of the smaller
star.

Continuing our example, Figure 6 shows the unification of thestars of Figure 5 after having
inferred thatz3 = 1 − z6.

To sum up: the star representation is a data structure with optimal size,O(1) information retrieval
time, and linear update time.

5.2 Inference algorithm

Each time the branch-and-bound algorithm fixes a variable, the new information is propagated to the
other variables using the above rules, until no more information can be inferred.

4This is possible, if we store to each node the set of its neighbors in the star plus a flag whether this node is the root
of the star. Note that for the non-root nodes, the set of theirneighbors in the star consists of just one element, namely the
root. Given two nodes, we can determine their relation by stepping to the roots of the respective stars (if one of the nodes
is a root on its own, then no step is needed in that case). If thetwo roots are different, then there is no relation between the
two nodes. Otherwise we have found the two-edge path betweenthe two nodes, which enables the deduction of the relation
according to Proposition 1/(i).

12



z1 z6 z7z3

z2 z4 z5

Figure 6: Unification of the stars of Figure 5

The inferred information is stored in a stack-like data structure, theinference stack, so that the
inference steps can be easily undone when backtracking. Moreover, for easier access, the currently
known information is also stored separately for each variable.

Finally, a technique calledconstructive disjunction(CD [52]) is applied. This means a controlled
branching of given depth (typically 1). For instance, letz be a variable whose value is not yet known.
CD works by first trying to substitutez = 0, checking if this leads to a contradiction with the cost
constraints, and then also checking thez = 1 setting for contradiction. If both options lead to a
contradiction, then the current branch can be cut off. If exactly one of the two options leads to a
contradiction, thenz can be set to the other value. In this case, CD was successful.If none of the
two options leads to a contradiction, then nothing has been inferred,z remains unset, CD was not
successful.

CD is motivated by the following facts:

• According to Rule 11, fixing a variable can lead to substantial new knowledge.

• Even the fixation of a single variable can increaseHP or RP significantly. This can happen
either because the corresponding node or edge of the original communication graph has a high
cost, or because we fix a node of the communication graph in such a way that many edges
become crossed by the partition.

In our algorithm, CD is applied to all variables that are roots in the star representation (isolated
vertices also count as roots). Whenever a variable is fixed during CD, this information is propagated
to the other variables using the previously described rules. The inference stack can be used to store
the information inferred during CD as well, because it enables easy undoing. If CD is successful for
at least one variable, then it makes sense to restart it for all variables, otherwise it does not.

Although CD involves a non-negligible time penalty, it can be very useful in pruning large regions
of the search space, so that it is generally accepted in the artificial intelligence community as a very
effective technique.

Finally, we note that general solvers for constraint logic programming (CLP) typically use branch-
and-bound and inference. This means that inference itself is a quite powerful technique that can be
used even without LP-relaxation. Our method can be regardedas a combination of an ILP-solver and
a CLP-solver. As another consequence, it is not necessary tosolve a linear program in each step.
Since solving an LP is more time-consuming than the other steps of our algorithm, it makes sense to
perform LP optimization less frequently.

13



6 Necessary conditions (lower bounds on costs)

As already discussed, branch-and-bound works well if largeportions of the search tree can be cut
off. For this, the algorithm must be able to recognize that a given partial solution will surely not
yield a valid solution that is better than the best one found so far. In other words, necessary condi-
tions are needed that a promising partial solution has to fulfill. If the current partial solution does not
fulfill a necessary condition then the current branch can be cut off. Of course, such necessary condi-
tions should be easily checkable. Until now, only one such necessary condition has been mentioned,
namely the one based on LP-relaxation. In this section, someadditional, problem-specific necessary
conditions are described.

VHW VSW

V \ (VHW ∪ VSW )

Figure 7: A partial solution

Suppose we have a current partial solution such as the one shown in Figure 7.VHW denotes the
set of nodes of the communication graph that are fixed to hardware, and similarly,VSW denotes the
set of nodes that are fixed to software. LetHcurr =

∑

vi∈VHW
hi be the hardware cost of the nodes

fixed to hardware, andScurr =
∑

vi∈VSW
si be the software cost of the nodes fixed to software. These

costs will surely be incurred. Similarly, the edges betweenVHW andVSW will surely be cut by the
partition, which incurs a communication cost ofCcurr =

∑

(ci,j : vi ∈ VHW , vj ∈ VSW or vi ∈
VSW , vj ∈ VHW ). The nodes inV ′ = V \ (VHW ∪ VSW ) are not yet fixed, therefore it is not known
whether their hardware cost or their software cost will be incurred. Similarly, it is not yet known
whether the edges incident to these nodes will be cut by the partition or not. Our aim is to find as high
as possible lower bounds on the costs.

To find advanced, non-trivial necessary conditions, the techniques that we introduced in another
paper [5] can be used. In that paper, we addressed a slightly different partitioning problem as well, in
which there is no bound onRP , but rather the objective is to minimizeTP = αHP + βSP + γCP ,
whereα, β, andγ are given non-negative weight factors. That problem is mucheasier and we have
presented a fast, polynomial-time exact algorithm for it, which relies on finding the minimum cut in
an auxiliary graph. Moreover, the algorithm could also be simply generalized to the case in which
some components of the system are fixed to hardware or software.

Let us now turn back to the problem at hand. Suppose that the minimum of TP is calculated
(taking into account the already fixed nodes inVHW andVSW ) for differentα, β, andγ values. This
minimum will be denoted byT (α, β, γ). Using the above-mentioned polynomial-time algorithm,
suchT values can be calculated quickly. Then, the following are necessary conditions (recall thatR0

denotes the bound onRP , andH0 is the hardware cost of the best valid partition found so far):

14



Condition 1: T (0, 1, 1) ≤ R0

Condition 2: T (1, 1, 1) ≤ H0 + R0 − 1

Condition 1 holds becauseT (0, 1, 1) is the minimum achievableRP value, given the already fixed
nodes. Testing Condition 1 decides optimally5 whether the current partition can somehow be extended
to a valid partition (i.e.satisfyingR0). Similarly, Condition 2 holds becauseT (1, 1, 1) is the minimum
achievableHP + RP value, given the already fixed nodes (and because of the integrality of the cost
values). Note that these conditions imply other, easier conditions, as follows:

Condition 3: (implication of Condition 1)Scurr + Ccurr ≤ R0

Condition 4: (implication of Condition 2)Hcurr+Scurr+
∑

vi∈V ′ min(hi, si)+Ccurr ≤ H0+R0−1

Another trivial necessary condition that does not follow from any of the previous conditions is
also used:

Condition 5: Hcurr ≤ H0 − 1

To sum up, Conditions 1, 2 and 5 should be used.

7 Improvement by heuristics

The speed of the branch-and-bound algorithm can be further improved using any heuristic algorithm
for the partitioning problem, as shown in this section.

The main idea is the following. The speed of the algorithm depends heavily on how early branches
can be cut off. If the algorithm notices a contradiction early, i.e. near the root of the search tree, then
a large part of the search tree can be pruned. Clearly, ifH0 is low, then chances are good for finding
a contradiction. Normally,H0 is initialized with the value∞, and each time a new, better solution
is found,H0 is decreased accordingly. Because of the above observations, our aim is to makeH0 as
small as possible, as soon as possible.

Suppose that before running the branch-and-bound algorithm, a heuristic algorithm is run. The
heuristic algorithm produces a valid partition with hardware costHheur, which is not necessarily
optimal. Nevertheless, the branch-and-bound algorithm can be started withH0 initialized to this
value afterwards. This way, the property that the optimum solution is provided is not lost. However,
if the heuristic algorithm is fast, and yields high-qualityresults (which is exactly what makes a good
heuristic algorithm), then we can accelerate the branch-and-bound algorithm significantly by entailing
only a small time penalty for running the heuristic algorithm beforehand.

In the following, we describe the usage of three heuristic algorithms for this purpose: a genetic
algorithm, a minimum-cut-based algorithm, and a clustering-based algorithm. Of course, the idea of
pre-optimization with a heuristic can be generally appliedto ILP problems. In fact, ILP solvers do
use general-purpose heuristics for this purpose. In this section, however, the usage of application-
specific heuristics is discussed, which can yield better results. The effect of these heuristics on the
overall performance of the algorithm is evaluated in Section 8. Another consequence is that two of
the presented heuristics (the genetic algorithm and the clustering-based algorithm) can be combined
in a more sophisticated way with the exact algorithm, not just in the form of pre-optimization.

5That is, Condition 1 is the strongest possible condition forthis.

15



7.1 Genetic algorithm

In an earlier work [3], we presented a genetic algorithm (GA)for the hardware/software partitioning
problem. It maintains a population of (not necessarily valid) hardware/software partitions, and im-
proves them using the standard genetic operators recombination, mutation, and selection. This heuris-
tic algorithm can be used without any modifications as a pre-optimization step before the branch-and-
bound algorithm.

It is also possible to establish a stronger coupling betweenthe two algorithms. Suppose that the
two algorithms run in parallel, and maintain a common best-so-far solution. Whenever the genetic
algorithm finds a better solution,H0 can be decreased, which will—as discussed above—help the
branch-and-bound algorithm prune parts of the search tree earlier. Conversely, when the branch-and-
abound algorithm finds a better solution, this new, high-quality partition is injected into the population
of the genetic algorithm, thus hopefully improving its effectiveness.

Unfortunately, our empirical tests have shown that the latter combination of the two algorithms is
not very effective. Although the branch-and-bound algorithm benefits at first from the results found
by the GA, the GA is simply not able to further improve the injected partitions, because they are of
much better quality than the other individuals in the population of the GA. Therefore, we kept to the
original idea of running the GA first, followed by the branch-and-bound algorithm.

7.2 Heuristic based on minimum cut

In another work [5], we have described a heuristic algorithmfor the hardware/software partitioning
problem, that is based on finding the minimum cut in a graph. (Note that this algorithm is not the
same as the cut-based algorithm mentioned in Section 6, but it is based on that algorithm).

This algorithm, too, can be used as a pre-optimization step before the branch-and-bound algo-
rithm.

7.3 Heuristic based on hierarchical clustering

A further possibility is hierarchical clustering,i.e.unifying vertices of the graph based on local close-
ness metrics until the size of the resulting graph is sufficiently small. Because of the local decisions
typically employed in hierarchical clustering, this method is very fast, but of course sub-optimal. Ob-
viously, it is an important question when the clustering process should stop. If many vertices are
unified, then the resulting graph is small, so that it can be easily partitioned, but many degrees of
freedom are lost. Conversely, if only few vertices are unified, then the resulting graph is quite big,
so that its partitioning is still non-trivial, but the loss in degrees of freedom (and hence in potential
solution quality) is not so significant.

Whenever two nodesvi andvj of the communication graph are unified, the software cost of the
resulting new node will besi+sj, and its hardware cost will behi+hj. If parallel edges occur, they can
be substituted with a single edge, the communication cost ofwhich is the sum of the communication
costs of the parallel edges. If a loop (i.e. a cycle of length 1) occurs, it can be simply abandoned
because it does not participate in any cut of the graph. It follows that a partitionP in the clustered
graph can be expanded to a partitionP ′ in the original graph with the same hardware, software, and
communication costs.

Hierarchical clustering and the branch-and-bound algorithm can be combined as follows. First,
the input graph is clustered until its size reaches a range that makes it possible to quickly find its
optimal solution using branch-and-bound. This works, because the branch-and-bound algorithm is
rather fast on small graphs. So in the second step, the optimal partition of the clustered graph is

16



obtained using the branch-and-bound algorithm. As discussed above, this defines a valid partition of
the original graph with the same hardware cost, so that we have obtained a non-trivialH0 value for
the original graph. In the third step, the original partitioning problem is solved using the branch-and-
bound algorithm, starting with thisH0 value. Clearly, this strategy also yields an optimal solution
for the original problem, and if the clustering algorithm isgood enough, then the whole process is
significantly accelerated.

This idea can be generalized to a recursive, multi-level algorithm. LetG0 = G be the original
graph, which hasn0 = n vertices. Furthermore, letµ ∈ (0, 1) be a constant. The graphsGi (i =
1, 2, . . . , k; the number of vertices inGi is denoted byni) are defined recursively as follows:Gi is
obtained fromGi−1 using hierarchical clustering, so thatni = bµni−1c. k is chosen in such a way
thatGk is the first graph in the series that is in the range of quickly solvable problem sizes. Now, the
algorithm works as follows. First, the optimal partition inGk is calculated. According to the choice
of k, this can be quickly done. In a general step, after the optimal partition inGi has been calculated,
this value is used to initializeH0, and to solve the partitioning problem inGi−1 optimally using this
aid. That is, partitioning problems of increasing complexity are solved, while better and better aids
(i.e.H0 values) are available. At the end,G0 is partitioned, which is exactly the original problem. An
example for this process withn0 = 16, µ = 0.5, andk = 2 is shown in Figure 8. (Edges and costs
are not shown for the sake of simplicity.)

G2

partitionG2

optimally

G0G1

partitionG1

optimally
partitionG0

optimally
opt(G2) → H0 opt(G1) → H0

clustering clustering

Figure 8: Hierarchical clustering and branch-and-bound combined in a multi-level algorithm

8 Empirical results

We implemented the presented algorithm in a C program and compared it to an implementation based
on a commercial ILP solver [3]. Note that, since both algorithms are exact, only their speed had to be
compared, and not the quality of the solutions they find. The empirical experiments were conducted
on a Pentium III 1100MHz PC running SuSE Linux.

Table 1 lists the benchmarks that were used for testing. The vertices in the graphs correspond to
high-level language instructions. Software and communication costs are time-dimensional, whereas
hardware costs represent the occupied area. More details onthe cost functions used in the benchmarks
can be found in [5].

Note that the first three benchmarks – which are taken from MiBench [19] – have approximately
the same size as the graphs that most previous algorithms were tested on6. The segment and fuzzy
benchmarks are our own designs, and they are significantly larger. We also added some very complex

6In order to justify the usage of only small benchmarks, some authors argue that a typical program spends most of its
execution time in some loops that are relatively small. While this may be true in general, there also exist programs in which

17



Name n e Description

crc32 25 34 32-bit cyclic redundancy check. From the Telecommunications
category of MiBench.

patricia 21 50 Routine to insert values into Patricia tries,which are used to store
routing tables. From the Network category of MiBench.

dijkstra 26 71 Computes shortest paths in a graph. From the Network category
of MiBench.

random1 200 200 Random communication graph.
random2 200 250 Random communication graph.
segment 150 333 Image segmentation algorithm in a medical application.
random3 300 300 Random communication graph.
random4 300 375 Random communication graph.
fuzzy 261 422 Clustering algorithm based on fuzzy logic.
rc6 329 448 RC6 cryptographic algorithm.
random5 400 400 Random communication graph.
random6 400 500 Random communication graph.
random7 500 500 Random communication graph.
mars 417 600 MARS cipher.
random8 500 625 Random communication graph.
random9 600 600 Random communication graph.
ray 495 908 Ray-tracing algorithm for volume visualization.
random10 600 750 Random communication graph.

Table 1: Summary of the used benchmarks.

benchmarks from the domains of cryptography and volume visualization as well as large random
graphs to test the limits of the applicability of the algorithms.

Our algorithm adds three techniques to a pure ILP-solver-based algorithm: inference, lower
bounds, and pre-optimization. In order to see the improvement by each of these techniques, we tested
four versions of the algorithm:

ILP: Standard ILP solver7, i.e.branch-and-bound algorithm without the suggested
improvements

inference: Branch-and-bound algorithm with inference but without lower bounds and
pre-optimization

inference+LB: Branch-and-bound algorithm with inference and lower bounds but without
pre-optimization

there is a large number of such time-consuming loops, or there are also relatively big time-consuming loops. Furthermore,
in very complex systems even the relatively small parts can be huge. Our larger benchmarks are examples of such systems.

7As ILP solver, we used version 3.2 of the packagelp_solve, which is available fromftp:// ftp.es.ele.tue.nl/pub/ lp_
solve. It uses branch-and-bound, the search tree is traversed in adepth-first-search fashion, and branching is performed each
time according to a randomly chosen non-integer variable. For cutting off parts of the search tree, it uses the bound from
LP-relaxation.

18



CUT+inference+LB: Branch-and-bound algorithm with inference, lower bounds,and pre-optimization
based on minimum-cut8

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

crc32 patricia dijkstra

T
im

e 
[s

]

ILP inference inference + LB CUT + inference + LB

Figure 9: Algorithm runtimes on the easiest benchmarks

Figures 9-11 show the running time of the algorithms (the averate of five measurements) on bench-
marks of low, medium, and high complexity. As can be seen fromthe results, the ILP algorithm is
very fast on the three smallest benchmarks, but its running time explodes quickly. On the other hand,
all versions of the branch-and-bound algorithm are slightly slower on the smallest benchmarks (but
still fast – under 0.2 second), but much more efficient on the bigger examples. On benchmarks of
medium complexity, the best version of the branch-and-bound algorithm is about 10 times faster than
the ILP-based algorithm. On the largest benchmarks, only the best version of the branch-and-bound
algorithm finished in acceptable time (within 1-2 hours), and in two cases also the algorithm without
pre-optimization, the other versions did not finish within 10 hours. Of course, even the running time
of the best version of the branch-and-bound algorithm fallsvictim to combinatorial explosion, but it
can be seen that it can indeed solve very complex problems in reasonable time.

Figure 10 shows clearly that for non-trivial problem instances, each one of the proposed techniques
significantly improves the performance of the algorithm.

Finally, we would like to revisit the issue of heuristic versus exact algorithms, which was men-
tioned in the Introduction. Table 2 shows the deviation of the result of the genetic algorithm from the
optimum, in percentage. We chose the genetic algorithm for this purpose because it is typical of the
kinds of algorithms that are widely used for hardware/software partitioning (see Section 2). In this set
of experiments, we tried differentR0 values for all benchmarks, because the performance of the GA

8Of course, we also tested the other two pre-optimization heuristics, but they yielded somewhat worse results than the
minimum-cut-based heuristic, therefore we omit those results here.

19



0,00

100,00

200,00

300,00

400,00

500,00

600,00

random1 random2 segment random3 fuzzy rc6 random5 mars

T
im

e 
[s

]

ILP inference inference + LB CUT + inference + LB

Figure 10: Algorithm runtimes on benchmarks of medium complexity

0,00

2000,00

4000,00

6000,00

8000,00

10000,00

12000,00

14000,00

random4 random6 random7 random8 random9 ray random10

T
im

e 
[s

]

ILP inference inference + LB CUT + inference + LB

Figure 11: Algorithm runtimes on the hardest benchmarks

20



Benchmark Minimum deviation Average deviation Maximum deviation

crc32 0 0 0
patricia 0 0 0
dijkstra 0 0.6% 3.2%
segment 1.4% 4.7% 16.1%
fuzzy 3.9% 14.9% 57.0%
rc6 22.5% 50.9% 126.1%
mars 19.1% 42.2% 93.0%
ray 58.3% 89.4% 171.6%

Table 2: The deviation of the result of GA from the optimum

depends significantly on this parameter [3]. The three columns of the table refer to the best, average,
and worst of the results for the differentR0 values. As can be seen from the results, the GA finds al-
most always the optimal solution in the case of the three small benchmarks. However, as we move on
to the bigger benchmarks, the relative performance of the GAalso significantly worsens. In particular,
the worst-case result for the ray benchmark is 171.6%, whichis unacceptable in most applications.
Hence, the exact algorithms offer significant rewards for their longer running times. And in the case
of the small benchmarks, where the GA finds virtually always the optimum, the exact algorithms are
also very fast.

9 Conclusions

This paper described a first attempt towards a practical exact algorithm for the hardware/software
partitioning problem. We have shown that a branch-and-bound scheme can be used as a framework,
into which further algorithms can be integrated. Specifically, we have integrated the following tech-
niques into the algorithm: (i) lower bounds based on LP-relaxation; (ii) a custom inference engine;
(iii) non-trivial necessary conditions based on a minimum-cut algorithm; (iv) different heuristics as a
pre-optimization step. The presented methods can also be useful in other related optimization prob-
lems.

The empirical results have shown that the resulting algorithm is indeed capable of solving large
problem instances in reasonable time. In particular, it is clearly more practical than a standard ILP
solver.

The presented algorithm can be simply generalized to include more than one constraint (for in-
stance, real-time constraints for different use cases of the system). Another generalization enables the
system designer to prescribe that some nodes have to be in hardware, and some in software.

Several future research directions can be identified as well. A number of other algorithmic ideas
can be incorporated, for instance, the Kernighan/Lin heuristic, more advanced heuristics for choosing
the next variable to fix, using a custom LP solver etc. Furthermore, it should also be investigated in
more depth what characteristics of a problem instance make it difficult or easy to solve optimally.

21



References

[1] T. F. Abdelzaher and K. G. Shin. Period-based load partitioning and assignment for large real-
time applications.IEEE Transactions on Computers, 49(1):81–87, 2000.

[2] J. K. Adams and D. E. Thomas. Multiple-process behavioral synthesis for mixed hard-
ware/software systems. InProceedings of the IEEE/ACM 8th International Symposium onSys-
tem Synthesis, 1995.

[3] P. Arató, S. Juhász, Z. Á. Mann, A. Orbán, and D. Papp. Hardware/software partitioning in
embedded system design. InProceedings of the IEEE International Symposium on Intelligent
Signal Processing, 2003.

[4] P. Arató, Z. Á. Mann, and A. Orbán. Hardware-software co-design for Kohonen’s self-organizing
map. InProceedings of the IEEE 7th International Conference on Intelligent Engineering Sys-
tems, 2003.

[5] P. Arató, Z. Á. Mann, and A. Orbán. Algorithmic aspects ofhardware/software partitioning.
ACM Transactions on Design Automation of Electronic Systems, 10(1):136–156, 2005.

[6] P. Athanas and H. F. Silverman. Processor reconfiguration through instruction-set metamorpho-
sis. IEEE Computer, pages 11–18, March 1993.

[7] E. Barros, W. Rosenstiel, and X. Xiong. Hardware/software partitioning with UNITY. In2nd
International Workshop on Hardware-Software Codesign, 1993.

[8] E. Barros, W. Rosenstiel, and X. Xiong. A method for partitioning UNITY language in hardware
and software. InProceedings of the IEEE/ACM European Conference on Design Automation,
1994.

[9] N. N. Binh, M. Imai, A. Shiomi, and N. Hikichi. A hardware/software partitioning algorithm for
designing pipelined ASIPs with least gate counts. InProceedings of the 33rd Design Automation
Conference, 1996.

[10] K. S. Chatha and R. Vemuri. MAGELLAN: Multiway hardware-software partitioning and
scheduling for latency minimization of hierarchical control-dataflow task graphs. InProceedings
of CODES 01, 2001.

[11] A. Dasdan and C. Aykanat. Two novel multiway circuit partitioning algorithms using relaxed
locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
16(2):169–177, February 1997.

[12] R. P. Dick and N. K. Jha. MOGAC: A multiobjective geneticalgorithm for hardware-software
co-synthesis of hierarchical heterogeneous distributed embedded systems.IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 17(10):920–935, 1998.

[13] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. Hardware/software partitioning of VHDL system
specifications. InProceedings of EURO-DAC ’96, 1996.

[14] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System level hardware/software partition-
ing based on simulated annealing and tabu search.Design Automation for Embedded Systems,
2(1):5–32, January 1997.

22



[15] R. Ernst, J. Henkel, and T. Benner. Hardware/software cosynthesis for microcontrollers.IEEE
Design and Test of Computers, 10(4):64–75, 1993.

[16] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions.
In Proceedings of the 19th Design Automation Conference, 1982.

[17] J. Grode, P. V. Knudsen, and J. Madsen. Hardware resource allocation for hardware/software
partitioning in the LYCOS system. InProceedings of Design Automation and Test in Europe
(DATE ’98), 1998.

[18] R. K. Gupta and G. de Micheli. Hardware-software cosynthesis for digital systems.IEEE Design
& Test of Computers, 10(3):29–41, 1993.

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. MiBench:
A free, commercially representative embedded benchmark suite. In Proceedings of the IEEE 4th
Annual Workshop on Workload Characterization, 1997.

[20] J. Henkel and R. Ernst. An approach to automated hardware/software partitioning using a flex-
ible granularity that is driven by high-level estimation techniques. IEEE Transaction on VLSI
Systems, 9(2):273–289, 2001.

[21] E. Hwang, F. Vahid, and Y. C. Hsu. FSMD functional partitioning for low power. InProceedings
of the Design Automation and Test in Europe Conference, 1999.

[22] A. Jantsch, P. Ellervee, and J. Oeberg. Hardware/software partitioning and minimizing memory
interface traffic. InProceedings of the IEEE/ACM European Conference on Design Automation,
1994.

[23] A. Kalavade.System-level codesign of mixed hardware-software systems. PhD thesis, University
of California, Berkeley, CA, 1995.

[24] A. Kalavade and E. A. Lee. The extended partitioning problem: hardware/software map-
ping, scheduling and implementation-bin selection.Design Automation for Embedded Systems,
2(2):125–164, 1997.

[25] A. Kalavade and P. A. Subrahmanyam. Hardware/softwarepartitioning for multifunction sys-
tems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
17(9):819–837, September 1998.

[26] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.The Bell
System Technical Journal, 49(2):291–307, 1970.

[27] P. V. Knudsen and J. Madsen. PACE: a dynamic programmingalgorithm for hardware/software
partitioning. In Proceedings of the IEEE/ACM 4th International Workshop on Hard-
ware/Software Codesign, 1996.

[28] M. Lopez-Vallejo, J. Grajal, and J. C. Lopez. Constraint-driven system partitioning. InProceed-
ings of DATE, pages 411–416, 2000.

[29] M. Lopez-Vallejo and J. C. Lopez. A knowledge based system for hardware-software partition-
ing. In Proceedings of DATE, 1998.

23



[30] M. Lopez-Vallejo and J. C. Lopez. Multi-way clusteringtechniques for system level partitioning.
In Proceedings of the 14th IEEE ASIC/SOC Conference, pages 242–247, 2001.

[31] M. Lopez-Vallejo and J. C. Lopez. On the hardware-software partitioning problem: system
modeling and partitioning techniques.ACM Transactions on Design Automation of Electronic
Systems, 8(3):269–297, July 2003.

[32] J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen, and A.Haxthausen. LYCOS: The Lyngby
co-synthesis system.Design Automation for Embedded Systems, 2(2):195–236, 1997.

[33] Z. Á. Mann and A. Orbán. Optimization problems in system-level synthesis. InProceedings of
the 3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, 2003.

[34] B. Mei, P. Schaumont, and S. Vernalde. A hardware/software partitioning and scheduling algo-
rithm for dynamically reconfigurable embedded systems. InProceedings of ProRISC, 2000.

[35] R. Niemann. Hardware/Software Co-Design for Data Flow Dominated Embedded Systems.
Kluwer Academic Publishers, 1998.

[36] R. Niemann and P. Marwedel. An algorithm for hardware/software partitioning using mixed
integer linear programming.Design Automation for Embedded Systems, special issue: Parti-
tioning Methods for Embedded Systems, 2:165–193, March 1997.

[37] M. O’Nils, A. Jantsch, A. Hemani, and H. Tenhunen. Interactive hardware-software partitioning
and memory allocation based on data transfer profiling. InInternational Conference on Recent
Advances in Mechatronics, 1995.

[38] M. F. Parkinson and S. Parameswaran. Profiling in the ASPcodesign environment. InProceed-
ings of the IEEE/ACM 8th International Symposium on System Synthesis, 1995.

[39] S. Prakash and A. C. Parker. SOS: synthesis of application-specific heterogeneous multiproces-
sor systems.Journal of Parallel and Distributed Computing, 16:338–351, 1992.

[40] S. Qin and J. He. An algebraic approach to hardware/software partitioning. Technical Report
206, UNU/IIST, 2000.

[41] G. Quan, X. Hu, and G. Greenwood. Preference-driven hierarchical hardware/software parti-
tioning. InProceedings of the IEEE/ACM International Conference on Computer Design, 1999.

[42] Y. G. Saab. A fast and robust network bisection algorithm. IEEE Transactions on Computers,
44(7):903–913, July 1995.

[43] A. Schrijver. Theory of linear and integer programming. Wiley, 1998.

[44] V. Srinivasan, S. Radhakrishnan, and R. Vemuri. Hardware software partitioning with integrated
hardware design space exploration. InProceedings of DATE, 1998.

[45] G. Stitt, R. Lysecky, and F. Vahid. Dynamic hardware/software partitioning: a first approach. In
Proceedings of DAC, 2003.

[46] F. Vahid. Modifying min-cut for hardware and software functional partitioning. InProceedings
of the International Workshop on Hardware-Software Codesign, 1997.

24



[47] F. Vahid. Partitioning sequential programs for CAD using a three-step approach.ACM Transac-
tions on Design Automation of Electronic Systems, 7(3):413–429, July 2002.

[48] F. Vahid and D. Gajski. Clustering for improved system-level functional partitioning. InPro-
ceedings of the 8th International Symposium on System Synthesis, 1995.

[49] F. Vahid and T. D. Le. Extending the Kernighan/Lin heuristic for hardware and software func-
tional partitioning.Design Automation for Embedded Systems, 2:237–261, 1997.

[50] W. Wolf. An architectural co-synthesis algorithm for distributed embedded computing systems.
IEEE Transactions on VLSI Systems, 5(2):218–229, June 1997.

[51] W. Wolf. A decade of hardware/software codesign.IEEE Computer, 36(4):38–43, 2003.

[52] J. Würtz and T. Müller. Constructive disjunction revisited. In20th German Annual Conference
on Artificial Intelligence, 1996.

25


