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Abstract

Finding the best way to place the components of an application on a set of heterogeneous servers is a challenging task, especially
if some components are associated with security requirements. To address security requirements, several security controls may be
available, some of them software-based (e.g., encryption), others hardware-based (e.g., trusted execution environments). Security
controls may incur widely varying performance overhead. There is a non-trivial interplay between application placement (which
component to place on which server) and the configuration of security controls (which security control to activate for which com-
ponent). On the one hand, placing a component on a secure server may make it unnecessary to use software-based security controls
for the component. On the other hand, the overhead of using a specific security control may increase the resource requirements
of a component so that it does not fit onto its designated server. Therefore, this paper addresses the joint problem of application
placement and configuration of security controls. We formalize the problem and use mixed integer quadratic programming to solve
it. A case study is used to demonstrate that the proposed approach can automatically determine the placement and configuration of
complex applications.

Keywords: application placement, security control, risk management, data protection, cloud computing, fog computing, edge
computing

1. Introduction

The target infrastructure for the deployment of applications
is increasingly complex, heterogeneous, and not fully known
when the application is designed [1, 2]. For example, applica-
tions can be designed so that they can be deployed to a cloud-
based infrastructure, which may be a private cloud, one of the
many public cloud offerings, or a combination of these [3, 4, 5].
Different instances of the same application may be run on differ-
ent infrastructures and even the same instance of the application
may be re-deployed to a changed infrastructure during its life-
time. These opportunities, which are made possible by modern
computing technologies like virtualization and microservices
and methodologies like DevOps, have led to increased flexi-
bility and agility in software provisioning [6]. In the recently
introduced fog computing paradigm [7], applications may be
placed on a continuum of resources with widely varying capa-
bilities, from cloud data centers through fog nodes to end de-
vices [8, 9]. This makes it possible to place applications so as
to optimize several important system metrics, like latency, re-
source utilization, and energy consumption [10].

On the other hand, not knowing the exact details of the in-
frastructure on which the application will be placed is a chal-
lenge for software design. One of the key issues in a cloud de-
ployment is security [11], because both the providers and other
tenants of cloud services may be able to attack applications and
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data in the cloud [12]. Different infrastructures may be asso-
ciated with significantly different security properties [13, 14].
Hence, applications must be designed in such a way that they
incorporate multiple security techniques, from which the tech-
niques to be activated can be chosen during deployment or dur-
ing run time when the characteristics of the infrastructure are
known [15, 16, 17]. For example, if an application is placed
in a public cloud, it may store, transfer, and process sensitive
data only in encrypted form, which might incur a considerable
performance overhead. If the same application is placed on a
secure infrastructure, encryption can be deactivated, thus avoid-
ing the performance overhead.

Different kinds of security controls may be available for se-
curing an application on an infrastructure:

• Hardware-based security controls, e.g., a server in a trusted
private cloud or a server that has been made invisible to
potential attackers [18] can be assumed to be secure.

• Software-based security controls, e.g., encryption. This
can also include advanced techniques using encrypted
data, for instance searchable encryption [19].

• Combinations of hardware-based and software-based se-
curity controls. E.g., a server may offer secure hardware
enclaves – memory regions protected against access from
unauthorized processes [20] – which applications with
appropriate logic may leverage to protect sensitive data.

In this paper, we consider the placement of an application
consisting of a set of components, which are connected by con-
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nectors. Some of the components and connectors may store,
process, or transmit sensitive data and hence must be protected.
As part of the deployment process, the components and con-
nectors have to be placed on servers and links between servers,
respectively. Moreover, the security controls have to be config-
ured, i.e., it has to be decided which ones to activate.

There is a non-trivial interplay between application place-
ment and the configuration of security controls. On one hand,
the placement of a component or connector determines which
hardware-based security controls can be used to protect the com-
ponent or connector. On the other hand, the overhead of using
a specific security control may increase the resource require-
ments of a component or connector so that it does not fit onto
its designated server or link.

Because of the interdependency between placement and con-
figuration, manual deployment is a daunting task even for mod-
erately complex applications [21]. Existing tools fall short of
handling the complicated constraints stemming from the differ-
ent kinds of security controls, their dependence on the place-
ment and their impact on performance. Therefore, this paper
makes the following contributions:

• We formalize the joint problem of application placement
and configuration of security controls, taking into account
hardware-based, software-based, and combined hardware-
software-based security controls, as well as their perfor-
mance overhead.

• We devise an algorithm for creating a deployment satisfy-
ing all security and capacity constraints, by transforming
the problem to a mixed integer quadratic program.

• A case study is used to demonstrate that the proposed
approach can automatically determine the placement and
configuration of complex applications. Moreover, con-
trolled experiments are used to investigate the scalability
of the proposed approach.

To the best of our knowledge, this paper is the first to in-
vestigate the interplay between application placement and the
configuration of security controls, and to propose an algorithm
for this joint problem.

2. Problem model

Figure 1 gives an overview about the used problem model.
The details are explained below.

2.1. Problem inputs
The application to deploy is given as a set of components,

as well as connectors that connect components. Thus, the ap-
plication is modeled as an undirected graph GSW = (VSW, ESW),
where the vertices in VSW are the components and the edges in
ESW are the connectors (see also Table 1). Components have
a given CPU requirement (modeled as Component.cpuReq in
Figure 1) and connectors have a given bandwidth requirement
(Connector.bwReq). Moreover, each component and connec-
tor may be declared as sensitive (Component.sensitive and

Table 1: Notation overview

Symbol Meaning

VSW Set of application components
ESW Set of connectors between the components
VHW Set of servers
EHW Set of links between the servers
CComp Set of all component security controls
CConn Set of all connector security controls
CServ Set of all server security controls
CLink Set of all link security controls
Call Set of all security controls
C(x) Set of security controls provided by x
pV(x) Server that should host component x
pE(x) Link that should host connector x
a(z) True iff security control z should be activated
s(x, pV, a) Size of component x, given pV and a
s(x, pE, a) Size of connector x, given pE and a

Connector.sensitive), which means that it has to be pro-
tected by some security control.

The available hardware infrastructure consists of a set of
servers as well as links connecting the servers. Thus, the hard-
ware is modeled as an undirected graph GHW = (VHW, EHW),
where the vertices in VHW are the servers and the edges in EHW
are the links. It should be noted that the links represent end-
to-end communication links between the servers. The way of
mapping these end-to-end links on paths of the physical net-
work is beyond the scope of this paper. Servers have a given
CPU capacity (modeled as Server.cpuCap) and links have a
given bandwidth (Link.bwCap).

Each server and link may provide some hardware-based se-
curity controls (server security control respectively link secu-
rity control). Similarly, each component and connector may
provide some software-based security controls (component se-
curity control respectively connector security control). A secu-
rity control is either always on (alwaysOn=true), or otherwise
(i.e., if alwaysOn=false) it can be turned on and off as mod-
eled with the activated attribute. Moreover, each security
control is associated with an increment, modeling the overhead
incurred when the given security control is turned on. Specifi-
cally:

• ComponentSecurityControl.cpuReqIncrement is the
amount by which the CPU requirement of the component
associated with the security control increases if the secu-
rity control is activated.

• ConnectorSecurityControl.bwReqIncrement is the
amount by which the bandwidth requirement of the con-
nector associated with the security control increases if the
security control is activated.

• ServerSecurityControl.cpuReqIncrement is the amount
by which the CPU requirement of all components hosted
on the server associated with the security control increases
if the security control is activated.
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Figure 1: Problem model (using UML class diagram notation)

• LinkSecurityControl.bwReqIncrement is the amount
by which the bandwidth requirement of all connectors
mapped on the link associated with the security control
increases if the security control is activated.

A security control may work on its own, but there can also be
pairs of security controls that only work in tandem. Specifically,
it is possible that a ComponentSecurityControl and a Ser-
verSecurityControl can only work together (modeled by
the bi-directional relation labeled requires between them), or
similarly, that a ConnectorSecurityControl and a LinkSe-
curityControl can only work together. The requires rela-
tions are bi-directional and define that both of the involved se-
curity controls must be available and active to achieve security.
For example, a server that provides secure hardware enclaves as
ServerSecurityControl and a component that contains the
necessary logic to exploit such enclaves as ComponentSecu-

rityControl can be used in combination to achieve security,
but neither of them would be sufficient without the other.

It is important to note the cardinalities on the provides

relations. For example, the cardinalities on the provides re-
lation between Component and ComponentSecurityControl
mean that a component may provide any number (zero or more)
of component security controls, whereas a component security
control belongs to exactly one component. In other words, each
component has its own component security controls, indepen-
dently from the other components. As a consequence, the com-
ponent security controls of individual components can be acti-
vated or deactivated independently from each other.

The set of all component security controls is denoted by
CComp, the set of all connector security controls by CConn, the
set of all server security controls by CServ and the set of all
link security controls by CLink. C(x) denotes the set of secu-
rity controls provided by x (if x is a component, then C(x)
consists of component security controls; if x is a connector,
then C(x) consists of connector security controls etc.). Call =

CComp ∪CConn ∪CServ ∪CLink is the set of all security controls.

2.2. Problem outputs
The task is to determine a placement of the application and

the configuration of the security controls. The placement is de-
fined by two functions pV : VSW → VHW (mapping each com-

ponent to a server) and pE : ESW → EHW (mapping each con-
nector to a link). The configuration of the security controls is a
function a : Call → {true, false}, specifying which security con-
trols should be activated and which ones not. Thus, the output
of the problem is the tuple (pV, pE, a).

The actual size (i.e., CPU requirement) of a component de-
pends on a, since each activated security control of the given
component may increase the size of the component. Moreover,
the actual size of a component also depends on pV: if the com-
ponent is mapped on a server with a server security control ac-
tivated, this also may increase the size of the component. Thus,
the actual size of component x, given mapping pV and configu-
ration a, is:

s(x, pV, a) = x.cpuReq+
∑

z∈C(x), a(z)=true

z.cpuReqIncrement

+
∑

z∈C(pV(x)), a(z)=true

z.cpuReqIncrement (1)

Similarly, the actual size (i.e., bandwidth requirement) of a con-
nector x is calculated by:

s(x, pE, a) = x.bwReq +
∑

z∈C(x), a(z)=true

z.bwReqIncrement

+
∑

z∈C(pE(x)), a(z)=true

z.bwReqIncrement (2)

2.3. Constraints

For the placement to be valid, the following constraints must
hold1:

vw ∈ ESW ⇒ pE(vw) connects pV(v) and pV(w) (3)

∀y ∈ VHW :
∑

x∈VSW, pV(x)=y

s(x, pV, a) ≤ y.cpuCap (4)

∀y ∈ EHW :
∑

x∈ESW, pE(x)=y

s(x, pE, a) ≤ y.bwCap (5)

1To keep notations simple, we use vw to refer to the edge connecting the
vertices v and w
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Equation (3) ensures that the placement of components and
the placement of connectors are compatible, i.e., a connector is
placed on a link that connects the two servers which host the
components connected by the connector. Equation (4) is the
capacity constraint for servers: for each server y, the total size
of components placed on y must not exceed the capacity of y.
Note that the size of the components depends on the placement
and on the configuration of security controls, as expressed by
(1). Equation (5) is the analogous capacity constraint for links.

There is a corner case that requires special attention. Two
components v1 and v2 connected by a connector v1v2 may be
placed on the same server. In order to be able to define pE(v1v2)
in such cases, we assume that each server is connected to itself
by a link of infinite bandwidth, i.e.

∀u ∈ VHW : e = uu ∈ EHW, e.bwCap = ∞. (6)

For the configuration of security controls, an obvious con-
straint is that security controls that are always enabled are in-
deed active:

∀z ∈ Call : z.alwaysOn⇒ a(z) = true. (7)

Further, it must be ensured that each sensitive component
is protected somehow. This is expressed by the following con-
straint:

∀x ∈ VSW : x.sensitive⇒[ (
∃z ∈ C(x), a(z), z′ = z.requires ∈ C(pV(x)), a(z′)

)
∨

(
∃z ∈ C(x), a(z), z.requires = null

)
∨

(
∃z′ ∈ C(pV(x)), a(z′), z′.requires = null

) ]
(8)

Equation (8) stipulates that each sensitive component x must
be secured in one of the following ways:

• By a component security control z of the component,
which is activated (i.e., a(z) is true). Furthermore, this
component security control requires

– either a server security control z′ which is provided
by the server on which x is placed (z′ = z.requires ∈
C(pV(x))) and z′ is also activated (a(z′) is true).

– or no server security control (that is, z.requires =

null);

• Alternatively, the component x is protected by a server
security control z′, provided by the server on which x
is placed (i.e., z′ ∈ C(pV(x))). Furthermore, this server
security control is activated (a(z′) is true) and requires no
component security control (z′.requires = null).

It should also be noted that constraint (8) contains both the
a() and pV() functions, making some of the interplay between
placement of components and configuration of security controls
explicit.

Similarly to constraint (8), we have the following constraint
for securing sensitive connectors:

∀x ∈ ESW : x.sensitive⇒[ (
∃z ∈ C(x), a(z), z′ = z.requires ∈ C(pE(x)), a(z′)

)
∨

(
∃z ∈ C(x), a(z), z.requires = null

)
∨

(
∃z′ ∈ C(pE(x)), a(z′), z′.requires = null

) ]
(9)

Altogether, the problem that we are addressing consists of
finding the functions (pV, pE, a) such that constraints (3)-(5)
and (7)-(9) are satisfied. We term this problem the Joint Place-
ment and Configuration Problem (JPCP).

It should be noted that an instance of the JPCP may have
0, 1, or multiple solutions. If there are multiple solutions, an
objective function could be used to determine the “best” solu-
tion. This is a possible future extension (see also Section 7 for a
further discussion). In the presented problem formulation, any
solution that satisfies all constraints is considered equally ap-
propriate.

3. Proposed approach

The core of the proposed approach is the conversion of the
JPCP to a Mixed Integer (quadratically constrained) Quadratic
Programming (MIQP) formulation. This is described first, fol-
lowed by the details of the actual solution procedure.

3.1. MIQP formulation

Mixed Integer (quadratically constrained) Quadratic Pro-
gramming involves formulating the problem using a finite set
of – real-valued or integer-valued – variables, and a finite set
of constraints, which are equations or inequalities comprised of
linear or quadratic expressions of the variables. It is more com-
mon to use Mixed Integer Linear Programming, in which the
constraints are all linear, to solve application placement prob-
lems [22, 23], but as we will see, we need the higher expressive
power of quadratic constraints to express the more complex re-
lationships in connection with the security controls.

The variables of the MIQP formulation, denoted by Greek
letters, are summarized in Table 2. The placement function pV()
is encoded using a set of binary variables: ξu,v, where u ∈ VSW
and v ∈ VHW. Similarly, pE() is encoded using another set of
binary variables: ηe,l, where e ∈ ESW and l ∈ EHW. The activa-
tion function a() is encoded via a further set of binary variables:
ζz, where z ∈ Call. Finally, the auxiliary function s() is encoded
using a set of real-valued variables: σx, where x ∈ VSW ∪ ESW.

The variables must fulfill several constraints. First, it has to
be ensured that each component is placed on exactly one server
and each connector is placed on exactly one link:

∀u ∈ VSW :
∑

v∈VHW

ξu,v = 1 (10)

∀e ∈ ESW :
∑

l∈EHW

ηe,l = 1 (11)
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Table 2: Variables

Name Domain Description

ξu,v {0, 1} 1 iff component u is placed on server v
ηe,l {0, 1} 1 iff connector e is placed on link l
ζz {0, 1} 1 iff security control z is active
σx R+ Size of component or connector x

Analogously to Equation (3), the placement of components
and the placement of connectors must be compatible:

∀u1u2 ∈ ESW, v1v2 ∈ EHW :
ηu1u2,v1v2 ≤ ξu1,v1 · ξu2,v2 + ξu1,v2 · ξu2,v1 (12)

Note that this constraint is quadratic. It ensures that, if con-
nector u1u2 is placed on link v1v2 (i.e., the left-hand side is 1),
then either ξu1,v1 · ξu2,v2 = 1 (i.e., component u1 is placed on
server v1 and component u2 is placed on server v2), or ξu1,v2 ·

ξu2,v1 = 1 (i.e., u1 is placed on v2 and u2 is placed on v1).
Analogously to Equation (1), it must be ensured that the

size of the components is computed correctly in the σx vari-
ables, based on the activation of the related security controls as
defined by the ζz variables and on the placement of the compo-
nents as defined by the ξx,y variables:

∀x ∈ VSW : σx = x.cpuReq

+
∑

z∈C(x)

ζz · z.cpuReqIncrement

+
∑

y∈VHW

∑
z∈C(y)

ξx,y · ζz · z.cpuReqIncrement (13)

Note that this equation is also quadratic. Similarly, in anal-
ogy to Equation (2), the size of connectors has to be computed:

∀x ∈ ESW : σx = x.bwReq

+
∑

z∈C(x)

ζz · z.bwReqIncrement

+
∑

y∈EHW

∑
z∈C(y)

ηx,y · ζz · z.bwReqIncrement (14)

Analogously to Equations (4)-(5), the capacity constraints
must be enforced for each server and each link. Two constraints
(both are quadratic) are needed as follows:

∀v ∈ VHW :
∑

u∈VSW

ξu,v · σu ≤ v.cpuCap (15)

∀l ∈ EHW :
∑

e∈ESW

ηe,l · σe ≤ l.bwCap (16)

Analogously to Equation (7), it has to be ensured that each
security control that is specified to be always on will really be
active:

∀z ∈ Call, z.alwaysOn : ζz = 1. (17)

Finally, it has to be ensured analogously to Equations (8)
and (9) that each sensitive component and connector is pro-
tected somehow. First the constraint for components:

∀u ∈ VSW, u.sensitive :
∑

z∈C(u)
z.requires=null

ζz+

+
∑

z∈C(u)
z.requires=z′,null

ζz · ζz′ ·
∑

v∈VHW
z′∈C(v)

ξu,v+

+
∑

v∈VHW

∑
z′′∈C(v)

z′′.requires=null

ξu,v · ζz′′ ≥ 1 (18)

The first term corresponds to the situation that the component u
is secured by one of its own security controls z, which does not
require a server security control (z.requires = null) and is
activated (ζz = 1). In the second term, z does require a server
security control z′ which is also activated (ζz′ = 1), and the
component u is placed on a server v offering the security control
z′. The third term describes the situation in which u is placed
on a server v which is secured by a server security control z′′

that is activated and does not require any component security
control as counterpart.

Constraint (18) is cubic and not quadratic. By introducing
auxiliary binary variables ωz,z′ , we can replace Constraint (18)
by the following pair of quadratic constraints:

∀z ∈ CComp, z′ ∈ CServ : ωz,z′ = ζz · ζz′ (19)

∀u ∈ VSW, u.sensitive :
∑

z∈C(u)
z.requires=null

ζz+

+
∑

z∈C(u)
z.requires=z′,null

ωz,z′ ·
∑

v∈VHW
z′∈C(v)

ξu,v+

+
∑

v∈VHW

∑
z′′∈C(v)

z′′.requires=null

ξu,v · ζz′′ ≥ 1 (20)

Similarly, the following constraints ensure that each sensi-
tive connector is secured:

∀z ∈ CConn, z′ ∈ CLink : ωz,z′ = ζz · ζz′ (21)

∀e ∈ ESW, e.sensitive :
∑

z∈C(e)
z.requires=null

ζz+

+
∑

z∈C(e)
z.requires=z′,null

ωz,z′ ·
∑

l∈EHW
z′∈C(l)

ηe,l+

+
∑

l∈EHW

∑
z′′∈C(l)

z′′.requires=null

ηe,l · ζz′′ ≥ 1 (22)

Altogether, the JPCP is equivalent to finding an assignment
for the variables in Table 2 and the auxiliary binary variables
ωz,z′ , which fulfills constraints (10)-(17) and (19)-(22).
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Algorithm 1 Solving the JPCP
1: Furnish each server with a (fictive) link to itself
2: Transform JPCP into MIQP
3: Solve MIQP
4: Transform result of MIQP to a solution of JPCP
5: (Optional) Deactivate unnecessary security controls

3.2. Solution procedure
The steps of the proposed algorithm are summarized in Al-

gorithm 1, and explained in the following.
First, each server is furnished with a fictive link with infi-

nite capacity that connects the server with itself, in line with
Equation (6). Moreover, since these new links do not represent
real vulnerabilities2, they should be regarded as uncondition-
ally protected. For this reason, each new link is associated with
a (fictive) link security control that is always on, requires no
connector security control, and has 0 overhead.

In the next two steps, the mixed integer quadratic program
is created and solved using an appropriate solver. For this pur-
pose, we use the Gurobi Optimizer3, a popular mathematic pro-
gramming solver. Hence, the MIQP is created and solved using
the API provided by Gurobi.

In the fourth step, the result of Gurobi is processed. There
are two possibilities for the result. The first possibility is that
the MIQP is not solvable, which means that the original JPCP is
also not solvable. This can happen for example if the capacity
of the infrastructure is not sufficient or if the available secu-
rity controls are insufficient to secure every sensitive compo-
nent and connector. If the problem is unsolvable, our algorithm
outputs this information, so that software developers or system
administrators can implement appropriate changes in the appli-
cation or in the infrastructure to enable a secure placement. The
other possibility is that the solver returns an assignment to the
variables that satisfies all constraints. From this, the solution of
the JPCP can be decoded:

• The values of the ζz variables directly specify which se-
curity controls to activate.

• For the ξu,v variables, constraint (10) ensures that there is
exactly one v ∈ VHW for each u ∈ VSW for which ξu,v = 1.
This v is the server on which component u is to be placed.
The placement of connectors arises from the ηe,l variables
in an analogous way.

After this step, a solution of the JPCP has been determined
(if one exists), so the solution procedure could be finished. How-
ever, for practical reasons, we propose to add a further post-
processing step, in which unnecessary security controls are de-
activated. The reason for this step is that the solution delivered

2Note that the server may be vulnerable. However, this must be addressed
in the context of the placement of the components on the server. If two compo-
nents exchanging sensitive information – which makes the components sensi-
tive as well – are mapped to this server, then the components or the server must
offer appropriate security controls. Thus, the information exchange between
the two components does not lead to further risks.

3http://www.gurobi.com

Table 3: Activation of the security controls in different solutions in the example

solution nr. component security control server security control

1 active not active
2 not active active
3 active active

Algorithm 2 Deactivating unnecessary security controls
1: for all z ∈ Call do
2: if z.activated = true and z is unnecessary then
3: z.activated← false
4: end if
5: end for

by the solver may define the activation of security controls that
are not strictly necessary. For example, consider a single sensi-
tive component with a CPU requirement of 5 units and a single
server with a CPU capacity of 10 units. Assume that the com-
ponent can be protected either by a component security control
or by a server security control, both of which add an overhead
of 1 unit to the CPU requirement of the component. In this
case, the JPCP has three solutions, as shown in Table 3. All
three solutions satisfy each constraint (in particular, the capac-
ity of the server is not overloaded and the sensitive component
is protected in each case), and are hence each valid. The solver
may return any one of these solutions, since each of them is a
correct solution of the JPCP. However, the third solution can
be considered less practical than the others, because it uses two
security controls although one would be sufficient, leading to a
waste of resources.

We formalize this phenomenon with the following notion:

Definition 1. In a solution of the JPCP, an active security con-
trol z is called unnecessary, if after deactivating z, still all con-
straints of the JPCP are satisfied.

Deactivating unnecessary security controls does not influ-
ence the correctness of the solution, but helps to avoid the un-
necessary waste of resources. Therefore, we post-process the
solution by iterating through all activated security controls and
if some could be deactivated without violating the constraints,
then we deactivate them. This procedure is shown in Algorithm
2.

4. Case study

We implemented our approach in the form of a Java pro-
gram4, using the Gurobi Optimizer as an external solver.

To demonstrate the applicability of our approach and il-
lustrate its operation, we applied it to the cloud-based variant
of the CoCoME case study [24]. CoCoME models cloud ser-
vices that support the typical trading operations of a supermar-
ket chain, like the management of stores, inventory manage-
ment, and product dispatching. As such, CoCoME offers a real-
istic case study covering computationally intensive application

4The implementation is publicly available from https://sourceforge.

net/p/vm-alloc/sspc.
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Figure 2: Example application architecture

components, data transfers among the components, and secu-
rity concerns.

The architecture of the CoCoME application in terms of
components and connectors is shown in Figure 2. In our case
study, we assume that all components and all connectors are
sensitive. This is based on the fact that the data processed by
the components and exchanged along the connectors give in-
sight into the trade secrets associated with the operation of the
supermarket chain, such as logistics details and pricing policies.
If the application were running without protection on a pub-
lic infrastructure, a competitor could gain access to this infor-
mation. In addition, several components and connectors could
also leak personal information about customers and employees
which need to be protected according to the applicable data pro-
tection regulation.

The following security controls are considered:

• Hardware-based: some servers are in a private cloud, be-
hind the corporate firewall. These servers, as well as the
links among them, are assumed to be secure.

• Software-based: some components can be protected by
using an encrypted database like CryptDB for storing data.
Using CryptDB, Popa et al. observed overhead in the
range of 14.5%-26.0% [25], hence we also use overhead
values in this range.

• Software-based: connectors can be protected by using
encryption. Using AES-256 encryption, Pawar et al. re-
ported bandwidth overhead in the range of 13.8%–51.4%
depending on the used communication technology [26],
hence we also use overhead values in this range.

• Hardware- and software-based: some servers offer secure
hardware enclaves, which some components can lever-
age. Specifically, we assume the use of Intel SGX (Soft-
ware Guard Extensions5) enclaves, provided by modern
Intel processors. When using SGX enclaves, Arnautov
et al. experienced CPU overhead in the range of 16.4%–
62.9%, depending on application type [27].

Figure 3 depicts the target infrastructure. Servers s1 and s2
as well as the link between them are in the private cloud and
thus considered secure. Servers s4 and s5 offer SGX enclaves,
so that application components that support SGX can leverage
them for protection. Server s3 offers no protection. Also, all
links other than the one inside the private cloud are not pro-
tected.

5https://software.intel.com/en-us/sgx

Private cloud Public cloud

s2s1

s4

s5

s3

SGX

SGX

Figure 3: Example infrastructure

Table 4: Component security controls

Name Security control Dependency Overhead

storeManager
bankInterface
loyalty sgx-use sgx 40%
—"— encryption 20%
reporting encryption 20%
inventory encryption 30%
pickupShop sgx-use sgx 40%
dataManager sgx-use sgx 50%
productDispatcher sgx-use sgx 60%

The security controls offered by the components are shown
in Table 4. The storeManager and bankInterface components
offer no software-based security control, while the loyalty com-
ponent offers two possible security controls, and the others offer
one. The security control “sgx-use” depends on the hardware-
based security control “sgx”. Table 5 shows the software-based
security controls for the connectors. Each connector offers the
possibility to use encryption, albeit with different overhead val-
ues. None of the component or connector security controls is
marked as “always on”.

For the sake of simplicity, we assume that each component
and each connector has the same base size, namely 10 units.
Moreover, each server has the same capacity κserver and each
link has the same capacity κlink.

To demonstrate the way the problem is modeled, Figure 4
depicts a part of the JPCP instance corresponding to the case
study, as an instantiation of the general model shown in Fig-
ure 1. In particular, it shows the reporting and loyalty compo-
nents and the connector between them, as well as all the com-
ponent and connector security controls provided by these. In
addition, the servers s1 and s4 are shown, as well as the link
between servers s1 and s2, together with the server and link

Table 5: Connector security controls

Connector Security control Overhead

storeManager↔ bankInterface encryption 30%
storeManager↔ reporting encryption 10%
storeManager↔ inventory encryption 20%
loyalty↔ reporting encryption 20%
reporting↔ inventory encryption 30%
pickupShop↔ inventory encryption 20%
inventory↔ dataManager encryption 10%
inventory↔ productDispatcher encryption 10%
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loyalty : 
Component

cpuReq=10
sensitive=yes

connects

reporting-loyalty : 
Connector

bwReq=10
sensitive=true

encryption : 
ConnectorSecurityControl
bwReqIncrement=2
alwaysOn=false
activated=false

provides

s4 : Server

cpuCap: κserver

sgx-use : 
ComponentSecurityControl

cpuReqIncrement=4
alwaysOn=false
activated=false

sgx : ServerSecurityControl

cpuReqIncrement=0
alwaysOn=true
activated=true

requires

provides

provides

reporting : 
Component

cpuReq=10
sensitive=yes

connects

encryption : 
ComponentSecurityControl

cpuReqIncrement=2
alwaysOn=false
activated=false

provides

encryption : 
ComponentSecurityControl

cpuReqIncrement=2
alwaysOn=false
activated=false

provides

s1 : Server

cpuCap: κserver

private : 
ServerSecurityControl

cpuReqIncrement=0
alwaysOn=true
activated=true

provides

s1-s2 : Link

bwCap: κlink

private : 
LinkSecurityControl

bwReqIncrement=0
alwaysOn=true
activated=true

provides

connects

Figure 4: Excerpt of the JPCP instance corresponding to the case study (using UML object diagram notation)

s1
[private]

s2
[private]

dataManager
[]

bankInterface
[]

productDispatcher
[]

loyalty
[]

reporting
[]

[]

storeManager
[]

[]

inventory
[]

[]

[]

[][]

pickupShop
[]

[]

[]

Figure 5: Results for κserver = 60 and κlink = 40

security controls provided by these.
Figure 5 shows the deployment created by our program for

κserver = 60 and κlink = 40. In this and the next figures, the
gray boxes represent the servers, with their names in boldface,
followed by their security controls in brackets. The links are not
shown explicitly to avoid clutter. The ovals are the components,
containing their names, and in brackets the activated security
controls. The edges between the ovals are the connectors. Here,
too, only the activated security controls are given in brackets.
As Figure 5 shows, the given settings are quite loose, so that the
whole application can be placed on the two servers in the private
cloud, requiring no further security controls to be activated.

Figure 6 shows the deployment created for the slightly tighter
capacities of κserver = 49 and κlink = 37. (These and the follow-
ing numbers for the parameters κserver and κlink were carefully
selected for demonstration purposes, such that each new pair
of parameter values leads to a new deployment, and each inter-

s1
[private]

s2
[private]

s3
[]

dataManager
[]

bankInterface
[]

productDispatcher
[]

loyalty
[encrypted]

reporting
[encrypted]

[]

storeManager
[]

[] inventory
[]

[]

[encr]

[] []

pickupShop
[]

[]

[encr]

Figure 6: Results for κserver = 49 and κlink = 37

esting case is covered.) In this case, the resources of the pri-
vate cloud are not sufficient anymore, so that some components
have to be spilled to server s3 in the public cloud. The com-
ponents and connectors within the private cloud still need no
software-based security controls. However, encryption is auto-
matically activated for the two components placed on s3 as well
as for the two connectors running between s2 and s3 (for con-
nectors, encryption is abbreviated as “encr”). This is necessary
since neither server s3 nor the link between s2 and s3 offers any
hardware-based security control.

Further decreasing the server and link capacities to κserver =

39 and κlink = 35, we obtain the deployment shown in Figure 7.
Clearly, the two previous deployments would not be appropriate
for these capacities. It can be checked that the new deployment,
which makes heavy use of the servers in the public cloud, satis-
fies all constraints. In particular, each component that is placed
on a server in the public cloud is protected either by encryption
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Figure 7: Results for κserver = 39 and κlink = 35
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Figure 8: Results for κserver = 35 and κlink = 30

or by SGX enclaves. The “sgx-use” security control is used in
conjunction with SGX-capable servers.

With an even stricter setup of κserver = 35 and κlink = 30,
the previous deployment would not be valid anymore because
the link between servers s2 and s3 would be overloaded by the
three connectors, due to the overhead incurred by their encryp-
tion. For this setup, we obtain a deployment that uses all five
available servers, as shown in Figure 8. This deployment is
more balanced, leading to at most two connectors for each link,
thus fitting the lower capacity of the links.

Obviously, after some point, a valid deployment becomes
impossible. For example for κserver = 28 and κlink = 24, the
program’s answer is that there is no valid deployment.

The case study has shown how complex the interdependen-
cies between the placement of the components and the config-
uration of security controls can become even for applications
of modest size. For human experts, finding a correct deploy-

Table 6: Test data for scalability experiments

Parameter Value

Server CPU capacity 50
Server security controls 50% unconditional, 50% SGX
Link bandwidth (BW) 40
Link security controls 50% unconditional
Hardware topology random tree
Sensitive components 100%
Component CPU requirement 10
Component security controls 100% SGX-capable,

can be turned on/off, penalty=5
Sensitive connectors 100%
Connector BW requirement 10
Connector security controls 100% supports encryption,

can be turned on/off, penalty=2
Software topology random tree

ment in such cases may be very challenging. In contrast, our
approach automatically delivers a correct deployment (or deter-
mines that this is not possible).

5. Scalability

While the proposed approach is guaranteed to always de-
liver correct results, and the case study has shown the funda-
mental applicability of the approach to the deployment of re-
alistic applications, scalability might still be a barrier to the
practical application of our approach. In particular, there are
nm possibilities to map m software components on n servers.
Additionally, if each software component provides one security
control that can be turned on or off, this leads to 2m possible
configurations for the activation of the security controls, result-
ing in a search space of size nm · 2m.

In practice, the solver can be more efficient than this theo-
retical bound. To investigate the scalability of our approach, we
performed a number of controlled experiments6 with syntheti-
cally generated test problems of different size.

We generate n servers with CPU capacity 50 (see also Ta-
ble 6). Each server has either – with probability 0.5 – an un-
conditional hardware-based security control (the server is in a
trusted environment, e.g., the private cloud), or supports SGX,
which can be exploited by appropriate software components.
The servers are connected in a random tree topology. Each
link has bandwidth 40. Each link has, with probability 0.5,
an unconditional hardware-based security control. We gener-
ate m software components; each is considered sensitive and
each has a CPU requirement of 10. Moreover, each compo-
nent is assumed to be able to use SGX. This security control
can be turned on or off. When it is activated, it increases the
CPU requirement of the component by 5. The components are
also connected in a random tree topology. Each connector has a

6The measurements were performed on a Lenovo ThinkPad X1 laptop with
Intel Core i5-4210U CPU @ 1.70GHz and 8GB RAM. The Gurobi Optimizer
was executed with a timeout of 300 seconds.
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Figure 10: Execution time for increasing number of components, while the
number of servers is constant

bandwidth requirement of 10, is sensitive, and can be protected
by encryption. The encryption of a connector can be switched
on or off. When it is activated, it increases the bandwidth re-
quirement of the connector by 2.

Figure 9 shows the execution time for an increasing num-
ber n of servers, while the number of components is fixed at
m = 30. The number of servers increases from 10 to 100 in in-
crements of 10. For each data point, we performed 10 measure-
ments. The boxes in the figure go from the 1st to the 3rd quartile
of the results, with the mean marked with a horizontal line in
the box, and the whiskers going to the minimum respectively
maximum of the results. For few servers (especially for n = 10,
to some extent also for n = 20), the mean execution time is
low, but the variance of the execution time is quite high. This is
because these problem instances are small, but can sometimes
still be challenging, since the infrastructure has hardly enough
capacity to host all the software components. For a higher num-
ber of servers, the mean execution time scales roughly linearly
with n. Even for 100 servers, the mean execution time is below
30 seconds.

Figure 10 shows the execution time for a constant number
of n = 30 servers, with the number of components increasing

from 10 to 80 with increments of 10. The execution time grows
rapidly with an increasing number of components (note the log-
arithmic scale on the vertical axis). Until about 50 components,
execution is quite fast (for 50 components, the median execu-
tion time is 44.9 seconds), but afterwards the solver is stopped
increasingly often by the 300-seconds timeout.

In conclusion, the proposed algorithm is reasonably fast for
applications with a limited number of components (up to 50
components), even for large infrastructures. If the number of
components is higher, scalability becomes a problem. Thus our
algorithm is appropriate for coarse-grained decompositions of
applications. Algorithmic improvements to cope with a higher
number of components could be a goal for future research. For
example, the proposed method could be used in a divide-and-
conquer approach to determine the placement and configuration
of parts of a large-scale application.

6. Related work

To the best of our knowledge, the problem formulation and
the solution approach presented in this paper are novel. Nev-
ertheless, there are several papers on automated application de-
ployment taking into account security requirements that are re-
lated to our work.

Existing approaches explored different ways of capturing
and enforcing security requirements during software deploy-
ment. A simple way of representing security requirements of
application components and security capabilities of infrastruc-
ture resources is by using security levels. Goettelmann et al.
used this approach for specifying security constraints, and then
applied a combination of a greedy algorithm and tabu search for
optimizing the deployment [28]. Wen et al. also used a similar
security model and a custom heuristic algorithm for deployment
optimization [29, 30]. Mezni et al. also adopted a similar secu-
rity model and used particle swarm optimization to find a good
deployment [31].

Our security model can also be cast in this terminology. We
use two security levels for the security requirements of appli-
cation components and connectors (sensitive vs. not sensitive)
and two security levels for the security capabilities of the re-
sources (protected vs. not protected). In practice, using a more
fine-grained classification is difficult as it is hard to obtain real-
istic values for the security capabilities of resources especially
in public clouds. Indeed, estimating the trustworthiness of re-
sources is a research topic on its own [32, 33], which is orthogo-
nal to our work. On the other hand, our security model is more
general in the sense that it also allows the dynamic activation
of security controls. Moreover, as opposed to the algorithms
proposed by Goettelmann et al., Wen et al., and Mezni et al.,
our algorithm is guaranteed to always find a secure deployment
whenever such a deployment exists.

Instead of security levels, a more precise way of capturing
security constraints is by defining the specific security controls
required by the different application components and connec-
tors, respectively offered by the different hardware resources.
Massonet et al. used this approach for specifying security con-
straints [34]. They proposed a method based on constraint pro-
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gramming that finds an optimized deployment plan respecting
the given security requirements. Forti et al. also used a similar
approach, extended with probabilities and trust relations among
stakeholders [35]. The model underlying these approaches is
limited to security controls offered by the infrastructure, whereas
our model can also capture the possible activation of security
controls offered by the application itself.

In our earlier work, we devised custom heuristics to find
a deployment, taking into account a specific security control,
namely secure hardware enclaves [36]. However, that approach
is only a heuristic, whereas the approach presented here is guar-
anteed to always find a suitable deployment, whenever such
a deployment exists. Also, the presented approach supports a
much wider range of security controls.

A different kind of security constraint, taken into account
in some existing papers, is relating to the colocation of spe-
cific application components on the same cloud resource. Since
colocation in a multi-tenant system allows side-channel attacks,
limiting colocation can enhance security. Fdhila et al. consid-
ered such constraints when partitioning and deploying compos-
ite applications to federated clouds [37]. Agarwal and Duong
also focused on the risks of colocation in public infrastructure
clouds [38]. Our approach could be easily extended with such
constraints, which is an opportunity for further research.

Tang et al. considered the service selection problem with the
aim of minimizing the risk of privacy violations [39]. While
that problem also bears some resemblance to ours, there are
significant differences. In particular, the approach of Tang et al.
does not consider security controls. Moreover, that approach is
a heuristic, with no guarantees.

Also other problems related to automated software deploy-
ment have been addressed. In particular, several authors in-
vestigated the problem of scheduling a workflow using the re-
sources of federated or hybrid clouds [40, 41]. Another related
area is the allocation of massively parallel tasks using cloud re-
sources [42, 43]. However, these papers focus only on costs
and performance or execution time, without considering secu-
rity requirements. In contrast, our approach also guarantees the
fulfillment of security requirements. Moreover, in the above
works the communication structure between tasks is either con-
strained to be acyclic, which is an unrealistic assumption for
many applications, or not considered at all. In contrast, our ap-
proach works with arbitrary communication topologies among
the components of an application.

Workflow scheduling was considered in conjunction with
data protection concerns by Wen et al. [44]. However, in that
work, data protection constraints are limited to the specification
of the allowed set of data centers for a task. Our approach is
much more general as it also supports the activation of security
controls. Data protection was also investigated by Amato et al.,
but from a monitoring point of view [45], which is orthogonal
to our work.

In fog computing, security and privacy concerns also play
an important role [46]. When placing applications on a fog in-
frastructure, several approaches take security and privacy con-
cerns into account by means of constraining the placement of
certain application modules to trusted hosts [47, 2, 8]. In con-

trast, our approach supports a more sophisticated handling of
security and privacy constraints, by specifying that a software
component can only be placed on an otherwise insecure node
if the software component protects itself through appropriate
software-based security controls.

7. Discussion

The aim of this section is to discuss some of the limitations
of the presented approach and possible future directions to ad-
dress those limitations.

Our problem model handles one type of interaction between
security controls: that two security controls must be used to-
gether to achieve a security goal. However, there can also be
other types of interactions between security controls. E.g., a se-
curity control may be effective only in conjunction with at least
one from a set of other security controls. As a future research
direction, the use of Boolean formulae could be investigated as
a means of specifying which combinations of security controls
can be considered acceptable.

Another issue not covered by the present paper is related to
the numbers in the problem model (CPU requirements of com-
ponents, CPU capacity of servers, bandwidth requirements of
connectors etc.). It is assumed by the proposed approach that
these numbers can be obtained as input. This is in line with the
assumptions of other related approaches [29, 31, 34]. The num-
bers may stem from several sources, such as from estimation by
system designers based on their previous experience, from the-
oretical analysis, or from measurements (benchmarking, profil-
ing). Moreover, they may represent typical-case or worst-case
behavior, depending on system priorities and requirements. The
way how these numbers are determined is an important field of
research on its own, which is orthogonal to the work presented
in this paper.

As already mentioned, the presented formulation of JPCP is
not an optimization problem. If there are several solutions satis-
fying all constraints, they are considered to be equally appropri-
ate. As future work, different optimization objectives could be
introduced. The optimization objective depends on what is im-
portant in the specific application area, and may include finan-
cial costs, energy consumption, availability, performance etc.
As long as only one optimization objective is concerned, the
proposed approach can be extended easily. If more than one
optimization objective is to be considered, this may require the
use of multi-criteria optimization techniques.

8. Conclusions

In this paper, we addressed the problem of joint placement
and configuration of applications during their deployment, fo-
cusing on security requirements. We have argued that on the
one hand, the activation of software-based security controls leads
to overhead that impacts the placement possibilities, and on the
other hand, the placement of the components influences the
availability of hardware-based security controls for the appli-
cation components and thus also the need for software-based
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security controls. Because of these interdependencies, the joint
consideration of component placement and configuration of se-
curity controls is an important, but also highly complex prob-
lem. We formalized this problem and proposed an algorithm
for it, which is based on the conversion of the problem to a
mixed integer quadratic program. The practical applicability
of the suggested approach was demonstrated by applying it to
the deployment of the CoCoME application to a hybrid cloud.
Experimenting with different server and link capacities, it was
shown how our approach automatically finds different configu-
rations which satisfy all consistency, capacity, and security re-
quirements. Controlled experiments with problem instances of
different size showed that the execution time of our algorithm
is moderately influenced by the number of servers, but heavily
influenced by the number of components. In its current form,
the algorithm is reasonably fast for applications with about 50
components.

There are several promising directions for future research.
Conceptually, it would be interesting to extend the presented
approach with further types of requirements (e.g., anti-colocation
constraints) or with optimization objectives (e.g., minimizing
costs). Algorithmically, improving the performance of the al-
gorithm – especially for applications with many components
– is an important goal. Practically, we plan to integrate the
presented approach into established deployment toolchains, for
instance using TOSCA (Topology and Orchestration Specifica-
tion for Cloud Applications) as a standardized format for de-
scribing deployments [48, 49].
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