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1. Introduction 

Recently, I have been working on a survey about algorithmic approaches to virtual machine 

allocation in cloud data centers [11]. While doing so, I was shocked (again) to see how often the 

notions of NP-completeness or NP-hardness are used in a faulty, inadequate, or imprecise way in the 

literature. Here is an example from an – otherwise excellent – paper that appeared recently in IEEE 

Transactions on Computers, one of the most prestigious journals of the field: “Since the problem is 

NP-hard, no polynomial time optimal algorithm exists.” This claim, if it were shown to be true, would 

finally settle the famous P versus NP problem, which is one of the seven Millenium Prize Problems 

[10]; thus correctly solving it would earn the authors 1 million dollars. But of course, the authors do 

not attack this problem; the above claim is just an error in the paper. 

Some of these errors are simply annoying, but others have profound impact on how algorithmic 

problems in computer science are approached, and consequently, how well those problems are 

solved. 

The fact that NP-hardness is often mentioned in the computer science literature is no accident. 

Computer science is indeed full of tough algorithmic problems, like hardware verification, multi-

processor scheduling, or frequency assignment, just to name a few relevant fields. It is a general 

experience that these problems are computationally hard: algorithms that solve them exactly tend to 

be rather slow. In a way, this practical experience is formalized by the notion of NP-hardness, and 
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hence it has become a popular term among computer scientists. From this perspective, it is a 

gratifying development that the notion of NP-hardness is now enjoying wide-spread awareness. 

On the other hand, there seem to be some common misunderstandings related to NP-hardness. 

Despite the appealing similarity to the informal notion of hardness, the term NP-hardness is not 

exactly the same. It is a well-defined mathematical notion. To claim that a given problem is NP-hard, 

one must prove it. Also, it is crucial to understand what it implies that a given problem is NP-hard 

(and what it does not imply) and most importantly, how NP-hard problems can be approached. 

The aim of this paper is to showcase some of the bad practices that are currently unfortunately wide-

spread in the computer science literature, to show why they are wrong and how these pitfalls can be 

avoided. By talking about these “sins,” my aim is certainly not to rant about those who committed 

them (I must confess to be also guilty of having committed some of these sins myself), but to 

improve the general understanding of this important part of our profession. The goal is thus a deeper 

understanding of NP-hardness and its consequences, in particular those small but important details 

that are often misunderstood. 

2. About NP-hardness 

There are many good books with extensive coverage of NP-hardness, see e.g. [8],[12]. Here I give just 

a very short introduction to the main concepts, without any rigorous definitions or theorems. 

One of the key assumptions underlying the theory of computational complexity is that an algorithm 

can be considered efficient if and only if it runs in polynomial time, that is, the number of steps it 

takes on inputs of size N is not more than 𝑐1 ∙ 𝑁𝑐2, where c1 and c2 are appropriate constants. For 

example, the well-known algorithm of Dijkstra to compute shortest paths in a graph makes at most 

𝑐 ∙ 𝑛2 steps, where 𝑛 is the number of vertices of the graph [4]; therefore, it is an efficient algorithm. 

The set of decision problems (i.e., problems with yes/no output) for which a polynomial-time 

algorithm exists, is denoted by P. For example, the problem whether a number (the input) is divisible 

by 3 is in P. 

The problem class NP has a more sophisticated definition. Basically, a decision problem is in NP if for 

all inputs for which the answer is ‘yes,’ this positive answer can be verified efficiently (i.e., in 

polynomial time), given some extra information, called the witness for the given input; the size of the 

witness must be polynomial with respect to the size of the input. For example, the problem whether 

a number is composite is in NP. The witness for 𝑚 being composite is a pair of numbers 𝑎, 𝑏 such 

that 𝑚 = 𝑎 ∙ 𝑏, 1 < 𝑎 < 𝑚, and 1 < 𝑏 < 𝑚. If such a witness is available, it can be efficiently verified 

that 𝑚 = 𝑎 ∙ 𝑏, 1 < 𝑎 < 𝑚, and 1 < 𝑏 < 𝑚 indeed hold and thus 𝑚 is really composite. 

As can be seen, the requirements for being in NP are weaker than for being in P: (i) the solution does 

not have to be found, only verified; (ii) for the verification, additional information (the witness) can 

be used. It can be easily proven that each problem in P is also in NP, or formally: 𝑃 ⊆ 𝑁𝑃. It is widely 

believed that P and NP cannot be the same, so that P is a non-trivial subset of NP. This, however, has 

not been proven yet, despite many efforts. The question whether 𝑃 = 𝑁𝑃 or 𝑃 ⊊ 𝑁𝑃 is exactly the 

famous Millenium Prize Problem mentioned above. It is conjectured that 𝑃 ⊊ 𝑁𝑃, but we cannot be 

sure. 
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In order to define NP-completeness, one more notion is necessary. A reduction of problem L1 to 

problem L2 is a function f with the following properties: (i) f can be computed in polynomial time, (ii) f 

maps each input of L1 to an input of L2, and (iii) for each input x of L1, the answer of L1 on input x is 

‘yes’ if and only if the answer of L2 on input f(x) is ‘yes.’ 

As an example, consider the k-coloring problem, where k is a fixed positive integer. The input is a 

graph and the question is whether the vertices of the graph can be colored with k colors such that 

adjacent vertices have different colors. A possible reduction from the 3-coloring problem to the 4-

coloring problem is the following. From an input of 3-coloring – a graph G – we construct an input of 

4-coloring – another graph G’ – by adding a new vertex v to it and connecting v to each vertex of G by 

an edge. Clearly, this transformation can be carried out in polynomial time. Thus it is clear that the 

first two properties of the reduction are satisfied. The third is also not hard to prove: if G is colorable 

with 3 colors, then G’ can be colored with 4 colors using the 3-coloring of G and the fourth color for 

v. If, on the other hand, there is a 4-coloring of G’, then in such a coloring, the vertices of G must all 

have colors that differ from the color of v; thus, G must be 3-colorable. 

Intuitively, the existence of a reduction of problem L1 to problem L2 means that L1 cannot be 

significantly harder than L2. Hence the reducibility relation is a useful tool to identify the hardest 

problems within NP. However, finding a reduction from one problem to another and proving the 

correctness of the reduction is in general a non-trivial task. 

Now everything is in place for the main definitions. A problem is NP-hard, if all problems in NP can be 

reduced to it. A problem is NP-complete if it is NP-hard and at the same time also a member of NP. 

NP-complete problems can be thought of as the most difficult problems within NP, in the following 

sense: if an NP-hard problem turns out to be in P, then 𝑃 = 𝑁𝑃 would follow. In other words, if 

𝑃 ≠ 𝑁𝑃, then there can be no polynomial-time exact algorithm for any of the NP-hard problems. 

(The term ‘exact algorithm’ means an algorithm that always delivers the correct answer.) In yet other 

words, determining whether a polynomial-time exact algorithm exists for an NP-complete problem is 

equivalent to the P versus NP problem. 

3. Misconceptions 

Most of the misconceptions that I identified can be grouped into two categories: those relating to 

establishing that a problem is NP-hard and those related to the consequences of NP-hardness. And 

the first one is about the name NP itself: 

Misconception 1. NP means non-polynomial. 

The name NP actually stands for non-deterministic polynomial-time. In order to precisely define P 

and NP, or even the notion of “algorithm,” a formal model of computation is necessary. For this 

purpose, theoretical computer science traditionally uses so-called Turing machines: abstract 

automata with formally defined syntax and semantics, named after famous scientist Alan Turing. 

Turing machines have several different variants, including deterministic and non-deterministic Turing 

machines. P is the class of problems solvable by deterministic Turing machines in polynomial time, 

while NP is the class of problems solvable by non-deterministic Turing machines in polynomial time. 
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The main message is that NP does not mean non-polynomial. To the contrary, it also means 

polynomial, but in a relaxed sense. 

Establishing NP-hardness 

Proving that a problem L is NP-hard involves showing a reduction from a known NP-hard problem to 

L [8]. Proving that L is NP-complete additionally involves proving that it is in NP. In many practical 

cases, the latter step is relatively easy. (It does require L to be a decision problem though, whereas 

also optimization problems can be NP-hard. Nevertheless, most NP-hard optimization problems can 

be turned easily into an NP-complete decision problem. For example, the problem of finding the 

longest path in a graph can be turned into the following decision problem: the input is a graph and a 

number k and the question is whether there is a path of length at least k in the graph.) 

In computer science papers, many problems are claimed to be NP-hard or NP-complete, but few of 

these claims are actually proven. This is bad practice because not everything that looks to be a 

difficult problem at first sight is actually NP-hard; the only way to make sure that a problem is NP-

hard is by proving it. 

Misconception 2. If the search space is exponential, then the problem is NP-hard. 

There is some connection between a problem's exponential search space and its being NP-hard, but 

this connection is far from being an implication. For many combinatorial problems, there is a trivial 

algorithm, which works by exhaustively checking all possibilities, i.e., searching the whole search 

space. Typically, this trivial algorithm has an exponential runtime. For example, in one possible 

formulation of the virtual machine allocation problem mentioned in the introduction, the input 

consists of a set of 𝑛 virtual machines (VMs) with their sizes and a set of 𝑚 physical machines (PMs) 

with their capacities, and the question is whether there is a mapping of VMs to PMs that does not 

overload any PM. The trivial approach here would be to try all the 𝑚𝑛 possible mappings of VMs to 

PMs and check for each whether it leads to an overload. 

For some NP-hard problems, we do not know of any exact algorithm that would have a significantly 

better worst-case runtime than this kind of trivial algorithm. 

However, the size of the search space alone does not reveal much about the problem's real 

complexity. Problems with an exponential search space may admit a polynomial-time algorithm. As 

an example, consider the problem of computing the shortest path between two vertices in a 

complete graph with positive edge weights. This problem can be solved in polynomial time [4]. On 

the other hand, there are exponentially many paths between two vertices in a complete graph, so if 

we mean by search space the set of all paths between the two vertices, then the search space has 

exponential size. The trick is that by making use of the combinatorial structure of the problem, it is 

possible to devise an algorithm to find the optimum efficiently, without having to traverse the whole 

search space. If, instead of this, we used a brute-force approach to check the whole search space, 

leading to an exponential-time algorithm, it would just mean that we have not understood the 

combinatorial structure of the problem well enough, not that the problem were NP-hard. 

It should also be noted that the search space is typically not an intrinsic property of the problem; 

rather, defining a search space may be a first step in solving the problem. There can be multiple ways 

to define the search space, and the size of the search space may also depend on this definition. 
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Misconception 3. Adding more constraints to a problem makes it computationally harder. 

Specifically, adding more constraints to an NP-hard problem results in a problem that is also NP-hard. 

This misconception seems to stem from the erroneous belief that NP-hard problems are the ones 

that are “hard to solve,” (i.e., the ones for which it is hard to find a solution) because intuitively it 

seems clear that adding more constraints makes it harder to solve the problem. However, NP-

hardness is more subtle. For a decision problem, our aim is not to solve it (find a solution), but to 

decide solvability (prove that a solution exists or that no solution exists). This is a big difference, 

because adding more constraints may make it easier to prove that no solution can exist. Similarly, for 

an optimization problem, the aim is not to solve it as well as possible (find a solution with cost as low 

as possible) but to solve it optimally (find a solution with minimum cost and prove that no solution 

with lower cost can exist). This is again a big difference, because adding more constraints may make 

it easier to prove that no solution with lower cost can exist. Moreover, adding constraints may make 

the search space significantly smaller or more structured so that a polynomial-time exact algorithm 

may become possible. 

Let us consider an example. In the Subset-Sum problem, the input consists of a set S of integers, and 

the question is whether there is a subset of S that adds up to 0. This problem is known to be NP-

complete. But let us look at the more constrained problem in which the subset with sum 0 must 

consist of at most 4 numbers. It is easy to devise a polynomial-time algorithm for this latter problem 

by simply enumerating all subsets of S with at most 4 members and checking for each whether its 

sum equals 0. This is indeed polynomial because it can be easily seen that the number of subsets of 

size at most 4 is bounded by 𝑐 ∙ |𝑆|4 for some constant 𝑐. Hence the more constrained problem is in 

P, so unless 𝑃 = 𝑁𝑃, it cannot be NP-complete. 

On the other hand, it is also possible that adding constraints makes a problem more complex. As an 

example, consider the Min-Cut problem. The input is an edge-weighted graph, and the aim is to find 

a partition of the vertices into two non-empty subsets such that the total weight of the edges 

between the two subsets is minimum. This problem can be solved in polynomial time. However, if we 

add the constraint that the difference between the size of the two subsets must be at most 1, then 

we obtain the Min-Bisection problem, which is known to be NP-hard, and so it is much harder than 

the original problem (unless 𝑃 = 𝑁𝑃). 

In summary, we must state that adding constraints to a problem affects its complexity in an 

unpredictable way. 

Misconception 4. Problems that are hard to solve in practice by an engineer are NP-hard. 

This is again an incarnation of the belief that NP-hardness is the same as being “hard to solve.” 

There may be many cases where this holds. Indeed, there are several problems in computer science, 

e.g., scheduling, resource allocation, verification, packing, and cutting problems, that are both NP-

hard and hard to solve in practice. 

However, there can be differences in both directions. A problem may be NP-hard but still typically 

easy in practice, or vice versa. An example for the first phenomenon is the bin packing problem, 

where the aim is to pack a set of items of different size into a minimum number of unit-capacity bins. 

This problem is NP-hard, but even simple greedy approaches like the First Fit Decreasing algorithm 
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are known to deliver near-optimal, and in many cases optimal, results. Thus, in many practical 

situations, this problem can be seen as an easy one, and quite big problem instances can be solved 

even manually. 

On the other hand, there are polynomial-time exact algorithms that are quite complex, in the 

everyday sense of the word. For example, deciding whether a number is a prime can be done in 

polynomial time, but with a quite complicated algorithm that is highly non-trivial to implement, let 

alone to carry out manually, and also not very efficient for large numbers [5]. 

Misconception 5. If similar problems are NP-hard, then the problem at hand is also NP-hard. 

This is one the most frequent misconceptions, and a typical reason why people do not feel the need 

to prove that a given problem is NP-hard. For example, there are many different flavors of scheduling 

problems, and most of them are NP-hard. Hence, given a new version of the scheduling problem, one 

tends to assume that it will be also NP-hard. In several cases, such an assumption turns out to be 

correct, but there is no guarantee for it. 

In some cases, small changes in the problem formulation can make the difference between a 

polynomially solvable problem and an NP-hard one. For example, deciding 3-colorability is NP-

complete, but deciding 2-colorability is in P. Some subtle differences can also arise from what is fixed 

and what is part of the problem’s input. For example, consider the problem whether there is a path 

of length at least k in a graph. If k is a fixed constant, then this problem can be solved in polynomial 

time. If, however, k is part of the input, then the problem is NP-complete. 

A similar phenomenon also appears in the context of the previously mentioned VM allocation 

problem, if an initial allocation of the VMs to the PMs is given, and at most k VMs are allowed to be 

migrated from one PM to another. If k is fixed, then the problem is in P, but if k is part of the input, 

then the problem is NP-hard. 

Of particular interest is the situation when the problem at hand is a special case of a known NP-hard 

problem, for example because the set of possible inputs is restricted. This does not prove anything 

because a special case of an NP-hard problem may or may not be NP-hard.  

For example, consider the Boolean satisfiability problem (SAT for short), in which the aim is to decide 

whether a formula consisting of Boolean variables, negation, disjunction, and conjunction operators 

evaluates to true for some assignment of logical values to the variables. SAT is known to be NP-

complete. If the input is restricted to formulae in conjunctive normal form (i.e., a conjunction of 

clauses, where each clause is a disjunction of literals, and a literal is a variable or its negation), and 

each clause consists of two literals, the resulting 2-SAT problem is in P. If, however, if the allowed 

clause length is three, the resulting 3-SAT problem is already NP-complete. Also, there are several 

other non-trivial subclasses of formulae for which SAT is known to be in P or NP-complete, 

respectively [1]. 

To see how non-obvious this issue can be in practice, let us consider an example from computer 

science: the register allocation problem. This arises when a compiler translates a program to machine 

code and while doing so, must map the variables of the program to registers of the processor. For 

each pair of variables, it can be determined whether or not they can be mapped to the same register 

(this depends on whether the so-called live ranges of the variables overlap). This gives rise to a graph 
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(the conflict graph), in which the vertices correspond to the variables, and two vertices are 

connected by an edge if they are not allowed to be mapped to the same register. Let us focus on the 

following version of the register allocation problem: given a conflict graph, decide if it can be realized 

with k registers. It can be seen easily that this problem is equivalent to graph coloring: a set of 

variables can be mapped to the same register if and only if they can get the same color, thus the 

variables can be mapped to k registers if and only if the conflict graph is k-colorable. 

Given that k-colorability is NP-complete, does this mean that the register allocation problem is also 

NP-complete? No! The above argument shows only that register allocation is equivalent to a special 

case of the k-colorability problem: register allocation is equivalent to k-colorability of the class of 

graphs that can represent the conflict graph of a program. Constraining the input of the k-colorability 

problem to a special graph class may make it polynomially solvable, so a crucial question remains 

before we can claim the NP-completeness of register allocation: whether the class of graphs 

representing conflict graphs of programs is general enough for k-colorability to be NP-complete on 

this class of input graphs. As it turns out, the answer to this question depends on the types of 

programs considered and the way the programs are represented at the compiler stage where 

register allocation is applied [2]. But for our purposes, the main observation is that casting the 

register allocation problem in terms of graph coloring is not enough to prove its NP-completeness 

because of the constrained set of possible inputs. 

To sum up: the NP-completeness of a problem is often not as clear as it may seem at first sight, or 

may not be true at all. Even if similar problems are known to be NP-hard, subtle details – like what is 

fixed and what is part of the input or limitations on the set of possible inputs – can have significant 

impact on the complexity of the problem. Therefore, it is good practice to analyze carefully whether 

the problem at hand is really NP-hard and if so, prove it rigorously. In the best case, we may realize 

that the problem is actually in P and end up with a polynomial-time exact algorithm for it. 

Consequences of NP-hardness 

Assuming that 𝑃 ≠ 𝑁𝑃, the fact that a problem is NP-hard implies that it is not in P. That is, there can 

be no polynomial-time exact algorithm for it. 

Misconception 6. NP-hard problems cannot be solved optimally. 

Although there are indeed problems that do not admit any algorithmic solution at all (e.g., the so-

called halting problem), but this has nothing to do with NP-hardness. Most of the decision and 

optimization problems, whether NP-hard or not, that naturally arise in computer science can be 

solved by exhaustive search in finite time. This may be very time-consuming, but it is possible. 

Misconception 7. NP-hard problems cannot be solved more efficiently than by exhaustive search. 

What is true is that there are some NP-hard problems for which no algorithm is known that would 

offer a substantially better worst-case performance guarantee than exhaustive search. An example is 

the already mentioned SAT problem. If 𝑛 is the number of variables, then the satisfiability problem 

can be trivially decided after checking all the 2𝑛 possible variable assignments. No exact algorithm is 

known for the problem with significantly better worst-case runtime, and it is conjectured that no 

such algorithm exists. This is known as the exponential-time hypothesis (which, if true, would also 

imply that 𝑃 ≠ 𝑁𝑃) [9]. 
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However, even for SAT, there are exact algorithms that perform very well on many practical problem 

instances. As documented by the regular SAT competitions, the best satisfiability solvers can cope 

with problem instances with hundreds of thousands of variables (stemming from applications like 

hardware verification) in acceptable time. The trick here is the difference between worst-case and 

typical-case complexity: whereas the worst-case complexity of all known exact algorithms for SAT is 

exponential, their typical-case complexity may be much better. 

There are also NP-hard problems for which we know exact algorithms whose worst-case complexity 

is much better than that of exhaustive search. An example is the knapsack problem, in which the 

input consists of 𝑛 items with weight 𝑤𝑖 and value 𝑣𝑖 (𝑖 = 1, ⋯ , 𝑛) and a capacity 𝐶 (the capacity of 

the knapsack), and the aim is to select a subset of the items with total weight at most 𝐶 and 

maximum total value. The trivial exhaustive search approach considers all 2𝑛 subsets of the items. 

However, an algorithm can be easily constructed using dynamic programming that uses only time 

proportional to 𝑛 ∙ 𝐶 [4]. This is a so-called pseudo-polynomial algorithm: its runtime is in general not 

polynomial with respect to the input's size (because 𝐶 can be exponentially high), but if 𝐶 is 

polynomially bounded, then it is a polynomial-time algorithm, and for many practical settings, it is 

significantly faster than checking all 2𝑛 possible subsets. 

Misconception 8. For solving NP-hard problems, the only practical possibility is the use of heuristics. 

(By heuristic, an algorithm is meant that has no formal guarantee on the quality of solutions it finds, 

just empirical evidence of its usefulness. Popular examples include metaheuristics like simulated 

annealing and genetic algorithms, as well as problem-specific proprietary heuristics.) 

This misconception is the one that has the most profound impact. Whether it is explicitly stated or 

not, whether NP-hardness is formally proven or not, it is very frequently used as an excuse for 

resorting to heuristic algorithms with no performance guarantee nor any theoretical underpinning. 

Of course, heuristics do play a very important role in computer science and for many algorithmic 

problems in practice, heuristics are indeed the best known way to solve them. However, the lack of 

formally proven bounds or other quality guarantees is a strong drawback, which may result in 

unexpected and unwanted behavior on new inputs on which the heuristic was not tested before. 

Therefore, heuristics should be used only if all else fails. Even NP-hard problems may be approached 

in several ways other than using heuristics. 

Assuming 𝑃 ≠ 𝑁𝑃, the NP-hardness of a problem precludes the existence of any algorithm that 

 quickly delivers 

 the correct result 

 for all inputs. 

It may be possible however that there is an algorithm that possesses two of these three desirable 

properties and also comes close to the third one: 

 Algorithms that quickly deliver the correct result for many inputs. Algorithms with 

exponential worst-case complexity but much better typical-case complexity, like the SAT 

solvers mentioned previously, fall into this category. They always deliver the correct result 

and are fast in typical cases; thus, they represent an advantageous alternative to heuristics. 

Other relevant algorithm classes include pseudo-polynomial algorithms, which are fast for 
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inputs in which all numbers are polynomially bounded, and fixed-parameter tractability 

results, i.e., algorithms whose runtime is polynomial if some parameter of the input is 

bounded [7]. 

 Algorithms that quickly deliver almost correct results on all inputs. In the case of 

optimization problems, approximation algorithms belong to this category. They work in 

polynomial time and their solution is guaranteed to be at most a given fraction worse than 

the optimum. For example, the previously mentioned First Fit Decreasing algorithm for the 

bin packing problem is guaranteed to use at most 11/9 ∙  𝑂𝑃𝑇 + 6/9 bins, where 𝑂𝑃𝑇 

denotes the optimum [6]. In the case of decision problems, randomized algorithms with 

bounded error probability fall into this category. For example, the Miller-Rabin primality test 

always gives correct answer for primes, and for composite numbers, the probability of a 

wrong answer after the test has been repeated 𝑡 times is less than (1/2)𝑡, which quickly 

converges to zero [5]. 

 Algorithms that deliver the correct result for all inputs in acceptable time. Examples of this 

category include moderately exponential-time algorithms, i.e., algorithms with a runtime of 

𝑐𝑛, where 𝑐 is not much greater than 1. Such algorithms can be very useful in practice if the 

input instances are not prohibitively large [3]. 

4. Conclusion 

In computer science papers, one often sees a line of thought like: “this problem is related to problem 

X, which is known to be NP-hard; therefore, this problem is also NP-hard; therefore, we devise a 

heuristic for it.” Now we can see that such a reasoning is wrong for two reasons. First, it may well be 

the case that the given problem is not NP-hard, e.g., it is equivalent to a polynomially solvable special 

case of problem X. Or maybe the problem formulation can be changed so that it becomes a 

polynomially solvable special case, for example by explicitly taking into account some additional 

constraints that arise from practical limitations (e.g., some numbers cannot be arbitrarily small or 

arbitrarily large). Second, even if the problem is indeed NP-hard, there may be several better 

alternatives than heuristics, e.g., approximation algorithms or pseudo-polynomial algorithms. 

Hopefully, a better understanding of what NP-hardness actually means and what it does not mean, 

will lead to better algorithms for the challenging algorithmic problems in computer science. 
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