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Abstract—The risk of unauthorized access to confidential data
is a major problem in cloud computing. In previous work, the
notion of risk patterns was introduced to capture configurations
of cloud systems that are prone to data protection issues. In
this paper, we devise a program for the automatic detection of
risk patterns in cloud system models. Our program makes use
of the Eclipse Modeling Framework, the model transformation
library Henshin, and the modeling workbench Sirius to (i) enable
security experts to describe cloud risk patterns in a compact way,
(ii) enable the efficient automatic detection of risk patterns in
the model of a cloud system, and (iii) support cloud experts in
experimenting with the security implications of different cloud
configurations. A case study and experiments demonstrate the
applicability and scalability of the proposed approach.

Index Terms—cloud computing; security; risk management;
data protection; graph pattern matching; run-time model

I. INTRODUCTION

Using cloud services usually involves storing and processing
data in the cloud. Some of those data may be confidential: for
example, personal data that must be protected according to the
EU General Data Protection Regulation (GDPR [6]), or trade
secrets that must be protected from competitors. Protecting
confidential data in the cloud is very challenging: customers
of cloud services lose control of their data when the data are
uploaded to the cloud, and numerous other parties – e.g., the
service provider and other tenants – may succeed in obtaining
unauthorized access to the data [16], [8].

Protecting data in the cloud is made difficult by the com-
plexity of cloud systems, which consist of many hardware and
software components [7]. These components are accessible by
different stakeholders and host different pieces of data. A ma-
licious attacker having access to one component may be able
to find a path of components through which it can get access to
confidential data. For instance, an Infrastructure-as-a-Service
(IaaS) provider may abuse its access to physical servers to
get control of applications running in virtual machines hosted
on those servers, and then use such an application to access
confidential data stored in a remote database. If such an attack
is anticipated, security engineers can protect against it by
using appropriate security controls (e.g., access control or
encryption). Each security control may block some potential
attack paths. However, the higher the complexity of a cloud
system, the more difficult it becomes to verify that every
potential attack path has been blocked. Thus, it is difficult to
assess the risk that certain types of attacks would be successful
in gaining unauthorized access to confidential data.
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A further issue that complicates data protection is the
dynamic nature of cloud systems. Workloads change, prices
change, servers fail, new servers become available, software
is upgraded etc., leading to frequent changes in the cloud. All
changes may impact the risk of data protection violations: a
change may eliminate a vulnerability, or may introduce a new
one. Hence, assessing data protection risks of a cloud system
is not a one-off activity, but must be carried out continually.
Moreover, it has to be automated to enable the quick detection
of newly arising data protection risks during system operation.

A promising approach for automatically detecting data pro-
tection risks in cloud systems uses so-called risk patterns that
capture sub-structures of cloud configurations associated with
high data protection risks [13]. Moreover, a model of the cloud
system is used and continually updated based on run-time
monitoring of the system to ensure that the model is always
in line with the real cloud system. [13] suggested that graph
pattern matching algorithms could be used to automatically
search for instances of the risk patterns in the model of the
cloud system. However, the approach was not implemented,
leaving several important questions open:

• Can graph pattern matching indeed be used for finding
risky cloud configurations?

• Can risk patterns be captured in a concise format?
• Is the search for risk patterns fast enough for online use?
In this paper, we address these gaps. We provide an im-

plementation of the risk pattern approach using the Eclipse
Modeling Framework (EMF), the model transformation library
Henshin, and the modeling workbench Sirius. We show that

• Graph pattern matching is not enough to capture all rel-
evant information. However, using more powerful EMF-
based model matching, we were able to implement the
automatic search for risk patterns.

• Risk patterns can be concisely captured in the form
of Henshin rules, which are both human-readable and
machine-readable.

• The search for risk patterns is quite fast: for cloud models
of up to 17,000 nodes, the search took less than 0.4
seconds on a commodity computer.

Therefore, our implementation yields significant new insights
regarding the applicability of the risk pattern approach.

II. PRELIMINARIES

In this section, we summarize information about the risk
pattern approach suggested in [13], [9]. The aim of the
approach is to detect cloud configurations that are associated
with an unacceptably high risk of data protection violations.
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Fig. 1. Example risk patterns from [13]

To achieve this aim, a model-based approach is suggested. A
cloud system model represents all entities that may be relevant
for data protection, including infrastructure elements like phys-
ical machines (PM) and virtual machines (VM), middleware
elements like application servers, application components,
databases, and stakeholders [9]. It is assumed that run-time
monitoring of the cloud continually updates the model so that
it is always in line with the actual cloud configuration.

Beside the cloud system model, the other key artefact is
a set of risk patterns. A risk pattern captures a problematic
sub-structure of a cloud configuration which, if contained in
the cloud system model, would lead to unacceptably high data
protection risks. Risk patterns are model fragments using the
same entities as the cloud system model, i.e., they are based on
the same meta-model, but have different semantics. While the
cloud system model describes a specific cloud configuration, a
risk pattern captures a problematic situation that may or may
not be found in the models of different cloud configurations.
A risk pattern specifies model elements (entities, relations,
attribute values) that must be present in a model to match
the given pattern, as well as model elements that must not
be present in a match. For elements not specified in the risk
pattern, their presence does not matter.

In [13], two sample risk patterns were presented, see Fig. 1.
The first risk pattern describes a situation in which sensitive
data of a data subject are stored in unencrypted form in a
database which is operated by a Platform-as-a-Service (PaaS)
provider, and the provider is not trusted by the data subject.
This is a high data protection risk since the untrusted provider
may gain unauthorized access to the sensitive data. The arc
labeled “No trust” is an example of the absence of a model
element being prescribed by the risk pattern, i.e., this risk
pattern will only match cloud models in which there is no trust
relation between the data subject and the PaaS provider. The
second risk pattern captures the situation in which sensitive
data about an EU citizen are processed by an application com-
ponent hosted outside the EU. This is problematic because the
GDPR stipulates that personal data should only be processed
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Fig. 2. Example cloud system model, in which the found risk pattern instances
are marked by dashed frames [13]

within the EU1. The risk pattern captures the chain of relations
from the data through the application component and a VM
to the PM, the location of which causes the problem.

In [13], the model of a real cloud system was used for
validation (see Fig. 2). The two risk patterns were manually
searched for in the model, and one instance of each of them
was found. This result was in line with the evaluation by
security experts.

The risk pattern approach is promising as it can capture
complex configurations that lead to data protection risks. This
can be seen on the two presented example risk patterns: the
data protection issues arise when the depicted configurations,
including the given entities, attributes, and relations, can be
found in a cloud model. However, existing work on the risk
pattern approach is on a high level of abstraction, in particular
lacking an implementation of the pattern matching process.

III. IMPLEMENTATION

For implementing the risk pattern approach, we need more
than just a graph pattern matching algorithm. As can be seen
from Figures 1–2, we need the ability to reason about not
only graph structures (vertices and edges), but also object
types, attribute values, and relationship types. The types can
also form an inheritance hierarchy. E.g., it was shown in [12]
that it is useful to extend the meta-model with two new types
AtomicComponent and CompoundComponent, both in-
heriting from Component. The Component element of Risk
Pattern B in Fig. 1 should then match any object of type
Component or of any of its sub-types.

Therefore, we decided to use the Eclipse Modeling Frame-
work (EMF [15]). EMF is a widely used modeling framework
based on the Eclipse environment and supported by a variety of
tools. In particular, Henshin is a model transformation library,

1Actually, the GDPR allows processing of personal data also in certain
countries outside the EU. In this respect, Risk Model B of [13] is not
fully accurate. The location attribute of the PM should be something like
“prohibited country” instead of “non-EU”



Fig. 3. Overview of our implementation of the risk pattern approach

also supporting pattern matching in EMF models [3]. EMF
also allows direct model manipulation with custom Java code.

Fig. 3 shows the interaction of the used tools (EMF,
Henshin, Sirius, MatchFinder) and the artefacts created or
used by the tools (meta-model, cloud system model, risk
patterns). With the help of EMF, we created a meta-model
of cloud configurations. This meta-model is stored in EMF’s
native format (Ecore). The risk patterns are modelled with
the Henshin editor in the form of Henshin rules. Pattern
matching and the handling of found matches are performed
by the MatchFinder tool, which is a combination of custom
Java code and the Henshin engine. To foster experimentation,
visualization, and manual exploration of design alternatives
during design time, we also created an editor with which the
cloud system model can be displayed and edited. For this
purpose, the Sirius plug-in was used [17].

a) Meta-model in Ecore: We translated the meta-model
from [12] to Ecore format. This required some small technical
changes, like the insertion of a root node. We also discovered
some small inconsistencies between the meta-model of [12]
and the cloud system model and risk patterns of [13]; e.g.,
the meta-model of [12] contained no relation between actors
that would represent a trust relationship, which is needed in
the example risk patterns of [13]. We fixed the inconsistencies
by making appropriate changes to the meta-model, the cloud
system model, or the risk patterns. Such inconsistencies can
remain undiscovered in a manual validation such as in [13],
[9], [12]; an implementation and validation like we perform
here has a much higher chance of discovering such issues.

b) Risk patterns as Henshin rules: Henshin provides
an editor for the creation of Henshin rules based on an
Ecore model. A Henshin rule specifies a model transformation.
Conceptually, a Henshin rule consists of two parts: the left-
hand side (LHS) specifies a pattern to be found in the input
model, while the right-hand side (RHS) specifies how the
found pattern is to be changed in the output model. The
Henshin editor presents the LHS and RHS together in an
integrated object model, in which Henshin-specific annotations
are used to mark the role of the model elements (objects,
relations, attributes) with respect to the LHS and RHS. For
specifying risk patterns, we use two of Henshin’s annotations:
preserve and forbid. Every model element annotated
with preserve has to be found in the input model for

Fig. 4. Realization of Risk Pattern A from Fig. 1 as Henshin rule

Fig. 5. Realization of Risk Pattern B from Fig. 1 as Henshin rule

a match. Model elements marked with forbid must not
be present for a match to be found. Figures 4–5 show the
realization of the two example risk patterns from Fig. 1 as
Henshin rules. As can be seen, the annotations preserve
and forbid are used to mark model elements that must be
present, respectively must not be present in a match.

c) Editor for cloud system models: Beside the risk
patterns, a cloud system model is needed in which the risk
patterns are searched for. The cloud system model can be
a design-time artefact that a cloud security analyst works
with to analyze different cloud configurations, or a run-
time model updated through monitoring reflecting the current
configuration of the cloud system. We created an editor for
working with cloud system models, which may be used in the
design-time setting by the cloud security analyst. In a run-time
setting, this tool may be used to visualize the current system
configuration to a human operator.

We used Sirius [17] to create a graphical editor, in which



Fig. 6. Cloud system model with the found risk pattern instances marked

objects, their attributes and relationships can be created in
accordance with the meta-model, displayed on a canvas, and
edited. We constructed creators for the instantiable types of the
meta-model, which are made available to users in the form
of a toolkit. For the relations, providing a separate creator
for each association in the meta-model would have led to
a huge number of creators, resulting in decreased usability.
Hence we implemented a generic creator for relations, which
automatically infers the type of the relation based on the types
of the start and end nodes.

d) The control logic: MatchFinder is a Java project
that integrates the other pieces. It uses the risk patterns
in form of Henshin rules, the cloud system model created
with the Sirius-based editor, and the meta-model in Ecore
format. MatchFinder controls the pattern matching process and
handles the results. The SearchInitiator within MatchFinder
reads and converts all input models and initiates the pattern
matching using the Henshin tool set. The result of the pattern
matching is a (possibly empty) set of matches. For each match,
MatchFinder displays a human-readable textual description of
the match. The matches are also graphically shown within the
cloud model in the Sirius-based editor.

IV. VALIDATION

To validate our implementation, we used the same example
risk patterns and cloud model as in [13], except for some small
changes required to ensure consistency with the meta-model.
Figures 4–5 show our realization of the example risk patterns
as Henshin rules. We found it straight-forward to model risk
patterns in the form of Henshin rules. Henshin rules provide a
concise representation of risk patterns with well-defined syntax
and semantics, which we found easy to understand.

Fig. 6 shows the realization of the example cloud system
model with the help of our Sirius-based editor. The Sirius-
based editor made it easy to create the cloud system model or
to make changes to it.

After running MatchFinder, we can check both in the textual
output and in the Sirius-based editor that exactly one instance
of each of the two risk patterns was found, just like in [13].
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Fig. 6 shows the output in the Sirius-based editor, where the
objects of the cloud model participating in at least one found
match are marked. It is important to note that, while Risk
Pattern B contains an object of type Component (cf. Fig.
5), this matches the object of type AtomicComponent in
the cloud model (cf. Fig. 6), since AtomicComponent is a
sub-type of Component in the meta-model.

We also performed additional tests, where small changes
were made to the cloud system model. In all these tests, all
present instances of the risk patterns were found, as we verified
manually. Furthermore, our validation study also showed that
the manipulation of all important artefacts (meta-model, cloud
system model, risk patterns) was simple and intuitive with
the implemented toolset, suggesting that the used tools are
appropriate and together form a good technical basis for the
management of data protection risks in cloud systems.

V. EMPIRICAL RESULTS

We performed controlled experiments to investigate the
scalability of our approach. To generate larger models with
a realistic structure, we enlarged the example cloud model
from Section IV in a sequence of 10 steps. After each step
we checked the duration needed by MatchFinder to search for
(i) Risk Pattern A, (ii) Risk Pattern B, (iii) both risk patterns
together. The enlarged models consist of several copies of the
example model which share the same data subject node. The
model of the first step consists of the basic example model with
18 nodes. Each further step adds the example model 100 times
except the data subject node. Thus the model of the second
step consists of 18 + 100 · (18 − 1) = 1, 718 nodes and the
model of the 10th step contains 18+10·100·(18−1) = 17, 018
nodes. The measurements were performed on a Surface Pro
3 laptop with Core i5-4300U CPU at 2900MHz, 4GB RAM,
Windows 10 Professional, and Java 9.

Fig. 7 shows the duration of MatchFinder for the models
of increasing size. As can be seen, the execution time scales
roughly linearly with the size of the model. Looking for Risk
Pattern A which consists of only 5 nodes needs less time than
looking for Risk Pattern B which consists of 7 nodes. Looking
for both risk patterns at the same time needs more time than
looking for just one; however, if both risk patterns have to be



looked for, then it is faster to look for them together than to
look for them separately. This is probably due to the overhead
of setting up the search itself, which is incurred only once if
the two risk patterns are searched for together.

Most importantly, Fig. 7 shows that the duration is quite low
even for the biggest models tested. In the first step, the search
took 104 ms while the duration in the last step is 346 ms for
a model with over 17,000 objects. Thus the duration increases
by around 3.3 times while the size of the model increases by
around 945 times. These findings indicate that the presented
implementation scales well even for big cloud systems.

We also investigated how execution time scales with the
number of edges in the model. We took one of the models
from the previous experiments and added random edges to it,
thus keeping the number of nodes constant while increasing
the number of edges. We repeated this experiment with several
starting models of different size. Also, we considered two
approaches for adding new edges: (i) only adding edges inside
the copies of the original example model of 18 nodes, (ii)
adding edges between copies of the original example model.
Our experience from these experiments is that increasing the
number of edges hardly influences the time needed for the
pattern matching. The duration remains low even for the
biggest models considered (more than 100,000 edges).

VI. RELATED WORK

A large body of research addresses specific vulnerabilities
of cloud systems and specific techniques to prohibit attacks.
Examples include access control [10], trust management [11],
security certification [2], and privacy-preserving analytics [14].
The risk pattern approach considered in this paper is fun-
damentally different from these works, as it focuses on the
detection of cloud configurations with high data protection
risks in general, instead of specific security controls.

The risk pattern approach was suggested in [13] and ex-
tended with a meta-model for cloud system models in [9]. A
catalog of risk patterns modeling known attacks was presented
in [12]. This paper is the first that presents an implementation
and thus validates the applicability of the approach.

SecVolution [5] is also a model-based approach for de-
tecting system configurations that may violate some secu-
rity requirements, also using EMF and Henshin. However,
SecVolution is focused on software, whereas the risk pattern
approach includes all relevant layers of a cloud system. The
risk pattern approach allows more accurate reasoning about
cloud vulnerabilities. SecVolution aims at supporting manual
enhancement of software by semi-automatically changing de-
sign artefacts, while the risk pattern approach aims at the fully
automatic and quick detection of risky configurations.

Some works addressed the management of security and
privacy risks in cloud settings. E.g., [4] elaborated on the ne-
cessity of quantified risk assessment for cloud-based processes,
but also on the difficulties and challenges of such assessment,
and [1] assessed the risks associated with migrating a process
to the cloud. These approaches are complementary to our
approach, as they can be used for determining the cloud

configurations that must be avoided, which can be captured
in the form of risk patterns.

VII. CONCLUSIONS

This paper has provided an implementation of the risk pat-
tern approach for automatically detecting forbidden cloud con-
figurations, thus validating the applicability of the approach,
and leading to new insights about the requirements on the used
pattern matching algorithm. Risk patterns can be represented
as Henshin rules in a compact manner which is both human-
readable and machine-readable. The approach is fast for even
large models, allowing it to be used automatically at run
time. An important area for further research is the automatic
mitigation of the found risks by appropriate adaptations of the
cloud configuration.
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