
Component-based hardware-software co-design?

Péter Arató, Zoltán Ádám Mann, András Orbán

Budapest University of Technology and Economics
Department of Control Engineering and Information Technology

H-1117 Budapest, Magyar tudósok körútja 2, Hungary
Phone: +36 14632487, Fax: +36 14632204

arato@iit.bme.hu, {Zoltan.Mann,Andras.Orban}@cs.bme.hu

Abstract. The unbelievable growth in the complexity of computer sys-
tems poses a di�cult challenge on system design. To cope with these
problems, new methodologies are needed that allow the reuse of existing
designs in a hierarchical manner, and at the same time let the designer
work on the highest possible abstraction level.
Such reusable building blocks are called components in the software world
and IP (intellectual property) blocks in the hardware world. Based on the
similarity between these two notions the authors propose a new system-
level design methodology, called component-based hardware-software co-
design, which allows rapid prototyping and functional simulation of com-
plex hardware-software systems. Moreover, a tool is presented supporting
the new design methodology and a case study is shown to demonstrate
the applicability of the concepts.

1 Introduction

The requirements towards today's computer systems are tougher than ever. Par-
allel to the growth in complexity of the systems to be designed, the time-to-
market pressure is also increasing. In most applications, it is not enough for
the product to be functionally correct, but it has to be cheap, fast, and reliable
as well. With the wide spread of mobile systems and the advent of ubiquitous
computing, size, heat dissipation and energy consumption [1] are also becom-
ing crucial aspects for a wide range of computer systems, especially embedded
systems.

To take into account all of these aspects in the design process is becom-
ing next to impossible. According to the International Technology Roadmap for
Semiconductors [2], the most crucially challenged branch of the computer indus-
try is system design. The Roadmap clearly declares that Moore's law can hold
on for the next decades only if innovative new ways of system design will be
proposed to handle the growing complexity.

? This work have been supported by the European Union as part of the EASYCOMP
project (IST-1999-14151) and by OTKA T 043329. This paper has been accepted for
publication at the International Conference on Architecture of Computing Systems
(ARCS) 2004.

2

Embedded systems have become a part of our lives in the form of consumer
electronics, cell phones, smart cards, car electronics etc. These computer systems
consist of both hardware and software; they together determine the operation of
the system. The di�erences between hardware and software and their interaction
contribute signi�cantly to the above-mentioned huge complexity of systems. On
the other hand, the similarities between hardware and software design open many
possibilities for their optimized, synergetic co-design. This is the motivation for
hardware-software co-design (HSCD) [3].

To address the above problems, di�erent, but in many ways similar solutions
have been developed in the software and hardware world.

1.1 Solutions in the software world

Traditionally, the focus of software engineering has been on �exibility, code read-
ability and modi�ability, maintainability etc. This has led to the notions of
separation of concerns, information hiding, decoupling, and object-orientation.
In recent years though, as a result of the growing needs, the reuse of existing
pieces of design or even code has received substantial attention. Examples of
such e�orts include design and analysis patterns, aspect-oriented programming,
software product lines, and component-based software engineering [4].

Unfortunately, the de�nition of a component is not perfectly clear. There are
several di�erent component models, such as for instance the CORBA component
model or the COM component model. Each of these component models de�ne the
notion of a component slightly di�erently. However, these de�nitions have much
in common: a component is a piece of adaptable and reusable code, that has a
well-de�ned functionality and a well-de�ned interface, and can be composed with
other components to form an application. Components are often sold by third-
party vendors, in which case we talk about COTS (commercial o�-the-shelf)
components.

Each component model de�nes a way for the components�which might be
very di�erent in programming language, platform or vendor�to interact with
each other. The component models are also often supported by middleware,
which provides services that are often needed�such as support for distribution,
naming and trading service, transactions, persistence etc.�to the components.
As a result, the middleware can provide transparency (location transparency,
programming language transparency, platform transparency etc.), which facil-
itates the development of distributed component-based software systems enor-
mously.

1.2 Solutions in the hardware world

Since the construction of hardware is much more costly and time-consuming
than that of software, the idea of reusing existing units and creating the new
applications out of the existing building blocks is de�nitely more adopted in the
hardware world. This process has led from simple transistors to gates, then to
simple circuits like �ip-�ops and registers, and then to more and more complex

3

building blocks like microprocessors. Today's building blocks perform complex
tasks and are largely adaptable. These building blocks are called IP (intellectual
property) units [5�8]. They clearly resemble software components; however, IPs
are even less standardized than software components. We do not know widely
accepted component models such as CORBA or EJB in the hardware world.

Another consequence of the high cost of hardware production is that hard-
ware must be carefully tested before it is actually synthesized. Therefore, test-
ing solutions are more mature in the hardware world: e.g. design for testability
(DFT) and built-in self test (BIST) are common features of hardware design.
Moreover, it is common to use simulation of the real hardware for design and
test purposes.

1.3 Convergence

The production costs of hardware units depend very much on the volume of
the production. It is by orders of magnitude cheaper to use general-purpose,
adaptable hardware elements which are produced in large volumes than special-
purpose units. The general-purpose units (e.g. Field Programmable Gate Arrays
or microprocessors) have to be programmed to perform the given task. Therefore,
when using general-purpose hardware units to solve a given problem, one actu-
ally uses software. Conversely, when creating a software solution, one actually
uses general-purpose hardware. Consequently, the boundary between adaptable
hardware units and software is not very sharp.

As already mentioned, hardware is usually simulated from the early phases
of the design process. This means that its functionality is �rst implemented by
software. Moreover, there are now tools, for instance the PICO (Program In,
Chip Out [9]) system, that can transform software to hardware.

Motivated by the above facts this paper introduces a new system-level design
methodology which handles both software and hardware units at a high abstrac-
tion level and propagates the concept of reuse by assembling the system from
hardware and software building blocks. Note that it is not the intention of this
paper to address each system-level synthesis problem emerging during HSCD,
our goal is only to highlight the concept of a new system-design approach and
to deal with problems special to the new methodology.

The paper is organized as follows. Section 2 introduces the proposed new
methodology and some related problems. The tool supporting the new concepts
is demonstrated in Section 3 and a case study is presented in Section 4. Finally,
Section 5 concludes the paper.

2 A new HSCD methodology

Based on the growing needs towards system design, as well as both the software
and hardware industry's commitment to emphasize reuse as the remedy for

4

design complexity, we propose a novel HSCD methodology we call component-
based hardware-software co-design (CBHSCD). CBHSCD is an important con-
tribution in the Easycomp (Easy Composition in Future Generation Component
Systems1) project of the European Union. The main goal of CBHSCD is to
assemble the system from existing pre-veri�ed building blocks allowing the de-
signer rapid prototyping [10, 11] at a very high level of abstraction. At this
abstraction level components do not know any implementation details of each
other, not even whether the other is implemented as hardware or as software.
The behavior of this prototype system can be simulated and veri�ed at an early
stage of the design process. CBHSCD supports hierarchical design: the general-
ized notion of components makes it possible to reuse complex hardware-software
systems as components in later designs. (See also Section 2.6.)

The main steps of CBHSCD are shown in Fig 1. In the following each subtask
is detailed except the issues related to the synthesis which are beyond the scope
of CBHSCD.

Component selection

Composition

Real−time constraints

Cost & timing info

Partitioning

Component repository

Problem specification

Synthesis Technology spec

Consistency check

Simulation
Validation

Fig. 1. The process of CBHSCD

2.1 Component selection

The process starts by selecting the appropriate components2 from a component
repository based on the problem speci�cation (Of course the selection of an
appropriate component is an individual challenge [5, 12], but it is beyond the
scope of this paper to address this problem). From the aspect of CBHSCD it
does not matter how the components are implemented: CBHSCD does not aim
at replacing or reinventing speci�c hardware design and synthesis methods or

1 www.easycomp.org
2 We use the term component to refer to a reusable building block, which might be
hardware, software, or the combination of both in hierarchical HSCD.

5

software development methods. Instead, it relies on existing methodologies and
best practices, and only complements them with co-design aspects. The used
components might include pure software and pure hardware components, but
mixed components are also allowed, as well as components which exist in both
hardware and software. In the latter case the designer does not have to decide
in advance which version to use (only the functionality is considered), but this
will be subject to optimization in the partitioning phase (see Section 2.4).

2.2 Composition

After the components are selected, they are composed to form a prototype sys-
tem. Each component provides an interface for the outside world. The speci�ca-
tion of this interface is either delivered with the component or if the component
model provides a su�cient level of re�ection, it can be generated automatically.
One of the important contributions of CBHSCD is that the composition of com-
ponents is based on remote method calls between components supported by the
underlying middleware.

To handle all components�including the hardware components�uniformly,
a wrapper should be designed around the device driver communicating directly
with the hardware. This wrapper has the task to produce a software-like inter-
face for the hardware component, to delegate the calls and the parameters to the
device driver and to trigger an event when a hardware interrupt occurs. The de-
vice driver and the wrapper together hide all hardware-speci�c details including
port reads/writes, direct memory access (DMA) etc.: these are all done inside
the wrapper and the device driver, transparently for other components. As a
consequence hardware components can also participate in remote method calls
both as initiator or as acceptor.

Composition is supported by a visual tool that provides an intuitive graphical
user interface (GUI) as well as an easy-to-use interconnection wizard. This ease-
of-use helps to overcome problems related to the learning-curve, since tradition-
ally system designers have had to possess professional knowledge on hardware,
software and architectural issues; thus, the lack of quali�ed system designers
has been a critical problem. The simple composition also allows for easy rapid
prototyping of complex hardware-software systems.

2.3 Simulation and Validation

Since the application has been composed of tested and veri�ed components,
only the correctness of the composition has to be validated by simulation. The
individual units are handled as black-box components in this phase and only
functional simulation is carried out. For instance, if a calculation is required
from a hardware component, one would only monitor the �nal result passed
back to the initiator component and not the individual steps taken inside the
hardware. If problems are detected, the component selection and/or composition
steps can be reviewed. It is even possible to simulate parts of the system, so that
problems can be detected before the whole system is composed.

6

Important to note that components are living and fully operable at compo-
sition time (e.g. a button can be pressed and it generates events), hence the
application can be tried out by simply triggering an event or sending a start
signal to a component. This helps validate the system enormously.

Since the design is only in a premature prototyping phase, it is possible that
the (expensive) hardware components are not available at this stage3. If the
hardware component is already available and the component is decided to be in
the hardware context, it can be used already in the simulation phase. However, it
is possible that we want to synthesize or buy the hardware component only if it is
surely needed. In this case, we need software simulation. If a software equivalent
of the hardware component is available�e.g. if the hardware is synthesized from
a software description, which is often the case, or if the hardware performs a
well-known algorithm, which is also implemented in software�then this software
equivalent can be used for simulation. Even if a complete software equivalent is
not available, there might be an at least interface-equivalent software, e.g. if
the IP vendor provides a C code to specify the interface of its product. Also, if
the description of the hardware is available in a hardware description language
such as VHDL, a commercial hardware simulator can be used. However, we can
assume that sooner or later all IP vendors will provide some kind of formal
description of their products which is suitable for functional simulation [5].

Related work includes the embedded code deployment and simulation possi-
bilities of Matlab (http://www.mathworks.com) and the Ptolemy project (http:
//ptolemy.eecs.berkeley.edu/).

2.4 Partitioning

After the designer is convinced that the system is functionally correct, the sys-
tem has to be partitioned, i.e. the components have to be mapped to software
and hardware. (There can be components which only exist in hardware or in
software, so that their mapping is trivial.) This is an important optimization
problem, in which the optimal trade-o� between cost and performance has to be
found. Traditionally, this has been the task of the system designer, but manual
partitioning is very time-consuming and often yields sub-optimal solutions.

CBHSCD on the other hand makes it possible to design the system at a very
high level, only concentrating on functionality. This frees the designer from deal-
ing with low-level implementation issues. Partitioning is automated based on a
declarative requirements speci�cation. We de�ned a graph-theoretic model for
the partitioning problem [13, 14] and there are other partitioning algorithms in
the literature, see e.g. [15�17] and references therein. The partitioning algorithm
has to take into account the software running times, hardware costs (price, area,
heat dissipation, energy consumption etc.), communication costs between com-
ponents as well as possible constraints de�ned by the user (including soft and

3 Before partitioning it is not even known of each component whether to be realized
in software or hardware.

7

hard real-time constraints, area constraints etc.). This is very helpful for the de-
sign of embedded systems, especially real-time systems. When limiting the run-
ning time, partitioning aims at minimizing costs, which are largely the hardware
costs. Similarly, when costs are limited, the running time is minimized, which is
essentially the running time of the software plus the communication overhead.
It is also possible to constrain both running time and costs, in which case it has
to be decided whether there is a system that ful�lls all these constraints, and in
the case of a positive answer, such a partition has to be found.

To generate all the input data for the partitioning algorithm is rather chal-
lenging. In case of hardware costs, it is assumed that the characteristic values
of the components are provided with the component itself by the vendor. Com-

munication costs are estimated based on the amount of exchanged data, and
the communication protocol, for which there might be several possibilities with
di�erent cost and performance. Concerning the running times, a worst case (if
hard real-time constraints are speci�ed) or average case running time is either
provided with the component or extracted by some pro�ling technique. An inde-
pendent research �eld deals with the measurement or estimation of these values,
see e.g. [18, 19]. The time and cost constraints must be speci�ed explicitly by
the designer via use-cases (see Section 3 for more details).

2.5 Consistency

One of the main motivations of CBHSCD is to raise the abstraction level high
enough where the boundary of hardware and software vanishes. Since compo-
nents interacting with each other are not aware of the context of the other (only
the interface is known), hence the change of implementation should be trans-
parent to others. It implies two consistency problems special to partitioning in
CBHSCD.

Interface consistency. The components subject to partitioning are available
also in software and hardware. There is an interface associated to all these
pairs, which describes the necessary methods and attributes the implemen-
tations should provide in order to allow transparent change between them.
It must be checked whether both implementations realize this interface. (For
related work see e.g. [20].)

State consistency. The prototype system can be repartitioned several times
during the design process. Each time to realize a transparent swap between
implementations the new implementation should be set to exactly the same
state as the current one. (In the case of a long-lasting simulation it may not
be feasible to restart the simulation after each swap.) This is not straight-
forward, because the components are handled as black-box, and it is not
possible to access all the state-variables from outside. A number of compo-
nent models explicitly forbid stateful components to avoid these problems.
Our proposed solution to achieve the desired state is to repeat all the method
calls on the new implementation that has a�ected the state of the current
implementation since the last swap. (See Section 3 for more details.)

8

At the end, the system is synthesized, which involves generation of glue code
and adapters for the real interconnection of the system, and also the generation
of a test environment and test vectors for real-world testing. However, our main
objective was to improve the design process, which is in our opinion the real
bottleneck, so that the last phase, which involves implementation steps, is beyond
the scope of this paper.

2.6 Hierarchical design

Hierarchical design [21, 22] is an integral part of CBHSCD. It helps in coping with
design complexity using a divide-and-conquer approach, and also in enhancing
testability. Namely, the system can be composed of well-tested components, and
only the composition itself has to be tested, which compresses the test space
enormously.

Hierarchical design in CBHSCD can be interpreted either in a bottom-up or
a top-down fashion. Bottom-up hierarchical design means that a system that
has been composed of hardware, software and mixed components4 using CBH-
SCD methodology can later be used as a component on its own for building
even more complex systems. Top-down hierarchical design means that a com-
plex problem is divided into sub-problems, and this decomposition is re�ned
until we get manageable pieces. The identi�ed components can then be realized
either based on existing components using CBHSCD methodology or using a
traditional methodology if the component has to be implemented from scratch.

As a simple example of such a hierarchical design, consider a computation-
intensive image-processing application, which consists of a set of algorithms. In
order to guarantee some time constraints, one of the algorithms has to be per-
formed by a very fast component. So the resulting system might consist of a
general-purpose computer and an attached acceleration board. However, the ac-
celeration board itself might include both non-programmable accelerator (NPA)
logic and a very long instruction word processor (VLIW) processor [9], which
performs the less performance-critical operations of the algorithm in software,
as the result of a similar design step.

2.7 Communication

Communication between the components is facilitated through a middleware
layer, which consists of the wrappers for the respective component types, as well
as support for the naming of components, the conversion of data types and the
delivery of events and method calls. This way we can achieve hardware-software

transparency much in the same way as middleware systems for distributed soft-
ware systems achieve location and implementation transparency. Consequently,

4 Clearly, pure hardware and pure software components are just the two extremes
of the general component notion. Generally, components can realize di�erent
cost/performance trade-o�s ranging from the cheapest but slowest solution (pure
software) to the most expensive but fastest solution (pure hardware).

9

the communication between hardware and software becomes very much like re-
mote procedure calls (RPC) in distributed systems. The resulting architecture
is shown in Fig 2.

COM wrapper

COM component

Hardware wrapper

driverDevice

Hardware

Middleware

Fig. 2. Communication between a COTS software component (COM component in this
example) and a hardware unit. The dotted line indicates the virtual communication,
the full line the real communication.

The drawback of this approach is the large communication overhead intro-
duced by the wrappers and the middleware layer in general. However, this is
only problematic if the communication between hardware and software involves
many calls, which is not typical. Most often, a hardware unit is given an amount
of data on which it performs computation-intensive calculations and then it re-
turns the results. In such cases, if the amount of computation is su�ciently large,
the communication overhead can be reduced. However, the �exible but compli-
cated wrapper structure is only used in the design phase, and it is replaced by
a simpler, faster, but less �exible communication infrastructure in the synthesis
phase. There are standard methodologies for that task, see e.g. [23, 7].

3 CWB-X: a tool for CBHSCD

Our tool to support CBHSCD is an extension of a component-based software en-
gineering tool called Component Workbench (CWB), which has been developed
at the Vienna Technical University in the Easycomp project [24].

CWB is a graphical design tool implemented in Java for the easy composition
of applications from COTS software components. The main contribution of CWB
is the support for composition of components from di�erent component models,
like COM, CORBA, EJB etc. To achieve this, CWB uses a generic component
model called Vienna Composition Framework (VCF) which handles all existing
component models similarly. This generic model o�ers a very �exible way to
represent components, hence all existing software component models can be
transformed to this one by means of wrappers.

In the philosophy of CWB, each component is associated with a set of fea-
tures. A feature is anything a component can provide. A component can declare

10

the features it supports and new features can also be added to the CWB. The
most typical features are the following.

Property The properties (attributes) provided by the component.
Method The methods of the component.
Eventset The set of events the component can emit.
Lifecycle If a component has this feature, then it can be created and destroyed,

activate or deactivate.
GUI The graphical interface of the component.

Each component model is implemented as a plug-in in the CWB (see Fig 3).
The plug-in class only provides information about the features the component
can provide, the real functionality is hidden in the classes implementing the
features. As the name suggests, new plug-ins can be added to the CWB, that
is, new component models can be implemented. To do that, a new plug-in class
and a class representing the required features have to be implemented. These
classes realize the wrapper between the general component model of VCF and
the speci�c component model.

Generic Component Model

COM
Plugin

CORBA
Plugin

EJB
Plugin

CORBA EJBCOM

GUI

CWB

Fig. 3. The architecture of the CWB.

For the communication between the components, CWB o�ers multiple com-
munication styles. One of the most important communication styles supported
by CWB is the event-to-method communication, i.e. a component triggers an
event which induces a method call in all registered components. The registration
mechanism and the remote method call is supported by Java. A wizard helps
the user to set up a proper connection. New communication styles can also be
added to the CWB.

The used components are already operable at composition-time. This is very
advantageous because this way the simulation and evaluation of the system is
possible already in the early phases of the design process. Also, the user can
invoke methods of the components, thus use-cases or call sequences can be tested
without any programming e�orts.

11

3.1 Extension of CWB to support CBHSCD

CWB o�ers a good starting point for a hardware-software co-design tool be-
cause of its �exibility and extensibility. We extended CWB to support CBHSCD
principles. In CWB-X (CWB eXtended), the designer of a hardware-software
application may select both software and hardware and so called partitionable

components from a repository. The latter identi�es two implementations for
the same behavior. These components can originate from di�erent vendors and
di�erent component models including hardware and software. The selected com-
ponent is put on the working canvas. In case of pure software components, the
operable component itself�with possible GUI�can appear, but in case of hard-
ware components the component itself might not be available and some kind of
simulation is used. The designer can choose between di�erent simulation levels,
as already discussed.

To enable the integration of hardware components in CWB-X, new compo-
nent models are added to the CWB as plug-ins. Similarly to the software side,
there is a need for several hardware component models according to the di�er-
ent ways the actual hardware might be connected to the computer. This goal is
complicated by the lack of widely accepted industry standards for IP interface
and communication speci�cation.

Since the implementation details of a component should be transparent for
the other components, the hardware components should provide similar features
as the software ones. Therefore we de�ne the Method, Property and Eventset
features for hardware components as well, and map methods to operations of the
underlying hardware, properties to status information and initial parameters,
and events to hardware interrupts.

To identify the features a hardware component can provide [5], re�ection
is necessary, i.e. information about the interface of the component. Today's IP
vendors do not o�er a standardized way to do that, often a simple text description
is attached to the IP. In our model we require a hardware component to provide
a description about its features (Properties, Methods, Events).

The composition of components is supported by wizards; the wizard parses
the component's features and allows the connection according to the selected
communication style. Due to the wrappers, hardware components act the same
way as software ones, the wizards of the CWB can be used.

When the architecture of the designed application is ready, partitioning is
performed. We have integrated a partitioning algorithm [13] based on integer
linear programming (ILP). This is not an approximation algorithm: it �nds the
exact optimum. This approach can handle systems with several hundreds of com-
ponents in acceptable time. For the automatic partitioning process, the various
cost parameters and the time constraints must be speci�ed.

Time constraints are de�ned on the basis of use-cases. Each use-case corre-
sponds to a speci�c usage of the system, typically initiated by an entity outside
the system. A use case involves some components of the system in a given order.
A component can also participate multiple times in a use case. The designer de-
�nes a use-case by specifying the sequence of components a�ected in it and gives a

12

time constraint for the sum of the execution times of the concerned components
including communication. The constraints for all use-cases are simultaneously
taken into account during partitioning. The measurement of running time and
communication cost parameters is at an initial stage in our tool; currently we
expect that this data is explicitly given by the designer.

CWB-X is able to check both interface and state consistency. To each parti-
tionable component a Java-like interface is attached which describes the required
features of the implementations. The tool checks whether the associated imple-
mentations are appropriate. Furthermore, to each method in this interface de-
scription �le an attribute is ordered, which describes the behavior of this method
in the state consistency check. The value and the meaning of the attribute are
the following:

NO_SIDE_EFFECT: the corresponding method has no e�ect on the state of the
component, thus it should not be repeated after repartition.

REPEAT_AT_REPARTITION: the corresponding method a�ects the state but has
no side e�ect, thus it should be repeated after repartition.

REPEAT_AT_REPARTITION_ONCE: the same as the previous one, but in a sequence
of this method call the last one should be repeated only. An example is setting
a property to a value.

SIDE_EFFECT: the corresponding method does a�ect the state and also has some
side e�ect (e.g. sends 100 pages to the printer) or takes too long to repeat.

The system logs every method call and property change since the last imple-
mentation swap. If all these belong to the �rst three category, the correct state
will be set automatically after the change of the implementations by repeating
the appropriate function calls. If there is at least one call with SIDE_EFFECT, the
system shows a warning and asks the designer to decide which method calls to
repeat. The designer is supported by a detailed log in this decision.

4 Case study

In this section the CBHSCD methodology will be step-by-step demonstrated
on a small example application. In this example the frequency of an unknown
source signal has to be measured. This task might appear in several real-world
applications like mobile phone technology, hence this system can be used as a
building block in later designs. The architecture of the example can be seen in
Fig 4. The frequency measurer (FM) measures the signal of the generator and
sends the measured value periodically to the PC through the serial port. The PC
on the one hand displays the current frequency value and plots a graph on the
alteration of the value, and, on the other hand, controls the measurer through
start and stop signals. There are two implementations available for the FM: the
�rst one is a programmable PIC 16F876 microcontroller regarded as software
implementation and an FPGA on a XILINX VIRTEX II XC2V1000 card as the
hardware implementation. The two implementations behave exactly the same
way, but their performance (and cost) is di�erent. The microcontroller is able to

13

precisely measure the frequency up to 25KHz (to take a sample lasts 40µs). The
FPGA on the other hand can take a sample in 50ns, thus it can measure up to
20MHz without any problem.

start
stop

 1.2KHz

PC

Signal generator

Software impl.

Hardware impl.

(FPGA)

serial
port

(microcontroller)

Frequency measurer

System boundary

Fig. 4. The architecture of the example application

There are �ve components in this example: two JavaBeans buttons (start and
stop), a TextField and a chart component for display and the FM declared as
a partitionable component with the two implementations detailed above5. Both
implementations belong to the component model whose device driver is able to
communicate with the devices through serial port. For consistency purposes the
interface on Fig 5 is provided with the component. The device driver is wrapped
by a CWB wrapper providing a software-like interface. The tool checks whether
the interfaces of the wrappers match the requirements.

package frequency;

public interface FrequencyEstimatorInterface {

SIDE_EFFECT public void start();

SIDE_EFFECT public void stop();

NO_SIDE_EFFECT public void takeOneSample();

NO_SIDE_EFFECT public String getMeasuredFrequencyString();

NO_SIDE_EFFECT public Integer getMeasuredFrequency();

REPEAT_AT_REPARTITION_ONCE public void setCountEveryEdge(boolean b);

NO_SIDE_EFFECT public boolean getCountEveryEdge();

}

Fig. 5. Part of the required interface with state consistency attributes of the partition-
able frequency measurer (FM) component

5 The signal generator is regarded as an outside source, hence not part of the system

14

In the composition phase the start and the stop button should be mapped
with the aid of the mentioned wizard to the start and stop method of the FM,
respectively. The FM sends an interrupt whenever a new measured value is
arrived. This interrupt appears as an event in the CWB-X; this event triggers the
setText function of the TextField and the addValue function of the chart. The
system can be immediately simulated without any further e�ort: after pressing
the start button the current implementation of the FM starts measuring the
signal of the generator and the PC will display the measured values.

The task of partitioning will be to decide which implementation to use ac-
cording to the time requirements of the system. The designer de�nes a use-case
which declares a time-limit for the takeOneSample function of the FM. In this
simple case the optimal partition is trivial6: if the time-limit is under 40µs, the
FPGA should be used, otherwise the microcontroller (here we assume, that to
program the microcontroller is cheaper than to produce the FPGA). The par-
titioner �nds this solution and changes the implementation if necessarily. The
new implementation will be transformed to the same state as the current one
according to the steps detailed in Section 3.

5 Conclusion

In this paper, we have described a new methodology for hardware-software co-
design, which emphasizes reuse, a high abstraction level, design automation, and
hierarchical design. The new methodology, called component-based hardware-
software co-design (CBHSCD), uni�es component-based software engineering
and IP-based hardware engineering practices. It supports rapid prototyping of
complex systems consisting of both hardware and software, and helps in the
design of embedded and real-time systems.

The concepts of CBHSCD, as well as partitioning, enable advanced tool sup-
port for the system-level design process. Our tool CWB-X is based on the Com-
ponent Workbench (CWB), a visual tool for the composition of software com-
ponents of di�erent component models. CWB-X extends the CWB with new
component models for hardware components as well as partitioning and con-
sistency checking functionality. We presented a case study to demonstrate the
applicability of our concepts and usefulness of our tool.

We believe that the notion of CBHSCD uni�es the advantages of hardware
and software design to a synergetic system-level design methodology, which can
help in designing complex, reliable and cheap computer systems rapidly.

References

1. H. Lekatsas, W. Wolf, and J. Henkel. Arithmetic coding for low power embedded
system design. In Data Compression Conference, pages 430�439, 2000.

2. A. Allan, D. Edenfeld, W. H. Joyner Jr., A. B. Kahng, M. Rodgers, and Y. Zorian.
2001 Technology Roadmap for Semiconductors. IEEE Computer, 35(1), 2002.

6 Generally the partitioning problem is NP-hard.

15

3. R. Niemann. Hardware/Software Co-Design for Data Flow Dominated Embedded
Systems. Kluwer Academic Publishers, 1998.

4. George T. Heineman and William T. Councill. Component Based Software Engi-
neering: Putting the Pieces Together. Addison-Wesley, 2001.

5. G. Martin, R. Seepold, T. Zhang, L. Benini, and G. De Micheli. Component
selection and matching for IP-based design. In Proceedings of the DATE 2001 on
Design, automation and test in Europe. IEEE Press, 2001.

6. Ph. Coussy, A. Baganne, and E. Martin. A design methodology for integrating ip
into soc systems. In Conférence Internationale IEEE CICC, 2002.

7. P. Chou, R. Ortega, K. Hines, K. Partridge, and G. Borriello. Ipchinook: an
integrated ip-based design framework for distributed embedded systems. In Design
Automation Conference, pages 44�49, 1999.

8. F. Pogodalla, R. Hersemeule, and P. Coulomb. Fast protoyping: a system design
�ow for fast design, prototyping and e�cient IP reuse. In CODES, 1999.

9. V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C. Cronquist, and M. Sivaraman.
PICO: automatically designing custom computers. IEEE Computer, 2002.

10. G. Spivey, S. S. Bhattacharyya, and Kazuo Nakajima. Logic Foundry: A rapid
prototyping tool for FPGA-based DSP systems. Technical report, Department of
Computer Science, University of Maryland, 2002.

11. Klaus Buchenrieder. Embedded system prototyping. In Tenth IEEE International
Workshop on Rapid System Prototyping, 1999.

12. P. Roop and A. Sowmya. Automatic component matching using forced simulation.
In 13th International Conference on VLSI Design. IEEE Press, 2000.

13. Z. Á. Mann and A. Orbán. Optimization problems in system-level synthesis. 3rd
Hungarian-Japanese Symp. on Discrete Mathematics and Its Applications, 2003.

14. P. Arató, S. Juhász, Z. Á. Mann, A. Orbán, and D. Papp. Hardware/software
partitioning in embedded system design. In Proceedings of the IEEE International
Symposium on Intelligent Signal Processing, 2003.

15. N. N. Binh, M. Imai, A. Shiomi, and N. Hikichi. A hardware/software partitioning
algorithm for designing pipelined ASIPs with least gate counts. In Proceedings of
the 33rd Design Automation Conference, 1996.

16. B. Mei, P. Schaumont, and S. Vernalde. A hardware/software partitioning and
scheduling algorithm for dynamically recon�gurable embedded systems. In Pro-
ceedings of ProRISC, 2000.

17. T. F. Abdelzaher and K. G. Shin. Period-based load partitioning and assignment
for large real-time applications. IEEE Transactions on Computers, 49(1), 2000.

18. X. Hu, T. Zhou, and E. Sha. Estimating probabilistic timing performance for
real-time embedded systems. IEEE Transactions on VLSI Systems, 9(6), 2001.

19. S. L. Graham, P. B. Kessler, and M. K. McKusick. An execution pro�ler for
modular programs. Software Practice & Experience, 13:671�685, 1983.

20. A. Speck, E. Pulvermüller, M. Jerger, and B. Franczyk. Component composition
validation. International Journal of Applied Mathematics and Computer Science,
pages 581�589, 2002.

21. G. Quan, X. Hu, and G. Greenwood. Preference-driven hierarchical hard-
ware/software partitioning. In Proceedings of the IEEE/ACM International Con-
ference on Computer Design, 1999.

22. R. P. Dick and N. K. Jha. MOGAC: A multiobjective genetic algorithm for
hardware-software co-synthesis of hierarchical heterogeneous distributed embed-
ded systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 17(10):920�935, 1998.

16

23. A. Basu, R. Mitra, and P. Marwedel. Interface synthesis for embedded applications
in a co-design environment. In 11th IEEE International conference on VLSI design,
pages 85�90, 1998.

24. Johann Oberleitner and Thomas Gschwind. Composing distributed components
with the component workbench. In Proceedings of the Software Engineering and
Middleware Workshop (SEM2002). Springer Verlag, 2002.

