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Abstract—The coloring of random graphs has been the subject
of intensive research in the last decades. As a result, the
asymptotic behaviour of both the chromatic number and the
complexity of the colorability problem are quite well understood.
However, the asymptotic results give limited help in predicting
the behaviour in specific finite cases.

In this paper, we consider the application of the usual back-
track algorithm to random graphs, and analyze the expected size
of the search tree as a machine-independent measure of algorithm
complexity. With a combination of combinatorial, probabil istic
and analytical methods, we derive upper and lower bounds for
the expected size of the search tree. Our bounds are much tighter
than previous results and thus enable accurate prediction of
algorithm runtime.

I. I NTRODUCTION AND PREVIOUS WORK

Graph coloring is one of the most fundamental problems
in algorithmic graph theory, with many practical applications
such as register allocation, frequency assignment, pattern
matching, and scheduling [16], [6], [15]. Unfortunately, graph
coloring isNP -complete [9].

Although graph coloring is hard in the worst case, it is
easier in the average case [19]. The probabilistic analysis
of the coloring of random graphs was first suggested in
[8]. Subsequent work [10], [4], [12] uncovered the order
of magnitude of the expected chromatic number of random
graphs. Through more recent work [2], [1], we can determine
almost exactly the expected chromatic number of a random
graph in the limit: with probability tending to 1 when the size
of the graph tends to infinity, the expected chromatic number
of a random graph is one of two possible values.

Empirical study of the behaviour of search algorithms and
the complexity of graph coloring problem instances [14], [18]
has lead to the discovery of a phase transition phenomenon
with an accompanying easy-hard-easy pattern [7], [11].
Briefly, this means that for small values of the edges/vertices
ratio (underconstrained case), almost all random graphs are
colorable. When the connectivity of the graph is increased,
the ratio of colorable graphs abruptly drops from almost
1 to almost 0 (phase transition). After this critical regime,

almost all graphs are uncolorable (overconstrained case).In
the underconstrained case, coloring is easy: even the simplest
heuristics usually find a proper coloring [19], [5]. In the
overconstrained case, it is easy for backtracking algorithms
to prove uncolorability because they quickly reach contradic-
tion [17]. The hardest instances lie in the critical regime [7].

Summarizing these results, one can state that we have a
goodquantitativeunderstanding of graph coloringin the limit
(when the size of the graph tends to infinity) and a good
qualitativeunderstanding of it in the finite case. Our aim in this
paper is to study the hardness of graph coloringquantitatively
with accurate results forfinite graphs.

Specifically, we consider the application of the usual back-
track search to the coloring of random graphs. We restrict
ourselves to the non-colorable case; extension of our model
to the colorable case remains as future work. We use the size
of the search tree as a measure of complexity and analyze its
expected value as a function of input parameters.

Lower and upper bounds for the expected size of the search
tree in a similar model have been presented by Bender and
Wilf [3]. Their main focus was on the study of the asymptotic
behavior of the search tree. In finite cases, the difference
between their lower and upper bounds can be quite large
(several orders of magnitude), as shown in Table I.

TABLE I
EXAMPLES OF THE BOUNDS BYBENDER AND WILF (k = 7)

n = 30 n = 50 n = 50 n = 30
p = 0.5 p = 0.5 p = 0.4 p = 0.7

lower bound 6.41 · 109 6.45 · 109 3.26 · 1012 4.94 · 106

upper bound 1.81 · 1012 1.83 · 1012 1.84 · 1015 5.27 · 108

Therefore, our aim is to significantly improve these bounds,
in order to enable accurate prediction of the runtime of the
algorithm on specific graphs. This is beneficial for example
for random restart algorithms to decide when to perform the
restart. Also, runtime prediction can be used to decide whether



it is at all feasible to solve a problem instance with such an
exact algorithm.

We use a combination of combinatorial, probabilistic and
analytical methods. We show that a simple probabilistic model
and some combinatorial considerations yield a first pair of
non-trivial upper and lower bounds. As a by-product of our
first upper bound, we also obtain a short proof for a theorem
of Wilf [20]. We then use Jensen’s inequality to significantly
improve our lower bound. In the second half of the paper,
we perform a detailed – and quite technical – case analysis
to obtain a series of ever sharper (but also increasingly
complicated) lower and upper bounds. At the end we show
empirically how the bounds are getting closer to each other
and how much they improve the bounds of Bender and Wilf.

II. PRELIMINARIES

We consider the decision version of the graph coloring
problem, in which the input consists of an undirected graph
G = (V,E) and a numberk, and the task is to decide whether
the vertices ofG can be colored withk colors such that
adjacent vertices are not assigned the same color. The input
graph is a random graph taken fromGn,p, meaning that it
hasn vertices and each pair of vertices is connected by an
edge with probabilityp independently from each other. The
vertices of the graph will be denoted byv1, . . . , vn, the colors
by 1, . . . , k. A coloringassigns a color to each vertex; apartial
coloring assigns a color to some of the vertices. A (partial)
coloring is invalid if there is a pair of adjacent vertices with
the same color, otherwise the (partial) coloring isvalid.

The backtrack algorithm considers partial colorings. It starts
with the empty partial coloring, in which no vertex has a color.
This is the root – that is, the single node on level 0 – of the
search tree. Levelt of the search tree contains thekt possible
partial colorings ofv1, . . . , vt. The search tree, denoted byT ,
hasn levels, with the last level containing the colorings of the
graph. LetTt denote the set of partial colorings on levelt. If
t < n andw ∈ Tt, thenw hask children in the search tree:
those partial colorings ofv1, . . . , vt+1 that assign to the first
t vertices the same colors asw.

In each partial coloringw, the backtrack algorithm considers
the children ofw and visits only those that are valid. Note that
T depends only onn andk, not on the specific input graph.
However, the algorithm visits only a subset of the nodes ofT ,
depending on which vertices ofG are actually connected. The
number of actually visited nodes ofT will be used to measure
the complexity of the given problem instance.

III. T HE EXPECTED NUMBER OF VISITED NODES OFT

For eachw ∈ T , we define the following random variable
(the value of which depends on the choice ofG):

Yw =

{
1 if w is valid,

0 else.

Let pw = Pr(Yw = 1). Moreover, we define one more
random variable (whose value also depends on the choice of
G): Y = the number of visited nodes ofT .

Since the algorithm visits exactly the valid partial color-
ings, it follows that Y =

∑
w∈T Yw, and thusE(Y ) =∑

w∈T E(Yw). Moreover, it is clear thatE(Yw) = pw. It
follows that the expected number of visited nodes inT is:
E(Y ) =

∑
w∈T pw.

Let Q(w) := {{x, y} ∈ V 2 : x 6= y, color(x) = color(y)},
where V 2 is the set of unordered pairs of elements ofV .
Let q(w) := |Q(w)|. Clearly, w is valid if and only if, for
all {x, y} ∈ Q(w), x and y are not adjacent. It follows that
pw = (1 − p)q(w) and thus the expected number of visited
nodes ofT is:

E(Y ) =
∑

w∈T

(1− p)q(w).

Note that computingE(Y ) through this formula is not
tractable since|T | is exponentially large inn.

IV. SIMPLE LOWER AND UPPER BOUNDS

In the following, we denote bys(w, i) (or simply si if it
is clear which partial coloring is considered) the number of
vertices ofG that are assigned colori in partial coloringw.

Proposition 1. For all w ∈ Tt, q(w) ≤
(
t
2

)
.

Proof:

q(w) =

k∑

i=1

(
si

2

)
=

1

2

(
k∑

i=1

s2i −
k∑

i=1

si

)
≤

≤ 1

2



(

k∑

i=1

si

)2

−
k∑

i=1

si


 =

1

2

(
t2 − t

)
=

(
t

2

)
.

As a consequence,
∑

w∈Tt
(1−p)q(w) ≥∑w∈Tt

(1−p)(
t

2) =

kt · (1 − p)(
t

2), and thus we obtain the following – easily
computable – lower bound:

E(Y ) =
∑

w∈T

(1− p)q(w) ≥
n∑

t=0

kt · (1− p)(
t

2). (1)

Proposition 2. For all w ∈ Tt, q(w) ≥ 1
2

(
t2

k
− t
)

.

Proof: Since

∑k
i=1 s

2
i

k
≥
(∑k

i=1 si

k

)2

=
t2

k2
,

it follows that

q(w) =
1

2

(
k∑

i=1

s2i −
k∑

i=1

si

)
≥ 1

2

(
t2

k
− t

)
.

As a consequence,
∑

w∈Tt
(1 − p)q(w) ≤ ∑

w∈Tt
(1 −

p)
1
2

(
t2

k
−t

)

= kt · (1 − p)
1
2

(
t2

k
−t

)

, and thus we obtain the
following – easily computable – upper bound:

E(Y ) =
∑

w∈T

(1− p)q(w) ≤
n∑

t=0

kt · (1− p)
1
2

(
t2

k
−t

)

. (2)



As a by-product, we obtain a simple proof for a theorem of
Wilf [20]:

Corollary 3 (Wilf, 1984). The average-case complexity of
coloring a random graph with a constant number of colors
is O(1).

Proof: According to (2), the complexity of the backtrack-

ing algorithm is not more than
∑∞

t=0 k
t · (1 − p)

1
2

(
t2

k
−t

)

=∑∞
t=0 A

t · Bt2 , whereA = k√
1−p

andB = 2k
√
1− p. Since

0 < B < 1, the root test shows that
∑∞

t=0 A
t · Bt2 is

convergent. This upper bound is independent ofn.
Numerical comparison of the lower bound (1) and the upper

bound (2) has shown that their difference is quite large in
practice (see Section X). This motivates the quest for better
lower and upper bounds.

V. REFINED LOWER BOUND USINGJENSEN’ S INEQUALITY

Let q̄ := 1
|Tt|
∑

w∈Tt
q(w) denote the mean of theq(w)

values inTt.

Lemma 4. q̄ = t2−t
2k .

Proof: Since the role of the colors is symmetric, it is easy
to see that

∑

w∈Tt

q(w) =
∑

w∈Tt

k∑

i=1

(
s(w, i)

2

)
=

=
k∑

i=1

∑

w∈Tt

(
s(w, i)

2

)
= k

∑

w∈Tt

(
s(w, 1)

2

)
.

In order to compute this sum, we should examine for how
many w ∈ Tt we haves(w, 1) = j. In other words, how
many colorings exist for the firstt vertices, in which exactly
j vertices receive color 1. Since thej vertices can be chosen in(
t
j

)
ways and the remainingt− j vertices must receive a color

from the remainingk− 1 colors, there are
(
t
j

)
(k− 1)t−j such

colorings. Hence, the above sum can be written as follows:

∑

w∈Tt

q(w) = k

t∑

j=0

(
j

2

)(
t

j

)
(k − 1)t−j.

The members of the sum corresponding toj = 0 and j = 1
are 0, thus it is enough to start withj = 2. Using that

(
j
2

)(
t
j

)
=(

t
2

)(
t−2
j−2

)
, we have:

∑

w∈Tt

q(w) = k

(
t

2

) t∑

j=2

(
t− 2

j − 2

)
(k − 1)t−j =

= k

(
t

2

) t−2∑

ℓ=0

(
t− 2

ℓ

)
(k − 1)t−2−ℓ.

Using the binomial theorem for((k − 1) + 1)t−2, this can be
written as

∑

w∈Tt

q(w) = k

(
t

2

)
kt−2 = kt−1

(
t

2

)
.

Dividing this by |Tt| = kt leads to the stated formula for̄q.

Theorem 5. E(Y ) =
∑

w∈T (1 − p)q(w) ≥ ∑n

t=0 k
t(1 −

p)
t2−t
2k .

Proof: Since x 7→ (1 − p)x is convex, thus Jensen’s
inequality gives

1

|Tt|
∑

w∈Tt

(1− p)q(w) ≥ (1− p)
1

|Tt|

∑
w∈Tt

q(w) = (1− p)
t2−t
2k ,

yielding exactly the stated bound. (In the last equation, we
used Lemma 4.)

Comparing the lower bound of Theorem 5 and the upper
bound (2), it can be seen that both have the form

∑n
t=0 k

t ·
(1 − p)

t2

2k+Θ(t). Numerical comparison has shown that they
are indeed closer to each other than the bounds (1) and (2),
but there is still room for improvement (see Section X).

VI. CALCULATING WITH qmin TERM SEPARATELY

In order to improve the bounds, we look at the distribution
of q(w) in more detail. Sincex 7→ (1− p)x is monotonously
decreasing, smaller values ofq(w) are more significant than
higher values. Moreover, the results of Proposition 1, Propo-
sition 2 and Lemma 4 show that the mean of theq(w) values
is closer to the minimum than to the maximum, suggesting
that small values ofq(w) have a high frequency. This is
also justified by empirical results, see Fig. 1 for an example.
Therefore, we investigate the smallest values ofq(w).

Proposition 6. Moving a vertex from a color class withA
vertices to a color class withB vertices decreasesq(w) by
A− B − 1 (if this is negative, thenq(w) is increased).

Proof: The change in q(w) is
(
A
2

)
+
(
B
2

)
−((

A−1
2

)
+
(
B+1
2

))
= A−1

2 (A−(A−2))+B
2 (B−1−(B+1)) =

A− 1−B.
We call such a move acorrection move, if A > B. During

a correction move,q either decreases or remains constant.

Proposition 7. If q(w) is minimal in Tt, then in the partial
coloring w each color class contains either

⌈
t
k

⌉
or
⌊
t
k

⌋

vertices.

Proof: Since the average size of a color class ist
k
,

the biggest color class has at least
⌈
t
k

⌉
vertices, and the

smallest color class has at most
⌊
t
k

⌋
elements. Using proof

by contradiction, we assume that the sizes of the biggest and
smallest color classes differ by at least 2. Then, it followsfrom
Proposition 6 that moving a vertex from the biggest color class
to the smallest color class decreasesq(w) by at least 1. This
contradicts the minimality ofq(w).

As can be seen, an arbitrary partial coloringw can be turned
into a partial coloringw′ with q(w′) = qmin by using a
sequence of correction moves.

Let t = ck + d where0 ≤ d ≤ k − 1. Then, according
to Proposition 7, colorings with minimumq(w) haved color
classes of sizec+1 andk−d color classes of sizec. Thus, the
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Fig. 1. The frequency of differentq(w) values fort = 20 andk = 4. Here,qmin = 40, q̄ = 47.5 andqmax = 190. It can be seen that the distribution is
concentrated in the lower region of the possibleq values.

minimum value ofq(w) is: qmin = d
(
c+1
2

)
+(k− d)

(
c
2

)
. This

is sharp for eacht and k, and thus a slightly more accurate
bound than the one of Proposition 2.

Let R(q, t, k) := |{w ∈ Tt : q(w) = q}| denote the
frequency of valueq among theq(w) values of nodes inTt.

Proposition 8. R(qmin, t, k) =
(
k
d

)
· t!
((c+1)!)d(c!)(k−d) .

Proof: There are
(
k
d

)
possibilities to choose thed color

classes whose size should bec + 1. Given the size of each
color class ass1, s2, . . . , sk, there are t!

s1!·s2!·...·sk! possibilities
to distribute thet vertices among the color classes.

UsingRmin := R(qmin, t, k), this leads to a more accurate
upper bound:
∑

w∈Tt

(1−p)q(w) ≤ Rmin(1−p)qmin+(kt−Rmin)(1−p)qmin+1

and thus

E(Y ) ≤
n∑

t=0

Rmin(1 − p)qmin + (kt −Rmin)(1 − p)qmin+1.

(3)
The lower bound can also be improved by separating the

term corresponding toqmin:

Theorem 9.

E(Y ) ≥
n∑

t=0

Rmin(1− p)qmin + (kt −Rmin)(1− p)q̂1 ,

where q̂1 = kt q̄−Rmin·qmin

kt−Rmin
.

Proof: Let T
(1)
t := {w ∈ Tt : q(w) = qmin} and

T
(1+)
t := {w ∈ Tt : q(w) > qmin}. Clearly, |T (1)

t | = Rmin

and |T (1+)
t | = kt − Rmin. Moreover,

∑
w∈T

(1)
t

q(w) =

Rminqmin and
∑

w∈T
(1+)
t

q(w) = ktq̄ − Rminqmin. Using
Jensen’s inequality,

∑

w∈T
(1+)
t

(1 − p)q(w) ≥
∣∣∣T (1+)

t

∣∣∣ (1− p)

1

|T (1+)
t |

∑
w∈T

(1+)
t

q(w)

=

= (kt −Rmin)(1− p)
ktq̄−Rminqmin

kt−Rmin .

Together with
∑

w∈T
(1)
t

(1 − p)q(w) = Rmin(1 − p)qmin , this
yields the stated bound.

VII. F REQUENCY OFqmin + 1

In order to further improve our bounds in an analogous way,
the frequency ofqmin + 1 should be calculated.

Consider a partial coloringw with q(w) = qmin +1. Since
q(w) > qmin, we can perform a correction move: we move a
vertex from the biggest color class (containingA vertices) to
the smallest color class (containingB vertices). We thus obtain
a new partial coloringw′ with q(w′) < q(w), see Fig. 2. It
follows thatq(w′) = qmin and the decrease isA−B−1 = 1,
hence inw′ the two color classes contain the same number
of vertices (A− 1 = B + 1). Moreover, sinceq(w′) = qmin,
all color classes inw′ containc or c+ 1 vertices. From these
facts, we can deduce the possible sizes of color classes inw.



Fig. 2. Number of elements in different color classes.

A. Cased 6= 0, d 6= 1 and d 6= k − 1:

In w′, there arek − d color classes withc elements andd
color classes withc+1 elements. The new color classes with
A − 1 and B + 1 elements inw′ contain eitherc or c + 1
elements.

1) If A− 1 = B + 1 = c and c ≥ 1: In this case, inw:
• one color class containsc− 1 elements
• k − d− 2 color classes containc elements
• d+ 1 color classes containc+ 1 elements
Hence, the frequency of this case is:
(
k

1

)(
k − 1

d+ 1

)
t!

((c+ 1)!)
d+1

(c!)
k−d−2

(c− 1)!
=

=
k!t!

(d+ 1)! (k − d− 2)!(c+ 1)
d+1

(c)
k−1

((c− 1)!)
k
.

2) If A− 1 = B + 1 = c+ 1 and d ≥ 2: Then inw:
• k − d+ 1 color classes containc elements
• d− 2 color classes containc+ 1 elements (thusd ≥ 2)
• 1 color class containsc+ 2 elements
The frequency of this case:
(
k

1

)(
k − 1

d− 2

)
t!

(c+ 2)! ((c+ 1)!)
d−2

(c!)
k−d+1

=

=
k!t!

(d− 2)! (k − d+ 1)!(c+ 2) (c+ 1)
d−1

(c!)
k
.

B. Cased = 0 and c ≥ 1:

In w′, there are exactlyc elements in all color classes. Thus
in w:

• 1 color class containsc− 1 elements
• k − 2 color classes containc elements
• 1 color class containsc+ 1 elements
The frequency of this case:

(
k

1

)(
k − 1

1

)
t!

(c− 1)!(c+ 1)! (c!)k−2
=

=
k(k − 1)t!

((c− 1)!)k (c+ 1)ck−1
.

C. Cased = 1 and c ≥ 1:

In w:
• 1 color class containsc− 1 elements
• k − 3 color classes containc elements
• 2 color classes containc+ 1 elements
The frequency of this case is:

k

(
k − 1

2

)
t!

(c− 1)! ((c+ 1)!)
2
(c!)

k−3

D. Cased = k − 1:

In w:
• 2 color classes containc elements
• k − 3 color classes containc+ 1 elements
• 1 color class containsc+ 2 elements
The frequency of this case is:

k

(
k − 1

2

)
t!

(c+ 2)! ((c+ 1)!)
k−3

(c!)
2

As a consequence, the frequency ofqmin + 1 can be
calculated as a function oft andk (using the proper case).

VIII. F REQUENCY OFqmin + 2

The bounds can be further improved by calculating the
value and the frequency of the third smallestq. Similarly to
the previous section, we start from a partial coloringw with
q(w) = qmin +2, and we move to another partial coloringw′

with q(w′) = qmin. There are two different ways: by using
either one or two correction moves.

A. Using one correction move

In this case, in accordance with Proposition 6,q(w) −
q(w′) = A − B − 1 = 2, and with Proposition 7, inw
Amax = c+ 2 andBmin = c− 1. Therefore, inw:

• 1 color class containsc− 1 elements (thusc− 1 ≥ 0)
• k − d− 1 color classes containc elements
• d− 1 color classes containc+ 1 elements (thusd ≥ 1)
• 1 color class containsc+ 2 elements
The frequency of this case is:

k

(
k − 1

1

)(
k − 2

d− 1

)
t!

(c− 1)! (c!)k−d−1 ((c+ 1)!)d−1 (c+ 2)!

B. Using two correction moves

After the first correction moveq(w′′) = qmin + 1. In this
caseq(w) − q(w′′) = q(w′′) − q(w′) = 1. Hence, after each
correction move, the color classes with the changed number
of elements contain equal number of elements.

Proposition 10. In w, there is no color class with more than
c+ 2 elements.

Proof: Using contradiction we assume, that there is a
color class with at leastc + 3 elements. Hence in both
correction moves a vertex should be moved from this color
class to another. Meanwhile there should not arise a color class
with more thanc + 1 elements. Then in the first correction
moveq(w) − q(w′′) > 1.



Proposition 11. In w, there are at most two color classes with
c+ 2 elements.

Proof: Similarly, at least three correction moves would
be needed otherwise.

We further split this case by the number of color classes
containingc+ 2 elements.

1) If there are two color classes withc+2 elements:In w:
• k − d+ 2 color classes containc elements
• d− 4 color classes containc+ 1elements (thusd ≥ 4)
• 2 color classes containc+ 2 elements
The frequency of this case is:
(
k

2

)(
k − 2

d− 4

)
t!

((c+ 2)!)2 ((c+ 1)!)d−4 (c!)k−d+2

2) If there is one color class withc+2 elements:The same
way as earlier, inw:

• 1 color class containsc− 1 elements (thusc ≥ 1)
• k − d− 1 color classes containc elements
• d− 1 color classes containc+ 1elements (thusd 6= 0)
• 1 color class containsc+ 2 elements
The frequency of this case is:

k

(
k − 1

1

)(
k − 2

d− 1

)
t!

(c− 1)! (c!)
k−d−1

((c+ 1)!)
d−1

(c+ 2)!

3) If there is no color class withc+ 2 elements:In w:
• 2 color classes containc− 1 elements (thusc ≥ 1)
• k−d−4 color classes containc elements (thusd ≤ k−4)
• d+ 2 color classes containc+ 1elements
The frequency of this case is:
(
k

2

)(
k − 2

d+ 2

)
t!

((c+ 1)!)
d+2

(c!)
k−d−4

((c− 1)!)
2

Using the proper case, the value ofRmin+2 can always be
calculated. Care needs to be taken though as two correction
moves might be substituted with a single one. Specifically,
the case in Subsection VIII-A is equivalent to the case of
Subsubsection VIII-B2. Otherwise, the cases are disjoint.

IX. PUTTING THE PIECES TOGETHER

Let Rmin+1 := R(qmin+1, t, k) and Rmin+2 :=
R(qmin+2, t, k). The best lower and upper bounds are:

E(Y ) ≤
n∑

t=0

Rmin(1− p)qmin+

+Rmin+1(1− p)qmin+1 +Rmin+2(1− p)qmin+2+

+ (kt −Rmin −Rmin+1 −Rmin+2)(1 − p)qmin+3.

and

Theorem 12.

E(Y ) ≥
n∑

t=0

Rmin(1 − p)qmin+

+Rmin+1(1− p)qmin+1 +Rmin+2(1− p)qmin+2+

+ (kt −Rmin −Rmin+1 −Rmin+2)(1 − p)q̂3

where q̂3 = kt q̄−Rminqmin−Rmin+1(qmin+1)−Rmin+2(qmin+2)
kt−Rmin−Rmin+1−Rmin+2

.

Proof: Let T
(1)
t := {w ∈ Tt : q(w) = qmin},

T
(2)
t := {w ∈ Tt : q(w) = qmin + 1}, T

(3)
t := {w ∈

Tt : q(w) = qmin + 2} and T
(3+)
t := {w ∈ Tt :

q(w) > qmin + 2} on the analogy of Theorem 9. Hence,
|T (1)

t | = Rmin, |T (2)
t | = Rmin+1, |T (3)

t | = Rmin+2 and
|T (3+)

t | = kt −Rmin −Rmin+1 −Rmin+2. Clearly,
∑

w∈T
(1)
t ∪T

(2)
t ∪T

(3)
t

q(w) =

Rminqmin +Rmin+1(qmin + 1) +Rmin+2(qmin + 2)

and
∑

w∈T
(3+)
t

q(w) =

ktq̄ −Rminqmin −Rmin+1(qmin + 1)−Rmin+2(qmin + 2).

Using Jensen’s inequality,

∑

w∈T
(3+)
t

(1− p)q(w) ≥
∣∣∣T (3+)

t

∣∣∣ (1− p)

1

|T (3+)
t |

∑
w∈T

(3+)
t

q(w)

=

(kt −Rmin −Rmin+1 −Rmin+2)·

· (1− p)
ktq̄−Rminqmin−Rmin+1(qmin+1)−Rmin+2(qmin+2)

kt−Rmin−Rmin+1−Rmin+2 .

Together with the other terms, we get the stated bound.
Because of space constraints, we do not include the

calculation of the bounds determined byqmin + 1 (with-
out the help of qmin + 2) and for the inherentq̂2 =
kt q̄−Rminqmin−Rmin+1(qmin+1)

kt−Rmin−Rmin+1
.

Clearly, we could continue the above procedure and further
improve the bounds by also calculating the term ofqmin + 3,
then qmin + 4 etc. However, it is also clear from the above
that the calculation becomes significantly more complex with
each step, and on the other hand, the gain is decreasing with
every step (see Section X).

X. NUMERICAL COMPARISON OF THE BOUNDS

In order to assess how good the different lower and upper
bounds are, we compared them numerically for different
values of the control parametersn, k, p. Here, we show the
comparison for fix values ofn andk, as a function ofp. In
order to enhance visibility, we include two figures (note the
exponential scale on they axis in both cases): one for small
values ofp (Fig. 3) and one for high values ofp (Fig. 4). As
can be seen, both the upper bounds and the lower bounds are
becoming better and better.

The shown bounds are as follows:

• 1st upper bound: boundingqmin

• 2nd upper bound: calculatingqmin term separately
• 3rd upper bound: calculatingqmin + 1 term separately
• 4th upper bound: calculatingqmin + 2 term separately
• 5th lower bound: calculatingqmin + 2 term separately
• 4th lower bound: calculatingqmin + 1 term separately
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Fig. 3. Comparison of the presented lower and upper bounds for small values ofp, with n = 30 andk = 5.
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Fig. 4. Comparison of the presented lower bounds and upper bounds for high values ofp, with n = 30 andk = 5.

• 3rd lower bound: calculatingqmin term separately
• 2nd lower bound: using Jensen’s inequality
• 1st lower bound: boundingqmax

Fig. 5 presents only the best bounds, together with the
bounds of Bender and Wilf [3]. As can be seen, the new

bounds are much closer to each other than the original bounds.
(The shape and relative position of the curves are similar for
other values ofn and k as well.) The exact location of the
true expected tree size is currently not known, but a method
for determining it is presented in [13].
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Fig. 5. Comparison of the presented best lower bound and bestupper bound with the bounds of Bender and Wilf [3] forn = 30 andk = 5.

XI. CONCLUSION AND FUTURE WORK

We have investigated the complexity of a typical backtrack
search for coloring random graphs withk colors. Using the
expected size of the search tree as the measure of complexity,
we derived lower and upper bounds for the complexity. We
showed empirical evidence that these bounds are much closer
to each other than previously known bounds.

In this paper, we only dealt with uncolorable problem in-
stances. Our future work will focus on extending the presented
results to colorable problem instances.

Bender and Wilf [3] also presented lower and upper bounds
on thejth moment of the number of visited nodes in the search
tree. The variance is particularly interesting to better judge the
algorithm’s performance. It remains a future research direction
to investigate how the methods presented in this paper can be
used to improve Bender and Wilf’s bounds on higher moments.
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