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Abstract — One of the most crucial steps in the design of embedded
systems is hardware-software partitioning, i.e. deciding which
components of the system should be implemented in hardware
and which ones in software. In this paper, different versions of
the partitioning problem are defined, corresponding to real-time
systems, and cost-constrained systems, respectively. The authors
provide a formal mathematic analysis of the complexity of the
problems: it is proven that they are A/P-hard in the general case,
and some efficiently solvable special cases are also presented. An
ILP (integer linear programming) based approach is presented that
can solve the problem optimally even for quite big systems, and a
genetic algorithm (GA) that finds near-optimal solutions for even
larger systems. A specialty of the GA is that non-valid individuals
are also allowed, but punished by the fitness function.
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I. INTRODUCTION

Today’s computer systems typically consist of both
hardware and software components. For instance in an
embedded signal processing application it is common to use
both application-specific hardware accelerator circuits and
general-purpose, programmable units with the appropriate
software [1], [2].

This is beneficial since application-specific hardware is
usually much faster than software, but it is also significantly
more expensive. Software on the other hand is cheaper to
create and to maintain, but slow. Hence, performance-critical
components of the system should be realized in hardware, and
non-critical components in software. This way, a good trade-
off between cost and performance can be achieved.

However, this kind of system design is not without chal-
lenges. Usual hardware and software design methodologies
are in many aspects inadequate for such design tasks. The
composition of hardware and software elements also creates

This work was supported by OTKA T043329. This paper appeared in
Proceedings of the 2003 IEEE International Symposium on Intelligent Signal
Processing.

new problems, e.g. related to the communication of hardware
and software components, as well as system architecture
issues. In order to address these problems, hardware-software
co-design (HSCD) methods have to be used [3].

One of the most crucial design steps in HSCD is
partitioning, i.e. deciding which components of the system
should be realized in hardware and which ones in software.
Clearly, this is the step in which the above-mentioned optimal
trade-off between cost and performance is to be found.
Therefore, partitioning has dramatic impact on the cost and
performance of the whole system [4].

Traditionally, partitioning was carried out manually. How-
ever, as the systems to design have become more and more
complex, this method has become infeasible, and many
research efforts have been undertaken to automate partitioning
as much as possible.

Il. PREVIOUS WORK

One of the most relevant works is presented in [5], [6]: a
very sophisticated integer linear programming model for the
joint partitioning and scheduling problem for a wide range of
target architectures. This integer program is part of a 2-phase
heuristic optimization scheme which aims at gaining better and
better timing estimates using repeated scheduling phases, and
using the estimates in the partitioning phases.

[7] presents a method for allocation of hardware resources
for optimal partitioning. During the allocation algorithm,
an estimated hardware/software partition is also built. The
algorithm for this is basically a greedy algorithm: it takes
the components one by one, and allocates the most critical
building block of the current component to hardware. If the
finite automaton realizing the control of the component also
fits into hardware, then that component is moved to hardware.

An even more heuristic approach is described in [8].
This paper deals with a partitioning problem, in which even
the cost function to be optimized is a very complicated,
heuristically weighted sum, which tries to take into account
several optimization criteria. The paper also describes two



heuristic algorithms: one based on simulated annealing and
one based on tabu search.

[9] shows an algorithm to solve the joint problem of
partitioning and scheduling. It consists of basically two local
search heuristics: one for partitioning and one for scheduling.
The two algorithms operate on the same graph, at the same
time.

[10] considers partitioning in the design of ASIPs
(application-specific integrated processors). It presents a
formal framework and proposes a partitioning algorithm based
on branch and bound.

[11] presents an approach that is largely orthogonal to
other partitioning methods: it deals with the problem of
hierarchically matching tasks to resources. It also shows
a method for weighting partially defined user preferences,
which can be very useful for multiple-objective optimization
problems.

I1l. PROBLEM DEFINITION

We observed that previous works tried to capture too many
details of the partitioning problem and the target architecture.
Therefore, the solutions proposed in the literature

« do not scale well for large inputs but they fall victim to

combinatorial explosion; and/or

« are heuristic in nature, and drift away too much from

optimal solutions.
Moreover, the complexity of the problem is hard to determine.

Therefore, our main goal was to introduce a simplified
model for partitioning, using which we can

« define different versions of the partitioning problem

formally;

« analyze the complexity of the problems formally;

« give algorithms that can be used for the design of large

systems as well.

Note that algorithms published previously in the literature
have been tested on systems with some dozens of components.
Our aim was to make our algorithms scalable for systems with
hundreds or even thousands of components, so that they can
indeed be used in practical, large-scale projects. For these
reasons we had to keep the model as simple as possible,
only taking into account the most important properties of the
partitioning problem.

A. Informal model

The characteristics of our model are the following:

« We consider only one software context (i.e. one general-
purpose processor) and one hardware context (e.g. one
FPGA). The components of the system have to be mapped
to either one of these two contexts.

« Software implementation of a component is associated
with a software cost, which is the running time of the
component if implemented in software.

« Hardware implementation of a component is associated
with a hardware cost, which can be for instance area, heat
dissipation, energy consumption etc.

« Since hardware is significantly faster than software, the
running time of components implemented in hardware is
taken to be zero.

« If two communicating components are mapped to differ-
ent contexts, this is associated with a (time dimensional)
communication overhead. If two components are mapped
to the same context, then the communication between
them is neglected.

One of the most important advantages of this simplified
model is that scheduling does not have to be addressed
explicitly. Hardware components do not have to be scheduled,
because their running time is assumed to be zero. Software
components do not have to be scheduled because there is only
one processor, so that the overall running time will be the sum
of the running times of the software components, regardless
of their schedule. Therefore, we can completely decouple the
partitioning problem from the scheduling problem, and focus
solely on the partitioning problem.

B. Formal problem definition

An undirected simple graph G = (V,E), V = {vy,...,v,},
s,h:V >R andc: E — R" are given. G is the so-called
task graph of the system, its nodes are the components of the
system that have to be partitioned, and the edges represent
communication between the components. s(v;) (or s;) and
h(v;) (or h;) denote the software and hardware cost of node v;,
respectively, while ¢(v;,v;) denotes the communication cost
between v; and v; if they are in different contexts (HW or SW).

P is called a hardware-software (HW-SW) partition if
it is a bipartition of V: P = (Vg,Vs), where Vg U
Vs =V and VgNVs = (. The crossing edges are:
Ep = {(vi,vj) TV € Vs,Uj eVyoru; € VH,U]' € Vs}. The
hardware cost of P is: Hp = ), ... hi; the software cost
of Piist Sp =3 ,.cvs 8i T 2ui0p)emp (Vi v5), 1€ the
software cost of the nodes and the communication cost; since
both are time-dimensional, it makes sense to add them, and
together they make up the running time of the system. The
following optimization and decision problems can be defined
(G, h, s, care given in all problems):

P1: Hy, So € R are given. Is there a P HW-SW partition

sothat Hp < Hy and Sp < Sy?
P2: Hy € R™ is given. Find a P HW-SW partition so that
Hp < Hyand Sp is minimal. (Cost-constrained systems)

P3: So € R" is given. Find a P HW-SW partition so that
Sp < Sy and Hp is minimal. (Systems with hard real-
time constraints)

C. Complexity

Theorem 1. P1 is N"P-complete even if only graphs with no
edges are considered.



Proof. P1e NP, since if partitioning is possible with the
given limits, then the partition itself is a good proof for this.

To prove the A'P-hardness, we reduce the KNAPSACK
problem [12]to P1. Let aninstance of the KNAPSACK problem
be given. (There are n objects, the weights of the objects are
denoted by w;, the price of the objects by p;, the weight limit
by W and the price limit by K. The task is to decide whether
there is a subset X of objects, so that Zz’eX w; < W and
Y iex Pi > K.) Based on this, we define an instance of P1
as follows: V = {’1)1,...,1)”}, E=0. Let h; = Di, 8 = W;.
(Since E is empty, there is no need to define ¢.) Introducing
A= cvpiletSo =W, Hy=A-K.

We state that this instance of P1 is solvable iff the original
KNAPSACK problem has a solution.

Assuming that P1 has a solution: P = (Vg,Vs), where
Ve UVs =V and Vg N Vs = (. This means that

Sp = Z w; <W @
v; EVs
and
Hp= ) p<A-K=3 p-K
v; EVH v, EV
the last one can also be formulated as:
K<Y pi— > p= Y, pi )
v; EV v E€EVH v; EVg

(1) and (2) proves that X = Vg is a solution of the original
KNAPSACK problem.

Let now assume that X solves the KNAPSACK problem.
Therefore:

Z&':ZwiSW:So 3)

v;€X v;i€X
and
Y pi>K=A-Hy= )Y pi—Ho
v;€EX v;EV
that is
Hy> Y pi— Y pi= Y, pi= >, h (4
v; EV v; €EX v; EV\X v; EV\X
(3) and (4) verifies that P := (V' \ X, X) solves P1. O

Remark 1. The above proof shows that the special case of the
P1 problem in which the graph has no edges is equivalent with
the KNAPSACK problem.

Theorem 2. P2 is N'P-hard.

Proof. P1 can be reduced to P2: P2 provides a solution where
Hp < Hj and Sp is minimal; let this value be S%. Clearly P1
is solvable iff ST, < S. O

It can be proven in the same way that
Theorem 3. P3 is A"P-hard. O

Although the general partitioning problem is too hard for
large inputs, some special cases are easier. If communication is
cheap, i.e. ¢(v;,v;) = 0, then the partitioning problem reduces
according to Remark 1 to the well-known KNAPSACK prob-
lem, for which efficient pseudo-polynomial algorithms [12]
and approximation algorithms [13] are known.

On the other hand, if communication is the only significant
factor, i.e. s; = 0, h; = 0, then the trivial optimal solution is
to put every node to software. However, if there are some
predefined constraints considering the context of some nodes
(i.e. the nodes in () # Vs C V are prescribed to be in software
and the ones in Vi C V, to be in hardware, where Vi NVg = ()
the problem reduces to finding the minimal weighted s-h-cut
in a graph, where s and h represent the Vs and Vg sets,
respectively. (If Vi = (), then it reduces to finding a minimal
weighted cut.) This can be solved in polynomial time [14].

IV. ILP-BASED ALGORITHM

The following ILP (integer linear programming) solution
is appropriate for the P3 problem, but it is straightforward to
adopt it to the other versions of the partitioning problem.

h,s € (RT)™,c € (R™)® are the vectors representing the
cost functions (n is the number of nodes, e is the number of
edges). E € {—1,0,1}¢*™ is the transposed incidence matrix
of G, that is

-1
Eli,j] := { 1
0

Let 2 € {0,1}" be a binary vector indicating the partition, i.e.

oi] = { h

It can be seen that the components of the vector | Ez| indicate
which edges cross the boundary between the two contexts.
(The absolute value is taken component-wise.) So the problem
can be formulated as follows:

if edge 7 starts in node j
if edge ¢ ends in node j
if edge 4 is not incident to node j

if node ¢ is realized in hardware
if node 1 is realized in software

min hx (59)
s(1—xz)+c|Ez| < Sy (5b)
z € {0,1}" (5¢)

In Equation (5b) 1 means the n-dimensional (1,...,1) vector.
The (5a)-(5¢) problem can be transformed to an ILP equivalent
by introducing the variables y € R® to eliminate the | - |:

min hx

(6a)



s(1—z)+cy < So (6b)
Ezx <y (6¢c)

—Ez <y (6d)

z € {0,1}" (6e)

The last two programs are equivalent. If z solves (5b)-(5c),
then (z,|Ex|) solves (6b)-(6e). On the other hand, if (z,y)
solves (6b)-(6e), then z will solve (5b)-(5¢) too, since y > |Ex|
and ¢ > 0.

Hence (6a)-(6e) is the ILP formulation of the P3 problem.
We solve this integer program using LP-relaxation and branch-
and-bound [15].

V. GENETIC ALGORITHM

Although the ILP-based solution is efficient for graphs with
up to some hundreds of nodes, and it produces the exact
optimum, it cannot be used to partition even bigger graphs. For
this purpose, we also developed a genetic algorithm (GA). For
GA in general, see [16], [17] and references therein.

Individuals.  The partitioning problem is fortunate from
the point of view of a genetic algorithm. The applicability
of genetic algorithms requires that the solutions of the
optimization problem can be represented by means of a
vector with meaningful components: this is the condition for
recombination to work on the actual features of a solution.

Fortunately, there is an obvious vector representation in the
case of the partitioning problem: each partition is a bit vector
just like in the ILP program.

Population.  The population is a set of individuals. The
question is whether non-valid individuals, i.e. those violating
for instance the software limit in case of P3, should also be
allowed in the population. Since non-valid individuals violate
some important design constraint, it seems to be logical at
first glance to work with valid partitions only. However,
this approach would have several drawbacks: first, invalid
individuals may contain valuable patterns that should be
propagated, and second, it is hard to guarantee that genetic
operations do not generate non-valid individuals even from
valid ones. This holds for both mutation and recombination.
For these reasons we decided to allow non-valid individuals as
well in the population. Of course the GA must produce a valid
partition at the end, so we must make sure to insert some valid
individuals into the initial population, and choose the fitness
function in such a way that it punishes invalidity.

Our tests showed that the population size should be around
300.

Initial population.  In order to guarantee diversity in the
population, the initial population usually consists of randomly
chosen individuals. However, this method does not guarantee
that there will be valid individuals in the initial population—in
fact, if the problem space is big and constraints are tight, then
the chances are very low for this.

Generating random valid individuals with approximately
uniform distribution would be a promising alternative, but it is
by no means obvious how one could implement such a scheme.

Therefore we chose to fill the initial population partly with
randomly selected, not necessarily valid individuals, and partly
with valid individuals generated by a fast greedy algorithm.
This way, there are valid individuals, but also a wide variety
of other individuals in the initial population. Clearly, the ratio
between the two kinds of individuals in the initial population is
a crucial parameter of the GA. The tests have shown that about
one third of the individuals in the initial population should be
chosen randomly.

Fitness function. Since we mainly focused on the P3
problem, the objective is to minimize hardware cost. However,
since invalid individuals should be punished, the fitness has
a second component: the measure of invalidity, inv(P),
defined as the amount by which software cost (including
communication cost) exceeds the software limit (and O for a
valid partition).

We tried several versions for the fitness function, which
fall basically into two categories: those ranking every valid
individuals in front of invalid ones, and the less rigorous ones,
that allow invalid individuals to beat valid ones. Later in our
tests a rigorous version proved to be best:

£(P) = {ZP . !fP!syalld_
p+cxinv(P)+ M if Pisinvalid
where Hp is the hardware cost, ¢ is an appropriate constant
determined by the tests, and M is a sufficiently large constant
that makes each invalid individual have a higher fitness
than any valid individual. (Note that the fitness has to be
minimized.)

Genetic operations.
are used.

Mutation is done in the new population; each gene of each
individual is altered with the same probability.

In the case of recombination we tested both one-point-
crossover and two-point-crossover. Moreover, we tested two
schemes for choosing the individuals for crossover: in the first
one, all individuals are chosen with the same probability, in the
second one, the probability of choosing a particular individual
depends on its fitness, so that better individuals are chosen with
a higher probability. So we tested four different versions of the
recombination operator. According to the test results, the best
strategy is to choose individuals with probabilities determined
by their fitness, and to use two-point-crossover (although one-
point-crossover is not much worse).

Selection is usually realized as filling some part of the new
population with the best individuals of the old population.
However, since some versions of the fitness functions rank
all invalid individuals behind the valid ones, this would mean
that invalid individuals are completely omitted from selection.
Therefore, a given ratio of the selected individuals is taken
from the invalid individuals.

Mutation, recombination and selection




Stopping criteria. The GA takes a given minimum number of
steps (generations). After that, it stops after x steps if the best
found partition does not improve in the last px steps. 0 < p < 1
is also a parameter.

VI. EMPIRICAL RESULTS

The aim of our tests was threefold:

1. the limit of the applicability of the ILP algorithm had to

be identified;

2. the parameters of the genetic algorithm had to be tuned;

3. the quality of the solutions found by GA had to be

determined.

For the latter purpose the optimal solution of the ILP
algorithm was used as reference in those problem instances that
both algorithms were able to solve in acceptable time. We have
tested the ILP-based and the genetic partitioning algorithm on
both industry benchmarks and random problem instances.

First, we tuned the parameters of the genetic algorithm
using random problem instances of varying size (400-1000
nodes). We varied the type of recombination, the fitness
function, the constants in the fitness function, the size of
the population, the ratio of random individuals in the initial
population, the mutation rate, selection rate, percentage of
invalid individuals from the selected ones, and the constants
in the stopping criteria. Because of this huge number of
parameters, we could not test all configurations. Rather, we
first tuned the less sensitive parameters, and fixed them to the
values that seemed best. We tested each configuration on 27
problem instances: 3 different problem sizes, 9 runs each, and
we used the average of the 9 measurements for comparison.

After having tuned the parameters of the GA, we fixed them
to the best found configuration, and moved on to compare it
with the ILP algorithm on industry benchmarks.

The benchmarks we used are cryptographic algorithms
(IDEA, RC6, MARS) of different complexity. Concerning the
communication costs we tested two scenarios in every bench-
mark: communication dominated, in which the communication
cost values relative to the software costs are very high, and
processing dominated, in which the communication cost is in
the same order of magnitude as the software costs. In both
scenarios and in each benchmarks we tried seven different
software limits. Altogether there were 42 test cases.

An overview of the results can be seen in Figures 1 and 2.
Figure 1 shows the cumulative running time of the algorithms
on each benchmark. The values on the y-axis mean the sum
of the execution times of all tests in seconds. According to
our expectations the running time of the ILP-solution grows
exponentially with the problem size, in contrast with the
slowly growing execution time of the GA. It can be seen that
the ILP can solve problems with up to some hundreds of
nodes in acceptable time, but becomes impractical on larger
instances. We tested the GA on big random problems (random
instances have the advantage that they can be generated and
scaled easily) and found that it can solve problems of several
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Fig. 1. The cumulative running time of the algorithms on benchmark
problems
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Fig. 2. The cumulative cost of the solutions found by the algorithms on
benchmark problems

thousands of nodes in acceptable time. On a Pentium Il PC,
the GA can solve a problem with 2000 nodes within an hour,
roughly the same running time that the ILP produces for a
graph with about 300 nodes.

The quality of the found solution can be seen in Figure 2.
This is the cumulative cost of the found solutions in each
benchmark. Since the ILP always finds the optimum, we
were interested in the deterioration of the result of GA. The
figure shows that, on average, GA could find a solution close
to the optimum. The exact deviances are: 5.4%, 16.5% and
17.8%. On larger tests we could not compare the result of GA
with the result of ILP, since the latter was unable to terminate
in acceptable time, but we expect the GA to finish not very
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Fig. 3. The ratio of the results of GA and the optimum

far from the optimum. However, the gap increases with the
problem size.

Figure 3 shows the deviation of the result of GA from the
optimum in detail. On the x-axis the different tests according to
the software limit, on the y-axis the ratio of the solution found
by GA and the optimum can be seen. In test-case 1 and 7 the
software limit was chosen in such a way that the optimum is
to put every component in software or hardware, respectively.
It can be seen that GA finds these extremes in every case.
Another consequence of the figure is that the difficulty of the
problem depends strongly on the software limit. Tests 5 and
6 seemed to be the hardest problems, where in the worst case
only an approximation ratio of 2 could be achieved. The best
results were found in the ’IDEA, communication-dominated’
scenario, in which all the seven test cases resulted in the
optimal solution.

The easy-hard-easy pattern that can be recognized in
Figure 3 is in accordance with previous findings in the
literature [18]. We could expect a similar pattern in the running
time of the ILP algorithm; however, this is not true. In
fact, the running time of the ILP algorithm oscillates wildly.
(In contrast, the running time of the GA is quite consistent.)
This might be caused by the previously observed heavy-tailed
runtime distribution of search algorithms [19]. Actually, it
is possible that the ILP algorithm exhibits a similarly clear
easy-hard-easy pattern on average, but this phenomenon is
hidden because of the large deviation caused by the heavy-
tailed property. In order to decide this, we are planning to
implement a randomized ILP algorithm, and test its average
behaviour.

VII. CONCLUSION

In this paper, we have introduced a new, simplified model
for the hardware-software partitioning problem. This model

has made it possible to investigate the complexity of the
problem formally. In particular, we have proven that the
problem is A"P-hard in the general case, but we could also
identify some efficiently solvable meaningful special cases.
Moreover, we presented two new partitioning algorithms: one
based on ILP, and a genetic algorithm. It turned out in our
empirical tests that the ILP-based solution works efficiently
for graphs with several hundreds of nodes and yields optimal
solutions, whereas the genetic algorithm gives near-optimal
solutions on average, and works efficiently with graphs of even
thousands of nodes. Moreover, we observed an easy-hard-easy
pattern in the performance of GA, and wild oscillations in the
running time of the ILP algorithm.

Our future plans include randomization of our ILP-based
algorithm, developing better bounds for the branch-and-bound
scheme used in the ILP algorithm, as well as the inclusion of
some simple scheduling methods into our partitioning model.
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