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ABSTRACT
Applying services computing to neural networks, a service provider
may provide inference with a pre-trained neural network as a ser-
vice. Clients use the service to get the neural network’s output
on their input. To protect sensitive data, secure neural network
inference (SNNI) entails that only the client learns the output; the
input remains the client’s secret and the neural network’s parame-
ters remain the service provider’s secret. Several SNNI approaches
were proposed and evaluated in environments where both service
providers and clients used powerful computers.

In many real settings, for instance in edge computing, client de-
vices are resource-constrained. This paper is the first to investigate
the impact of client-side resource constraints on SNNI. We perform
experiments with two state-of-the-art SNNI approaches and three
neural networks. We vary the compute and memory capacity of the
client device and measure the impact on inference time. Our find-
ings show that client-side resource constraints significantly impact
the performance and even the applicability of SNNI approaches. The
results indicate the limits of current SNNI approaches for resource-
constrained clients. Based on the results, we identify research di-
rections to improve SNNI for resource-constrained clients.

CCS CONCEPTS
• Security and privacy → Distributed systems security; • Com-
puting methodologies→ Neural networks; • Computer systems
organization→ Client-server architectures.
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1 INTRODUCTION
Machine learning, and neural networks in particular, have gained
much attention over the last few years. This is explained by the
ability of neural networks to provide new ways and techniques to
successfully solve difficult problems like pattern recognition, data
analysis, and control [1, 5]. These techniques are highly capable
of performing complex cognitive tasks, to the extent of matching
or even outperforming humans. This is due to the ability of neural
networks to learn from vast amounts of data. After being trained on
this original data, in the inference phase, they can make predictions
on what a certain output should be for a new input.

A result of the rise of neural networks is the concept of MLaaS
(Machine Learning as a Service). In MLaaS, clients can provide input
to a pre-trained neural network and receive the corresponding
output [32]. This means it is not necessary for clients to have their
own training datasets, and perform the training or the inference
themselves, thereby lowering the barrier of entry. Another benefit is
that all the efforts and computing resources can be pooled to create
a better model. However, a large disadvantage is that the input
data has to be shared with the service provider, who also learns
the output. This data can consist of very sensitive information,
such as private conversations, personal images, statistics describing
someone’s personal life, etc. [34]. An example is presented by recent
work that proposes the use of machine learning to detect health
anomalies from smartwatch data [3].

Secure neural network inference (SNNI) aims to solve this prob-
lem. SNNI means that the following secrecy goals are ensured by
the inference process [23]:

• The client’s input remains unknown to the server.
• The output of the inference remains unknown to the server.
• The parameter values of the server’s neural network (e.g.,
weights and biases) remain unknown to the client.

SNNI is challenging, but can be achieved by using advanced
cryptographic protocols [23].

The vast majority of the research in the field so far has focused
on situations where both the client and the service provider use
powerful computers. However, in an MLaaS environment, this is
often not the case. Here the server often has far greater resources
than the client. Especially in the context of edge computing, clients
often use resource-constrained devices, such as smart cameras [2, 17,
22]. For this reason, it is necessary to extend the body of knowledge
on SNNI to situations with resource-constrained clients.

The aim of this paper is to investigate how current SNNI ap-
proaches perform when the client is resource-constrained, and to
provide suggestions on how to better deal with such cases. To this

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


UCC 2023, December 04–07, 2023, Taormina (Messina), Italy Rik de Vries and Zoltán Ádám Mann

end, we perform an extensive empirical evaluation using two state-
of-the-art SNNI approaches, Cheetah and SCIHE, while having the
client run on a virtual machine with varying resource allowances.

Our results indicate that current SNNI approaches allow for
SNNI with resource-constrained clients up to some point, although
their performance is quite sensitive to the client’s capacity. Chee-
tah outperformed SCIHE in most cases, with their performance
difference depending significantly on the client’s capacity. For both
SNNI approaches, the execution time for different CPU allowances
follows a hyperbola. When changing memory allowances, there is a
threshold: configurations with lower allowances experience a major
slowdown or do not run at all, while after this point no significant
performance gains are achieved anymore. Delving deeper into the
different layer types of the neural networks shows that different
types of layers experience different slowdowns as client capacity
decreases. The results also show that the required memory for the
client is dependent on the largest layer in the network, but not on
the depth of the network. Overall, the results give significant new
insights into SNNI performance that can serve as a basis for making
SNNI with resource-constrained clients more practical.

2 PRELIMINARIES
This section summarizes important background information on neu-
ral networks, the secure neural network inference (SNNI) problem,
SNNI solution approaches, and the evaluation of such approaches.

2.1 Neural networks
A neural network (NN) computes a function. The input of the
NN is a vector consisting of numbers. The output of the NN is
usually either a number or a vector (typically of smaller dimension
than the input vector). For example, if the NN is used for image
classification, the input could be the raw image and the output
could be an encoding of the class to which the given image belongs.

In this paper, we focus on feed-forward neural networks. A feed-
forward neural network consists of a sequence of layers. Each layer
takes a vector as input and outputs another vector of potentially
different dimension. The input of the first layer is the input to the
NN, while the output of the last layer is the output of the NN.

Different types of layers perform different transformations. A
useful classification is to differentiate linear and non-linear layers:

• For a linear layer, the layer’s output is a linear function of
the layer’s input. For example, for a fully-connected layer,
the output vector is computed as 𝑦 = 𝑊 · 𝑥 + 𝑏, where
𝑥 is the input vector, and 𝑊 and 𝑏 are parameters (𝑊 is
called weight matrix and 𝑏 is called bias vector). Another
example of linear layers are convolutional layers, which have
a more complicated definition but can also be reduced to
scalar products with vectors of known numbers.

• For a non-linear layer, the layer’s output is a non-linear func-
tion of the layer’s input. Important examples are activation
and pooling layers.
– In an activation layer, the same R→ R function is applied
to each coordinate of the input; thus, the output has the
same dimension as the input. A frequently used example
is the ReLU function, given as ReLU(𝑥) = max(0, 𝑥).

Client device Server device

Client Service provider

SNNI 

client

SNNI 

server

Secret input 𝑥

Secret output 

NN𝜃(𝑥)

Secret input 𝜃

Figure 1: Overview of Secure Neural Network Inference. The
service provider possesses the parameter values 𝜃 of the neu-
ral network. The client provides input 𝑥 and receives output
NN𝜃 (𝑥) of the neural network. Input and output are only
known to the client; 𝜃 is only known to the service provider.

– In a pooling layer, a window of a given size 𝑘 is swept over
the input and the same R𝑘 → R function is applied each
time to compute one coordinate of the output. An example
is Max-Pooling, where the maximum over the window is
computed as output.

A NN is trained by applying it to inputs for which the correct
output is known, and tuning the parameters (e.g., weights and
biases) such that the NN’s output matches or approximates the
expected output well. By training the NN on a large number of
inputs, the NN can learn to approximate very complicated functions.
An already trained NN can be used for inference by applying it to
new inputs, yielding insights about those new inputs. For example,
a NN trained for an image classification task can be used to classify
new images that were not used during training.

2.2 Secure Neural Network Inference
Several versions of the Secure Neural Network Inference (SNNI)
problem have been considered in the literature [23]. In the version
of the problem considered in this paper, there is a neural network
(NN) with a publicly known architecture. A service provider has
trained the NN. The training process has identified appropriate
values for all parameters in the NN (e.g., the weights and biases).
The parameter values form a vector 𝜃 , which is the intellectual
property of the service provider. Using the trained NN, the service
provider provides inference as a service to its clients. A client can
provide an input 𝑥 to the NN, with the aim of receiving the output
of the NN to the provided input, denoted as NN𝜃 (𝑥).

As shown in Figure 1, SNNI is characterized by multiple secrecy
requirements. The client may want to keep both the input and the
output secret, as they may represent confidential information (e.g.,
personal data that must be protected according to applicable privacy
laws). The service provider may want to keep the parameter values
secret, to ensure that the business model can be sustained. Thus,
the SNNI problem consists of computing the output of the NN in
such a way that the secrecy requirements are satisfied.
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2.3 SNNI solution approaches
To solve the SNNI problem, different cryptographic protocols can
be used, such as homomorphic encryption (HE) or secure multi-
party computation (MPC). Research in recent years focused on
customizing these protocols for SNNI with the aim of reducing their
performance overhead [23]. To achieve good performance, state-of-
the-art SNNI approaches typically combine multiple cryptographic
protocols. They evaluate the NN layer by layer, using for each layer
the cryptographic protocol that is best suited for the given type of
layer. The evaluation of each layer typically involves computation
on both the client and the server side, as well as communication
between client and server. Raw data (e.g., the input to the given
layer or the parameter values of the given layer) are not transmitted,
in order to adhere to the secrecy requirements. Only encrypted,
masked, or otherwise obfuscated data is transmitted.

In this paper, we use two state-of-the-art SNNI solution ap-
proaches: CrypTFlow2 and Cheetah.

CrypTFlow2 uses an existingMPC approach called additive secret-
sharing as overall framework [29]. For evaluating non-linear layers,
CrypTFlow2 uses sophisticated and highly optimized custom pro-
tocols based on an existing MPC primitive called oblivious transfer.
For linear layers, CrypTFlow2 implements two different protocols:
one based on homomorphic encryption and another based on obliv-
ious transfer. In contrast to some other SNNI approaches, CrypT-
Flow2’s output is guaranteed to be equal to the output of “normal”
(i.e., non-secure) inference. For this reason, CrypTFlow2’s SNNI
approach is also called Secure and Correct Inference (SCI). CrypT-
Flow2 provides two specific SNNI approaches, denoted as SCIHE
and SCIOT. SCIHE uses homomorphic encryption for linear layers,
whereas SCIOT uses oblivious transfer for linear layers. In this pa-
per, we use SCIHE because it incurs less communication and is thus
more efficient in edge computing use cases [29].

Cheetah, one of the most recent SNNI approaches, is based on
CrypTFlow2, and provides several improvements over CrypTFlow2
[13]. For non-linear layers, Cheetah provides improved versions of
CrypTFlow2’s protocols. For truncation (i.e., division by a power of
2), which is used to restore a fixed bitlength after a multiplication,
Cheetah allows a small error, enabling a significant speedup of the
protocol. A new protocol for oblivious transfer (called silent OT
extension) is used in the protocol for comparison of numbers, which
is the basis for multiple further protocols, such as for ReLU. For
linear layers, Cheetah also uses homomorphic encryption as SCIHE,
but in a more sophisticated way, which makes some operations
faster and the conversion between protocols for linear and non-
linear layers smoother.

2.4 Evaluation of SNNI solution approaches
SNNI approaches have usually been evaluated in settings where
both client and server devices are similarly powerful. For example,
the Cheetah paper presented the results of experiments performed
using two cloud servers with 2.70 GHz CPU and 16 GB RAM [13].
Often, NNs for image classification tasks are used. These NNs can
vary significantly in terms of complexity, from just a couple of
layers and hundreds of parameters to tens or hundreds of layers
and millions of parameters. In this paper, we report results of ex-
periments on three NNs: SqueezeNet, ResNet50, and DenseNet121.

SqueezeNet was specifically created to achieve relatively high ac-
curacy with a limited size of less than 500 thousand parameters
[14]. ResNet50 has over 23 million parameters, and is thus signifi-
cantly larger than SqueezeNet [9]. DenseNet121 is even larger than
ResNet50, featuring hundreds of layers [11].

3 METHODOLOGY
To evaluate how the SNNI approaches perform in situations with
resource-constrained clients, we need to simulate client devices
with different capacity. There are several ways to achieve this goal.
One option would be to use a combination of Linux tools like
cpulimit1 to limit CPU time, disabling processor cores in the op-
erating system, using setrlimit2 to limit memory etc. Another
method would be to use the Control Groups (cgroups3) kernel
feature. A third option is to use Virtual Machines to limit resources.

The first option would be feasible, although it is important to
make sure there are no other processes in the system that influ-
ence the experiments. Control groups are also a viable option, as
this feature is designed for such purposes. However, both of these
methods have a major shortcoming when it comes to restricting
memory. Although they do allow memory restrictions to be placed
on a process, they handle this in unrealistic ways. These methods
allow for two possible actions when a process reaches its memory
limit. It can either wait for memory to be released or simply kill
the process. Choosing any of these options would not be realistic,
as regular devices would choose to swap memory pages instead.
This is where virtual machines are significantly more appropriate:
they handle out-of-memory situations in a more realistic way and
perform page swaps. This is why we chose this method.

Thus, in this paper, measurements are performed by running
the client of the SNNI process in a virtual machine with restricted
resources, and the server on the host machine with unrestricted
resources. The exact specifications of the (virtual) machine can be
found at the end of this section.

Time measurement. The goal of this paper is to find out what
the real-world impact is of having a resource-constrained client.
We are interested in the scenario with just 2 parties, where data is
immediately available. With these goals in mind, wall-clock time is
chosen as the metric to measure execution time. More specifically,
the time is measured by running the Linux time command in the
virtual machine after connecting to this machine via ssh.

Experimental setup. All tests were run on a Xiaomi Mi Note-
book Air 13.3 2018, a laptop with an Intel Core i7-8550U CPU and
8GiB of memory. The machine was running Ubuntu 20.04 LTS and
so was the virtual machine. The virtual machine was run using
VirtualBox version 6.1.38_Ubuntu r153438. The virtual machines
were all configured with 2GiB of swap space. For Cheetah, the latest
available software was used at the time of writing (commit
0b63d6f2cfe979a446a7999ee78d705b6ef5ab81 of the OpenCheetah
library on GitHub4). For SCIHE, the version that was used for testing
is the updated version by [13], available in the same repository.

1https://manpages.ubuntu.com/manpages/trusty/man1/cpulimit.1.html
2https://linux.die.net/man/2/setrlimit
3https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/
resource_management_guide/ch01
4https://github.com/Alibaba-Gemini-Lab/OpenCheetah

https://manpages.ubuntu.com/manpages/trusty/man1/cpulimit.1.html
https://linux.die.net/man/2/setrlimit
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
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Figure 2: Execution time of the SCIHE client running
SqueezeNet for different memory configurations, running
on a single core
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Figure 3: Execution time of the SCIHE client running
SqueezeNet with different CPU allowances, running on a
single core with 4096MB of memory

4 RESULTS
This section presents the results of our experiments, first with
SCIHE and then with Cheetah.

4.1 SCIHE
The first NN to be tested is SqueezeNet, using SCIHE. The results
of constraining the client’s memory and CPU are shown in figs. 2
and 3, respectively.

As fig. 2 shows, SqueezeNet under SCIHE requires at least 1.5GiB
of memory, or will not finish. If it gets less than this amount, the
process will be terminated as it runs out of both memory and swap
space. Above 1.5GiB of memory, the process benefits very little, if at
all, from extra memory. The graph in fig. 3, showing the execution

1536 2048 2560 3072 3584 4096
Memory (MB)

0

10

20

30

40

50

60

70

80

90

100

Sh
ar

e 
of

 to
ta

l e
xe

cu
tio

n 
tim

e 
(%

)

Sqnet layers with different memory allocations

ArgMax
AvgPool
MaxPool
Relu
Truncation
Conv

Figure 4: SCIHE client execution time distribution for differ-
ent memory allocations while executing SqueezeNet
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Figure 5: SCIHE client execution time distribution for differ-
ent CPU allowances while executing SqueezeNet

time for different CPU allowances, looks like a hyperbole. This is
not accidental: if the inference process requires 𝑁 instructions to
be executed and the machine has a capacity of 𝐶 instructions per
second, it takes 𝑡 = 𝑁 /𝐶 seconds to execute the process. if 𝑁 is
constant, this yields a hyperbola for 𝑡 as a function of 𝐶 .

Looking more into the details, we can decompose the execution
time into the execution times per layer type. The corresponding
relative execution times per layer type are shown in figs. 4 and 5.

In these figures it is clear that the time spent calculating ArgMax
and AvgPool layers in SqueezeNet using SCIHE is negligible. For the
memory sizes that ran successfully, SCIHE does not have significant
differences in the time distribution over different layer types.

This is different when looking at the CPU chart (fig. 5), however.
The share of time spent executing convolutional layers decreases
as we allocate less processing power to SCIHE. This means that
convolutional layers are less limited by a weaker CPU compared to
other layers in the network.

Inference with the larger ResNet50 and DenseNet121 NNs did
not finish in any of the tests with SCIHE. Even in the most relaxed
case with 4096MB memory and 100% CPU allowance, neither was
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Figure 6: Execution time of the Cheetah client running
SqueezeNet with different memory sizes, on a single core
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Figure 7: Execution time of the Cheetah client running
SqueezeNet with different CPU allowances, running on a
single core with 4096MB of memory

able to reach the end of the inference. Both networks required too
many resources and froze after a few layers. Even after multiple
hours, the inference did not progress.

4.2 Cheetah
4.2.1 SqueezeNet. The results of running Cheetah on SqueezeNet,
with varied client-side memory and CPU, are shown in fig. 6 and
fig. 7, respectively. Cheetah seems to use around 1.5 to 2GB of mem-
ory when executing SqueezeNet, which explains the sharp drop in
execution time until that point, and the diminishing returns after-
ward. Page faults start to appear when there is too little memory
available, resulting in very slow memory accesses and thus to a ma-
jor slowdown of the whole process. In terms of absolute execution
time, Cheetah clearly outperforms the previously tested SCIHE. For
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Figure 8: Cheetah client execution time distribution for dif-
ferent memory allocations while executing SqueezeNet
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Figure 9: Cheetah client execution time distribution for dif-
ferent CPU allowances while executing SqueezeNet

similar memory configurations, Cheetah shows a decrease in total
execution time ranging from 14.7% to 43.5%. These specific cases
are for memory allocations of 1536MB and 2560MB, respectively.

The CPU chart (fig. 7) is similar to fig. 3. The execution times of
Cheetah are significantly lower compared to SCIHE. More specif-
ically, the execution time is between 30.4% and 39.4% lower for
comparable CPU allocations. The smallest speedup occurred with
90% CPU, and the highest occurred with a CPU allowance of 50%.
The fact that Cheetah outperforms SCIHE is plausible, as Cheetah
was released after SCIHE and is supposed to improve upon its prede-
cessor. However, unlike SCIHE, Cheetah fails to finish inference at
10% CPU allocation. At the second to last layer of the NN, Cheetah
consistently freezes and will not move on, even after hours.

Looking into the details, the relative execution time for differ-
ent layer types in SqueezeNet are shown in figs. 8 and 9, when
restricting memory and CPU, respectively. When comparing these
two figures with the corresponding SCIHE plots (figs. 4 and 5), we
can see that the share of Truncation and Convolutional layers
shrunk heavily. In addition, Figure 6 shows that Cheetah running
SqueezeNet is being bottlenecked by memory when there is less
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Figure 10: Execution time of the Cheetah client running
ResNet50 with different memory sizes, on a single core
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Figure 11: Execution time of the Cheetah client running
ResNet50 with different CPU allowances, on a single core

than 1536MB available. In the two cases where this holds, we can
see that the non-linear MaxPool and ReLU layers take over a larger
share of the execution time. The share of convolutional layers de-
creases. This means that page swaps and slow memory accesses es-
pecially impact non-linear layers. For runs with more than 1536MB
of memory, there are no major differences in the distribution.

With respect to the CPU, while convolutional layers still see
a decrease in the share of execution time as the CPU allowance
goes down, the difference compared to SCIHE in fig. 5 is much less
pronounced. Cheetah’s absolute execution times are always lower
than SCIHE, but the difference gets very small as the CPU allowance
grows. This is true for all layer types, except for convolutional layers.
Those are still a few times faster than the SCIHE implementation.
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Figure 12: Cheetah client execution time distribution with
different memory sizes while executing ResNet50
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Figure 13: Cheetah client execution time distribution for
different CPU allowances while executing ResNet50

4.2.2 ResNet50. Inference with ResNet50 is significantly more
resource-intensive and time-consuming than SqueezeNet. While
for SqueezeNet, Cheetah was able to finish inference on a machine
with 512MB memory, for ResNet50, any amount of memory lower
than 2048MB will see the process killed by the Linux kernel because
both memory and swap space have been exhausted. From 2560MB
of memory, there are no significant performance improvements (see
fig. 10). The issue of the inference freezing consistently happens
for both 10% and 20% of CPU allowance with ResNet50 (see fig. 11),
instead of just for 10% for SqueezeNet. For the successful runs, the
curve resembles a hyperbole again, just like for SqueezeNet.

The breakdown into layer types of ResNet50 shows some differ-
ences from the previously discussed SqueezeNet. Since ResNet50
has higher memory requirements to run at all, it sees fewer page
swaps. Thus, memory size hardly impacts the time distribution, as
seen in fig. 12. With respect to the CPU, the non-linear layers again
see a growth in share as the CPU allowance decreases (see fig. 13).

4.2.3 DenseNet121. In terms of execution time, DenseNet121 is
similar to ResNet50. It also does not finish for memory sizes smaller
or equal to 1536MB and sees a bit of a drop in execution time after
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Figure 14: Execution time of the Cheetah client running
DenseNet121 with different memory sizes, on a single core
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Figure 15: Execution time of the Cheetah client running
DenseNet121 with different CPU allowances, running on
a single core

2048MB (see fig. 14). Unlike ResNet50, DenseNet121 does finish
inference with a 20% CPU share. Other than that, the CPU curve
(see fig. 15) is similar to the earlier ones.

The DenseNet121 layer distribution shows similar behavior as
SqueezeNet and ResNet50. As little page swapping happens for
the inference runs that finished successfully, the distributions for
different memory allocations are very similar to one another (see
fig. 16). The share of linear layers decreases as CPU allowance goes
down, and the share of non-linear layers increases. In particular,
ReLU layers have a considerable share in DenseNet121 (see fig. 17).

5 DISCUSSION
The results presented in the previous section show that Cheetah
has an execution time that is between 14.7% and 43.5% lower than
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Figure 16: Cheetah client execution time distribution with
different memory sizes while executing DenseNet121
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Figure 17: Cheetah client execution time distribution for
different CPU allowances while executing DenseNet121

SCIHE for different memory configurations. For different CPU con-
figurations, this range is narrower: Cheetah was between 30.4%
and 39.4% faster than SCIHE. Cheetah also has lower minimum
hardware requirements to run inference at all as it ran ResNet50
and DenseNet121 with 2GiB of memory, whereas SCIHE could not
finish evaluating these NNs with even 4GiB.

Another important aspect that has become clear is that non-
linear layers take a larger hit to their execution time than linear
layers when decreasing the CPU capacity. Nonlinear layers like
ReLU and MaxPool are easy to evaluate if the numbers are available
in plaintext, but for encrypted or secret-shared numbers, evaluating
these layers requires sophisticated and resource-intensive protocols.
In contrast, linear computations (required e.g. for convolutional or
average pooling layers) can be performed directly on homomorphi-
cally encrypted or additively secret-shared numbers, thus making
such layers less resource-intensive than nonlinear layers.

Taking a least squares approximation (see fig. 18) shows that,
on average, the percentage of time executing the linear convolu-
tional layers decreases by 3.6 for every 10% decrease in CPU share
allowance for SCIHE executing SqueezeNet. This decrease is less
pronounced for Cheetah: here, a drop of 1.2, 2.6, and 1.8 percentage
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Figure 18: Share of execution time for convolutional layers

points are observed for SqueezeNet, ResNet50, and DenseNet121,
respectively. Interestingly, the gradients for the three different net-
works running in Cheetah are quite different. This may be attrib-
uted to the fact that some NNs have a larger share of convolu-
tional layers; the percentage of time executing these layers will
decreasemore drastically than if there were fewer convolutional lay-
ers. SqueezeNet has fewer convolutional layers than DenseNet121,
which in turn has fewer convolutional layers than ResNet50, and
this is in line with the different sensitivity of their share of convo-
lutional layers in execution time to resource limitations.

As already mentioned, Cheetah has lower memory requirements
across all three tested NNs than SCIHE. When running Cheetah, a
certain amount of memory is necessary to complete inference, and
there is always a threshold amount where getting a larger amount
of memory does not offer any significant performance benefits
anymore. When increasing memory past this point, the distribution
of work across the different layer types does not change anymore
either. If page swaps are necessary, this takes its largest toll on the
non-linear layers, just like restricting the CPU does. The amount
of required memory for a given NN is dependent on the types
and sizes of layers in the network. After finishing the execution of
a given layer, both Cheetah and SCIHE release the memory used
for the given layer and just store the results. These are then used
as input for the next layer. The depth of the network, therefore,
has no effect on the ability to complete inference. DenseNet121
using SCIHE, for example, consistently crashes at the execution of
the second convolutional layer. The first convolutional layer runs
without errors, but the second one doubles the number of input
channels from 64 to 128 and increases the filter size from 1x1 to
3x3. This requires extra computing and extra storage of the already
computed elements in the layer. This is too much to handle for the

Table 1: The performance of a range of devices and their
closest tested equivalent in the paper

Device Geekbench
Score RAM Closest tested

equivalent

Raspberry Pi 3
Model B (2018) 1086 1GB

1GB RAM,
10% CPU

Raspberry Pi 4
Model B (4GB) (2019) 2967 4GB

4GB RAM,
30% CPU

Samsung Chromebook
Pro (2017) 4328 4GB

4GB RAM,
50% CPU

Samsung Galaxy
A23 5G (2022) 6549 4GB

4GB RAM,
70% CPU

limited 4096MB of memory. The reason this issue is present for
SCIHE but not for Cheetah, is that Cheetah improved the evaluation
of convolutional layers. The different way of encoding the data and
the use of silent OT really makes the difference here.

5.1 Real devices
It is interesting to see how the results of our experiments can be
transferred to approximate SNNI performance on real devices. For
this purpose, benchmarking can be used, as benchmarks can give a
rough indication of the relative performance of different devices
[18]. We use Geekbench V5, a widely available benchmark that
runs on many different devices. As our experiments were carried
out using one CPU core, we use the single-core score of Geekbench.
The machine that we used for testing has a Geekbench score of 9495.
The performance of some other devices commonly found in edge
computing settings, such as IoT devices and budget smartphones,
and their closest tested equivalent in this paper are shown in table 1.

From the table, we can deduce that a Raspberry Pi 3-B would
likely struggle to run any of the tested NNs. The most popular
variant of its successor [8], the Raspberry Pi 4-B 4GB would be
able to perform SNNI with all tested NNs using Cheetah, albeit
at a rather slow rate. For a common Chromebook (the Samsung
Chromebook Pro) and a modern mid-range phone (the Samsung
Galaxy A23 5G), SNNI using Cheetah and the three tested NNs
would be somewhat faster, but would still take several minutes.

5.2 Recommendations
Based on our findings, we can identify important recommendations
for future work on SNNI. First, more research is needed to make
SNNI less resource-hungry specifically on the client side. Efforts
to make SNNI overall less resource-hungry have been made and
should continue. But in addition, and this is a novel observation,
also techniques to shift work from the client to the server should be
considered. SNNI approaches were so far evaluated in symmetric
environments (where client and server had similar capacity), leading
5https://browser.geekbench.com/v5/cpu/21358797
6https://browser.geekbench.com/v5/cpu/21356250
7https://browser.geekbench.com/v5/cpu/21356296
8https://browser.geekbench.com/v5/cpu/21306330
9https://browser.geekbench.com/v5/cpu/21122210

https://browser.geekbench.com/v5/cpu/21358797
https://browser.geekbench.com/v5/cpu/21356250
https://browser.geekbench.com/v5/cpu/21356296
https://browser.geekbench.com/v5/cpu/21306330
https://browser.geekbench.com/v5/cpu/21122210
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to an implicit incentive to balance the work between client and
server. By focusing on asymmetric situations (where the client is
weaker), work should be split unevenly between client and server.
This has ramifications on the cryptographic protocols to select, as
they are characterized by different levels of asymmetry between the
parties. Also, there should be more focus on improving non-linear
layers, as they are more critical on resource-constrained clients.

Second, also the choice of NN should account for resource-
constrained clients. We have seen that, when dealing with memory-
constrained clients, it is better to use deep but narrow NNs instead
of wide and shallow NNs. The size of non-linear layers is especially
critical. If we have the choice between multiple NNs offering similar
accuracy, the NN with smaller non-linear layers is to be preferred.

Third, it is important to recognize that an SNNI service needs to
serve clients with different capacity. This may make it reasonable
to determine dynamically on a per-client basis which protocols to
use, which NN to use, and how to set other hyperparameters (e.g.,
bitlength). How to do this is a completely new research direction.

Finally, further work could extend our experiments, e.g., to other
NNs, other metrics beyond wall-clock time, other benchmarking
methods, and a more detailed statistical evaluation.

6 RELATEDWORK
In this section, we review previous efforts on SNNI in general and
SNNI in resource-constrained environments.

Work on SNNI. Early attempts to solve the SNNI problem date
back to 2006-2007, when Barni, Orlandi, and Piva suggested us-
ing homomorphic encryption for this purpose [4, 26]. These early
protocols incurred a large performance overhead while also leak-
ing sensitive information. It took a decade until the potential for
practical SNNI could be demonstrated in the seminal paper of Gilad-
Bachrach et al. introducing the CryptoNets approach [7]. With a
carefully crafted NN of 5 layers, CryptoNets could perform secure
inference in a couple of minutes, with an accuracy of 99% on the
MNIST image classification task.

Instead of homomorphic encryption, other researchers suggested
applying existing secure multi-party protocols to solve the SNNI
problem. DeepSecure was probably the first such approach, using
the existing Garbled Circuits MPC protocol [33]. To mitigate the
huge performance overhead, DeepSecure also used non-cryptographic
methods, such as model pruning, to reduce the amount of computa-
tion. The XONN approach also used Garbled Circuits, and to reduce
the performance overhead, it restricted the NN to only allow the
numbers 1 and −1 [30]. The secure evaluation of such restricted
NNs using the Garbled Circuits protocol is much faster. However, it
is challenging to maintain high accuracy with such restricted NNs.

Further progress was mainly driven by the observation that dif-
ferent protocols are appropriate for securely evaluating different
types of layers. Several researchers experimented with different
combinations of protocols and devised faster and faster SNNI ap-
proaches. Early approaches based on this idea include SecureML
[25], MiniONN [20], Chameleon [31], and Gazelle [15].

In the last couple of years, researchers have devised more spe-
cialized and sophisticated cryptographic protocols for evaluating
typical NN layer types. This way, the performance overhead of SNNI
has decreased significantly. Typical examples of such approaches

include Delphi [24], CrypTFlow [16], SiRnn [28], as well as the
already described CrypTFlow2 and Cheetah.

SNNI in resource-constrained environments. A common
problem of the cryptography-based SNNI approaches described
above is their high performance overhead. Thus, running SNNI on
large NNs in a resource-constrained environment is challenging.

Some researchers suggested using other, less resource-hungry
methods. For example, model splitting was suggested [27, 35]. In
model splitting, the client evaluates the first 𝑘 layers of the NN
and sends the output of layer 𝑘 to the server, which completes
the inference and returns the output to the client. Model splitting
offers some data protection: the server does not learn the raw input
data, and the client only learns the parameter values of the first 𝑘
layers, but nothing about the remaining layers. Also, model split-
ting does not require computation- and communication-intensive
cryptographic protocols. However, the data protection offered by
model splitting is actually very weak: unless 𝑘 is large (which would
leak much information to the client), the server can reconstruct the
input quite well [27].

Other, lightweight solutions to the problem have also been ex-
plored. However, these make different assumptions, such as requir-
ing a pre-processing phase or a third (neutral and trustworthy)
party [21], or compromise on the secrecy goals of SNNI, such as by
sharing the neural network [19].

A different approach is to run the inference entirely on the client
device, using hardware-based protection in the form of a trusted
execution environment (TEE) [10]. A TEE is a part of the com-
puter’s processor and memory that is protected by the hardware
even against processes of the highest privilege level (e.g., processes
of the operating system’s kernel). By running the inference process
in a client-side TEE, the client’s secrecy goals are fulfilled because
the client’s data do not leave the client device, and the service
provider’s secrecy goals are also fulfilled because client-side pro-
cesses cannot access NN parameter values stored in the TEE. This
approach is relatively efficient because cryptographic operations
benefit from a hardware implementation and communication is
minimized. However, this approach only works if the client device
supports TEEs and is powerful enough to perform the evaluation
of the NN on its own – assumptions that are often violated for
resource-constrained devices and large NNs.

Finally, we would like to mention the approach of [12]. This
approach does use expensive cryptographic protocols. The idea
is that those cryptographic protocols are executed between two
edge servers, so that the computational demand on the client side
is minimal. However, for this approach to be secure, the two edge
servers must not collude, which is difficult to guarantee in practice.
In addition, the approach also assumes the existence of a trusted
third party in a setup phase.

Altogether, although SNNI would be clearly needed in resource-
constrained environments [6], existing solution approaches are
either too resource-hungry, not secure enough, or only work under
very specific conditions. Devising efficient, secure, and widely ap-
plicable SNNI approaches for resource-constrained environments
is thus still an important research challenge. Our work is a first
step into this direction.



UCC 2023, December 04–07, 2023, Taormina (Messina), Italy Rik de Vries and Zoltán Ádám Mann

7 CONCLUSIONS AND FUTUREWORK
In the past, the evaluation of SNNI approaches was limited to setups
with strong devices on both client and server side. Since in practice,
client devices are often resource-constrained, this paper focused on
evaluating the effects of client-side resource limitations on SNNI
performance. We carried out controlled experiments using two
state-of-the-art SNNI approaches, CrypTFlow2 and Cheetah, and
three complex neural networks. We varied the CPU and RAM capac-
ity of the client, and measured the SNNI execution time. Our results
demonstrate that client-side resource limitations have indeed pro-
found effects on SNNI performance. Limited resources on the client
side can make the inference process much slower or even lead to
failure. Our results also give detailed insights into the sensitivity of
different combinations of protocol and NN layer type to CPU and
RAM limitations. These insights can be exploited in various ways
in future research. By identifying performance bottlenecks, our
insights can inform the development and tuning of future SNNI ap-
proaches to make them more appropriate for resource-constrained
clients. These insights should also be taken into account in the
selection of NNs for SNNI with resource-constrained clients. More-
over, in scenarios where new clients emerge on the fly, information
about client capabilities makes it possible to dynamically select the
most appropriate NNs and SNNI protocols.
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