
1

Cost-optimized, data-protection-aware offloading
between an edge data center and the cloud

Zoltán Ádám Mann, Andreas Metzger, Johannes Prade, Robert Seidl, and Klaus Pohl

Abstract—An edge data center can host applications that require low-latency access to nearby end devices. If the resource
requirements of the applications exceed the capacity of the edge data center, some non-latency-critical application components may
be offloaded to the cloud. Such offloading may incur financial costs both for the use of cloud resources and for data transfer between
the edge data center and the cloud. Moreover, such offloading may violate data protection requirements if components process
sensitive data. The operator of the edge data center has to decide which components to keep in the edge data center and which ones
to offload to the cloud, with the objective of minimizing financial costs, subject to constraints on latency, data protection, and capacity.
In this paper, we formalize this problem and prove that it is strongly NP-hard. To address this problem, we introduce an optimization
algorithm that (i) is fast enough to be run online for dynamic and automatic offloading decisions, (ii) guarantees that the solution
satisfies hard constraints on latency, data protection, and capacity, and (iii) achieves near-optimal costs. We also show how the
algorithm can be extended to handle multiple edge data centers. Experiments performed with up to 450 components show that the cost
of the solution found by our algorithm is on average only 2.7% higher than the optimum. At the same time, our algorithm is very fast: it
optimizes the placement of 450 components in less than 300 milliseconds on a commodity computer.

Index Terms—edge computing, fog computing, edge data center, offloading, resource optimization, data protection

✦

1 INTRODUCTION

Many new applications need to process large volumes of
data from distributed end devices, e.g., sensors [1], [2].
Processing these data solely in the end devices is often
not feasible because of the devices’ limited compute and
storage capacity. Offloading the data processing to cloud
data centers solves the capacity problem, but leads to other
concerns, an important one being communication latency.

Edge computing (aka. fog computing) provides cloud-
like services with low latency [3], [4]. In edge computing,
small-scale edge data centers deployed in close proximity to
the end devices offer higher capacity than the end devices.
Edge data centers can host application components that
process data from nearby end devices [5], [6]. On the other
hand, non-latency-critical components may be offloaded to
the cloud instead of the edge data center, to benefit from the
virtually unlimited capacity of the cloud [7], [8].

Problem. We focus on an edge data center, hosting a set
of applications [9]. Each application consists of components
(e.g., microservices). The edge data center offers virtualized
resources for hosting the components, e.g., in containers.
Although the capacity of the edge data center is typically
larger than the capacity of end devices, it is still limited
[10], [11]. If the load of the edge data center exceeds its
capacity, some components may have to be offloaded to the
cloud [12]. Deciding which components to offload to the
cloud and which ones to host in the edge data center is a
complex optimization problem, in which capacity, latency,

This paper has been accepted for publication in IEEE Transactions on
Services Computing, https://doi.org/10.1109/TSC.2022.3144645

• Z. Á. Mann, A. Metzger, and K. Pohl are with the University of Duisburg-
Essen.

• J. Prade and R. Seidl are with Nokia.

and data protection constraints have to be satisfied, while
costs stemming from using the cloud and from data transfer
between the edge data center and the cloud are to be mini-
mized. Thus, the optimization problem we solve entails the
following concerns. First, using commercial cloud services
and transferring data between the edge data center and
the cloud may incur financial costs. Second, components
requiring low-latency communication with end devices may
have to remain in the edge data center to satisfy the latency
requirements. Third, components dealing with sensitive
data may be prohibited to be offloaded to a public cloud
due to data protection reasons [13].

Optimization is not a one-off activity. The deployment
should be re-optimized during operation, e.g., when a new
application is added or an application is removed, the load
on an application changes, cloud prices change, etc. After
such events, it may be beneficial to offload some compo-
nents from the edge data center to the cloud or vice versa.
To facilitate such dynamic re-optimization, the optimization
algorithm has to be fast enough to be used online.

Novelty. The addressed problem is different from the
application placement problem [14], faced by application
managers aiming to optimally deploy their applications on
a set of edge and cloud resources. In contrast, our problem
is faced by operators of edge data centers aiming to optimally
use their edge data centers’ resources while satisfying the
requirements of deployed applications.

Most existing approaches for application placement in
fog computing are not directly applicable to this problem,
because of different limitations (see Sec. 8 for details). On
the one hand, most approaches do not account for financial
costs (in particular of data transfers between the edge and
the cloud) or are limited to applications of a given structure.
On the other hand, existing approaches apply either simple

2

greedy algorithms with no quality guarantees, or general-
purpose mathematic programming methods like integer
programming that exhibit scalability issues.

Contribution. We make the following contributions:
• We formalize the problem of deciding which compo-

nents to place in the edge data center and which ones
to offload to the cloud, taking into account capacity,
latency, and data protection constraints, while minimiz-
ing financial costs.

• We prove that the problem is strongly NP-hard.
• We devise a heuristic algorithm (FOGPART) for the

problem. FOGPART exploits the graph-theoretic struc-
ture of the specific problem and can thus find good
solutions quickly.

• We prove that the result of FOGPART always satisfies
the capacity, latency and data protection requirements,
whenever this is possible.

• We show how FOGPART can be extended for the decen-
tralized management of multiple edge data centers and
for the optimization of end-to-end application latency.

Results. We demonstrate the applicability of our al-
gorithm by applying it to a smart manufacturing use case.
We experimentally evaluate the effectiveness of FOGPART in
terms of the resulting financial costs and the algorithm’s
execution time. The results show that FOGPART outperforms
two typical types of application placement algorithms: FOG-
PART is faster than a typical algorithm based on integer
programming, and FOGPART delivers better results than a
typical greedy algorithm. The cost of the deployment found
by FOGPART is on average only 2.7% higher than the results
of the integer programming algorithm. However, FOGPART
is orders of magnitude faster, taking less than 300ms on a
commodity computer to optimize the deployment of 450
components. Thus, FOGPART delivers near-optimal results
very quickly, making it applicable to practical use.

Further information. A preliminary version of this paper
appeared in [15]. Since then, we extended the optimization
problem and enhanced FOGPART to solve this extended
problem. We evaluated the enhanced algorithm by an addi-
tional set of experiments, performed a theoretical analysis
of the problem and proved the correctness of FOGPART.
We also provide two novel extensions of FOGPART for the
decentralized management of multiple edge data centers.

Next, Sec. 2 presents the “Factory in a Box” use case
to motivate our research. Sec. 3 defines the investigated
problem. Sec. 4 describes the FOGPART algorithm, while
Sec. 5 provides a rigorous analysis of the algorithm’s time
complexity and correctness. Sec. 6 illustrates the operation
of the algorithm on the case study, followed by the results of
controlled experiments in Sec. 7. Related work is analyzed
in Sec. 8 and Sec. 9 concludes the paper. Proofs, baseline
algorithms, and a detailed discussion of limitations and
enhancements can be found in the supplemental material.

2 A MOTIVATING EXAMPLE

We consider a smart manufacturing use case called “Factory
in a Box” (FiaB). FiaB is an innovative factory solution, in-
tegrating a complete production environment in a standard
20-feet freight container (see Fig. 1a). It can host different

(a) Outside view (b) Inside view

Fig. 1: Factory in a Box (FiaB)

types of production lines, such as electronic device manufac-
turing (see Fig. 1b). FiaB accommodates a heterogeneous in-
ternal communication infrastructure, including mobile and
fixed telecommunication technologies (e.g., private LTE and
5G) to serve various Industrial IoT applications. The FiaB
contains various end devices, like a 3D printer, a robot,
special glasses for virtual or augmented reality, and sensors
(e.g., temperature, humidity, impact sound, and particle
sensors). The FiaB features an edge data center with up to
28 CPU cores, offering computing resources that can host
application components. The FiaB also connects to a remote
cloud infrastructure using a public network.

The applications to control the manufacturing operations
of the FiaB consist of several components. The deployment
of these components must respect multiple constraints:

• Latency. There are pairs of components, or pairs of a
component and an end device, that must exchange data
with each other with low latency. For example, the la-
tency between the “Robot control” software component
and the robot must not exceed 5ms.

• Data protection. Some components store or process
sensitive data that must not be offloaded to the cloud.
E.g., for manufacturing a product for a specific cus-
tomer (lot-size-one production), personal data of the
customer is stored. To comply with data protection reg-
ulations, components storing or processing such data
must be protected.

• Capacity. The computing resources available in the
edge data center of the FiaB are limited. In particular,
CPU capacity is a limiting factor.

It is desirable to deploy as much as possible of the
components to the edge data center in the FiaB, so as to
utilize the available resources and minimize the financial
costs associated with using the cloud. The company oper-
ating FiaB has full control over the edge data center, and
sensitive data has to be processed in this trusted domain.

The FiaB can be dynamically re-configured to perform
different manufacturing tasks. Therefore, new applications
may need to be deployed or existing applications removed
on the fly. Moreover, the deployment may be affected by
other kinds of changes, e.g., failure of a device, changes in
cloud prices, or load fluctuations.

Fig. 2 shows an example application deployment using
the FiaB and the cloud. It can be seen that all components
with data protection requirements are in the FiaB. The
“Robot control” component is also in the FiaB to allow low-
latency data exchange with the robot.

3

Robot control

Shop floor management

Tool management

Process management

AM task manager

iWh manager

Manual assembly SW Sensor evaluation SW Sensor dashboard

Order management

Supply management

FiaB remote management

ERP system

AR/VR glasses

FiaB (edge data center) Cloud

Sensors

Legend:

component (without data protection requirement)

component (with data protection requirement)

connector (within the edge data center or the cloud)

connector (between the edge data center and the cloud)

end device
Robot

Abbreviations:

AM: Additive Manufacturing
iWh: inbound Warehouse
VR/AR: Virtual Reality / Augmented Reality
ERP: Enterprise Resource Planning

Fig. 2: An example of application components placed in the FiaB and the cloud

TABLE 1: Notation overview

Notation Explanation

A Set of applications
VA Set of components of application A
EA Set of connectors among components of application A
VD Set of end devices connected to the edge data center
ED Set of connectors between components and end devices
V Set of all components and end devices
E Set of all connectors
p(v) Processing capacity required by component v
s(v) True iff component v processes sensitive data
h(e) Amount of data exchange through connector e
ℓ(e) Maximal allowed latency for connector e
P Processing capacity available in the edge data center
L Latency between the edge data center and the cloud
cp Unit cost of processing resources in the cloud
cdt Unit cost of data transfer between edge data center and cloud
d Deployment function
edge Label for components placed in the edge data center
cloud Label for components placed in the cloud
ϱ(d) Processing capacity used in the edge data center
E(d) Set of connectors between the edge data center and the cloud
cost(d) Financial costs of deployment d
F Set of critical components and end devices

3 PROBLEM DESCRIPTION

We first define the addressed optimization problem (see
also Table 1) and then provide a theoretical analysis of the
solvability and complexity of the problem.

3.1 Formal problem definition

The set of applications is denoted by A. Each application A ∈
A is represented by an undirected graph (VA, EA), where
VA is the set of components of application A and EA is the
set of connectors among the components. VD denotes the set
of end devices connected to the edge data center, and ED is
the set of connectors between end devices and components.
The set of all end devices and components (jointly referred
to as vertices) is V = VD ∪ ⋃{VA : A ∈ A}. The set of all
connectors between end devices and components as well as
among components is E = ED ∪⋃{EA : A ∈ A}.

For a component v ∈ V , p(v) ∈ R+ is the compute
capacity (e.g., number of CPU cores or CPU frequency)
required by v. Predicate s(v) is true if and only if v processes
sensitive data and must hence be in the edge data center.
For a connector e ∈ E, h(e) ∈ R+ is the amount of data
exchanged along e, and ℓ(e) ∈ R+ is the maximum allowed
latency for e. To handle end devices and components uni-
formly, we extend the definition of p and s for end devices.
For an end device v ∈ VD, p(v) = 0 and s(v) = true.

L ∈ R+ denotes the latency between the edge data center
and the cloud. P ∈ R+ denotes the compute capacity (e.g.,

number of CPU cores or CPU frequency) of the edge data
center. The cost of renting a processing unit (e.g., one vCPU)
in the cloud is denoted by cp, the unit price of data transfer
between the edge data center and the cloud by cdt.

A deployment is a function d : V → {edge, cloud} that
maps each component1 to either the edge data center or the
cloud. We use ϱ(d) to denote the total compute capacity
used in the edge data center by deployment d:

ϱ(d) =
∑

v∈V, d(v)=edge

p(v).

A valid deployment respects the following constraints:

ϱ(d) ≤ P, (1)
∀v ∈ V : s(v) ⇒ (d(v) = edge), (2)

∀vw ∈ E : (ℓ(vw) < L) ⇒ (d(v) = d(w)). (3)

(1) ensures that the total processing power required
by components allocated to the edge data center does not
exceed its capacity. (2) ensures that all components dealing
with sensitive data are deployed to the edge data center. (3)
ensures that the connectors’ latency requirements are met.

Our aim is to find a valid deployment that minimizes
financial cost. For deployment d, the set of connectors be-
tween the edge data center and the cloud is E(d) = {uv ∈
E : d(u) ̸= d(v)}. The cost of d is defined as follows:

cost(d) =
∑

v∈V, d(v)=cloud

cp · p(v) +
∑

e∈E(d)

cdt · h(e), (4)

where the first term is the total cost of leased compute
resources in the cloud, and the second term is the total cost
of data transfers between the edge data center and the cloud.
(Recall that we address the problem from the perspective of
the edge data center provider, for which using the resources
in the edge data center does not incur costs.)

For an end device v ∈ VD, we defined s(v) to be true.
As a consequence of (2), this implies d(v) = edge. If end
device v is connected to a component w, then, because of
(3), w can only be deployed to the cloud if ℓ(vw) ≥ L. If
w is deployed to the cloud, then vw ∈ E(d) and hence the
data transfer along the connector vw contributes to cost(d).

The Minimum-Cost Edge-Cloud Deployment (MCECD)
problem consists of minimizing (4) while satisfying (1)-(3).

1. To simplify the problem formulation, d is also defined for end
devices. As we will see, d(v) = edge for any end device v, in accordance
with the fact that end devices cannot be “offloaded” to the cloud.

4

3.2 Solvability

To analyze under which conditions the MCECD problem is
solvable, we first introduce some notions.

Definition 1. Connector e ∈ E is critical if ℓ(e) < L.

Remark 2. According to (3), if vw ∈ E is critical, then for any
valid deployment, either both v and w must be in the edge data
center or both must be in the cloud.

Definition 3. A component v ∈ V is critical if and only if

• s(v) is true; or
• There is a path v0, v1, . . . , vk in the graph (V,E), such

that s(v0) = true, vk = v and for each j = 1, . . . , k,
the connector vj−1vj is critical.

Each end device is also considered to be critical. Let F = {v ∈
V : v is critical} be the set of critical components and end devices.

Proposition 4. Let v ∈ V be critical. Then for any valid
deployment d, d(v) = edge.

(The proofs of all propositions and theorems can be
found in the supplemental material.)

(1)-(3) may lead to a contradiction if the edge data
center does not have enough capacity to host all critical
components, but otherwise, the constraints are satisfiable:

Proposition 5. A valid deployment exists if and only if
∑

v∈F

p(v) ≤ P. (5)

If (5) holds, the following deployment is valid:

d(v) =

{
edge, if v ∈ F ; (6a)
cloud, otherwise. (6b)

Proposition 5 yields a necessary and sufficient condition
for the solvability of the MCECD problem, which can be
checked in linear time. In the following, we assume that (5)
holds so that a valid deployment exists, and we can focus
on finding the solution with the minimum costs.

3.3 Complexity Analysis

The NP-hardness of problems similar to MCECD was of-
ten claimed in the literature [16], [17], [18], but seldom
proven. Even if similar problems are NP-hard, this does
not imply NP-hardness of MCECD. We prove a stronger
claim: MCECD is strongly NP-hard, i.e., it is NP-hard even
in the special case when all numbers in the problem are
polynomially bounded with respect to the problem size [19].

Theorem 6. The MCECD problem is strongly NP-hard.

As a consequence of strong NP-hardness, we cannot ex-
pect a polynomial-time, nor even a pseudo-polynomial-time
exact algorithm, nor a fully polynomial-time approximation
scheme for this problem, under standard assumptions of
complexity theory [19]. Thus, the MCECD problem is more
complex than the related Knapsack or similar packing prob-
lems. The increased complexity stems from the graph struc-
ture and the costs of data transfer in the MCECD problem.
This is why we base our approach (presented in Sec. 4) on
an algorithm for minimum-cost graph partitioning.

Algorithm 1 Adding an ap-
plication

1: procedure ADD(A)
2: for v ∈ VA do
3: if s(v) then
4: d(v)← edge
5: else
6: d(v)← cloud
7: end if
8: end for
9: RE-OPTIMIZE(d)

10: end procedure

Algorithm 2 Removing an
application

1: procedure REMOVE(A)
2: for v ∈ VA do
3: remove v
4: end for
5: RE-OPTIMIZE(d)
6: end procedure

Algorithm 3 Handling changes

1: procedure CHANGES
2: for v ∈ V do
3: if s(v) and d(v) = cloud then
4: d(v)← edge
5: end if
6: end for
7: RE-OPTIMIZE(d)
8: end procedure

3.4 Transformation
We now describe a transformation of the input of the
MCECD problem, which can be used as a preprocessing
step before any algorithm is applied to solve the problem.
The transformation reduces the number of different kinds of
constraints that have to be taken into account. The idea of
the transformation is to coalesce critical connectors. Coalesc-
ing a connector uv ∈ E means that u and v are merged to a
single new vertex w. Connectors that were incident to u or
v are now incident to w. The old connector uv is removed.
We define p(w) = p(u) + p(v) and s(w) = s(u) ∨ s(v).
This procedure is repeated for each critical connector. An
example can be found in the supplemental material.

According to Remark 2, such a coalescing step does not
influence the solvability of the MCECD problem, since u
and v must be deployed together anyway (either both in
the edge data center or both in the cloud). Because of the
definition of p(w), the cost of valid deployments is also not
affected by the coalescing.

When all critical connectors have been coalesced, the
latency requirements are already ensured and do not have
to be taken into account explicitly anymore. A further conse-
quence is that, after the transformation, we have s(v) = true
for each critical vertex v. In the following, we assume that
this transformation has been carried out.

4 THE FOGPART ALGORITHM

We first give an overview of the main steps of the proposed
algorithm, followed by a detailed description of its core.

4.1 Overview
The proposed FOGPART algorithm tentatively allocates and
moves the components between the edge data center and
the cloud in an internal model, without an immediate effect
on the real deployment. After the algorithm terminates, the
best found deployment is enacted by actually carrying out
the necessary allocations and migrations.

5

The deployment is adapted in three cases: (i) when an
application is added, (ii) when an application is removed,
(iii) when something changes in the deployed applications
or their environment. When an application is added, we de-
ploy each component v of the new application with the rules
given in (6a)-(6b), and then re-optimize the deployment (see
Algorithm 1). When an application is removed, we remove
all its components from the deployment, and then perform
re-optimization (see Algorithm 2). When there is a change
in the deployed applications (e.g., in the CPU requirements
of some components) or the infrastructure (e.g., in the unit
price of using cloud resources), we first ensure that still all
critical components are placed in the edge data center, and
then perform re-optimization (see Algorithm 3).

Re-optimization is performed in the same way in each
of the three cases. Re-optimization is based on iterative
improvement, i.e., it starts from a – not necessarily valid
– deployment and tries to improve it (i.e., making it valid
and decreasing its cost) through a series of local changes.
In each step, one component is moved either from the edge
data center to the cloud or vice versa. The algorithm always
makes the move that seems best, in the following sense:

• If the current deployment violates the capacity con-
straint, then only moving a component from the edge
data center to the cloud is considered.

• From the possible moves, the one that leads to the
highest decrease in deployment cost is selected.

The quantity that forms the basis for decision-making is
called the gain of the components and is defined as follows.

Definition 7. Let d be a deployment and v ∈ V a component.
Let d′ be the deployment obtained from d by moving v. That is,
for a component w ∈ V ,

d′(w) =

d(w) if w ̸= v,

edge if w = v and d(v) = cloud,
cloud if w = v and d(v) = edge.

Then, given deployment d, the gain of moving v is defined as

gain(d, v) =

{
−∞ if d is valid, d′ is invalid,
cost(d)− cost(d′) otherwise.

The algorithm makes the move with highest gain, even
if this gain is negative, i.e., the cost increases (except if the
gain is −∞). Thus, the algorithm can leave a local optimum
by a worsening move, hoping to unlock cost reduction
opportunities that compensate the worsening, leading to
a better solution in the end. To avoid infinite loops, each
component may be moved only once. When no further
move is possible, the valid deployment with the lowest cost
encountered is taken as the resulting new deployment.

The re-optimization procedure used in FOGPART is an
extended version of the Kernighan-Lin (KL) algorithm for
balanced graph partitioning [20]. The KL algorithm and its
variants have been successfully applied to different parti-
tioning problems. The KL algorithm is a fast heuristic that
can escape local optima. Applying the KL algorithm to our
problem required several extensions, since the original algo-
rithm supports only edge costs, whereas our problem also
contains costs related to vertices, as well as hard constraints
on capacity and on the placement of critical components,
which are also not supported by the original algorithm.

Algorithm 4 Deployment re-optimization

1: procedure RE-OPTIMIZE(d)
2: best_deployment← d
3: best_cost← cost(d)
4: L← {v ∈ V : ¬s(v)}
5: end← (L = ∅)
6: while ¬end do
7: best_gain← −∞
8: for v ∈ L do
9: if ϱ(d) ≤ P or d(v) = edge then

10: g ← GAIN(d,v)
11: if g > best_gain then
12: best_comp← v
13: best_gain← g
14: end if
15: end if
16: end for
17: if best_gain > −∞ then
18: forced← (ϱ(d) > P)
19: change d(best_comp) to the other value
20: L.remove(best_comp)
21: if forced or cost(d) < best_cost then
22: best_deployment← d
23: best_cost← cost(d)
24: end if
25: end if
26: end← (L = ∅ or best_gain = −∞)
27: end while
28: d← best_deployment
29: end procedure

4.2 Detailed description of deployment re-optimization

The re-optimization procedure is shown in Algorithm 4.
The algorithm starts by setting “best_deployment” and
“best_cost” to the current deployment respectively its cost
(lines 2-3). The list L contains the components that may be
moved. In line 4, L is initialized to the set of all non-critical
components; critical components are not movable since they
must remain in the edge data center. In each iteration, one
component is moved and it is removed from L (line 20);
the procedure ends if L becomes empty, as captured by the
Boolean variable “end” (lines 5, 6, 26).

In each iteration, the component to move (“best_comp”)
is determined. For this, “best_gain” is initialized to −∞ (line
7), and all movable components are checked (lines 8-16).
Moving a component from the cloud to the edge data center
is not considered if the edge data center is overloaded (Line
9). Lines 10-14 find the component with the highest gain.
If an allowed move is found, it is performed (line 19) and
the corresponding component is removed from L (line 20).
If the edge data center was overloaded before the move,
then the move is forced to be from the edge data center to
the cloud, as captured by the Boolean variable “forced”. In
this case, “best_deployment” and “best_cost” are certainly
updated with the new deployment and its cost, otherwise
they are updated only if the new deployment has lower cost
than the best deployment found so far (lines 18, 21-24). The
loop ends if there are no more movable components (L = ∅)
or there are no valid moves, i.e., there are only moves that
would invalidate the deployment (“best_gain” = −∞) (line
26). Finally, the best deployment found is chosen (line 28).

The gain of a component is computed by Algorithm 5,
in line with Definition 7. If component v is in the edge data
center, then moving it to the cloud would increase costs by
cp · p(v) (lines 2-3); otherwise, moving it to the edge data

6

Algorithm 5 Calculation of the gain of moving a component

1: procedure GAIN(d, v)
2: if d(v) = edge then
3: r ← −cp · p(v)
4: else if ϱ(d) ≤ P and ϱ(d) + p(v) > P then
5: return −∞
6: else
7: r ← cp · p(v)
8: end if
9: for vw ∈ E do

10: if d(v) = d(w) then
11: r ← r − cdt · h(vw)
12: else
13: r ← r + cdt · h(vw)
14: end if
15: end for
16: return r
17: end procedure

center would decrease costs by the same amount (lines 6-7).
However, if the move violates the capacity constraint of the
edge data center, then the move is not allowed, resulting in a
gain of −∞ (lines 4-5). In lines 9-15, the connectors incident
to v are investigated. For a connector vw, if v and w are
deployed the same way (either both are in the edge data
center or both are in the cloud), then the move results in
vw crossing the boundary between the edge data center and
the cloud, increasing costs by cdt · h(vw) (lines 10-11). If one
of the components is in the edge data center and the other
one in the cloud, then moving v results in vw not crossing
the boundary between edge data center and cloud anymore,
thus decreasing costs by the same amount (lines 12-13).

4.3 Extension to multiple edge data centers
FOGPART, as described above, manages a single edge data
center, such as in the scenario described in Sec. 2. Here, we
present an extension of this algorithm to handle situations
with multiple edge data centers [21], [22].

This leads to the following variant of the initial problem
model. We are given a set of edge data centers and a cloud.
Each edge data center has given (possibly different) com-
putational capacity. The capacity of the cloud is assumed to
be unlimited (as in the original problem formulation). Each
edge data center belongs to a provider; a provider may have
multiple edge data centers. Each application has a primary
target edge data center, which has direct connection to the
end devices used by the application. Critical components of
the application must be placed on the primary target edge
data center. This guarantees that connectors to end devices
have the required low latency and that sensitive data is not
sent through the network. Components can be placed with-
out incurring costs on the primary target edge data center
or any other edge data center of the same provider. Further
nodes (edge data centers or the cloud) can also be used,
but they are associated with given (possibly different) costs.
Data transfer between each pair of nodes is associated with
given (possibly different) costs. The objective is to minimize
the total costs of the rental of computational capacity plus
the costs of data transfer among nodes, while satisfying the
constraints stemming from critical components and from the
edge data centers’ capacity.

For solving such problems, so far mainly centralized ap-
proaches have been proposed [23]. In these approaches, one

FO
G

PA
R

T
1

Cloud

Edge
data

center 1

Edge
data

center 2

Edge
data

center 𝑵

FO
G

PA
R

T
2

FO
G

PA
R

T

(a) DISTFOGPART

Cloud

Edge
data

center 1

Edge
data

center 2

Edge
data

center 𝑵

FO
G

PA
R

T
2

(b) CROSSFOGPART

Fig. 3: Handling multiple edge data centers

entity collects information about the whole infrastructure
and all applications, makes decisions on optimizing appli-
cation placement, and then sends adaptation commands
to the involved nodes. Such centralized approaches offer
limited scalability, suffer from the risk of the single point
of failure, and may not be applicable in practical situations
involving multiple autonomous operators. Therefore, a key
challenge for managing such distributed settings is to de-
velop decentralized algorithms that can work on each node
independently, with as little coordination as possible [23].

We propose two ways to extend FOGPART for the decen-
tralized management of multiple edge data centers. In the
first approach, called DISTFOGPART, each edge data center
runs an independent instance of the FOGPART algorithm
(Fig. 3a). That is, FOGPART instance i manages edge data
center i and the applications targeted to edge data center i,
and decides which components of those applications should
be placed in edge data center i and which ones in the
cloud. This requires no modification to FOGPART, and no
coordination among the FOGPART instances.

In the second approach, called CROSSFOGPART, each
edge data center runs an instance of FOGPART and each
FOGPART instance may change the placement of any com-
ponent currently placed in the cloud (Fig. 3b). Thus it is
possible that FOGPART instance i places a component c of
an application targeted to edge data center i in the cloud,
and then c is migrated by FOGPART instance j to edge data
center j. Hence, CROSSFOGPART supports the optimized
placement of an application even across multiple edge data
centers. To avoid concurrent conflicting modifications of the
contents of the cloud by multiple FOGPART instances, a
lightweight synchronization among the FOGPART instances
is necessary. In our current proof-of-concept implementa-
tion, this is realized by a central orchestrator, which ensures
that, after one FOGPART instance made a modification (e.g.,
added a new application), all other FOGPART instances also
perform re-optimization one after the other. To calculate
communication costs, a FOGPART instance may also need
information about the placement of components on other
edge data centers, which is currently also provided by the
central orchestrator. As future work, the central orchestrator
may be replaced by a decentralized data handling and coor-
dination mechanism (e.g., a distributed locking protocol).

4.4 Extension to global latency optimization

The literature contains different interpretations of latency.
Some authors define latency as the total delay on a path

7

or cycle of the application graph [24]; others define latency
constraints for individual connectors [18], [25], [26]. Our ap-
proach, as described so far, belongs to this second category.

Our approach can be extended to take into account the
end-to-end latency of applications. We assume that for each
application A ∈ A, a set of connectors Elat

A is given (e.g.,
the connectors forming a path or a cycle), the total latency
of which, denoted as TA, should be minimized. We then
modify the objective function in our problem definition
(equation (4)) as follows: minimize cost(d) + λ · ∑A∈A TA.
Here, λ ≥ 0 is a given constant, representing the relative
importance of end-to-end latency to financial costs.

To extend FOGPART accordingly, the cost calculation
(lines 3, 21, 23 in Algorithm 4) and gain calculation (lines
9-15 in Algorithm 5) need to be changed. In the gain
calculation, changes to the latency of connectors contained
in Elat

A have to be considered. The resulting algorithm is
denoted as Global Latency Optimization with FOGPART, or
GLOFOGPART for short.

5 ANALYSIS

In this section, we analyze the computational complexity of
the FOGPART algorithm and prove its correctness.
Complexity. FOGPART has quadratic time complexity and
linear space complexity:

Theorem 8. The time complexity of Algorithm 4 is
O
(
|V | · (|V |+ |E|)

)
.

Corollary 9. The time complexity of Algorithms 1, 2, and 3 is
also O

(
|V | · (|V |+ |E|)

)
.

Theorem 10. Algorithm 5 requires O(1) auxiliary space. Algo-
rithms 1–4 require O(|V |) auxiliary space.

Correctness. To prove the correctness of our algorithms, we
reason about sequences of algorithm calls.

Definition 11. A call sequence is a list Γ = (γ1, γ2, . . . , γk),
where each γi ∈ {add, remove, change}, depending on whether the
ith call was to Algorithm 1 (adding an application), Algorithm 2
(removing an application), or Algorithm 3 (other change). The set
of applications and the deployment after i calls are denoted by A(i)

and d(i), respectively. In particular, A(0) and d(0) denote the set
of applications respectively the deployment before the first call.

Theorem 12. Performing an arbitrary call sequence starting
from A(0) = ∅, if condition (5) is satisfied throughout (i.e., the
problem is solvable), then each call results in a valid deployment.

Thus, our algorithms always return deployments that
satisfy all constraints, whenever this is possible.

6 CASE STUDY

To demonstrate the applicability of FOGPART and illustrate
its operation, we apply it to the FiaB use case from Sec. 2.

For managing the production in the FiaB, multiple appli-
cations are used. Table 2 shows the application components’
characteristics: the 1st column contains the application iden-
tifier, the 2nd column contains the component’s name (cf.
the abbreviations from Fig. 2), the 3rd column shows the
component’s CPU requirement p(v) (number of required
vCPUs), and the 4th column indicates if the component is

TABLE 2: Characteristics of components in the case study

App. Component vCPUs Data protection

A1 AM task manager 1 no
iWh manager 1 no
Robot control 1 no
Manual assembly SW 2 no
Order management 2 no
Supply management 2 no
Tool management 1 yes
Process management 1 yes
ERP system 2 no

A2 FiaB remote management 1 no
Shop floor management 1 yes

A3 Sensor evaluation SW 1 no
Sensor dashboard 1 no

TABLE 3: Characteristics of connectors in the case study

App. Connector (endpoint1↔ endpoint2) Data

A1 AR/VR glasses (device)↔Manual assembly SW 15
Sensors (device)↔ Robot control 2
Robot (device)↔ Robot control 0.5
Tool management↔ Process management 1
AM task manager↔ Tool management 2
iWh manager↔ Tool management 0.5
Robot control↔ Tool management 2
AM task manager↔ Process management 0.1
Robot control↔ Process management 0.1
Manual assembly SW↔ Process management 1
ERP system↔ Order management 1
Order management↔ Supply management 0.1
Order management↔ Process management 0.1

A2 Shop floor management↔ FiaB remote management 5

A3 Sensor evaluation SW↔ Sensor dashboard 2.5

subject to data protection requirements (s(v)). Table 3 shows
the connectors’ characteristics: the 1st column contains the
application identifier, the 2nd column shows the vertices
incident to the connector, and the 3rd column shows the
amount of data transfer h(e) along the connector in GB/day.
The first three connectors connect an end device with a
component; the other connectors connect two components.

For real-time robot control, the communication latency
between (i) the “Sensors” device and the “Robot control”
component and (ii) between the “Robot control” component
and the “Robot” device must not exceed 5 milliseconds.
Hence, for these two connectors we specify ℓ(e) = 5ms.
The other connectors use loosely-coupled, asynchronous
communication with no specific latency requirements; thus,
for all other connectors we set ℓ(e) = ∞.

The unit costs of compute resources in the cloud and of
data transfers between the edge data center and the cloud
are determined based on Amazon EC2 pricing2. The hourly
rental fee of a t2.small instance is 0.023$, leading to a daily
fee of cp = 0.552$. The transfer of 1GB of data to or from
Amazon EC2 costs cdt = 0.09$. The edge data center has
P = 12 CPU cores. The latency between the edge data center
and the cloud is L = 100ms.

As the connectors between the “Robot control” compo-
nent and the “Sensors” and “Robot” devices have a lower
latency requirement than the latency between the edge data
center and the cloud, “Robot control” is a critical compo-
nent. Thus, “Robot control” must be in the edge data center,
just as all components with data protection requirements.

2. https://aws.amazon.com/ec2/pricing/on-demand/

8

(a) Result of deploying the
first application

Robot control Tool management

Process management

Manual assembly SW

Order management

Supply management

ERP systemAR/VR glasses

Edge data center Cloud

iWh manager

AM task manager
Robot

Sensors

(b) Deployment of the sec-
ond application. The num-
bers show the order in
which the components are
allocated and moved by
FOGPART. The two numbers
next to “FiaB remote man-
agement” show that this
component is allocated in
the first step (at that time in
the cloud), and moved in the
fourth step (to the edge data
center)

Robot control

Shop floor management

Tool management

Process management

AM task manager

iWh manager

Manual assembly SW

Order management Supply management

FiaB remote management

ERP systemAR/VR glasses

Edge data center Cloud

Robot

Sensors

(c) Deployment of the third
application. The numbers
show the order in which
the components are allo-
cated and moved by FOG-
PART Robot control

Shop floor management

Tool management

Process management

AM task manager

iWh manager

Manual assembly SW Sensor evaluation SW

Sensor dashboard

Order management

Supply management

FiaB remote management

ERP systemAR/VR glasses

Edge data center Cloud

Robot

Sensors

Fig. 4: Deploying the applications of the case study, one after the other. The graphical notation is the same as in Fig. 2.

Running FOGPART to add application A1, first the criti-
cal components (Robot control, Tool management, Process
management) are put into the edge data center and all
other components are tentatively put into the cloud. Then,
Algorithm 4 is run to optimize the deployment. Algorithm 4
moves five components from the cloud to the edge data cen-
ter, until the capacity of the edge data center is exhausted,
leading to the deployment shown in Fig. 4(a).

To deploy application A2, first its critical component
(Shop floor management) is put into the edge data center
and the other (FiaB remote management) into the cloud.
This leads to an invalid deployment requiring 13 CPU
cores in the edge data center. Hence, FOGPART makes a
forced move: “AM task manager” is moved from the edge
data center to the cloud. Thus, the deployment becomes
valid, even reaching a local optimum: only moves from the
edge data center to the cloud are possible, which increase
costs. FOGPART makes such a worsening move of “Supply
management” from the edge data center to the cloud. This
pays off: 2 CPU cores are freed in the edge data center, al-
lowing the “FiaB remote management” and “iWh manager”

components to move in the next steps to the edge data
center. The resulting deployment is better than the earlier
local optimum, as the heavy traffic between “Shop floor
management” and “FiaB remote management” remains in
the edge data center. This is an example of how FOGPART
can escape local optima. In subsequent steps, FOGPART tries
further moves but they do not lead to lower costs, hence the
deployment shown in Figure 4(b) is chosen in the end.

For A3, the new components (Sensor evaluation SW,
Sensor dashboard) are first put in the cloud. Since the ca-
pacity of the edge data center is exhausted, only worsening
moves are possible. FOGPART moves “iWh manager” from
the edge data center to the cloud, making it possible to move
“AM task manager” from the cloud to the edge data center.
This leads to a better deployment, which further moves
cannot improve. The resulting deployment, shown in Fig.
4(c), is optimal. Also, it has lower costs than the manually
created deployment for the same inputs shown in Fig. 2.

This shows how FOGPART keeps satisfying the require-
ments, and uses the remaining degrees of freedom to opti-
mize costs, occasionally also escaping local optima.

9

7 EXPERIMENTAL EVALUATION

We experimentally assess the costs of the solutions delivered
by FOGPART and its execution time. We compare FOGPART
to two other algorithms. To this end, we implemented all
three algorithms in a common Java program3. The experi-
ments are performed on a Lenovo ThinkPad X1 laptop with
Intel Core i5-4210U CPU @ 1.70GHz and 8GB RAM4.

7.1 Baseline algorithms

We compare FOGPART to two competing algorithms:
• An algorithm based on integer linear programming

(ILP), as a typical example of an exact algorithm. ILP
was used by several previous works, e.g., [27].

• A heuristic based on the first-fit (FF) principle, as a
typical example of a greedy heuristic. Similar heuristics
were used by several previous works, e.g., [28].

These algorithms are described next. All three algo-
rithms solve the MCECD problem after the transformation
of Sec. 3.4.

Exact algorithm using integer linear programming
(ILP). To create an ILP formulation of the MCECD problem,
we define two sets of binary variables {xv : v ∈ V } and
{ye : e ∈ E} with the following interpretation:

xv =

{
0 if d(v) = edge
1 if d(v) = cloud

ye =

{
0 if e ̸∈ E(d)

1 if e ∈ E(d)

The ILP can be formulated as follows:

min cp ·
∑

v∈V

p(v) · xv + cdt ·
∑

e∈E

h(e) · ye (7)

s. t.
∑

v∈V

p(v) · (1− xv) ≤ P (8)

xv = 0 if s(v) (9)
xv − xw ≤ yvw ∀vw ∈ E (10)
xw − xv ≤ yvw ∀vw ∈ E (11)

(7) corresponds to the cost function (4) defined earlier,
while (8)-(9) correspond to the constraints (1)-(2) defined
earlier. (10) and (11) ensure that the values of the x and
y variables are consistent: if xv ̸= xw, then yvw = 1. If
xv = xw, then the value of yvw is not constrained; however,
since yvw has a positive weight in the objective function,
yvw = 0 will hold in any optimal solution of the ILP.

We use the Gurobi Optimizer5, version 7.0.2, to solve the
ILP defined above. In the experiments, Gurobi was executed
in single-threaded mode with a timeout of 60 seconds.

First-fit heuristic. The FF heuristic works as follows:
1) It places all critical components into the edge data

center.
2) It iterates over the remaining components, and does the

following for each non-critical component v: if v still fits
into the edge data center, then v is placed into the edge
data center, otherwise into the cloud.

More details on both baseline algorithms can be found in
the supplemental material.

3. https://sourceforge.net/p/vm-alloc/hybrid-deployment
4. The Intel NUC devices in the FiaB have comparable performance.
5. https://www.gurobi.com/

7.2 Results for a call sequence

In a first experiment, 10 applications are randomly gener-
ated with the following parameters:

• |VA| = 30
• Independently for each v ∈ VA, p(v) is chosen ran-

domly from {1, 2, 3, 4} with uniform distribution, and
s(v) is set true with probability 0.1

• (VA, EA) is a complete graph
• Independently for each e ∈ EA, h(e) is chosen ran-

domly from [0.0, 3.0] with uniform distribution
Starting with A(0) = ∅, the applications are added one by
one in the first 10 steps. Afterwards, 10 change steps are
carried out, and finally the applications are removed one by
one, leading to A(30) = ∅. Each change step performs one of
the following actions (each with equal probability):

• For each application, increase or decrease the number
of required CPU cores of 3 random components by 1.

• For each application, change a random component’s
being critical.

• For each application, multiply the amount of data trans-
fer along 10 random connectors by 2 or 0.5.

• Change cp, the unit cost of compute resources, by either
increasing or decreasing it by 10%.

As before, cp = 0.552 and cdt = 0.09. Moreover, P = 150,
L = 0, and VD = ∅.

Fig. 5a shows the costs achieved by the algorithms in
each step. As expected, costs monotonously increase in the
first 10 steps and decrease in steps 20-30. In steps 1-2 and
29-30, all components can be placed in the edge data center,
leading to 0 costs; this optimal deployment is found by all
algorithms. In the other steps, some components must be
placed in the cloud, leading to non-zero costs. Consistently
in all steps 3-28, the results of FOGPART are only slightly
higher than those of the ILP-based algorithm (2.19% higher
on average), whereas the FF algorithm yields much higher
costs (29.32% higher on average).

Fig. 5b shows the execution time of the algorithms in
each step. Time is shown in milliseconds, using logarith-
mic scale. The ILP-based algorithm has consistently much
higher execution time than the heuristics. The average exe-
cution time is about 26sec for the ILP-based algorithm, and
only about 36ms for FOGPART and 1ms for FF. In 8 cases,
the ILP-based algorithm reached the 60sec timeout. In such
a case, the ILP solver returns the best solution found and a
lower bound on the optimal costs. In these cases, the output
of the ILP-based algorithm might not be optimal; however,
based on the lower bound, we can establish that the cost of
the deployment found by the ILP-based algorithm is at most
0.82% higher than the optimum.

7.3 Scalability

In the next experiment, we repeated the same call sequence
as in Sec. 7.2, with varying number of components per
application (otherwise, all parameters are set as before).
Fig. 6a shows the total costs achieved by the algorithms,
aggregated for the call sequence of adding, changing, and
removing 10 applications. The number of components per
application increased from 15 to 45 in increments of 5,
leading to 150-450 components in a call sequence.

10

0

100

200

300

400

500

600

1 6 11 16 21 26

C
o
st

Step

ILP FOGPART FF

(a) Financial costs

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1 6 11 16 21 26

Ex
ec

u
ti

o
n

 t
im

e
[m

s]

Step

ILP FOGPART FF

(b) Algorithm execution time (logarithmic scale)

Fig. 5: Adding, changing, and removing 10 applications

Consistently for all application sizes, the cost of the
deployments found by FOGPART is only slightly higher than
the ILP results (2.1% higher on average), while the costs
achieved by FF are much higher (24.3% higher on average).
As the number of components grows, the relative difference
between the algorithms’ results decreases. This is because,
as the number of components grows, also the number of crit-
ical components grows, using an increasing part of the edge
data center’s capacity, leaving less optimization opportuni-
ties in deploying the non-critical components. E.g., when
each application consists of 45 components, the expected
number of CPU cores needed by the critical components is
112.5, using 75% of the capacity of the edge data center.

Fig. 6b shows the total execution time of the algorithms,
aggregated for the call sequences (note the logarithmic scale
of the vertical axis). The execution time of FF is very low
(tens of milliseconds for the call sequence), that of FOGPART
is higher but still low (less than 2s in each case for the
whole call sequence), and that of ILP much higher (more
than 20min for a call sequence with over 300 components).
With a growing number of components, the execution time
of FOGPART and ILP grow at a different rate. As the number
of components triples from 150 to 450, the execution time
of FOGPART increases by a factor of 5.7 (cf. the moderate
polynomial complexity stated in Theorem 8), while the
execution time of ILP grows by a factor of 26, exhibiting

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

15 20 25 30 35 40 45

To
ta

l c
o

st
s

Number of components per application

ILP FOGPART FF

(a) Financial costs

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

15 20 25 30 35 40 45

To
ta

l e
xe

cu
ti

o
n

 t
im

e
[m

s]

Number of components per application

ILP FOGPART FF

(b) Algorithm execution time (logarithmic scale)

Fig. 6: Impact of increasing the number of components

an exponential execution time damped by the timeout of
60s per run. From the 30 runs of a call sequence, the number
of runs reaching the timeout is 0 for 150 components, 8 for
300 components, and 21 for 450 components.

7.4 Impact of constraint tightness
In the next experiment, we varied the ratio of critical
components. The probability of components being marked
as processing sensitive data, i.e., Prob(s(v)=true), varied
from 0.0 to 0.4. As Prob(s(v)=true) grows, the placement of
more components is prescribed, leading to more constrained
problem instances. To ensure that the problem is solvable
even for Prob(s(v)=true)=0.4, the number of CPU cores in
the edge data center was increased to 350. Otherwise, all
parameters were set as in the first experiment.

Fig. 7 shows the results aggregated for the call se-
quence of adding, changing, and removing 10 applica-
tions. The costs monotonously increase for all algorithms
as Prob(s(v)=true) increases. The difference between the
results of ILP and FOGPART is always very small, and
the results of FF are much worse. On average, the costs
achieved by FOGPART are 4.2% higher than those of ILP;
the costs achieved by FF are 68.6% worse than those of
ILP. As Prob(s(v)=true) increases, the relative difference
between the algorithms’ results decreases. This can be again
explained by the decreasing optimization opportunities, as

11

0

2000

4000

6000

8000

10000

0.0 0.1 0.2 0.3 0.4

To
ta

l c
o

st
s

Sensitivity probability

ILP FOGPART FF

(a) Financial costs

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

0.0 0.1 0.2 0.3 0.4

To
ta

l e
xe

cu
ti

o
n

 t
im

e
[m

s]

Sensitivity probability

ILP FOGPART FF

(b) Algorithm execution time (logarithmic scale)

Fig. 7: Impact of increasing the ratio of critical components

an increasing percentage of the edge data center’s capacity
is occupied by the critical components.

Fig. 7b shows the corresponding execution times (note
the logarithmic scale of the vertical axis). As in the previous
experiments, FF works in milliseconds, FOGPART in a few
seconds, and ILP takes several minutes for a call sequence.
The increase in constraint tightness leads to a decrease of
the execution time of FOGPART and ILP, which may again
be attributed to the decrease in optimization opportunities.

7.5 Impact of cost structure
To investigate the effect of the ratio of different costs, we
performed the same experiment as in Sec. 7.2, with different
values for cdt, the unit cost of data transfer between the edge
data center and the cloud. We multiplied the basic value of
cdt with different factors from 0.01 to 100, while cp, the unit
cost of compute resources, remained the same.

As Fig. 8a shows, the costs achieved by all algorithms
monotonously increase with growing cdt. The difference
between the results of FOGPART and ILP is consistently very
small (2.6% on average). The gap between FF and ILP is
much larger (108.9% on average).

Costs grow slowly when cdt is small (e.g., increasing the
factor of cdt from 0.01 to 0.1 results in about 2-6% increase
in total costs), whereas the cost increase is much higher
when cdt is large (e.g., increasing the factor of cdt from 10
to 100 results in over 600% increase in total costs, for each
algorithm). This is because for small values of cdt, overall

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0.01 0.1 1 10 100

To
ta

l c
o

st
s

Unit cost of data transfer between edge data center and cloud

ILP FOGPART FF

(a) Financial costs

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0.01 0.1 1 10 100

To
ta

l e
xe

cu
ti

o
n

 t
im

e
[m

s]

Unit cost of data transfer between edge data center and cloud

ILP FOGPART FF

(b) Algorithm execution time (logarithmic scale)

Fig. 8: Impact of varying cdt

costs are dominated by compute costs, limiting the impact
of changes in communication costs. When cdt is large, total
costs are dominated by communication costs, so that total
costs get more sensitive to changes of cdt.

The results of FF deteriorate when cdt is large. This is be-
cause FF does not take communication costs explicitly into
account. Hence, when communication becomes expensive,
FF may lead to high costs.

Fig. 8b shows the total execution time of the algorithms,
aggregated for the call sequences (note the logarithmic scale
of the vertical axis). As in the previous experiments, ILP is
consistently multiple orders of magnitude slower than the
two other algorithms. While the execution time of FOGPART
and FF is hardly affected by the value of cdt, the ILP-based
algorithm seems to be faster for very high values of cdt than
otherwise. This may be attributed to the way the branch-
and-bound algorithm of the ILP solver works. When cdt
is large, partial solutions with many connectors crossing
the boundary between the edge data center and the cloud
can be immediately pruned because they will surely lead
to solutions with too high costs. The improved pruning
capability leads to faster execution of the solver.

7.6 Results for multiple edge data centers
To evaluate DISTFOGPART and CROSSFOGPART, we com-
pare them to each other and to applying one instance of
First-Fit or ILP per edge data center. We consider 20 edge

12

TABLE 4: Results with multiple edge data centers

cdt
cee

cdt

Resulting cost

FF ILP DISTFOGPART CROSSFOGPART

0.009 0.01 387.6 349.0 355.4 349.4
0.009 0.1 455.7 422.3 426.1 423.3
0.009 1 430.1 393.4 398.2 399.2
0.09 0.01 549.7 365.0 384.2 348.4
0.09 0.1 546.7 351.8 370.3 335.2
0.09 1 588.8 392.7 410.7 409.5
0.9 0.01 2421.1 721.0 759.6 503.4
0.9 0.1 2385.4 541.5 618.6 396.6
0.9 1 2406.0 523.2 582.8 565.3

data centers and a cloud. For each edge data center, the
number of available CPU cores is randomly taken from [10,
50]. We generate 5 applications for each edge data center
(i.e., 100 applications altogether). Each application consists
of 5 components (i.e., we have 500 components altogether).
Each component requires between 1 and 4 CPU cores, and
is critical with probability 0.1. Each pair of components
within an application is connected by a connector, carrying
a random amount of traffic from [0, 10]. As in the previous
experiments, the per-core rental fee in the cloud is 0.552.
All edge data centers belong to the same provider and
can thus be used free of charge. For the unit cost of data
transfer between the cloud and the edge data centers (cdt),
we consider 0.09 as in previous experiments, and also 0.9
and 0.009, since we have seen previously that the value of
cdt has significant impact. For the unit cost of data transfer
among edge data centers (cee), we consider the values cdt,
0.1 · cdt, and 0.01 · cdt.

The results are shown in Table 4. In each case, both
DISTFOGPART and CROSSFOGPART outperform First-Fit; in
accordance with the results of Sec. 7.5, the difference is
highest when cdt is high. If cee is low, as can be expected
in a typical edge deployment, CROSSFOGPART can further
improve upon the result of DISTFOGPART by up to 34%, and
in some cases even outperforms the ILP-based algorithm.
This is because CROSSFOGPART can leverage spare capacity
in one edge data center to cheaply host excess components
from another edge data center.

7.7 Results for global latency optimization
Here, we evaluate the performance of GLOFOGPART, intro-
duced in Sec. 4.4. Fig. 9 compares the costs achieved by
GLOFOGPART with the ILP-based and the First-Fit algo-
rithms. The cost depicted on the vertical axis is the weighted
sum of the financial cost (with weight 1) and the total
latency of the applications (with weight λ). The results are
shown for different values of λ. The resulting costs are
normalized such that the result of ILP is 1. As can be seen,
with growing λ, the results of both GLOFOGPART and FF
deteriorate. However, while the results of FF are up to 207%
worse than those of ILP, the results of GLOFOGPART are
less than 19% off the results of ILP. Thus, GLOFOGPART can
effectively minimize both financial costs and total latency.

7.8 Summary
In all experiments of Sec. 7.2-7.5, the costs of the deployment
found by FOGPART are only slightly higher than those of the

0

0.5

1

1.5

2

2.5

3

3.5

0.01 0.1 1 10 100

co
st

 r
el

at
iv

e
to

 IL
P

lambda

ILP GLOFOGPART FF

Fig. 9: Costs achieved for different values of λ

ILP-based algorithm (2.7% higher on average across all runs
in the experiments). The costs of FF are much higher, on
average 88.8% higher than those of ILP.

FF takes on average just 0.6ms per run. FOGPART is also
very fast, taking on average 40.6ms per run, and below
300ms in each run. ILP was on average more than 500 times
slower than FOGPART, taking on average about 22sec per
run and hitting the 60sec timeout in many cases.

Overall, FOGPART is almost as good as ILP in terms of
solution costs, while being almost as fast as FF.

The results of Sec. 7.6 show that FOGPART can be
successfully applied in a setting with multiple edge data
centers, leading to optimized costs with no or minimal co-
ordination among the edge data centers. The results of Sec.
7.7 show that FOGPART can also be successfully extended to
minimize overall latency. Further experimental results are
presented in the supplemental material.

8 RELATED WORK

Recent surveys cover the state of the art in offloading in
cloud and edge/fog computing [7], [10], [14]. Here, we focus
on the approaches that are most closely related to ours.

[29] was among the first to study workload allocation
between the cloud and the fog. The results showed that
combining cloud and fog resources can lead to a good trade-
off between delay and power consumption. [30] formulates
the service allocation problem in a cloud-fog setting as an
optimization problem. An ILP formulation is created and
solved using Gurobi. [31] devises a genetic algorithm for
optimizing the deployment of IoT applications on fog nodes.
The aim is to allocate as much as possible of the service
requests to the fog nodes, while satisfying constraints on ca-
pacity and response time. The algorithm is compared to an
ILP-based and an FF-based approach. [28] presents a greedy
algorithm for placing application modules in the cloud and
on fog nodes. The algorithm ensures the satisfaction of
capacity constraints, and tries to use the fog nodes as much
as possible. [32] addresses the deployment of complex event
processing applications on edge resources with the aim
of minimizing average application latency, while satisfying
capacity constraints. The algorithm is compared to a greedy
algorithm and a load-balancing algorithm. [17] considers the

13

deployment of distributed stream processing applications
on cloud and edge resources with the aim of minimizing
application latency. Applications are assumed to be series-
parallel-decomposable graphs. Beside capacity constraints,
also the requirements on service rate are considered. [33]
proposes a heuristic to allocate application components in
a multi-layer fog system. The aim is to optimize resource
usage while enforcing latency constraints. [34] uses tabu
search to optimize the placement of virtual network func-
tions in the context of mobile fog nodes. The optimization
objective combines makespan with financial costs, while
capacity constraints are ensured. [35] uses different variants
of evolutionary algorithms for the fog service placement
problem. The NSGA-II algorithm led to the best results,
while the MOEA/D algorithm was better to reduce exe-
cution time. [36] presents a two-tier bipartite graph task
allocation approach based on fuzzy clustering considering
time delay constraints, costs, and energy consumption. [26]
uses exhaustive search to find all feasible deployments of an
application on a fog infrastructure.

Our approach differs from these previous efforts in
several respects. Most existing works focus on the optimiza-
tion problem faced by an application manager, whereas we
address a problem faced by the operator of an edge data
center. Most existing approaches are not directly applicable
to our problem because of their limitations (e.g., they do not
account for financial costs or are limited to applications of a
given structure). In addition, most existing works applied
either simple greedy algorithms without quality guaran-
tees or general-purpose mathematic programming methods
(like integer programming) that have scalability issues. In
contrast, by focusing on the case of one edge data center
and the cloud, our algorithm can exploit the graph-theoretic
structure of the problem and can thus find good solutions
very quickly, even with provable quality guarantees.

Specific limitations of existing work include the follow-
ing. Some approaches do not consider the costs of using
the cloud [17], [32], or do not take data transfer between
components into account [26], [28], [31], which, however,
can lead to significant costs. In contrast, our algorithm
explicitly minimizes the costs of both cloud resources and
data transfer between the edge data center and the cloud.

Some approaches only work for a special application
structure (e.g., directed acyclic graph [32], cycle of 4 vertices
[33], series-parallel graph [17], [34]). In contrast, FOGPART
works for any application topology.

Some approaches were not designed for dynamic run-
time offloading. In several cases, algorithm performance is
not evaluated [31], [36]. Some algorithms are too slow to be
applied in a dynamic setting [26].

Some approaches used greedy algorithms [28], [33] that
consider one application at a time and deploy its com-
ponents sequentially. In contrast, our algorithm optimizes
the deployment of all applications together, increasing the
likelihood of finding overall good solutions, and uses spe-
cial techniques to escape local optima. The experimental
results clearly show that FOGPART outperforms FF, a typical
example of a greedy sequential heuristic.

None of the approaches considers hard constraints on
data protection in the offloading decisions. In contrast, we
ensure that such data protection constraints are met.

9 CONCLUSIONS

This paper addressed the problem of deciding which ap-
plication components to place in an edge data center and
which ones in the cloud, subject to data protection, latency,
and capacity constraints, minimizing the costs of cloud
usage and data transfer between the edge data center and
the cloud. We devised a new algorithm for this problem
and proved that it delivers a deployment that meets all
requirements whenever possible. In terms of costs, the de-
ployment found by our algorithm is generally not optimal,
but our experimental results suggest that it is close to
optimal, while the algorithm is fast so that it can be used
online. We also showed that the algorithm can be extended
to effectively handle multiple edge data centers and end-to-
end application latency optimization.

As future research, we aim to extend our approach to
further optimization objectives and constraints, like energy
consumption. An important question is to what extent the
theorems of this paper can be transferred to other metrics.
Acknowledgments. Research leading to these results received
funding from the EU’s Horizon 2020 research and innovation
programme under grant agreement no. 871525 (FogProtect).

REFERENCES

[1] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the
Internet of Things realize its potential,” Computer, vol. 49, no. 8,
pp. 112–116, 2016.

[2] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A tax-
onomy, survey and future directions,” in Internet of Everything.
Springer, 2018, pp. 103–130.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 2017.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
2016.

[5] Z. Abbas, J. Li, N. Yadav, and I. Tariq, “Computational task
offloading in mobile edge computing using learning automata,”
in IEEE/CIC Int. Conf. on Communications in China, 2018, pp. 57–61.

[6] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, and A. Y.
Zomaya, “A dynamic tradeoff data processing framework for
delay-sensitive applications in cloud of things systems,” J. Parallel
Distrib. Comput., vol. 112, pp. 53–66, 2018.

[7] M. Aazam, S. Zeadally, and K. Harras, “Offloading in fog comput-
ing for IoT: Review, enabling technologies, and research opportu-
nities,” Future Gener. Comput. Syst., vol. 87, pp. 278–289, 2018.

[8] D. Bermbach, F. Pallas, D. G. Pérez, P. Plebani, M. Anderson,
R. Kat, and S. Tai, “A research perspective on fog computing,”
in Int. Conf. on Service-Oriented Computing, 2017, pp. 198–210.

[9] S. Deng, Z. Xiang, J. Yin, J. Taheri, and A. Y. Zomaya,
“Composition-driven IoT service provisioning in distributed
edges,” IEEE Access, vol. 6, pp. 54 258–54 269, 2018.

[10] V. B. C. Souza, X. Masip-Bruin, E. Marín-Tordera, S. Sánchez-
López, J. Garcia, G. Ren, A. Jukan, and A. J. Ferrer, “Towards a
proper service placement in combined fog-to-cloud (F2C) archi-
tectures,” Future Gener. Comput. Syst., vol. 87, pp. 1–15, 2018.

[11] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and
Y. Yang, “Optimal edge user allocation in edge computing with
variable sized vector bin packing,” in Int. Conf. on Service-Oriented
Computing (ICSOC), 2018, pp. 230–245.

[12] P. Ravindra, A. Khochare, S. P. Reddy, S. Sharma, P. Varshney,
and Y. Simmhan, “ECHO: An adaptive orchestration platform for
hybrid dataflows across cloud and edge,” in Int. Conf. on Service-
Oriented Computing (ICSOC), 2017, pp. 395–410.

[13] S. Schoenen, Z. Á. Mann, and A. Metzger, “Using risk patterns to
identify violations of data protection policies in cloud systems,”
in Service-Oriented Computing – ICSOC 2017 Workshops. Springer,
2018, pp. 296–307.

14

[14] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to place your
apps in the fog: State of the art and open challenges,” Software:
Practice and Experience, vol. 50, no. 5, pp. 719–740, 2020.

[15] Z. Á. Mann, A. Metzger, J. Prade, and R. Seidl, “Optimized
application deployment in the fog,” in Int. Conf. on Service-Oriented
Computing (ICSOC). Springer, 2019, pp. 283–298.

[16] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya,
“Quality of Experience (QoE)-aware placement of applications in
fog computing environments,” J. Parallel Distrib. Comput., vol. 132,
pp. 190–203, 2019.

[17] A. da Silva Veith, M. D. de Assuncao, and L. Lefevre, “Latency-
aware placement of data stream analytics on edge computing,” in
Int. Conf. on Service-Oriented Computing (ICSOC), 2018, pp. 215–229.

[18] Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye, and F. Desprez,
“Combining hardware nodes and software components ordering-
based heuristics for optimizing the placement of distributed IoT
applications in the fog,” in Proc. 33rd ACM Symposium on Applied
Computing (SAC). ACM, 2018, pp. 751–760.

[19] C. H. Papadimitriou, Computational Complexity. John Wiley and
Sons Ltd., 2003.

[20] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal, vol. 49, no. 2,
pp. 291–307, 1970.

[21] M. Goudarzi, M. Palaniswami, and R. Buyya, “A distributed
application placement and migration management techniques for
edge and fog computing environments,” in 16th Conference on
Computer Science and Intelligence Systems (FedCSIS). IEEE, 2021,
pp. 37–56.

[22] E. Ahvar, S. Ahvar, Z. Á. Mann, N. Crespi, R. Glitho, and J. Garcia-
Alfaro, “DECA: a Dynamic Energy cost and Carbon emission-
efficient Application placement method for edge clouds,” IEEE
Access, vol. 9, pp. 70 192–70 213, 2021.

[23] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service
placement problem in fog and edge computing,” ACM Computing
Surveys, vol. 53, no. 3, p. art. 65, 2020.

[24] M. A. Al-Tarawneh, “Bi-objective optimization of application
placement in fog computing environments,” Journal of Ambient
Intelligence and Humanized Computing, 2021.

[25] A. Brogi and S. Forti, “QoS-aware deployment of IoT applications
through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, 2017.

[26] A. Brogi, S. Forti, and A. Ibrahim, “Predictive analysis to support
fog application deployment,” in Fog and Edge Computing: Principles
and Paradigms. Wiley, 2019, pp. 191–222.

[27] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-
aware fog service placement,” in IEEE 1st Int. Conf. on Fog and Edge
Computing (ICFEC). IEEE, 2017, pp. 89–96.

[28] M. Taneja and A. Davy, “Resource aware placement of IoT appli-
cation modules in fog-cloud computing paradigm,” in IFIP/IEEE
Symposium on Integrated Network and Service Management (IM),
2017, pp. 1222–1228.

[29] R. Deng, R. Lu, C. Lai, and T. Luan, “Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing,” in
IEEE Int. Conf. on Communications, 2015, pp. 3909–3914.

[30] V. B. C. Souza, W. Ramírez, X. Masip-Bruin, E. Marín-Tordera,
G. Ren, and G. Tashakor, “Handling service allocation in combined
fog-cloud scenarios,” in IEEE Int. Conf. on Communications (ICC),
2016, pp. 1–5.

[31] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,
“Optimized IoT service placement in the fog,” Service Oriented
Computing and Applications, vol. 11, no. 4, pp. 427–443, 2017.

[32] X. Cai, H. Kuang, H. Hu, W. Song, and J. Lü, “Response time
aware operator placement for complex event processing in edge
computing,” in Int. Conf. on Service-Oriented Computing (ICSOC),
2018, pp. 264–278.

[33] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware
application module management for fog computing environ-
ments,” ACM Trans. Internet Technol., vol. 19, no. 1, p. 9, 2018.

[34] C. Mouradian, S. Kianpisheh, M. Abu-Lebdeh, F. Ebrahimnezhad,
N. T. Jahromi, and R. Glitho, “Application component placement
in NFV-based hybrid cloud/fog systems with mobile fog nodes,”
IEEE J. Sel. Areas Commun., vol. 37, no. 5, pp. 1130–1143, 2019.

[35] C. Guerrero, I. Lera, and C. Juiz, “Evaluation and efficiency
comparison of evolutionary algorithms for service placement opti-
mization in fog architectures,” Future Gener. Comput. Syst., vol. 97,
pp. 131–144, 2019.

[36] A. Gad-ElRab and A. Noaman, “A two-tier bipartite graph task
allocation approach based on fuzzy clustering in cloud-fog envi-
ronment,” Future Gener. Comput. Syst., vol. 103, pp. 79–90, 2020.

Zoltán Ádám Mann is senior researcher at
paluno – The Ruhr Institute for Software Tech-
nology, University of Duisburg-Essen, Germany.
His research interests include fog computing,
software engineering, cloud computing, security
and privacy, and optimization algorithms.

Andreas Metzger is senior academic councillor
at the University of Duisburg-Essen and head
of adaptive systems and big data applications
at paluno, the Ruhr Institute for Software Tech-
nology. He is steering committee vice-chair of
the European Technology Platform on Software,
Services, Cloud and Data (NESSI) and deputy
secretary general of the Big Data Value Associ-
ation (BDVA). His research interests are in soft-
ware engineering for self-adaptive systems.

Johannes Prade received his PhD in physics
from the University of Regensburg, Germany. He
has been active in the ICT field for more than
20 years. His research interest within Nokia is
in investigating various aspects of network virtu-
alization, including its organizational and mone-
tary impact.

Robert Seidl is research manager at Nokia Bell
Labs, heading a team responsible for Data An-
alytics and Privacy. He is also member of the
Board of Directors at the Big Data Value As-
sociation (BDVA) and member of the Steering
Committee of NESSI.

Klaus Pohl is full professor for Software Sys-
tems Engineering at the University of Duisburg-
Essen. He is director of paluno – The Ruhr Insti-
tute for Software Technology and was scientific
founding director of Lero – The Irish Software
Engineering Centre. Klaus is member of the
NESSI Board and member of several steering
and advisory committees.

1

Cost-optimized, data-protection-aware offloading
between an edge data center and the cloud

– Supplementary material –
Zoltán Ádám Mann, Andreas Metzger, Johannes Prade, Robert Seidl, and Klaus Pohl

✦

In this supplementary file, we describe the proofs of
the theorems and propositions stated in the paper (Sec.
1), followed by the details of the baseline algorithms that
FOGPART is compared with in the paper (Sec. 2) and a
discussion of the limitations of and possible extensions to
FOGPART (Sec. 3). Finally, some further experimental results
are shown in Sec. 4 and an example for the coalescing of
critical connectors in Sec. 5.

1 PROOFS

1.1 Solvability of the MCECD problem
We first recapitulate the basic equations and definitions from
the paper.

A valid deployment must respect the following con-
straints:

ϱ(d) ≤ P, (1)
∀v ∈ V : s(v) ⇒ (d(v) = edge), (2)

∀vw ∈ E : (ℓ(vw) < L) ⇒ (d(v) = d(w)). (3)

The cost of deployment d is defined as follows:

cost(d) =
∑

v∈V, d(v)=cloud

cp · p(v) +
∑

e∈E(d)

cdt · h(e). (4)

Definition 1. A connector e ∈ E is critical if and only if ℓ(e) <
L.

Remark 2. According to Equation (3), if the connector vw is
critical, then for any valid deployment, either both v and w must
be in the edge data center or both of them must be in the cloud.

Definition 3. A component v ∈ V is critical if and only if at
least one of the following conditions hold:

• s(v) is true; or
• There is a path v0, v1, . . . , vk in the graph (V,E), such

that s(v0) = true, vk = v and for each j = 1, . . . , k, the
connector vj−1vj is critical.

In addition, each end device v ∈ VD is considered to be critical
as well. Let F = {v ∈ V : v is critical} be the set of critical
components and end devices.

Now we come to prove the following propositions.

Proposition 4. Let v ∈ V be critical. Then for any valid
deployment d, d(v) = edge.

Proof. If s(v) is true (note that this also includes the case
when v ∈ VD), then Equation (2) ensures that d(v) = edge.

Otherwise, let v0, v1, . . . , vk be a path as in Definition 3,
and let d be a valid deployment. Then d(v0) = edge because
of Equation (2). Since each connector vj−1vj (j = 1, . . . , k)
is critical, it follows by induction and Remark 2 for each vj
(j = 1, . . . , k) that d(vj) = edge. For j = k, this completes
the proof.

Proposition 5. A valid deployment exists if and only if
∑

v∈F

p(v) ≤ P. (5)

If (5) holds, the following deployment is valid:

d(v) =

{
edge, if v ∈ F ; (6a)
cloud, otherwise. (6b)

Proof. If deployment d is valid, then
∑

v∈F

p(v) ≤
∑

v∈V, d(v)=edge

p(v) ≤ P

(the first inequality follows from Proposition 4 and p(v) ≥ 0,
while the second inequality follows from (1)), which proves
(5).

To see the reverse, assume that (5) holds, and let d(v) be
defined according to (6a)-(6b).

(6a) ensures that d satisfies (2). On the other hand,
∑

v∈V, d(v)=edge

p(v) =
∑

v∈F

p(v) ≤ P

(the equation follows from the definition of d, the inequality
follows from (5)), which proves that d also satisfies (1).

To prove (3) by contradiction, let us assume that vw ∈ E
is a critical connector, d(v) = edge, and d(w) = cloud. Then,
from the definition of d we know that v ∈ F . If s(v) = true,
then this fact, together with the connector vw (which is a
path of length 1) implies that w ∈ F , which contradicts
d(w) = cloud. The other possibility is that there is a path
v0, v1, . . . , vk as in Definition 3, with vk = v. However, this
path, together with the connector vw implies that w ∈ F ,
which again contradicts d(w) = cloud.

2

Algorithm 1 Adding a new application

1: procedure ADD(A)
2: for v ∈ VA do
3: if s(v) then
4: d(v)← edge
5: else
6: d(v)← cloud
7: end if
8: end for
9: RE-OPTIMIZE(d)

10: end procedure

1.2 Complexity of the MCECD problem
Next, we prove the strong NP-hardness of the defined
optimization problem.

Theorem 6. The MCECD problem is strongly NP-hard.

Proof. We show a reduction from the minimum bisection
problem. In an instance of the minimum bisection problem,
we are given an undirected graph G = (V,E) where n =
|V | is even, and a number 0 ≤ S ≤ |E|. It has to be decided
whether V can be partitioned into two disjoint sets V1, V2

of equal size such that the number of edges connecting the
two subsets is at most S.

From this, we create an instance of the MCECD problem
as follows. VD = ∅, and there is a single application, given
by the graph G. For each component v ∈ V , p(v) = M
and s(v) is false. Here, M is a number greater than |E|. For
each connector e ∈ E, h(e) = ℓ(e) = 1. Further, L = 0,
P = M · n/2, and cp = cdt = 1.

If G admits a bisection (V1, V2) with at most S edges
between the two subsets, then there is a corresponding
deployment that maps the components in V1 to the edge
data center and the components in V2 to the cloud. It can be
easily checked that this is a valid deployment, and its cost
is at most M · n/2 + S.

On the other hand, suppose that there is a deployment
d with cost at most M · n/2 + S. Then in this deployment
exactly n/2 components must be in the edge data center
and n/2 in the cloud. This is because the capacity constraint
ensures that the number of components in the edge data
center cannot be more than n/2, and if there were less than
n/2 components in the edge data center, then the cost would
be at least M ·(n/2+1) > M ·n/2+|E| ≥ M ·n/2+S, which
would be a contradiction. As a consequence, the number of
connectors between the edge data center and the clouds is at
most S. Hence V1 = {v ∈ V : d(v) = edge} and V2 = V \V1

form a bisection with at most S edges between them.
Thus we have shown that the answer to the minimum

bisection problem instance is equivalent to whether the
constructed instance of the MCECD problem admits a so-
lution with cost at most M · n/2 + S. Since the minimum
bisection problem is strongly NP-hard and all numbers
in our construction are polynomially bounded (using for
instance M = |E|+ 1), this completes the proof.

1.3 Complexity of FOGPART

We start by recapitulating the algorithms from the paper.
These are shown in Algorithms 1-5. In addition, we also
recapitulate the definition of gain.

Algorithm 2 Removing an application

1: procedure REMOVE(A)
2: for v ∈ VA do
3: remove v
4: end for
5: RE-OPTIMIZE(d)
6: end procedure

Algorithm 3 Handling changes

1: procedure CHANGES
2: for v ∈ V do
3: if s(v) and d(v) = cloud then
4: d(v)← edge
5: end if
6: end for
7: RE-OPTIMIZE(d)
8: end procedure

Definition 7. Let d be a deployment and v ∈ V a component.
Let d′ be the deployment obtained from d by moving v. That is,
for a component w ∈ V ,

d′(w) =

d(w) if w ̸= v,

edge if w = v and d(v) = cloud,
cloud if w = v and d(v) = edge.

Then, given deployment d, the gain of moving v is defined as

gain(d, v) =

{
−∞ if d is valid, d′ is invalid,
cost(d)− cost(d′) otherwise.

Next, we move on to prove the results on time complex-
ity.

Theorem 8. The time complexity of Algorithm 4 is O
(
|V |·(|V |+

|E|)
)
.

Proof. The time complexity of Algorithm 4 is dominated by
the while loop (lines 6-27) and the nested for loop (lines 8-16).
In each pass of the while loop, one component is removed
from L (“best_gain” > −∞, line 20) or the loop terminates
(“best_gain” = −∞, line 26); therefore, the while loop is
repeated at most |V | times. In the for loop, each component
in L is considered; in the worst case, this means all compo-
nents in V . For a component v, the gain calculation takes
O(1 + δ(v)) steps, where δ(v) is the number of connectors
incident to v. The remaining steps in the body of the for loop
take O(1) steps. Hence, the total time spent in the for loop
is at most

∑
v∈V O(1 + δ(v)) = O(|V |+ |E|). Together with

the already established fact that the while loop is repeated at
most |V | times, this completes the proof.

Corollary 9. The time complexity of Algorithms 1, 2, and 3 is
also O

(
|V | · (|V |+ |E|)

)
.

Proof. For Algorithms 1, 2, and 3, all the steps before the
re-optimization together take O(|V |) steps. Thus the time
complexity of these algorithms is dominated by the re-
optimization.

We end this subsection by proving the results on space
complexity.

3

Algorithm 4 Deployment re-optimization

1: procedure RE-OPTIMIZE(d)
2: best_deployment← d
3: best_cost← cost(d)
4: L← {v ∈ V : ¬s(v)}
5: end← (L = ∅)
6: while ¬end do
7: best_gain← −∞
8: for v ∈ L do
9: if ϱ(d) ≤ P or d(v) = edge then

10: g ← GAIN(d,v)
11: if g > best_gain then
12: best_comp← v
13: best_gain← g
14: end if
15: end if
16: end for
17: if best_gain > −∞ then
18: forced← (ϱ(d) > P)
19: change d(best_comp) to the other value
20: L.remove(best_comp)
21: if forced or cost(d) < best_cost then
22: best_deployment← d
23: best_cost← cost(d)
24: end if
25: end if
26: end← (L = ∅ or best_gain = −∞)
27: end while
28: d← best_deployment
29: end procedure

Algorithm 5 Calculation of the gain of moving a component

1: procedure GAIN(d, v)
2: if d(v) = edge then
3: r ← −cp · p(v)
4: else if ϱ(d) ≤ P and ϱ(d) + p(v) > P then
5: return −∞
6: else
7: r ← cp · p(v)
8: end if
9: for vw ∈ E do

10: if d(v) = d(w) then
11: r ← r − cdt · h(vw)
12: else
13: r ← r + cdt · h(vw)
14: end if
15: end for
16: return r
17: end procedure

Theorem 10. Algorithm 5 requires O(1) auxiliary space. Algo-
rithms 1–4 require O(|V |) auxiliary space.

Proof. In Algorithm 5, all partial results are accumulated in
the variable r, thus requiring only O(1) auxiliary space.

In Algorithm 4, the used auxiliary space is as follows:

• d, best_deployment, L: O(|V |)
• best_cost, end, best_gain, v, ϱ(d), g, best_comp,

forced, cost(d): O(1)

Therefore, Algorithm 4 uses O(|V |) auxiliary space alto-
gether.

Algorithms 1–3 only add one local variable (v), requir-
ing O(|1|) auxiliary space in addition to that required by
Algorithm 4.

Finally, it is important to note that the depth of the call
stack is O(|1|) (Algorithms 1–3 call Algorithm 4, which in
turn calls Algorithm 5).

1.4 Correctness of FOGPART

We start by recapitulating the definition of a call sequence.

Definition 11. A call sequence is a list Γ = (γ1, γ2, . . . , γk),
where each γi ∈ {add, remove, change}, depending on whether the
ith call was to Algorithm 1 (adding an application), Algorithm 2
(removing an application), or Algorithm 3 (other change). The set
of applications and the deployment after i calls are denoted by A(i)

and d(i), respectively. In particular, A(0) and d(0) denote the set
of applications respectively the deployment before the first call.

Now we can prove our main theoretical result.

Theorem 12. Starting from A(0) = ∅ and performing an
arbitrary sequence of calls Γ = (γ1, γ2, . . . , γk), if condition (5)
is satisfied throughout (i.e., the deployment problem is solvable),
then each call results in a valid deployment.

Proof. To prove the validity of the resulting deployments,
the satisfaction of conditions (1) and (2) must be proven
(as explained in Section 3.5 of the paper, condition (3) is
then also guaranteed). We will show both of them using
induction according to k. For k = 0, when A = ∅, it is clear
that both conditions are satisfied.

Now suppose that after a sequence of k − 1 calls, both
(1) and (2) are satisfied and we make a further call to
Algorithm 1, Algorithm 2, or Algorithm 3. We first show
that (2) is satisfied after the call as well. If γk = remove,
then first some components are removed which cannot lead
to a violation of (2). If γk = add, then first some components
are added in such a way that ensures that (2) is not violated
(see lines 3-4 of Algorithm 1). If γk = change, then lines
3-5 of Algorithm 3 ensure that (2) is satisfied. Hence in all
cases, when Algorithm 4 is called, (2) holds. During the run
of Algorithm 4, only the deployment of components in L
is changed (cf. lines 19, 12, and 8). Critical components are
excluded from L (cf. line 4). Hence, all critical components
remain in the edge data center, ensuring that (2) remains
satisfied.

Next, we turn to (1). If γk = remove, then first some
components are removed which cannot lead to a violation
of (1). However, if γk = add, then first some components are
added, which may invalidate (1). Also if γk = change, the
changes may invalidate (1). In all cases, Algorithm 4 is called
in the end, so it suffices to show that, whether or not the
starting deployment satisfies (1), the deployment resulting
from Algorithm 4 satisfies it. This will be shown through
proving the following three claims:

• As long as (1) is not satisfied, each iteration of the
while loop of Algorithm 4 results in moving a com-
ponent from the edge data center to the cloud.

• After some iterations of the while loop, (1) will be
satisfied.

• If after j iterations of the while loop, (1) is satisfied,
then it is satisfied also after j′ iterations of the while
loop, for any j′ > j.

To prove the first claim, it should be noted that (1) not
being satisfied means that ϱ(d) > P , which means that

4

the condition in line 9 of Algorithm 4 is satisfied only if
d(v) = edge. As a consequence, only components currently
in the edge data center are considered in lines 9-15, hence
at the end of the for loop, “best_comp” will be a component
currently in the edge data center. This component is then
moved in line 19 to the cloud.

To prove the second claim, it should be noted that the
while loop is not abandoned prematurely. Lines 5, 6, 26, and
27 show that the loop is ended if L = ∅ or “best_gain” =
−∞. As long as (1) is not satisfied, the gain of no component
will be −∞, since only the gains of moves that would violate
a valid deployment would be −∞ (cf. lines 4-5 in Algorithm
5). Hence, as long as L ̸= ∅ and (1) is not satisfied, the for
loop of Algorithm 4 will investigate at least one component,
its gain will be greater than −∞, ensuring that at the end of
the for loop “best_gain” ̸= −∞. Hence, the algorithm will
move components from the edge data center to the cloud as
long as L ̸= ∅ and (1) is not satisfied. Should L get empty
before (1) gets satisfied, that would mean that all non-critical
components have already been moved to the cloud, i.e., only
the critical components are in the edge data center, and (1) is
still not satisfied. This, however, would contradict condition
(5). Therefore, (1) gets satisfied after some iterations of the
while loop.

To prove the third claim, it should be noted that once (1)
is satisfied, any move that would violate (1) has gain −∞
(cf. lines 4-5 of Algorithm 5). Such moves are not executed
(cf. line 17 of Algorithm 4). Hence, (1) remains satisfied.

Putting the pieces together, we have established that
after some iterations of the while loop, (1) is satisfied, and
remains satisfied in the further iterations as well. Finally
we need to show that the deployment that Algorithm 4
returns at the end as d(k) also satisfies (1). If the deployment
already satisfies (1) at the beginning, then this is clear,
since “best_deployment” is initialized with this deployment
and later may only be overwritten by other deployments
satisfying (1). Otherwise, as long as the deployment does
not satisfy (1), lines 18 and 21 of Algorithm 4 ensure
that the deployment after the current move is recorded in
“best_deployment”. This happens the last time when the
deployment changes from invalid to valid (this is because
the validity check of line 18 happens before the move is
made). This ensures that a valid deployment gets stored
in “best_deployment”. In later iterations of the while loop,
“best_deployment” may only be overwritten by other valid
deployments; hence, when “best_deployment” is activated
in line 28, it is guaranteed to be valid.

2 BASELINE ALGORITHMS

In this section, we give more details about the two baseline
algorithm to which FOGPART is compared in the paper.

2.1 Exact algorithm using integer linear programming
The operation of the ILP-based algorithm is shown in Al-
gorithm 6. The ILP-based algorithm uses the Gurobi Op-
timizer1, version 7.0.2, as an external solver to solve the
ILP defined above. The algorithm uses the API provided
by Gurobi for creating the variables (line 2) and the integer

1. https://www.gurobi.com/

Algorithm 6 ILP-based algorithm

1: procedure ILP
2: Create variables {xv : v ∈ V } and {ye : e ∈ E}
3: Create the integer program
4: Invoke external ILP solver to solve the integer program
5: if solution found then
6: Determine solution from value of xv variables
7: return solution
8: else
9: return “no solution found”

10: end if
11: end procedure

Algorithm 7 First-Fit algorithm

1: procedure FF
2: free← P
3: for v ∈ V do
4: if s(v) then
5: d(v)← edge
6: free← free− p(v)
7: end if
8: end for
9: if free < 0 then

10: return “no solution found”
11: end if
12: for v ∈ V do
13: if not s(v) then
14: if p(v) ≤ free then
15: d(v)← edge
16: free← free− p(v)
17: else
18: d(v)← cloud
19: end if
20: end if
21: end for
22: return d
23: end procedure

program (line 3), as well as to solve the integer program
(line 4), to check if a solution could be found (line 5), and
if this is the case, to query the value of the xv variables
in the found solution of the integer program to determine
the corresponding solution to the original MCECD problem
(line 6). In the following experiments, the ILP solver was
executed in single-threaded mode with a timeout of 60
seconds. It can happen in two cases that the solver does
not find a solution: either if there is no solution at all
(cf. Proposition 5), or if a timeout prohibited the solver to
find a solution. In both cases, the algorithm returns the
information that no solution was found (line 9).

2.2 First-fit heuristic

The First-Fit (FF) heuristic is shown in Algorithm 7. It first
places all critical components into the edge data center,
while keeping track of the free capacity of the edge data
center (lines 2-8). If the critical components require more
capacity than what is available in the edge data center, then
the algorithm returns the information that no solution could
be found (lines 9-11). Otherwise, the algorithm iterates over
the remaining components, and does the following for each
non-critical component v: if v still fits into the edge data
center, then v is placed into the edge data center (lines

5

14-16), otherwise into the cloud (lines 17-19). Finally, the
algorithm returns the deployment created this way (line 22).

3 DISCUSSION

In this section, we discuss some further details and limita-
tions of the proposed problem model and algorithm, as well
as possible extensions.

3.1 Migrations
When re-optimizing the deployment of existing software
components, the overhead caused by migrating the com-
ponents may be a concern. Although modern virtualization
technologies provide acceptable overhead, if many compo-
nents have to be migrated at the same time, this may still be
a problem [1].

Also the cost aspects of migrations may matter. Since
migrations also involve data transfer, they also incur costs,
which is not captured by the current problem model. The
rationale for not including the costs caused by migrations in
the problem model is that migration costs are incurred only
once, whereas the costs considered in the problem formu-
lation are running costs, which are incurred continuously.
As long as migrations are not frequent, the cost impact of
migrations can be neglected when compared to the running
costs.

For the above reasons, it is disadvantageous if a re-
optimization algorithm leads to a high number of migra-
tions. During the experiments reported in the paper, the
average number of migrations per run was 14.7 for ILP, 10.3
for FOGPART, and 8.7 for FF. Together with the other exper-
imental results, this means that FOGPART achieves nearly
as low costs as ILP, but with significantly less migrations.
When compared to FF, FOGPART makes more migrations,
but this also results in considerably better results. Therefore,
FOGPART achieves a good trade-off between migrations and
solution costs.

On the other hand, if the number of migrations is critical
(this depends on many factors, such as the used virtual-
ization technology and the available bandwidth), FOGPART
can be easily extended to limit the number of migrations.
Since FOGPART moves components one after the other, the
algorithm can simply be terminated if the allowed number
of migrations has been exhausted. Limiting the number of
migrations in the ILP and FF algorithms would require more
extensive modifications.

3.2 Costs and constraints of the edge data center
In the current problem formulation, it is assumed that using
the resources of the edge data center is free, since they
are at the disposal of the provider of the edge data center.
A possible extension would be to assume that deploying
component v in the edge data center incurs a cost of c0 ·p(v),
where c0 is a given constant. This extension can be reduced
to the special case handled so far with the following trans-
formation:

∑

v∈V, d(v)=edge

c0 · p(v) +
∑

v∈V, d(v)=cloud

cp · p(v) =

=
∑

v∈V

c0 · p(v) +
∑

v∈V, d(v)=cloud

(cp − c0) · p(v), (7)

where the first term is a constant and the second term is
the same as in the original problem formulation with c′p =
cp − c0.

Currently, our problem formulation only focuses on CPU
capacity. However, it is straight-forward to extend it with
further constraints, for instance with respect to memory
capacity.

3.3 Optimization objective

Our current problem formulation and algorithms handle the
optimization of the sum of cloud usage costs and data trans-
fer costs. The objective function could be easily extended
with further quality metrics, like energy consumption or
reliability. For FOGPART to work, it only has to be ensured
that the gain of moving a component from the edge data
center to the cloud or vice versa can be efficiently computed.
This property holds as long as the objective function is a
weighted sum of quality metrics, in which each vertex has
an identifiable additive contribution.

If the contribution of individual vertices to a considered
quality metric is multiplicative (as is the case with availabil-
ity for example), then the logarithm of the quality metric
could be used to ensure additivity, as done by Nardelli et al.
[2].

3.4 Cloud pricing schemes

Our problem formulation and algorithms assume a single
unit price for compute power in the cloud. This abstracts
from the many different prices that a cloud provider may
actually offer. On the one hand, different virtual machine
types may be associated with different ratios between price
and computing power. On the other hand, a cloud provider
may offer different pricing schemes based on the provider’s
and the user’s commitment, such as discounts for reserved
instances or for spot instances. In our scenario, the provider
of the edge data center will probably use only a small subset
of the possible instance types and pricing schemes offered
by the cloud provider for allowing the offloading of excess
components (for example, only small on-demand instances).
Hence using a single unit price is a good approximation.
Nevertheless, existing work on cloud cost optimization may
be exploited to re-arrange the workload that was deter-
mined by our algorithm to run in the cloud with the aim
of reducing costs [3], [4]. In addition, when dealing with
reserved instances or spot instances, also temporal aspects
become important since such offerings are for given peri-
ods of time. Hence, existing research on time-aware cloud
resource allocation may be exploited to minimize costs over
a given period of time [5], [6].

3.5 Further generalizations

We assumed that using the cloud is associated with costs
and with data protection risks. These are typical character-
istics of public cloud services. Our approach can also be
used with a private cloud. In this case, the costs could be set
to zero (cp = 0), and the data protection requirements of the
components could be omitted (∀A ∈ A,∀v ∈ VA : s(v) =
false).

6

FOGPART might be extended to directly handle more
than one edge data center and/or more than one cloud,
using a generalization of the Kernighan-Lin algorithm for
graph partitioning to handle multiway cuts [7]. However,
this is a non-trivial extension, which we leave for future
work.

Another possible extension would be to support differ-
ent unit prices for data transfer from the edge data center
to the cloud and vice versa. This could be used to model
the policy of some cloud providers to charge different
prices for data transfers into and out of their cloud. Such a
generalization would require the usage of a directed graph
instead of an undirected graph to model the connectors,
so as to differentiate the direction of data transfer. Such
an extension seems possible, but would require a number
of changes in the problem model, the algorithm, and the
theoretical analysis.

3.6 Parallelization opportunities
As shown in Section 4.3 of the paper, FOGPART can be
extended to the decentralized management of multiple edge
data centers. In such a setting, the different FOGPART in-
stances may run in parallel.

It is also possible to parallelize FOGPART within a single
edge data center. The key idea is that the computation of
the gains of different components can be done in parallel.
Supposing that sufficient parallel resources are available, it
is clear from the proof of Theorem 8 that the time complexity
of FOGPART can thus be reduced to O(|V | ·∆) parallel time,
where ∆ is the maximum number of connectors incident to a
component. Hence, if there is a sufficient number of devices
with free capacity within the edge data center, the execution
time of FOGPART can be significantly reduced even com-
pared to the already quite fast sequential execution.

3.7 Worst-case performance
Here we discuss what bounds could be given on the worst-
case deviation of the costs achieved by FOGPART from the
optimum. One possible approach would be to derive a
bound on the approximation ratio of FOGPART, i.e., the ratio
of the costs achieved by FOGPART to the optimum. Recall
from the proof of Theorem 6 that the MCECD problem
essentially contains the Minimum Bisection problem as spe-
cial case. Approximating the Minimum Bisection problem
is challenging in itself; the best known approximation algo-
rithm for Minimum Bisection has an approximation ratio of
O(log n) [8]. Thus, no constant approximation ratio should
be expected for FOGPART.

Indeed, the following construction shows that the cost
achieved by FOGPART can be arbitrarily far from the opti-
mum. Let VA = {v1, . . . , vn}, where n > 3. The vertices
v2, . . . , vn form a complete graph, while v1 is isolated. Let
p(v1) = 2 and p(vi) = 1 for each 2 ≤ i ≤ n. Let
s(vi) = false for each 1 ≤ i ≤ n. For each connector e,
h(e) = H for some given H > 1. Let P = n − 1, L = 0,
cp = cdt = 1, and VD = ∅. One possible solution of this
instance of the MCECD problem is to place components
v2, . . . , vn in the edge data center, and component v1 in the
cloud. The cost of this solution is 2, thus the optimum is
at most 2. On the other hand, FOGPART first tentatively

ILP

FOGPART

FF

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
[m

s]

Average cost

Fig. 1: Trade-offs between solution costs and execution time

places all components in the cloud, and then makes the
move with the highest gain, which moves v1 to the edge
data center. Afterwards, FOGPART successively moves n−3
of the remaining components to the edge data center, until
the capacity of the edge data center is exhausted. At this
point, the algorithm terminates with the best partition en-
countered. This is either the partition after the first move,
with a cost of n − 1, or a partition in which at least one
connector crosses the boundary between edge data center
and cloud, leading to a cost of at least H . Thus, the resulting
cost is at least min(n − 1, H). Since both n − 1 and H can
be arbitrarily large, the resulting cost can be arbitrarily far
from the optimum.

The empirical results of the paper show that such ex-
treme situations do not typically occur. In typical situations,
the result achieved by FOGPART is quite near to the opti-
mum.

A different approach to quantifying the worst-case per-
formance of FOGPART would be to calculate its competitive
ratio, i.e., how it performs relative to a fictitious algorithm
that knows all future inputs. However, this is only appli-
cable to online problems, and the MCECD problem is not
an online problem. This is because the MCECD problem
only considers the reoptimization of the placement at a
given point in time, without any references to the past
or the future. In particular, any placement decisions in
the past can be changed during the reoptimization. Also
the optimization objective refers only to the result of the
reoptimization at the given point in time. Accordingly,
FOGPART is not an online algorithm. It would be possible
to change the MCECD problem to an online problem, for
example, by limiting the number of changes that are possi-
ble and by minimizing the costs aggregated over a period
of time, involving multiple reoptimizations. FOGPART could
be changed to an online algorithm, addressing this modified
version of the MCECD problem. Then, the competitive ratio
of this modified algorithm could be investigated.

4 ADDITIONAL EXPERIMENTAL RESULTS

4.1 Trade-offs of different algorithms

Summarizing the results of Sec. 7.2-7.5 of the paper, Fig. 1
shows the different trade-offs between solution costs and

7

TABLE 1: Execution time for multiple edge data centers

cdt
cee

cdt

Execution time [ms]

FF ILP DISTFOGPART CROSSFOGPART

0.009 0.01 2 1188 12 423
0.009 0.1 2 1059 3 466
0.009 1 1 899 5 438
0.09 0.01 1 1034 2 331
0.09 0.1 0 960 4 335
0.09 1 2 745 4 367
0.9 0.01 2 397 0 390
0.9 0.1 3 263 4 348
0.9 1 2 344 5 390

execution time achieved by the algorithms. Qualitatively, it
was awaited that the results of FOGPART are somewhere
between the results of the other two algorithms, but the
experimental results show this quantitatively. It can clearly
be seen that FOGPART is almost as good as ILP in terms
of solution costs, while being almost as fast as FF (note
the logarithmic scale of the vertical axis). FOGPART is very
fast and consistently leads to near-optimal results, thus
representing a very attractive trade-off.

4.2 Execution time for multiple edge data centers

Sec. 7.6 of the paper shows results in terms of costs for mul-
tiple edge data centers. Here, we provide the corresponding
execution times. Note that the execution times reported for
this and the next experiment were achieved on a newer
computer than the results in previous experiments. The new
computer is a laptop with Intel i7-1165G7 CPU @ 2.80 GHz
and 16 GB RAM, running Windows 10, Java HotSpot 64-bit
VM version 16.0.2, and Gurobi Optimizer version 9.1.2.

The results are shown in Table 1. As in previous ex-
periments, the execution time of FF is low and that of
ILP orders of magnitude higher. In line with the results of
previous experiments, the execution time of DISTFOGPART
is somewhat higher than that of FF, but still orders of
magnitude lower than that of ILP. However, the execution
time of CROSSFOGPART is significantly higher that that of
DISTFOGPART. This is because CROSSFOGPART performs
additional optimization steps in all other edge data centers
after an application was added to one edge data center.
These additional optimization steps in the other edge data
centers are currently done sequentially in our implemen-
tation. These steps could be done in parallel, leading to
significantly lower execution time.

4.3 Execution time for global latency optimization

Sec. 7.7 of the paper shows results in terms of costs for end-
to-end application latency optimization. Here, we provide
the corresponding execution times in Fig. 2. As in previous
experiments, the execution time of FF is low and that of
ILP orders of magnitude higher, with that of GLOFOGPART
in between. As λ increases, the execution time of ILP de-
creases, but it is always significantly higher than that of
GLOFOGPART (note the logarithmic scale of the vertical
axis).

1

10

100

1000

10000

100000

1000000

0.01 0.1 1 10 100

ex
ec

u
ti

o
n

 t
im

e
[m

s]

lambda

ILP GLOFOGPART FF

Fig. 2: Execution time for different values of λ

Robot control
 s: false, p: 1

Robot
 s: true, p: 0

Robot + Robot control
 s: true, p: 1

Fig. 3: Example for the coalescing of critical connectors

5 EXAMPLE FOR THE COALESCING OF CRITICAL
CONNECTORS

In Sec. 3.4 of the paper, a transformation of the MCECD
problem was introduced, which relies on the coalescing
of critical connectors. Fig. 3 shows an example. The maxi-
mum allowed latency of the connector between the Robot
control component and the Robot device is 5 ms, while
the latency between the edge data center and the cloud
is 100 ms, making this connector a critical one. After co-
alescing this connector, the two vertices are replaced by a
single one, with p(w) = p(u) + p(v) = 1 + 0 = 1 and
s(w) = s(u) ∨ s(v) = false ∨ true = true.

ACKNOWLEDGMENTS

Research leading to these results received funding from
the EU’s Horizon 2020 research and innovation programme
under grant agreement no. 871525 (FogProtect).

REFERENCES

[1] D. Bartók and Z. Á. Mann, “A branch-and-bound approach to
virtual machine placement,” in Proceedings of the 3rd HPI Cloud
Symposium “Operating the Cloud”, 2015, pp. 49–63.

[2] M. Nardelli, V. Cardellini, V. Grassi, and F. L. Presti, “Efficient
operator placement for distributed data stream processing applica-
tions,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 8, pp. 1753–1767, 2019.

[3] S. Chaisiri, R. Kaewpuang, B.-S. Lee, and D. Niyato, “Cost mini-
mization for provisioning virtual servers in amazon elastic compute
cloud,” in IEEE 19th Annual Int. Symposium on Modelling, Analysis,
and Simulation of Computer and Telecommunication Systems. IEEE,
2011, pp. 85–95.

[4] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth, “A virtual
machine re-packing approach to the horizontal vs. vertical elasticity
trade-off for cloud autoscaling,” in Proceedings of the 2013 ACM
Cloud and Autonomic Computing Conf., 2013, pp. 1–10.

8

[5] R. B. Halima, S. Kallel, W. Gaaloul, and M. Jmaiel, “Scheduling busi-
ness process activities for time-aware cloud resource allocation,” in
OTM Confederated Int. Conf.s “On the Move to Meaningful Internet
Systems”. Springer, 2018, pp. 445–462.

[6] ——, “Optimal cost for time-aware cloud resource allocation in
business process,” in IEEE Int. Conf. on Services Computing (SCC).
IEEE, 2017, pp. 314–321.

[7] Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag, “Engineering
a direct k-way hypergraph partitioning algorithm,” in Proceed-
ings of the 19th Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM, 2017, pp. 28–42.

[8] H. Räcke, “Optimal hierarchical decompositions for congestion
minimization in networks,” in Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, 2008, pp. 255–264.

	Introduction
	A motivating example
	Problem description
	Formal problem definition
	Solvability
	Complexity Analysis
	Transformation

	The FogPart algorithm
	Overview
	Detailed description of deployment re-optimization
	Extension to multiple edge data centers
	Extension to global latency optimization

	Analysis
	Case study
	Experimental evaluation
	Baseline algorithms
	Results for a call sequence
	Scalability
	Impact of constraint tightness
	Impact of cost structure
	Results for multiple edge data centers
	Results for global latency optimization
	Summary

	Related work
	Conclusions
	References
	Biographies
	Zoltán Ádám Mann
	Andreas Metzger
	Johannes Prade
	Robert Seidl
	Klaus Pohl

