
1

Decentralized application placement in fog
computing

Zoltán Ádám Mann

Abstract—In recent years, cloud computing concepts have been extended towards the network edge, leading to paradigms like fog
and edge computing. As a result, applications can be placed on a variety of resources, including fog nodes and cloud data centers.
Application placement has significant impact on important metrics like latency. Finding an optimal application placement is
computationally challenging, particularly because of the potentially huge number of infrastructure nodes and application components.
To overcome the limited scalability of application placement algorithms, optimization can be decentralized, i.e., performed separately
for different parts of the infrastructure. The infrastructure can be split into fog colonies, where a fog colony consists of the computational
resources in a given geographical region. Application placement can then be performed for the individual fog colonies, thus mitigating
the scalability problem. However, independent optimization of application placement in different fog colonies may lead to missed
synergies and thus to sub-optimal overall results. Hence, some kind of coordination between fog colonies may be beneficial.
In this paper, we analyze the effects of decentralization and coordination on the optimization results. In particular, we compare
empirically four different approaches: (i) centralized decision-making, where decisions are made in one go for the entire infrastructure,
(ii) independent fog colonies, where optimization is carried out in each fog colony independently from each other, (iii) fog colonies with
communication, where excess application components in one fog colony can be sent to a neighboring fog colony, and (iv) fog colonies
with overlaps, where shared resources may be dynamically distributed between neighboring fog colonies. Our experiments show that,
for large problem instances, decentralization combined with coordination leads to the best results.

Index Terms—Fog computing, edge computing, application placement, distributed algorithms, fog colonies.

✦

1 INTRODUCTION

A rapidly increasing number of connected smart devices
in the Internet of Things (IoT) produce large amounts of
data. Often, these end devices have limited computational
resources or are constrained by their battery capacity [1].
As a result, data processing has to be – fully or partially
– offloaded from the end devices. One possibility is to
offload data processing to the cloud. However, the latency
of transferring data between end devices and the cloud
may be problematic for some applications [2]. To overcome
this issue, computational resources called fog nodes can be
deployed in a geographically distributed manner, so that
end devices can offload data processing tasks to nearby fog
nodes. This way, cloud-like services can be used with lower
latency [3]. The cloud can still be used for tasks that are not
latency-critical and that are especially resource-intensive.

The result (called edge computing or fog computing)
is a distributed infrastructure with three layers, which re-
spectively comprise the end devices, the fog nodes, and
the cloud [4]. Software applications can be deployed to this
distributed infrastructure. It has to be decided for each com-
ponent of a software application, which cloud or fog node
should host the given component. The decision of where to
place the components of the application can have significant
consequences on the performance of the application [5], [6].

This paper was published in IEEE Transactions on Par-
allel and Distributed Systems, 33(12):3262-3273, 2022,
https://doi.org/10.1109/TPDS.2022.3148985

• Z. Á. Mann is with the University of Amsterdam, Amsterdam, The
Netherlands

For this reason, several algorithms have been proposed for
finding a good placement of application components.

Most of the approaches proposed so far are based on
centralized, global decision-making [7]. That is, information
about the whole infrastructure and all application compo-
nents is collected by a central entity, which then makes
a decision based on all this information. Unfortunately,
finding the best placement of application components is a
computationally challenging problem. Hence, the scalability
of the proposed algorithms is a major concern. Many of the
algorithms proposed in the literature were only tested on
small problem instances (just a handful of fog nodes and
application components), and it is questionable how they
would perform on larger problem instances [8].

One way to handle scalability issues is to abstain from
centralized, global decision-making. A natural way to make
fog application placement more efficient is to limit the scope
of the problem to just one region. That is, only information
about the infrastructure in a given region, along with the
application components to be placed on that infrastructure,
is considered. A good placement is then determined for the
given region. This way, as long as the size of the regions
is not too big, placement decisions can be made efficiently,
even if the total size of the infrastructure and of the appli-
cations is large. The notion of fog colonies was introduced
to describe the fog infrastructure in a given region, which
hosts a limited set of application components [9].

Decentralized fog application placement in independent
fog colonies improves scalability. However, an intrinsic lim-
itation of such an approach is that, in general, it cannot
achieve a global optimum. For instance, it is possible that

2

one fog colony is overloaded, while there is free capacity in
a neighboring fog colony. Using centralized, global decision-
making, load could be balanced between the two regions,
leading to good overall results. In contrast, if each fog colony
is optimized independently, such load balancing between
regions is not possible. Therefore, some coordination be-
tween fog colonies may need to be introduced to achieve
such load balancing.

In this paper, we investigate the impact of different
decentralization and coordination schemes on efficiency
and effectiveness. One extreme is the centralized approach,
which can lead to the best overall results (high effective-
ness), but suffers from poor scalability (low efficiency). The
other extreme is the independent handling of fog colonies,
which offers high efficiency but low effectiveness. In addi-
tion to these two extremes, we investigate two sophisticated
coordination models. In the “fog colonies with communi-
cation” model, excess components in a fog colony can be
transferred to a neighboring fog colony. In the “fog colonies
with overlap” model, fog nodes may belong to two fog
colonies, in which case their capacity can be dynamically
distributed between the two involved fog colonies.

These decentralization and coordination models were
proposed in the literature for different formulations of
the fog application placement problem and evaluated with
different placement algorithms, in different environments.
Without a systematic comparison, it is not clear how these
decentralization and coordination models compare to each
other quantitatively, and which one will give the best result
in which circumstances. To address this gap, this paper
makes the following contributions:

• We formulate the above four decentralization and co-
ordination schemes in a common formal framework.

• We implement the four investigated decentralization
and coordination schemes in a consistent way.

• We implement an exact and a heuristic placement
algorithm that can be used with all four investigated
decentralization and coordination schemes.

• We compare empirically the four investigated de-
centralization and coordination schemes in terms of
efficiency and effectiveness.

• We perform controlled experiments to determine the
impact of different problem characteristics on the
efficiency and effectiveness of the four investigated
decentralization and coordination schemes.

To our knowledge, this is the first systematic study of the
efficiency and effectiveness of different decentralization and
coordination schemes in fog application placement.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 introduces and formalizes
the addressed problem. Section 4 describes the investigated
solution approaches. The results of the experiments are pre-
sented in Section 5. Section 6 discusses possible extensions.
Finally, Section 7 concludes the paper.

2 RELATED WORK

Recent surveys discuss the variants of the fog application
placement problem considered in the literature and the
proposed solution approaches [7], [10]. It also becomes clear

from these surveys that the majority of the papers propose
centralized approaches. In the following, we review work
on decentralized fog application placement.

Singh et al. address latency- and privacy-aware place-
ment of applications in the fog [11]. They propose a dis-
tributed orchestration architecture based on agents on each
fog and cloud node. Their algorithm is based on a few sim-
ple heuristic rules. The algorithm was compared only to a
trivial cloud-only approach, using small problem instances.

The concept of fog colonies was first introduced in [12].
In that paper, Skarlat et al. introduced a fog architecture
based on fog colonies. Their optimization approach only
considered one fog colony, and forwarded requests that
the colony could not host to the cloud. This was always
possible because no latency constraints were considered. In
[13], Skarlat et al. extended that work, such that requests
that cannot be accommodated by a given fog colony may
be sent both to the cloud and to the closest neighbor colony.
The resulting optimization problem for a fog colony was
solved using integer linear programming. Each fog colony
is managed by a dedicated control node, and coordination
among fog colonies is realized by communication among
their control nodes. In a third paper, Skarlat et al. extended
this work with further details and a genetic algorithm [9].

Other related work also adopted the concept of fog
colonies as a basis for their placement approaches. Minh
et al. proposed a service placement mechanism with the
aim of maximizing the number of tasks deployed to the fog
landscape [14]. Their approach is focused on optimization
within a fog colony, with the possibility of forwarding tasks
to a neighboring fog colony or to the cloud.

A similar concept was introduced by Alsaffar et al.
[15]. They assume a cloud environment and a set of fog
environments, where each environment offers some virtual
machines. They propose a set of rules to determine if
the received application services can be allocated locally
or should be delegated to other environments, under the
assumption that information about the current status of each
environment is available in each environment. The effects of
the network structure are not taken into account.

Also Shurman and Aljarah consider a similar setup [16].
They use different terminology, but essentially, they propose
an algorithm that first tries to place components in the
given fog colony, and then tries to send excess components
to neighboring fog colonies. Components that cannot be
allocated in any fog colony are forwarded to the cloud.

Baresi et al. proposed an approach using communities
instead of fog colonies [17]. The main difference is that fog
colonies are disjoint, whereas communities can overlap. Us-
ing communities requires inter-community allocation, i.e.,
splitting the resources of fog nodes belonging to multiple
communities between those communities. Baresi et al. pro-
pose to base this decision on the aggregate demand and
capacity of the involved communities.

Tong et al. propose to organize fog nodes in a rooted tree,
where computation requests arrive at the leaves and can
be either fulfilled in the given leaf or forwarded towards
the root [18]. A branch-and-bound algorithm is suggested
to allocate requests among the fog nodes of the path from
leaf to root. In addition, a simulated annealing algorithm is

3

TABLE 1: Inputs

Symbol Meaning

VSW Set of application components
cv CPU requirement of component v ∈ VSW
rv RAM requirement of component v ∈ VSW
E Set of end devices
ESW Set of connectors
be Bandwidth requirement of connector e ∈ ESW
de Maximum allowed latency of connector e ∈ ESW
VHW Set of infrastructure nodes (fog and cloud)
Cn CPU capacity of infrastructure node n ∈ VHW
Rn RAM capacity of infrastructure node n ∈ VHW
EHW Set of infrastructure links
Bl Bandwidth of link l ∈ EHW
Dl Latency of link l ∈ EHW
V 0

SW Set of application components that are already placed
hv Infrastructure node that hosts component v ∈ V 0

SW
VSW Set of application components and end devices
VHW Set of infrastructure nodes and end devices

proposed to allocate the capacity of a non-leaf node between
the paths that the node is part of.

Some papers take the concept of decentralization to the
extreme, so that each fog node makes decisions on its own,
coordinating with neighboring nodes in a peer-to-peer man-
ner. Lee et al. propose an approach by which a fog node can
identify an appropriate subset of its neighboring nodes as
offloading targets [19], [20]. Yousefpour et al. define policies
by which fog nodes can decide if they process a request
locally, forward it to the best neighboring node, or forward
it to the cloud [21], [22]. Guerrero et al. propose an algorithm
for fog nodes to decide if they can host a new service request
or forward it to the next node on the path to the cloud
[23]. Aral and Ovatman propose a decentralized algorithm
for data replica placement, which is easier than application
placement, since the communication among components
does not have to be taken into account [24].

We can conclude that existing decentralized approaches
address different variants of the fog application placement
problem. The approaches proposed so far were mainly
compared to trivial alternatives, like placing everything in
the cloud. Thus, it is not clear how existing approaches
compare to each other or for what problem variants and
parameter settings they are appropriate. Our work fills this
gap by implementing different decentralization and coordi-
nation approaches in a consistent way and systematically
comparing them by means of controlled experiments.

3 PROBLEM MODEL

In this section, we define the addressed version of the fog
application placement problem, first for the whole infras-
tructure (Section 3.1). We show in Section 3.2 that this prob-
lem is strongly NP-hard. We refine the problem formulation
in Section 3.3 to support fog colonies.

3.1 Basic problem model
Applications and end devices. We are given a set of applica-
tions. Each application consists of components. Also a set of
end devices is given. A connector may connect either a pair
of components, or a component and an end device. The set
of all components in all applications is denoted by VSW (see

TABLE 2: Results of preprocessing the input

Symbol Meaning

Pn,n′ Set of paths between vertices n, n′ ∈ VHW

P Set of all paths between all pairs of vertices in VHW
D(p) Latency of path p ∈ P
P (l) Set of all paths passing through link l ∈ EHW

TABLE 3: Outputs to be computed by optimization

Symbol Meaning

α Placement of components on infrastructure nodes
β Routing of connectors through infrastructure paths

also Table 1). Each component v ∈ VSW has given CPU re-
quirements cv ∈ R≥0 and RAM requirements rv ∈ R≥0. The
set of end devices is denoted by E . The set of all connectors
is denoted by ESW, where ESW ⊆ (VSW × VSW) ∪ (VSW × E).
Each connector e ∈ ESW is associated with given bandwidth
requirements be ∈ R≥0 and a maximum allowed latency
de ∈ R≥0.

Infrastructure. The infrastructure is given by a set of
nodes VHW and a set of links EHW. A link may connect
either two nodes or a node and an end device, i.e., EHW ⊆
(VHW × VHW) ∪ (VHW × E). Each node n ∈ VHW has given
CPU capacity Cn ∈ R≥0 and RAM capacity Rn ∈ R≥0. Each
link l ∈ EHW has given bandwidth Bl ∈ R≥0 and latency
Dl ∈ R≥0.

Let VHW = VHW ∪ E . Based on the graph structure
(VHW, EHW), we compute a set of paths between each pair of
vertices in VHW. This is a preprocessing step that only has to
be done once. The set of computed paths between vertices
n, n′ ∈ VHW is denoted by Pn,n′ (see also Table 2). The set
of all computed paths is P = ∪{Pn,n′ : n, n′ ∈ VHW}. For a
path p ∈ P , the latency of the path is the sum of the latencies
of the links in the path: D(p) =

∑
l∈p Dl. For a link l ∈ EHW,

the set of paths passing through l is P (l) = {p ∈ P : l ∈ p}.
Placement. Our aim is to determine the functions α :

VSW → VHW and β : ESW → P (cf. Table 3). For a component
v ∈ VSW, α(v) ∈ VHW is the node that should host v. For a
connector e ∈ ESW, β(e) ∈ P is the path through which e
should be routed. The notation α−1(n) is used to denote the
set of components that node n ∈ VHW should host.

Over time, new applications can be deployed or existing
applications can be removed. At a general point in time,
some components may already be placed, while others
are yet to be placed. We denote by V 0

SW ⊆ VSW the set
of components that are already placed. For a component
v ∈ V 0

SW, hv ∈ VHW denotes the node currently hosting v.
Constraints. For a uniform handling of constraints, we

define VSW = VSW ∪ E . We extend α to a function VSW →
VHW, with the following rules:

v ∈ VSW ⇒ α(v) ∈ VHW, (1)
v ∈ E ⇒ α(v) = v. (2)

The functions α and β must be consistent, i.e., a con-
nector between vertices v1 and v2 in VSW must be routed
through a path between the corresponding nodes in VHW:

e = v1v2 ∈ ESW ⇒ β(e) ∈ Pα(v1),α(v2). (3)

4

TABLE 4: Notation related to fog colonies

Symbol Meaning

K Set of all fog colonies
K(n) Set of fog colonies containing infrastructure node n
kn The single fog colony containing fog node n
kv The single fog colony assigned to component v

The CPU and RAM capacity of nodes must not be exceeded
by the components they host:

∀n ∈ VHW :
∑

v ∈α−1(n)

cv ≤ Cn, (4)

∀n ∈ VHW :
∑

v ∈α−1(n)

rv ≤ Rn. (5)

The bandwidth of a link must not be exceeded by the
bandwidth requirements of the connectors routed through
that link:

∀l ∈ EHW :
∑

e∈ESW, β(e)∈P (l)

be ≤ Bl. (6)

Each connector e must be routed through a path whose
latency does not exceed the maximum allowed latency of
e:

∀e ∈ ESW : D(β(e)) ≤ de. (7)

Objective. Our main objective is to find functions α and
β that satisfy constraints (1)-(7). If there are multiple such
solutions, we prefer the ones that lead to few migrations.
The number of migrations is

M =
∣∣{v ∈ V 0

SW : α(v) ̸= hv}
∣∣ . (8)

3.2 Complexity
It can be easily seen that the defined problem includes the
well-known bin packing problem as a special case. Namely,
let us assume that there are no links, no connectors, no end
devices, the RAM requirement of each component is 0, and
V 0

SW = ∅. Thus, the only constraint is the CPU constraint of
the nodes (equation (4)). In addition, the CPU capacity of
each node is assumed to be equal.

The special case obtained this way is equivalent to the
decision version of the bin packing problem. Nodes corre-
spond to bins, with the CPU capacity of the node represent-
ing the capacity of the bin. Components correspond to items,
with the CPU requirement of the component representing
the size of the item. The question whether a given number
of bins suffices to hold all items is equivalent to whether the
defined problem has a solution.

Since bin packing is strongly NP-hard [25], so is the
problem defined here.

3.3 Refined problem model with fog colonies
To allow a decentralized approach to optimization, we
assume that the infrastructure consists of multiple parts
that can be managed independently. We adopt the notion
of fog colonies from [9] to describe such independently
manageable parts of the infrastructure.

The set of fog colonies is denoted by K (cf. Table 4). A fog
colony k ∈ K is a set of infrastructure nodes: k ⊆ VHW. The

union of all fog colonies is the whole set of infrastructure
nodes, i.e., each infrastructure node is contained in at least
one fog colony: n ∈ VHW ⇒ ∃k ∈ K,n ∈ k. For an infras-
tructure node n ∈ VHW, the set of fog colonies containing n
is denoted by K(n) = {k ∈ K : n ∈ k}.

We assume that most fog nodes belong to exactly one fog
colony, so that both the size and number of fog colonies can
be kept as low as possible. If a fog node n belongs to exactly
one fog colony, then this fog colony is denoted by kn.

Baresi et al. suggested that there may be some small
overlaps between colonies, i.e., there could be a small num-
ber of fog nodes that belong to two fog colonies [17].

In addition to the split of the infrastructure into fog
colonies, we assume that also the applications are assigned
to fog colonies. Each application is assigned to exactly one
fog colony, which should decide on the placement of the
given application. The fog colony assigned to the applica-
tion that component v ∈ VSW belongs to is denoted by kv .
Usually, the nodes in the assigned fog colony will host most
components of the application, but some components of the
application may be transferred to other fog colonies.

4 SOLUTION APPROACHES

Our aim is to compare different decentralization and co-
ordination models. For this, we use in each case the same
placement algorithms, described in Section 4.1. Section 4.2
describes the decentralization and coordination models.

4.1 Placement algorithms

We consider two representatives of the typical types of
placement algorithms that have been suggested previously
in the literature: an exact algorithm and a heuristic [8].

ILP-based algorithm. Our first algorithm uses Integer
Linear Programming (ILP). It is based on an ILP formulation
of the problem defined in Section 3.1. The algorithm first
converts the problem instance to be solved into the corre-
sponding integer linear program, i.e., into a set of linear
inequalities over a set of variables. Then, an external ILP
solver is used to solve the integer linear program. If the
solver finds a solution to the integer linear program, then
the new placement of the components is retrieved from
this solution and the components are placed or migrated
accordingly. It is possible that there exists no solution, e.g.,
because the infrastructure does not have sufficient capacity
to satisfy the needs of all applications. It is also possible
that the problem is solvable, but the resources available to
the solver do not allow it to find a solution. For instance,
the solver can be invoked with a timeout or with a memory
limit. In such cases, the placement is unsuccessful.

Search-based algorithm. Our second algorithm uses a
problem-specific search strategy to try to construct a solu-
tion, i.e., to find a host for all newly added components. The
algorithm sorts the newly added components in ascending
order of their distance from end devices, and processes
the components in this order. The potential hosts (cloud
and fog nodes) are also sorted in ascending order of their
distance from the end devices. The algorithm tries to place
each component on the first host that can accommodate it,
taking into account all constraints. If no suitable host could

5

Fog Infrastructure

FN FN FN

FN FN FN

FN FN FN

FN FN FN

FN FN FN

FN FN FN

ApplicationApplicationApplication
ApplicationApplicationApplication

ApplicationApplicationApplication

Placement

(a) Centralized approach

Fog Colony

FN FN FN

FN FN FN

Fog Colony

FN FN FN

FN FN FN

Fog Colony

FN FN FN

FN FN FN

ApplicationApplicationApplication
ApplicationApplicationApplication

ApplicationApplicationApplication

PlacementPlacement Placement

(b) Independent fog colonies

Fog Colony

FN FN FN

FN FN FN

Fog Colony

FN FN FN

FN FN FN

Fog Colony

FN FN FN

FN FN FN

ApplicationApplicationApplication
ApplicationApplicationApplication

ApplicationApplicationApplication

PlacementPlacement Placement
Transfer of

components
Transfer of

components

(c) Fog colonies with communication

Fog Colony

FN FN FN

FN FN

Fog Colony

FN FN FN

FN

FN FN

Fog Colony

FN FN FN

FN

FN FN

ApplicationApplicationApplication
ApplicationApplicationApplication

ApplicationApplicationApplication

PlacementPlacement Placement

(d) Fog colonies with overlap

Fig. 1: Schematic overview of the considered decentraliza-
tion and coordination models. For simplicity, end devices
and the cloud are not shown. FN: fog node

be found for a component, then the algorithm checks if the
migration of an already placed component to a different host
would allow to place the new component.

More details about the two algorithms are available in
the supplementary material.

4.2 Decentralization and coordination models
We consider four different approaches for the decentral-
ization and coordination of decision-making, as shown
schematically in Fig. 1 and described in the following.

4.2.1 Centralized approach
In the centralized approach (Fig. 1a), decision-making is
performed by a central entity that has full knowledge about
the entire infrastructure and all applications. The optimiza-
tion procedure (Algorithm 1) is invoked at regular time

Algorithm 1 Centralized approach

1: Gather information from the entire system
2: Run placement algorithm for the entire system
3: if solution found then
4: Enact new placement in the entire system
5: end if

Algorithm 2 Independent fog colonies

1: Gather information from the fog colony
2: Run placement algorithm for the fog colony
3: if solution found then
4: Enact new placement in the fog colony
5: end if

intervals or when a change requires a reaction (e.g., a new
application has to be placed). To enable optimization, first
all necessary information is gathered from the entire system
(line 1). This consists of information about all applications
that are already placed or that need to be placed, including
the requirements of the components and connectors as well
as the current placement. Based on this information, the
placement algorithm (which can be either the ILP-based or
the search-based algorithm) is run (line 2). If the algorithm
managed to find a solution, then the new placement of the
components is retrieved and the components are placed or
migrated accordingly (lines 3-4).

4.2.2 Independent fog colonies
In the second approach (Fig. 1b), each fog colony is opti-
mized on its own. As shown in Algorithm 2, the steps are
basically the same as in the centralized approach. However,
in this case, only the infrastructure and applications belong-
ing to the given fog colony are taken into account. That is,
only information related to the given fog colony is collected,
and the input to the placement algorithm is limited to the
infrastructure and applications of the given fog colony. The
new placement is enacted only in the given fog colony.

We assume here that the fog colonies are disjoint. For
this reason, each fog colony can be optimized independently
from the others. The optimization procedure can be invoked
for the different fog colonies at different times (either at
regular time intervals, or when there is a change in the given
fog colony). The enactment of the optimization result in one
fog colony does not have any impact on other fog colonies.

4.2.3 Fog colonies with communication
In the third approach (Fig. 1c), we again use fog colonies that
are disjoint. The fog colonies are again optimized indepen-
dently, but now we allow components that are assigned to
a fog colony k to be transferred to a neighboring fog colony
k′ if necessary. This type of coordination can be realized
through communication among the controller nodes of the
fog colonies, as suggested by [9].

Given two fog colonies k1, k2 ∈ K , we say that they
are neighboring fog colonies if there are nodes n1 ∈ k1 and
n2 ∈ k2 such that n1 and n2 are adjacent, i.e., n1n2 ∈ EHW.

We assume that neighboring fog colonies can commu-
nicate with each other and coordinate their placement de-
cisions. If a component assigned to fog colony k cannot
be placed in k because of a lack of resources, then the

6

Algorithm 3 Fog colonies with communication

1: Gather information from the fog colony
2: Gather information from neighboring fog colonies
3: Run placement algorithm on the collected input
4: if solution found then
5: Enact new placement in fog colony
6: Send components to neighboring fog colonies if needed
7: end if

component can be transferred to a neighboring fog colony
to be placed there.

Algorithm 3 shows the optimization procedure for a fog
colony k. In this case, information is not only collected
from fog colony k (line 1), but also from the neighboring
fog colonies (line 2). From neighboring colonies, the same
types of information are collected as from colony k: the
capabilities of the infrastructure and the requirements and
placement of the applications already placed. This informa-
tion is necessary to ensure that a component is transferred
to a neighboring fog colony k′ only if the component can
indeed be placed in k′ without violating any constraint.

Based on the collected information, the placement prob-
lem is solved with one of the placement algorithms (line 3).
The considered infrastructure consists of the union of k and
its neighboring fog colonies. The considered components
consist of the union of

• the components currently placed on the nodes in k,
• the components currently placed on the nodes in the

neighboring colonies of k,
• the components that are newly assigned to k and not

placed yet.

During the optimization of fog colony k, components
that are already placed in neighboring fog colonies must
not be migrated, as they are under the control of other fog
colonies. However, they must be taken into account, for two
reasons. First, they reduce the amount of resources in the
neighboring fog colonies available to components assigned
to k. Second, if there is a connector uv ∈ ESW for which u is
assigned to k and v was transferred to (and already placed
in) a neighboring colony k′, then the placement of v impacts
how the connector can be routed, which in turn impacts the
placement of u.

The two placement algorithms introduced in Section 4.1
need some modifications to cope with the specifics of this
coordination model. These modifications are described in
the supplementary material.

The results of the placement algorithm are on the one
hand enacted in the given fog colony (line 5). On the other
hand, components that the solution assigns to a foreign node
are transferred to the appropriate neighboring fog colony
(line 6), where they are placed accordingly.

4.2.4 Fog colonies with overlap
In the fourth approach (Fig. 1d), inspired by [17], we allow
some fog nodes to belong to two fog colonies. Such fog
nodes are called “fog nodes in overlaps”. The capacity of
such a fog node can be dynamically distributed between the
two fog colonies containing the given fog node. The idea is
that the capacity of a fog node in overlap should be used by
the fog colony that needs that capacity more.

Algorithm 4 Fog colonies with overlap

1: Gather information from the fog colony
2: Gather information about foreign components in overlaps
3: Run placement algorithm for the fog colony
4: if solution found then
5: Enact new placement in fog colony
6: end if

Let n ∈ VHW be a fog node belonging to fog colonies k1
and k2. If, for example, k1 faces a high load and would thus
require n, while k2 is only lightly loaded and can cope with
its load also without using n, then k1 should be able to use n
up to its full capacity. If later the load on k2 increases while
k1 only partially uses the capacity of n, then k2 should be
able to use the remaining free capacity of n. If the load of
k1 decreases, then it should release n as much as possible so
that it can be used by k2 as needed.

To achieve this dynamic assignment of the capacity of
fog nodes in overlaps to the involved fog colonies, we
perform the following. When optimizing the placement in
colony k, all fog nodes belonging to k are taken into account,
including the ones that are shared with other fog colonies.
A component placed on a fog node in an overlap may only
be migrated if the component is assigned to k. That is, if
there is a fog node n belonging to both k and a neighboring
colony k′, and n hosts a component v which is assigned to
k′, then v must not be migrated as part of the optimization of
k. This is important because v may be connected to another
component or end device in k′ which is not known by k.
When determining the placement of components assigned
to k, the fog nodes that are not in overlaps should be
preferred, to retain the maximum level of flexibility.

Algorithm 4 shows the steps of the procedure. As in
the previous approaches, first information about the fog
colony is gathered (line 1). In addition, information about
foreign components (i.e., components assigned to other fog
colonies) that are placed on fog nodes in overlaps is gath-
ered (line 2). The placement algorithm is run on the collected
input (line 3). The solution is processed (lines 4-5), just like
in the previously introduced approaches. The solution has
to be enacted only in the given fog colony k and for the
components assigned to k. There is no adverse impact on
other fog colonies or the applications assigned to them.

5 EVALUATION

This section describes the empirical experience with the
approaches from Section 4. We first describe our implemen-
tation of the approaches (Section 5.1), followed by the ex-
perimental setup (Section 5.2), the results of the experiments
(Section 5.3-5.7), and a summary (Section 5.8).

5.1 Implementation
To experiment with different parameter configurations, a
simulation-based approach is appropriate. Although there
are some existing simulators for fog computing, none of
them supports the kinds of decentralized, coordinated and
dynamic placement approaches considered in this paper
[26]. Hence, we created our own simulation environment,
and implemented the approaches described in Section 4 in

7

TABLE 5: Parameter values (based on [27])

Node CPU cap. [MIPS] RAM [MB]

Cloud 120,000 64,000
Proxy server 60,000 8,000
Edge node (small) 6,750 1,000
Edge node (big) 13,500 2,000

Link Bandwidth [Mbps] Latency [ms]

Cloud – Proxy server 10,000 100
Proxy server – Edge node 10,000 2
Edge node – End device 0.65 100

1 20
1,000 50
1,000 12

Between regions 100 50

Component CPU size [MIPS] RAM size [MB]

2,500-5,000 500-1,000

Connector Bandwidth [Mbps] Latency [ms]

0.2-0.6 40-200

this simulation environment. The result is a Java program,
which is publicly available1.

For solving the integer programs, the Gurobi Optimizer2,
version 9.1.2 is used. Gurobi is invoked directly from the
Java program using Gurobi’s Java API. The experiments
were carried out on a laptop computer with Intel i7-1165G7
CPU @ 2.80 GHz and 16 GB RAM, running Windows 10 and
Java HotSpot 64-bit VM version 16.0.2.

5.2 Experiment setup

With the experiments, we want to answer two questions:

1) How do the results achieved by the investigated
decentralization and coordination approaches com-
pare to each other?

2) How does the answer to the previous question
depend on the parameters of the problem and on
the used algorithm?

To answer these questions, we perform controlled exper-
iments, comparing the four approaches described in Section
4.2 to each other. The primary criterion of the comparison
is the success rate, i.e., the ratio of problem instances that
could be solved in a given experiment.

We define a baseline scenario for the experiments. We use
parameters from [27] because that paper adopted values
from real-world technologies (e.g., LTE, WiFi and LPWAN
for network connections, node specifications from Intel and
Cisco etc.). In our baseline scenario, the infrastructure con-
sists of 5 regions. Each region contains the four-level tree
topology from [27], consisting of a cloud, a proxy server,
12 edge nodes, and 48 end devices. The parameters of the
nodes and the links among them are shown in Table 5. Half
of the edge nodes are big, the other half small. There are four
categories of links between edge nodes and end devices, and
25% of such links belong to each category. For each region,
two neighboring regions are selected. For this purpose, the
regions are numbered from 0 to 4, and region i becomes a

1. https://github.com/zoltanmann/fapp-colonies
2. https://www.gurobi.com/

neighbor of regions i+1 (mod 5) and i−1 (mod 5). If two
regions are supposed to be neighbors, then a random fog
node is selected from both regions, and the two fog nodes
are connected by a link. Altogether, each region contains 62
nodes, leading to 310 nodes in total.

The applications for the baseline scenario are defined as
follows. For each region, 5 applications are created. As in
[27], each application is either a “master-workers applica-
tion” or a “sequential unidirectional dataflow application”,
each with probability 0.5. Each application consists of 12
components. A randomly selected component of each ap-
plication is connected to a randomly selected end device in
the region. Altogether, 25 applications need to be placed,
with 300 components in total.

The baseline scenario starts with an empty infrastruc-
ture, i.e., no applications are placed yet. In each phase, one
application is placed in each region. Within each phase,
the application of each region is placed as a separate op-
timization step. The scenario ends after 5 phases, when each
application has been placed. Each phase consists of 5 steps.

In the centralized approach, the whole infrastructure is
considered in each optimization step. In the “independent
fog colonies” approach, as well as in the “fog colonies with
communication” approach (“communicating” for short),
each region is considered a fog colony. In the “fog colonies
with overlap” approach (“overlapping” for short), we en-
large the colonies to make neighboring fog colonies overlap.
In particular, if fog colonies k1 and k2 are neighbors, then we
include two random nodes from k1 in k2 and two random
nodes from k2 in k1. While doing so, we ensure that a fog
node that is already shared by two fog colonies is not shared
with a third one.

The external ILP solver is always invoked with a timeout
of 60 seconds. To limit the impact of random effects, we
repeat each experiment 30 times.

5.3 Results of the baseline scenario

Fig. 2 shows the results of the baseline scenario in terms of
the number of successfully placed applications. The values
are shown for each phase of the baseline scenario. In this
and the next figures, box plots are used to convey the
distribution of results. In the box plots, the box goes from
the first to the third quartile of the distribution, whereas the
whiskers reach to cover the rest of the distribution, except
for outliers which are represented as diamonds. The median
is shown by a horizontal line and the mean by a circle.

As shown in Fig. 2a, the ILP-based algorithm manages to
place most applications in most cases. The four considered
models of decentralization and coordination lead to iden-
tical results in the first three phases, but the “centralized”
approach leads to worse results in the last two phases than
the decentralized approaches.

As shown in Fig. 2b, the search-based algorithm returns
results comparable to those of the ILP-based algorithm. The
differences among the four considered models of decentral-
ization and coordination are higher in this case. In the last
three phases, the “overlapping” approach leads to the best
results.

In terms of execution time, there are huge differences
between the considered approaches. (Details are shown in

8

1 2 3 4 5
Phase

0

1

2

3

4

5
Ap

pl
ica

tio
ns

 su
cc

es
sf

ul
ly

 p
la

ce
d

Model
centralized
independent
communicating
overlapping

(a) Number of successfully placed applications with the ILP
solver

1 2 3 4 5
Phase

0

1

2

3

4

5

Ap
pl

ica
tio

ns
 su

cc
es

sf
ul

ly
 p

la
ce

d

Model
centralized
independent
communicating
overlapping

(b) Number of successfully placed applications with the search-
based algorithm

Fig. 2: Results of the baseline scenario

the supplementary material.) The execution time of the
search-based algorithm is in all cases below 60 milliseconds.
The execution time of the ILP-based algorithm goes up to
several minutes for the centralized approach and several
seconds for the decentralized approaches.

5.4 Impact of fog colony size

In this and the next two experiments, we vary different
parameters of the input one by one. Then, in Section 5.7, we
combine all these aspects in a single experiment. Specifically
in this experiment, we vary the number of edge nodes per
region from 12 until 60 in steps of 12. As a result, the number
of all nodes per region varies from 62 to 302, and the number
of all nodes in the whole infrastructure from 310 to 1510. All
other parameters of the baseline scenario remain the same.

The results are summarized in Fig. 3. A column in Fig.
3 shows the value aggregated over the whole sequence of
adding all applications in all regions.

Fig. 3a shows how the number of applications suc-
cessfully placed by the ILP-based algorithm changes with
increasing fog colony size. As the number of nodes per
region increases, the centralized approach can place less and
less applications. This is because of the limited scalability of

62 122 182 242 302
Nodes per region

0

5

10

15

20

25

Ap
pl

ica
tio

ns
 su

cc
es

sf
ul

ly
 p

la
ce

d

Model
centralized
independent
communicating
overlapping

(a) Number of successfully placed applications with the ILP
solver

62 122 182 242 302
Nodes per region

0

5

10

15

20

25

Ap
pl

ica
tio

ns
 su

cc
es

sf
ul

ly
 p

la
ce

d

Model
centralized
independent
communicating
overlapping

(b) Number of successfully placed applications with the search-
based algorithm

Fig. 3: Impact of increasing fog colony size

the centralized approach. On the other hand, all decentral-
ized approaches can consistently place a high number of
applications.

Fig. 3b shows the results of the search-based algorithm.
In this case, all centralized and decentralized approaches
manage to place a high number of applications.

5.5 Impact of the number of fog colonies

In this experiment, we vary the number of regions from
5 until 15 in steps of 5. Since there are 5 applications per
region, this leads not only to an increasing infrastructure
size, but also to an increasing number of applications. All
other parameters of the basic scenario remain the same. For
15 regions, the infrastructure consists of 930 nodes, and there
are 75 applications, with 900 components altogether.

The results are shown in Fig. 4. Concerning the results of
the ILP-based algorithm (Fig. 4a), the scalability issue of the
centralized approach becomes again apparent, just as in the
previous experiment. For 10 and 15 regions, only a fraction
of the applications could be placed with the centralized
approach. On the other hand, the decentralized approaches
manage to place a similarly high number of applications.

9

5 10 15
Number of regions

0

10

20

30

40

50

60

70
Ap

pl
ica

tio
ns

 su
cc

es
sf

ul
ly

 p
la

ce
d

Model
centralized
independent
communicating
overlapping

(a) Number of successfully placed applications with the ILP
solver

5 10 15
Number of regions

0

10

20

30

40

50

60

70

Ap
pl

ica
tio

ns
 su

cc
es

sf
ul

ly
 p

la
ce

d

Model
centralized
independent
communicating
overlapping

(b) Number of successfully placed applications with the search-
based algorithm

5 10 15
Number of regions

0

1000

2000

3000

4000

5000

6000

Ex
ec

ut
io

n
tim

e
[m

s]

Model
centralized
independent
communicating
overlapping

(c) Execution time of the search-based algorithm

Fig. 4: Impact of increasing the number of fog colonies

With the search-based algorithm, all four approaches
lead to a similarly high number of placed applications
(Fig. 4b). However, looking also at the execution time of
the search-based algorithm (Fig. 4c), the problems of the
centralized approach start to arise here as well. The rapid
growth of the execution time suggests that scalability could
become a problem for even larger systems.

12 24 36 48
Components per application

0

5

10

15

20

25

Ap
pl

ica
tio

ns
 su

cc
es

sf
ul

ly
 p

la
ce

d

Model
centralized
independent
communicating
overlapping

(a) Number of successfully placed applications with the ILP
solver

12 24 36 48
Components per application

0

5

10

15

20

25

Ap
pl

ica
tio

ns
 su

cc
es

sf
ul

ly
 p

la
ce

d

Model
centralized
independent
communicating
overlapping

(b) Number of successfully placed applications with the search-
based algorithm

12 24 36 48
Components per application

0

250

500

750

1000

1250

1500

1750

2000

Ex
ec

ut
io

n
tim

e
[m

s]

Model
centralized
independent
communicating
overlapping

(c) Execution time of the search-based algorithm

Fig. 5: Impact of increasing the number of components per
application

5.6 Impact of the load

In this experiment, we vary the number of components per
application from 12 until 48 in steps of 12. This way, the load
on the overall fog system increases, making it increasingly
harder to place the applications. All other parameters of the
basic scenario remain the same.

10

SolverSB SolverILP
Algorithm

0

5

10

15

20

25

30
Ap

pl
ica

tio
ns

 su
cc

es
sf

ul
ly

 p
la

ce
d

Model
independent
communicating
overlapping

(a) Number of successfully placed applications

SolverSB SolverILP
Algorithm

103

104

105

106

107

Ex
ec

ut
io

n
tim

e
[m

s]

Model
independent
communicating
overlapping

(b) Execution time (logarithmic scale)

Fig. 6: Results of the large-scale experiment

The results are shown in Fig. 5. As Fig. 5a shows, for
higher loads (24 or more components per application), the
ILP-based algorithm achieves its best results consistently
with the “communicating” approach. For the search-based
algorithm, the “centralized” and the “communicating” ap-
proaches lead to the best results for 24 or more components
per application (Fig. 5b). On the other hand, Fig. 5c reveals
that the “communicating” approach requires significantly
less time than the “centralized” approach.

5.7 Large-scale experiment

Finally, we combined the different dimensions of scaling
of the previous experiments in a single experiment. In this
case, we created 10 regions, each containing 242 nodes, lead-
ing to 2,420 infrastructure nodes altogether. Each application
consists of 48 components, leading to 2,400 components alto-
gether (10 regions, 5 applications per region, 48 components
per application). The number of infrastructure nodes and
components considered in this experiment is higher than
what was considered in most of the previous papers on fog
application placement algorithms [8].

The results are shown in Fig. 6. The centralized approach
was skipped because we knew from the earlier experiments
that it is not appropriate for such large and hard problem

instances. Fig. 6a shows that coordination has the poten-
tial to improve the results. For the search-based algorithm
(denoted as “SolverSB” in the figure), the “communicating”
approach leads to 25% better results than the “indepen-
dent” approach, while the “overlapping” approach leads
to no improvement. For the ILP-based algorithm (denoted
as “SolverILP” in the figure), the “overlapping” approach
leads to about 5% better results on average than the “inde-
pendent” approach. On the other hand, coordination also
leads to non-negligible overhead in terms of execution time,
as shown in Fig. 6b.

5.8 Summary
The insights from the experimental results can be summa-
rized as follows. For small infrastructures, all considered
decentralization and coordination models lead to similar
results. This is because these are easy problem instances,
for which optimal or near-optimal solutions can be found in
all considered decentralization and coordination models.

As either the number of regions or the number of nodes
per region increases, scalability of the ILP-based algorithm
in the centralized model becomes problematic. In these
cases, the solution space in the centralized model becomes
huge, so that the ILP solver can only search a tiny fraction
of it in the given time period [28]. The ILP-based algorithm
with any of the decentralized models seems to scale well.
This means that good solutions can be found locally, in the
given fog colony, without a need for global load balancing.
Also, the decentralized models lead to a smaller solution
space, which is manageable for the ILP solver.

The search-based algorithm scales well with all four con-
sidered models. This is probably due to the problem-specific
sorting strategies for components and nodes used in the
search-based algorithm, leading to good solutions through
limited search effort. However, the execution time of the
search-based algorithm quickly increases in the centralized
model. This is because the number of potential hosts consid-
ered for each component becomes large. Nevertheless, the
execution time of the search-based algorithm stays within a
couple of seconds in even the largest experiments.

The effect of coordination between colonies becomes
only important for the placement of large applications. With
large applications, it happens more frequently that a fog
colony gets overloaded and can thus benefit from coordina-
tion with neighboring fog colonies. For large applications,
especially the “communicating” coordination model proved
useful, although it leads to higher execution time than the
“independent” model. The “communicating” coordination
model leads to the highest number of placement options
outside the given region, which explains both the good
results achieved and the relatively high execution time.

6 DISCUSSION OF POSSIBLE EXTENSIONS

This section discusses some potential extensions and gener-
alizations of the work presented in this paper.

6.1 Handling other types of changes
To foster easy interpretability, our experiments were focused
on one type of change: adding new applications. There can

11

also be other types of relevant changes: e.g., applications can
be removed, the resource requirements of components can
change, new infrastructure nodes can become available etc.
The approaches and experiments presented in this paper
can be easily extended to account for such types of changes.
This is because the considered algorithms always work with
the current state of the infrastructure and of the applications.
Thus, upon any kind of change, the algorithms can be re-run
to react to the change, as in [29].

6.2 Other types of decentralization and coordination
In this paper, we focused on four models of decentralization
and coordination. These are the ones that, to our knowl-
edge, have been proposed in the context of fog computing.
In other distributed computing paradigms, which have a
longer history than fog computing, such as grid, cloud and
cluster computing, also other types of decentralization and
coordination approaches have been proposed. Examples
include dynamic partitioning of resources between multiple
schedulers [30], shared-state scheduling, in which multiple
schedulers have simultaneous access to the same set of
resources [31], and hierarchical resource management ap-
proaches [32], [33]. In future work, it would be interesting to
investigate whether these approaches could be successfully
adopted in the context of fog computing, and if yes, how
they compare to the approaches evaluated in this paper.

6.3 Other effects of decentralization and coordination
When comparing different decentralization and coordina-
tion approaches, we focused on algorithm execution time
and the quality of the results. There are also some further
aspects that could be investigated. For example, decentral-
ized approaches may offer better fault tolerance, especially
if neighboring fog colonies coordinate to help out in the
event of a failure in one of the fog colonies. However,
coordination among fog colonies increases complexity. This
holds both for the “communicating” and the “overlapping”
coordination approaches. Complexity can make a practical
implementation more difficult and also more error-prone.
In addition, coordination may also lead to an increased lead
time in the deployment of new components. This holds in
particular for the “communicating” coordination approach:
if a component is dispatched to a neighboring fog colony,
this increases the time needed to deploy the given compo-
nent [13].

6.4 Metrics in the optimization problem
Different variants of the fog application placement problem
use different metrics to quantify the suitability of poten-
tial solutions. Metrics could include for example latency,
resource demand, energy consumption, financial costs etc.
Each metric may be subject to a constraint or used as an
optimization objective [34].

In this paper, we used resource consumption (CPU,
RAM, bandwidth), latency, and the number of migrations
as metrics. Future work could extend our investigations to
other metrics, such as energy consumption. Such extension
is straight-forward as long as the number of optimization
objectives is at most one, because both of the considered

algorithms can easily accommodate additional constraints
(for the ILP-based algorithm, this only holds true if the
metric can be calculated by means of linear equations and
inequalities). If multiple metrics should be optimized, then
the handling of their relative importance adds a new level
of complexity [35]. For this purpose, different techniques
from the rich theory of multi-objective optimization could
be applied [36].

6.5 Application priorities
In the problem considered in this paper, all applications
are assumed to be equally important. A possible extension
could be to consider applications with different priorities
[37]. If a new application with high priority cannot be
placed, an already placed application with lower priority
could be paused to temporarily free some capacity for the
new application. The paused application could be resumed
once the application with higher priority has finished its
execution. Keeping track of paused applications would
add some additional complexity, which, however, is mostly
orthogonal to the main objective of this work regarding
decentralization and coordination.

7 CONCLUSIONS AND FUTURE WORK

This paper investigated the effects of decentralization and
coordination in fog application placement. For this purpose,
we implemented two fog application placement algorithms
in conjunction with four different decentralization and coor-
dination models. The approaches were compared by means
of extensive experiments. We found that the centralized
approach achieves good results on relatively small and
easy problem instances. However, as the size of the infras-
tructure and/or the number of components to be placed
increases, the results of the centralized approach deteriorate
heavily, while all the considered decentralized approaches
scale much better. Among the decentralized approaches,
we could observe that coordination among the fog colonies
leads to improved results for the hardest problem instances.
The “fog colonies with communication” approach proved
particularly successful in terms of the number of placed
applications, although it increases execution time.

While this work has shown the fundamental advantage
of coordinated decentralized approaches for fog application
placement as well as the impact of different coordination
mechanisms, the question of which is the best coordination
approach remains open. Although the “fog colonies with
communication” approach seems best based on our exper-
iments, further research should investigate to what extent
this also holds in other settings (e.g., with other types of
constraints and optimization objectives, taking also into ac-
count the considerations of Section 6). It would be important
to validate the findings also in real fog environments. Also
other coordination mechanisms should be investigated, for
example based on the coordination patterns identified in
previous work [38].

ACKNOWLEDGMENTS

This work was partially supported by the EU’s Horizon 2020
research and innovation programme under grant agreement

12

no. 871525 (FogProtect). The author wishes to thank Patrick
Kuhs for help with a preliminary implementation.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the Internet of Things,” in Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, 2012, pp.
13–16.

[2] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the
Internet of Things realize its potential,” Computer, vol. 49, no. 8,
pp. 112–116, 2016.

[3] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 27–
32, 2014.

[4] Z. Á. Mann, “Notions of architecture in fog computing,” Comput-
ing, vol. 103, no. 1, pp. 51–73, 2021.

[5] A. Brogi and S. Forti, “QoS-aware deployment of IoT applications
through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, 2017.

[6] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware
application module management for fog computing environ-
ments,” ACM Transactions on Internet Technology, vol. 19, no. 1, pp.
1–21, 2018.

[7] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service
placement problem in fog and edge computing,” ACM Computing
Surveys, vol. 53, no. 3, p. art. 65, 2020.

[8] S. Smolka and Z. Á. Mann, “Evaluation of fog application place-
ment algorithms: A survey,” Computing, accepted, 2021.

[9] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,
“Optimized IoT service placement in the fog,” Service Oriented
Computing and Applications, vol. 11, no. 4, pp. 427–443, 2017.

[10] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to place your
apps in the fog: State of the art and open challenges,” Software:
Practice and Experience, vol. 50, no. 5, pp. 719–740, 2020.

[11] A. Singh, N. Auluck, O. Rana, A. Jones, and S. Nepal, “RT-SANE:
Real time security aware scheduling on the network edge,” in 10th
International Conference on Utility and Cloud Computing (UCC), 2017,
pp. 131–140.

[12] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource
provisioning for IoT services in the fog,” in IEEE 9th International
Conference on Service-Oriented Computing and Applications (SOCA).
IEEE, 2016, pp. 32–39.

[13] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-
aware fog service placement,” in IEEE 1st International Conference
on Fog and Edge Computing (ICFEC). IEEE, 2017, pp. 89–96.

[14] Q. T. Minh, D. T. Nguyen, A. Van Le, H. D. Nguyen, and
A. Truong, “Toward service placement on fog computing land-
scape,” in 4th NAFOSTED Conference on Information and Computer
Science. IEEE, 2017, pp. 291–296.

[15] A. A. Alsaffar, H. P. Pham, C.-S. Hong, E.-N. Huh, and M. Aazam,
“An architecture of IoT service delegation and resource allocation
based on collaboration between fog and cloud computing,” Mobile
Information Systems, vol. 2016, 2016.

[16] M. M. Shurman and M. K. Aljarah, “Collaborative execution of
distributed mobile and IoT applications running at the edge,” in
International Conference on Electrical and Computing Technologies and
Applications (ICECTA). IEEE, 2017.

[17] L. Baresi, D. F. Mendonça, and G. Quattrocchi, “PAPS: A frame-
work for decentralized self-management at the edge,” in 17th
International Conference on Service-Oriented Computing (ICSOC).
Springer, 2019, pp. 508–522.

[18] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in 35th Annual IEEE International Confer-
ence on Computer Communications (INFOCOM). IEEE, 2016.

[19] G. Lee, W. Saad, and M. Bennis, “An online secretary framework
for fog network formation with minimal latency,” in IEEE Interna-
tional Conference on Communications (ICC). IEEE, 2017.

[20] ——, “An online optimization framework for distributed fog
network formation with minimal latency,” IEEE Transactions on
Wireless Communications, vol. 18, no. 4, pp. 2244–2258, 2019.

[21] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog computing: Towards
minimizing delay in the Internet of Things,” in IEEE International
Conference on Edge Computing (EDGE). IEEE, 2017, pp. 17–24.

[22] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing IoT
service delay via fog offloading,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 998–1010, 2018.

[23] C. Guerrero, I. Lera, and C. Juiz, “A lightweight decentralized
service placement policy for performance optimization in fog com-
puting,” Journal of Ambient Intelligence and Humanized Computing,
vol. 10, no. 6, pp. 2435–2452, 2019.

[24] A. Aral and T. Ovatman, “A decentralized replica placement
algorithm for edge computing,” IEEE Transactions on Network and
Service Management, vol. 15, no. 2, pp. 516–529, 2018.

[25] C. H. Papadimitriou, Computational Complexity. John Wiley and
Sons Ltd., 2003.

[26] C. Kunde and Z. Á. Mann, “Comparison of simulators for fog
computing,” in 35th Annual ACM Symposium on Applied Computing
(SAC), 2020, pp. 1792–1795.

[27] T. Djemai, P. Stolf, T. Monteil, and J.-M. Pierson, “A discrete
particle swarm optimization approach for energy-efficient IoT
services placement over fog infrastructures,” in 18th International
Symposium on Parallel and Distributed Computing (ISPDC). IEEE,
2019, pp. 32–40.

[28] Z. Á. Mann, Optimization in computer engineering–Theory and appli-
cations. Scientific Research Publishing, Inc. USA, 2011.

[29] Z. Á. Mann, A. Metzger, J. Prade, and R. Seidl, “Optimized
application deployment in the fog,” in 17th International Conference
on Service-Oriented Computing (ICSOC). Springer, 2019, pp. 283–
298.

[30] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for
fine-grained resource sharing in the data center,” in 8th USENIX
Conference on Networked Systems Design and Implementation (NSDI),
2011, pp. 295–308.

[31] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,”
in 8th ACM European Conference on Computer Systems, 2013, pp.
351–364.

[32] B. Addis, D. Ardagna, B. Panicucci, M. S. Squillante, and L. Zhang,
“A hierarchical approach for the resource management of very
large cloud platforms,” IEEE Transactions on Dependable and Secure
Computing, vol. 10, no. 5, pp. 253–272, 2013.

[33] M. Tamiru, G. Pierre, J. Tordsson, and E. Elmroth, “mck8s: An
orchestration platform for geo-distributed multi-cluster environ-
ments,” in 30th International Conference on Computer Communica-
tions and Networks (ICCCN), 2021.

[34] Z. Á. Mann, “Optimization problems in fog and edge computing,”
in Fog and Edge Computing: Principles and Paradigms. Wiley, 2019,
pp. 103–121.

[35] T. Menouer, “KCSS: Kubernetes container scheduling strategy,”
The Journal of Supercomputing, vol. 77, no. 5, pp. 4267–4293, 2021.

[36] R. T. Marler and J. S. Arora, “Survey of multi-objective optimiza-
tion methods for engineering,” Structural and Multidisciplinary
Optimization, vol. 26, no. 6, pp. 369–395, 2004.

[37] C. Zhang, H. Tan, H. Huang, Z. Han, S. H.-C. Jiang, N. Freris,
and X.-Y. Li, “Online dispatching and scheduling of jobs with
heterogeneous utilities in edge computing,” in 21st International
Symposium on Theory, Algorithmic Foundations, and Protocol Design
for Mobile Networks and Mobile Computing, 2020, pp. 101–110.

[38] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Pre-
hofer, J. Wuttke, J. Andersson, H. Giese, and K. M. Göschka, “On
patterns for decentralized control in self-adaptive systems,” in
Software Engineering for Self-Adaptive Systems II. Springer, 2013,
pp. 76–107.

Zoltán Ádám Mann is associate professor at
the University of Amsterdam, The Netherlands.
He holds a PhD in Computer Science from Bu-
dapest University of Technology and Economics,
Hungary. His research interests include fog com-
puting, cloud computing, and optimization algo-
rithms.

1

Decentralized application placement in fog
computing

– Supplementary material –
Zoltán Ádám Mann

✦

In this supplementary file, we give a detailed description
of the two placement algorithms as well as their usage
in conjunction with the four considered models of decen-
tralization and coordination. In addition, diagrams about
the execution time of the algorithms in the experimental
evaluation are shown.

1 PLACEMENT ALGORITHMS

1.1 Integer Linear Programming formulation

We first devise an Integer Linear Programming (ILP) formu-
lation of the problem defined in Section 3 of the paper.

To encode the functions α and β, we define two sets of
binary variables (see also Table 1). Specifically, α is encoded
using the variables {xv,n : v ∈ VSW, n ∈ VHW}, where
xv,n = 1 if and only if component v is to be placed on
node n. To allow a uniform handling of components and end
devices, we extend xv,n to v ∈ VSW, n ∈ VHW: for v ∈ E and
n ∈ VHW, we let xv,n = 1 if and only if n = v. The function
β is encoded using the variables {ye,p : e ∈ ESW, p ∈ P},
where ye,p = 1 if and only if connector e is to be routed
through path p.

For the placement to be valid, we have to ensure that
each component is placed on exactly one infrastructure node
and not on an end device, and each connector is routed
through exactly one path. For this reason, we introduce the
following sets of equations:

∀v ∈ VSW :
∑

n∈VHW

xv,n = 1, (9)

∀v ∈ VSW, ∀n ∈ E : xv,n = 0, (10)

∀e ∈ ESW :
∑

p∈P

ye,p = 1. (11)

TABLE 1: Variables (all of them are binary)

Name Description

xv,n 1 iff component v ∈ VSW is to be placed on node n ∈ VHW
ye,p 1 iff connector e ∈ ESW is to be routed through path p ∈ P
zv 1 iff component v ∈ V 0

SW has to be migrated

In addition, we have to ensure that each end device is
placed on itself:

∀v ∈ E : xv,v = 1, (12)

∀v ∈ E ,∀n ∈ VHW \ {v} : xv,n = 0. (13)

The consistency of placement and routing (equation
(3) in the paper) must be ensured in terms of the newly
introduced variables. The xv,n and ye,p variables must be
assigned consistent values, so that, if vv′ ∈ ESW, v is placed
on n and v′ is placed on n′, then the connector vv′ is routed
through a path between n and n′:

∀vv′ ∈ ESW,∀n ∈ VHW,∀n′ ∈ VHW :∑

p∈Pn,n′

yvv′,p ≥ xv,n + xv′,n′ − 1. (14)

Equation (14) may require some explanation. It should
be noted that if at least one of xv,n and xv′,n′ is 0, then the
inequality does not represent a constraint since the left-hand
side is non-negative and the right-hand side is non-positive.
On the other hand, if xv,n = xv′,n′ = 1, that is, if v is placed
on n and v′ is placed on n′, then (14) constrains the sum on
the left-hand side to be at least 1. Because of (11), the sum
on the left-hand side of (14) cannot be more than 1, so it has
to be exactly 1, which is what we wanted to express.

The capacity constraints of the infrastructure nodes
(equations (4)-(5) in the paper) are represented in terms of
the variables by the following inequalities:

∀n ∈ VHW :
∑

v∈VSW

xv,n · cv ≤ Cn, (15)

∀n ∈ VHW :
∑

v∈VSW

xv,n · rv ≤ Rn. (16)

The bandwidth constraints of the infrastructure links
(equation (6) in the paper) are ensured in terms of the
variables by the following inequality:

∀l ∈ EHW :
∑

e∈ESW

∑

p∈P (l)

ye,p · be ≤ Bl. (17)

2

The latency constraints of the connectors (equation (7)
in the paper) are ensured in terms of the variables by the
following inequality:

∀e ∈ ESW :
∑

p∈P

ye,p ·D(p) ≤ de. (18)

Explanation of (18): because of (11), exactly one of the
terms in the sum in (18) will be non-zero, namely the term
corresponding to the path through which e is routed. That
is, the value of the sum in (18) will be exactly the latency of
the path through which e is routed.

To capture migrations, we introduce further binary vari-
ables {zv : v ∈ V 0

SW}, where zv = 1 if and only if component
v is to be migrated. The zv variables are determined by the
xv,n variables, as captured by the following equation:

∀v ∈ V 0
SW : zv = 1− xv,hv

. (19)

The objective function can now be easily formulated:

minimize
∑

v∈V 0
SW

zv. (20)

To sum up, we have to find values for the variables that
satisfy equations (9)-(19) while optimizing (20).

1.2 Search-based algorithm

The pseudo-code of this algorithm is given in Algorithm 1.
The algorithm aims to place the newly added components,
which are stored in a list N (line 1). The set of end devices
that are connected to at least one of the newly added com-
ponents is determined and denoted D (line 2). The cloud
and fog nodes that can potentially host the newly added
components are stored in a list H (line 3).

Breadth-first search is used in the application graph to
determine the distance of the components in N from the
end devices in D. Similarly, breadth-first search is used in
the infrastructure graph to determine the distance of the
nodes in H from the end devices in D. On the basis of this
information, both N and H are sorted in ascending order of
distance from D (lines 4-5).

After these pre-processing steps, the algorithm iterates
over the components in N in the given order (lines 6-41).
For each component v, the algorithm tries to find a host
by checking the nodes in H in the given order (lines 8-14).
If a suitable host is found, then v is placed on it and the
algorithm continues with the next component (lines 9-13).

If no suitable host could be found for v, then the algo-
rithm checks if a host could be relieved by a migration (lines
15-36). For this purpose, the algorithm iterates through
all movable components (lines 16-35). For each movable
component v′, the algorithm iterates over all hosts in H to
check if one of them would be a suitable migration target
(lines 19-24). If a migration target for v′ could be identified,
then v′ is migrated and it is checked whether the new
component v can be placed on the old host of v′ (lines 25-
34). If the migration does not allow the placement of v, then
it is undone (line 32).

If none of the considered migrations allowed the place-
ment of v, then the placement of any already placed compo-
nents of the same application is undone (lines 37-40).

Algorithm 1 Search-based placement algorithm

1: N ← {newly added components}
2: D ← {end devices connected to components in N}
3: H ← {available fog and cloud nodes}
4: Sort N in ascending order of distance from D
5: Sort H in ascending order of distance from D
6: for v ∈ N do
7: success← false
8: for h ∈ H do
9: if v can be placed on h then

10: place v on h
11: success← true
12: break
13: end if
14: end for
15: if success == false then
16: for v′ ∈ {movable components} do
17: h0 ← current host of v′

18: h1 ← null
19: for h′ ∈ H do
20: if h′ ̸= h0 and v′ can be migrated to h′ then
21: h1 ← h′

22: break
23: end if
24: end for
25: if h1 ̸= null then
26: migrate v′ to h1

27: if v can be placed on h0 then
28: place v on h0

29: success← true
30: break
31: else
32: undo migration
33: end if
34: end if
35: end for
36: end if
37: if success == false then
38: undo placement of application
39: break
40: end if
41: end for

1.3 Complexity
Next, we analyze the computational complexity of the algo-
rithms outlined above.

The ILP-based algorithm consists of creating the integer
program, running the external ILP solver, and retrieving the
solution from the solver’s output. It can be seen easily that
creating the integer program and retrieving the solution can
be done in polynomial time. However, the ILP solver has an
exponential worst-case complexity.

To analyze the complexity of the search-based algorithm,
we first look at the non-trivial atomic operations in Algo-
rithm 1. These are operations of the types “if v can be placed
on h”, “place v on h”, “v can be migrated to h”, “migrate
v to h” and “undo migration”, where v is a component
and h is a host. These are non-trivial because they not only
involve the placement of a component (which would take
O(1) steps), but also the routing of all connectors incident
to the component. The latter also involves an update of free
bandwidth along the path through which the connector is
routed. Thus, these operations take O(∆ · Π) time, where
∆ is the maximum number of connectors incident to a
component and Π is the maximum path length.

3

The complexity of Algorithm 1 can now be determined
by looking at its nested loop structure. The loops of lines
8-14 and 19-24 take O(|H| · ∆ · Π) time. Thus, the loop of
lines 16-35 takes O(|ESW| · |H| · ∆ · Π) time. Therefore, the
computational complexity of the search-based algorithm is
O(|N | · |ESW| · |H| ·∆ ·Π).

2 DECENTRALIZATION AND COORDINATION MOD-
ELS

Here, we describe how the two placement algorithms are
modified to take into account the considered models of
decentralization and coordination. This is based on a cat-
egorization of nodes and of components.

2.1 Categorization of nodes
The nodes are categorized as follows:

• Freely usable nodes can be preferentially used to host
components.

• Unpreferred nodes should only be used to host com-
ponents if necessary.

Depending on the considered model of decentralization
and coordination, the categories of nodes are determined as
follows:

• Centralized: every node is freely usable, no node is
unpreferred.

• Independent: every node in the fog colony is freely
usable, no node is unpreferred.

• Communicating: every node in the fog colony is
freely usable, every node in the neighboring colonies
is unpreferred.

• Overlapping: every node in the fog colony that is not
shared with another colony is freely usable, every
node in the fog colony that is shared with another
colony is unpreferred.

Nodes not mentioned above are simply not considered.
For example, in the “independent” model, nodes outside the
given colony are not considered at all.

2.2 Categorization of components
The components are categorized as follows:

• New components are the components of newly added
applications that are not placed yet.

• Fully controlled components are already placed com-
ponents whose placement is under the control of the
given algorithm invocation.

• Obtained components are already placed components
that the given colony got from another colony.

• Read-only components are already placed compo-
nents in a neighboring colony that have a connector
to a component in the given colony.

Depending on the considered model of decentralization
and coordination, the categories of the already placed com-
ponents are determined as follows:

• Centralized: Each already placed component is fully
controlled. There are no obtained or read-only com-
ponents.

• Independent: Each already placed component as-
signed to the given colony is fully controlled. There
are no obtained or read-only components.

• Communicating: Each component placed in the
given colony and assigned to the given colony is
fully controlled. Each component placed in the given
colony and assigned to a different colony is obtained.
Each component placed in a neighboring colony and
connected to a component placed in the given colony
is read-only.

• Overlapping: Each component placed in the given
colony is fully controlled. There are no obtained or
read-only components.

Also here, components not mentioned above are disre-
garded. For example, in the “independent” model, compo-
nents placed in other colonies are not considered.

2.3 Modifications of the algorithms
To handle the different decentralization and coordination
models, some specific constraints are necessary. For the
ILP-based algorithm, these are added as additional linear
equations or inequalities. For the search-based algorithm,
the constraints are added as additional checks in the rou-
tines that determine if a given component can be placed
on or migrated to a given node (called in lines 9, 20 and
27 of Algorithm 1). Specifically, the following constrains are
added:

• Read-only components must not be migrated.
• A component that colony k obtained from colony k′

may only be placed in k or k′. (This is important
because otherwise a situation could arise in which
components of an application would be in non-
neighboring colonies k′ and k′′. In this case, it would
be unknown in colony k′ what can be done with the
component in k′.)

• If there is a connector v1v2, and k′ and k′′ are colonies
different from each other and from ours, then it is
forbidden to place v1 on k′ and v2 on k′′. (The reason
is similar as before.)

The handling of unpreferred nodes is different in the
two algorithms. In the ILP-based algorithm, a penalty term
is added to the objective function that penalizes the usage
of unpreferred nodes. In the search-based algorithm, the
sorting of nodes (line 5 in Algorithm 1) is modified, such
that freely usable nodes are first, and the unpreferred nodes
are at the end of list.

3 ADDITIONAL EXPERIMENTAL RESULTS

Because of the space limitation, Section 5 of the paper
focused on the number of applications successfully placed
in the different models of decentralization and coordination,
and the execution time was only shown in some cases. For
the sake of completeness, here we include execution time
diagrams of each experiment of Sections 5.3-5.6 of the paper.
It should be noted that, to improve readability, the execution
time diagrams of the ILP-based algorithm use logarithmic
scale and do not show averages.

4

1 2 3 4 5
Phase

102

103

104

105

Ex
ec

ut
io

n
tim

e
[m

s]
centralized independent communicating overlapping

Fig. 1: Execution time of the ILP-based algorithm in the
baseline scenario (logarithmic scale)

1 2 3 4 5
Phase

0

10

20

30

40

50

60

Ex
ec

ut
io

n
tim

e
[m

s]

Model
centralized
independent
communicating
overlapping

Fig. 2: Execution time of the search-based algorithm in the
baseline scenario

62 122 182 242 302
Nodes per region

103

104

105

106

Ex
ec

ut
io

n
tim

e
[m

s]

centralized independent communicating overlapping

Fig. 3: Execution time of the ILP-based algorithm for varying
fog colony size (logarithmic scale)

62 122 182 242 302
Nodes per region

0

50

100

150

200

250

300

Ex
ec

ut
io

n
tim

e
[m

s]

Model
centralized
independent
communicating
overlapping

Fig. 4: Execution time of the search-based algorithm for
varying fog colony size

5 10 15
Number of regions

104

105

106

107
Ex

ec
ut

io
n

tim
e

[m
s]

centralized independent communicating overlapping

Fig. 5: Execution time of the ILP-based algorithm for varying
number of fog colonies (logarithmic scale)

5 10 15
Number of regions

0

1000

2000

3000

4000

5000

6000

Ex
ec

ut
io

n
tim

e
[m

s]

Model
centralized
independent
communicating
overlapping

Fig. 6: Execution time of the search-based algorithm for
varying number of fog colonies

5

12 24 36 48
Components per application

104

105

106

Ex
ec

ut
io

n
tim

e
[m

s]

centralized independent communicating overlapping

Fig. 7: Execution time of the ILP-based algorithm for varying
application size (logarithmic scale)

12 24 36 48
Components per application

0

250

500

750

1000

1250

1500

1750

2000

Ex
ec

ut
io

n
tim

e
[m

s]

Model
centralized
independent
communicating
overlapping

Fig. 8: Execution time of the search-based algorithm for
varying application size

