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Abstract—Previous work on optimizing resource provisioning in virtual-
ized environments focused either on mapping virtual machines (VMs) to
physical machines (PMs) or mapping application components to VMs.
In this paper, we argue that these two optimization problems influence
each other significantly and in a highly non-trivial way. We define a
sophisticated problem formulation for the joint optimization of the two
mappings, taking into account sizing aspects, colocation constraints,
license costs, and hardware affinity relations. As demonstrated by the
empirical evaluation on a real-world workload trace, the combined opti-
mization leads to significantly better overall results than considering the
two problems in isolation.

Index Terms—Virtual machines; VM placement; VM consolidation; VM
selection; VM sizing; cloud computing; data center

1 INTRODUCTION

As cloud data centers (DCs) are serving an ever growing de-
mand for computation, storage, and networking, their effi-
cient operation has become a high priority. Cloud providers
seek to serve as many customer requests as possible and
to decrease operational costs. Operational costs are largely
driven by electricity consumption, which also impacts the
environment. At the same time, cloud providers must also
fulfill service-level objectives (SLOs) on performance, avail-
ability, and security.

Virtualization has been widely adopted in DCs to con-
solidate workload on the necessary number of physical ma-
chines (PMs) with high utilization of the available hardware
resources. For this purpose, virtual machines (VMs) are used
as the virtual infrastructure for running the workload, en-
abling the isolated execution of multiple applications on the
same PM. However, virtualization also has some drawbacks
(e.g., overhead [50]) and limitations (e.g., no perfect isolation
of colocated VMs from each other [7], [27]).

Because of its impact on costs, application performance,
SLOs, and the environment, optimization relating to the
management of VMs has received considerable attention in
the last couple of years. As shown in our recent survey [30],
most previous research efforts fall into one of two categories:
VM placement and VM selection. VM placement is a problem
faced by Infrastructure-as-a-Service (IaaS) providers: how
to determine a mapping of VMs to PMs with the main
objective of minimizing overall energy consumption. On the
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other hand, VM selection is faced by IaaS tenants concerned
with assigning application components1 to VMs.

The two problems are quite different: VM placement
is about physical resources, their utilization and power
consumption, whereas VM selection is concerned with lease
costs and application-level performance metrics. The central
notion that connects the two perspectives is the VM.

Although VMs play an important role, especially in a
public IaaS setting, we argue that VMs are just a tool for
mapping tenants’ application components to the provider’s PMs
in a safe and manageable fashion. Tenants’ main objective
is to find hosts for their applications, providers’ objective is
to utilize their infrastructure by accommodating workload
that is valuable for their clients, and thus realize revenue.
VMs can be seen as wrappers around application compo-
nents that make all this possible in a manageable way. In
this respect, VM placement and VM selection are just two
sides of the same coin. Most importantly, the two problems
influence each other.

A simplified example is shown in Fig. 1. Here, we
consider a single resource dimension (e.g., only CPU) and
assume that all PMs have the same capacity according to
this resource. The capacity of the PMs is taken to be 1.
We consider six components with resource need 0.3 each
(i.e., each component requires 30% of the capacity of a
PM). Further, we assume that a VM adds an overhead of
0.05 to the size of the contained component(s) in terms of
resource consumption. The three subfigures show the effect
of different VM selection policies on VM placement. In Fig.
1(a), the VM selection policy selects a dedicated VM for
each component, resulting in 6 VMs of size 0.35 each, the
placement of which requires at least 3 PMs. In Fig. 1(b),
components are grouped pairwise into VMs, resulting in
3 VMs of size 0.65 each, the placement of which again
requires 3 PMs. In Fig. 1(c), groups of 3 components are
mapped to VMs, resulting in 2 VMs of size 0.95 each, and
these can be hosted by 2 PMs. Therefore, this third scenario
leads to approximately 33% energy savings. However, if we
continue this line of thought and map 4 components into
a single VM, this would result in VMs of size 1.25, which
cannot be accommodated by the available PMs without
severe resource overload.

As demonstrated by this example, VM selection influ-

1. In this paper, the term “component” denotes a component of an
application, i.e., a software component.
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(a) Separate VM for each component
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(b) 2 components per VM
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(c) 3 components per
VM

Fig. 1. Examples of the impact of VM selection decisions on the possibilities of VM placement

ences VM placement in a non-trivial way. Therefore we
argue that, at least in a private cloud setting, where VM
selection and VM placement are in the hands of the same or-
ganization, the two kinds of optimization should be carried
out in a closely coupled way. So, the setting of this paper
is the IT department of an organization running a private
cloud, in which both VM selection and VM placement
are carried out by the IT department. The main questions
addressed by this paper are:

• How much can we gain by optimizing VM selection
and VM placement together, in a joint optimization?

• If the two problems are solved separately, how much
can we gain by incorporating knowledge about VM
placement into VM selection and vice versa, by in-
corporating knowledge about VM selection into VM
placement?

To answer these questions, we compare several algo-
rithms, from an integrated approach for the joint selection-
and-placement problem to complete separation of the two
problems. Also some approaches are investigated that are
in between, meaning that they solve the two problems
separately but include some information about one of the
problems into the solution of the other. To compare the
algorithms, we use several metrics including energy con-
sumption, license costs, compliance with hardware affinity
constraints, and compliance with colocation constraints of
the resulting system configuration.

Next, related work is reviewed in Section 2, followed by
the problem formalization in Section 3 and different possible
algorithms in Section 4. Empirical experience with applying
the presented algorithms to real-world workload data is
presented in Section 5 and Section 6 concludes the paper.
The online supplemental material contains a more detailed
description of the aspects that VM selection and placement
need to account for.

2 PREVIOUS WORK

As shown in our recent survey [30], most previous research
efforts on VM mapping problems fall into one of two cat-
egories: VM placement is concerned with mapping VMs to
PMs in a DC, while VM selection considers the problem of
mapping application components to VMs. In the taxonomy
introduced in [32], the first one is the Single-DC problem,
while the latter is the Multi-IaaS problem (mirroring the

fact that cloud users can choose among a number of IaaS
offerings).

2.1 VM placement

Even within the Single-DC problem, many different prob-
lem variants have been considered. The most important
differentiating factors are:

• The set of resource types considered:

– Many papers consider only the CPU [4]–[6],
[9], [11], [20], [24].

– Other papers included, beside the CPU, also
some other resources like memory, I/O, stor-
age, or network bandwidth [3], [8], [18], [34],
[44].

• The considered cost factors:

– Many papers focus on the number of active
PMs because it largely determines the total
energy consumption [4], [11], [39].

– Some also take into account the load-
dependent dynamic power consumption of
PMs [1], [5], [15], [18], [20], [43], [47].

– A further objective of some papers is to min-
imize the number of overloaded PMs because
of the performance degradation that results
from overloads [5], [11], [44].

– Some papers also considered the cost of migra-
tion of VMs [5], [11], [37], [43].

As noticed by several researchers, the special case of
the Single-DC problem in which a single resource type
is considered and the only objective is to minimize the
number of used PMs is equivalent to the well-known bin-
packing problem. On one hand, this means that the Single-
DC problem is strongly NP-hard so that the existence of
an efficient exact algorithm is very unlikely. On the other
hand, simple packing heuristics like First-Fit (FF), Best-Fit
(BF), and First-Fit-Decreasing (FFD) are known to perform
very well on bin-packing. Hence, several papers proposed
to adopt such heuristics to the VM placement problem [4],
[5], [20], [28], [44].

2.2 VM selection

Concerning VM selection (the Multi-IaaS problem), also
many different problem formulations have been suggested.
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Similarly to the Single-DC problem, most works focus on
computational power [12], [29], [46] but a few works also
consider other resource types like memory [25], [26], [35].
The main optimization objective is to find the best trade-off
between performance and VM lease costs, which typically
means that either the minimum required performance is
given and costs must be minimized or the acceptable costs
are constrained and performance must be maximized. Per-
formance is often defined in terms of the makespan, i.e., the
time between starting the first task and finishing the last
one, in some cases also allowing dependencies among the
tasks [10], [19], [21], [35].

Several different models have been investigated also
in terms of VM lease costs. Most works consider costs
proportional to VM usage time [9], [12], [22], [29], [45], [46],
but some also add fees depending on consumed resource
usage [26], [35] or discounts for long-term VM rental [19],
[26]. Spot instances have also been considered [14].

Another relevant topic is auto-scaling, aiming to deter-
mine the number of necessary instances of a given VM to
serve the current load [2], [40]. This can also be seen as a
kind of VM selection problem.

2.3 Interplay of VM placement and VM selection

The papers cited above address either VM placement or
VM selection in isolation. Although both problems have
received much attention, their inter-dependence has hardly
been studied. We are aware of only two papers by other
researchers that made first steps into this direction. One of
them is the recent work of Piraghaj et al. [36]. The focus
of that paper is on selecting optimal VM sizes based on
the characteristics of the tasks to be allocated. The objective
is to reduce energy consumption by minimizing resource
wastage. Each VM is assumed to have a fixed size irrespec-
tive of its workload, and the difference between the VM’s
size and the total size of its workload is wasted.

In contrast, this paper assumes that a VM’s real size
(as taken into account by the provider in VM placement
decisions) follows the capacity requirements of its workload.
The rationale is that resource usage is most of the time
significantly below the peak, yielding a great opportunity
for DC operators to consolidate VMs based on their current
load and continuously adapt the placement accordingly,
always using just the necessary number of active PMs [43].
Another important difference is that the work of Piraghaj
et al. [36] did not consider migrations, whereas we do.
Through these differences we believe to have a more realistic
model, in which the sought trade-offs and the objectives
are also somewhat different (opportunities for consolidation
through migration versus minimization of wastage through
sizing).

The other relevant paper is due to Ganesan et al. [17].
That work is in the context of a Software-as-a-Service
provider that wants to allocate the components of its ap-
plications to VMs. The focus of the work is on VM sizing,
namely, determining the dedicated and shared capacity for
the VMs, based on past observations of the applications’
workload. Their algorithm also outputs recommendations for
VM placement, like which VMs can be placed statically and
which ones need dynamic placement. However, the actual
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Fig. 2. Problem model using UML notation

allocation of VMs to PMs is not carried out; they assume
that it is done by some external algorithm. In contrast, we
are interested in the impact of selection on placement; it is
unfortunately not possible to tell how good that approach
is in this respect. Another limitation of that paper is the
assumption that each application component is mapped to
a separate VM, whereas we also allow to co-locate multiple
components in the same VM.

In our own previous work, we have started investigating
the connections between VM selection and VM placement
[33]. In particular, we compared three different VM selection
algorithms in combination with the same VM placement
algorithm; our results suggested that the more information
the VM selection algorithm has about the PMs, the current
VM placement, and the VM placement algorithm, the better
overall results can be achieved. In that work, components
and VMs were only characterized by their size; in contrast,
this work analyzes a similar question in the context of a
much more general problem formulation, featuring beyond
the mere size of the components also license costs, coloca-
tion constraints and hardware affinity constraints. Therefore
we believe that the results of this paper are more relevant
for practical use.

3 PROBLEM FORMULATION

Based on the analysis of the relevant aspects of the problem
(details can be found in the online supplemental material),
we came to the problem model summarized in Figure 2.

The problem model revolves around components that
are deployed in VMs, which in turn are deployed in PMs.2

Let C , V , and P denote the set of components, VMs, and
PMs, respectively. For a component c ∈ C , v(c) denotes the
VM where c is deployed; likewise for a VM v ∈ V , p(v)
denotes its hosting PM.

The size of a component encodes its resource require-
ments along multiple resource types as a d-dimensional

2. The numbers near the ends of links mean minimum and maximum
cardinalities and * means infinity. For instance, the numbers near the
link between Component and VM mean that a component is deployed
in exactly one VM, whereas a VM can host an arbitrary number (from
0 to infinity) of components.
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vector. Here, d is the number of considered resource types,
e.g., if CPU and memory are considered, then d = 2. The
size of a VM is also a d-dimensional vector: the sum of the
sizes of the components deployed in the given VM, plus the
overhead of virtualization (the size vector of an empty VM).
For a VM v ∈ V , its size thus is computed as

size(v) = s0 +
∑

c∈C:v(c)=v

size(c),

where s0 ∈ R
d
+ is the size vector of an empty VM.

Each PM p ∈ P has given capacity according to each
of the considered resource types. Therefore, the capacity
of a PM p is given by a d-dimensional vector cap(p). The
mapping of VMs on PMs must respect the capacity of the
PMs, as captured by the following constraint:

∀p ∈ P : load(p) =
∑

v∈V :p(v)=p

size(v) ≤ cap(p).

Note that here, “≤” is a component-wise comparison of
d-dimensional vectors: for x, y ∈ R

d, x ≤ y if and only if
xj ≤ yj for each j = 1, . . . , d.

The state of a PM can be either on or off. The operating
system of VM v is os(v). For each component c, the list of
operating systems is given on which it can run; os(v(c))
must be an element of this list.

A colocation constraint relates to a pair of components.
The type of the constraint can be one of must, should, should
not, and must not. Moreover, it is given for each colocation
constraint whether it relates to the colocation in the same
VM or the same PM. With this mechanism, we can model
all colocation aspects described in the online supplemen-
tal material. For instance, shared-memory communication
between components leads to a must-constraint on VM
level, meaning that they must be in the same VM, whereas
intensive but loosely-coupled communication may lead to a
should-constraint on PM level, meaning that they should be
in the same PM. Security concerns may necessitate a must-
not-constraint on PM level, meaning that they must not be
in the same PM etc.

A component may have a license assigned to it, if it is
placement-relevant because the license fee is proportional
to either the number of VMs or the number of PMs running
components with the given license. For a VM-based license
ℓ, let V (ℓ) denote the set of VMs containing at least one
component associated with license ℓ, then the license fee to
be paid because of ℓ is fee(ℓ) · |V (ℓ)|. Similarly, if ℓ is a PM-
based license and P (ℓ) denotes the set of PMs containing at
least one component associated with ℓ, then the license fee
to be paid because of ℓ is fee(ℓ) · |P (ℓ)|. The total license fee
to be paid is the sum of the fees for each license.

As a consequence, if multiple VMs containing compo-
nents with the same license ℓ are in the same PM, then

• the license fee has to be paid only once if ℓ is a PM-
based license;

• it has to be paid for each VM if ℓ is a VM-based
license.

A PM may possess some PM features. A hardware (HW)
affinity constraint can specify the relation of a component
to a PM feature. The type of the HW affinity can be either

TABLE 1
Overview of used notation

Notation Meaning

C Set of all components
V Set of all VMs
P Set of all PMs
v(c) VM hosting component c
p(v) PM hosting VM v

d Number of considered resource types
s0 Size vector of an empty VM
V (ℓ) Set of VMs with at least one component associated with license ℓ

P (ℓ) Set of PMs with at least one component associated with license ℓ

W (x) Power consumption of a PM with CPU load x

Wmin Minimum power consumption of a PM
Wmax Maximum power consumption of a PM

must (the component definitely requires a PM with the given
feature) or should (the component benefits from a PM with
the given feature).

The power consumption of a PM is a function of its CPU
load. As in several previous works [4], [18], [43], we use a
linear approximation, i.e., the power consumption of a PM
with CPU capacity c and CPU load x is given by

W (x) = Wmin + (Wmax −Wmin) · x/c,

where Wmin and Wmax are the minimum and maximum
power consumption of the PM, respectively. Table 1 gives
an overview of the used notation.

Now we summarize the problem’s inputs, outputs, con-
straints, and objectives. The inputs are:

• the set of components with the associated colocation
constraints, licenses, and HW affinities;

• the set of PMs with their PM features.

The output consists of

• the set of VMs to be used,
• the mapping of components to VMs,
• and the mapping of VMs to PMs.

The solution must respect the PM capacity constraints, the
requirements of the components in terms of VM OS, the
colocation constraints of type „must” and „must not,” and
the HW affinities of type „must.” There are multiple objec-
tives: minimizing the total energy consumption of the PMs,
minimizing the total license fee, maximizing the number
of satisfied colocation constraints of type „should” and
„should not,” and maximizing the number of satisfied HW
affinities of type „should.”

As with any model, this problem formulation also ab-
stracts from some technical details. For example, the tran-
sient processes of turning a PM on or off, deploying a VM on
a PM, or deploying a component in a VM are not considered,
nor their overhead in terms of time and energy. This is in
line with the problem formulations used in most previous
works in this area [30] and represents a good approximation
for long-running software components. For very dynamic
settings, the problem formulation – and the subsequent
algorithms – may need to be extended in this respect.

4 MAPPING ALGORITHMS

In this section, we first devise an algorithm for the joint VM
selection and VM placement problem, called COMBINED.
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Then, for the purpose of comparison, we also introduce
some algorithms for only VM selection respectively only
VM placement.

VM placement and VM selection are tough combinato-
rial problems for which optimal methods are unfortunately
intractable for practical problem sizes [31]. Therefore, in line
with most existing works, the algorithms presented here are
all heuristics.

4.1 Combined VM selection and VM placement

The aim of the COMBINED algorithm is to map a new
component c on a VM and a PM. This can be done in several
ways:

• Starting a new VM v to host c and placing v on a PM
• Selecting an existing VM v to host c and keeping v

on the PM where it is
• Selecting an existing VM v to host c and migrating v

to another PM

These three principal ways of mapping can be unified by
considering all VMs from V ∪ {v∗} as possible hosts for c,
where V is the set of existing VMs and v∗ is a new VM, and
considering all PMs as possible hosts for the selected VM.
The basic idea of the COMBINED algorithm is to examine all
these possibilities and choose the best one.

One challenge that needs to be tackled is the potentially
large number of possible configurations to examine, namely
(|V |+1) · |P |. The naive approach of examining all possible
configurations can be rather time-consuming if |V | and |P |
are large, taking also into account that examining a possible
configuration in terms of several objectives is also non-
trivial. Note that this would still be a polynomial-time algo-
rithm, but in order to quickly react to tenants’ deployment
requests, the selection and placement algorithm has to be
fast even for large DCs.

For this reason, we decided to first filter the set of
candidate PMs and VMs and take only the promising ones
into account. As shown in Algorithm 1, we collect the
promising VMs in a set V ∗ and the promising PMs in a
set P ∗. We start by placing a new VM with an appropriate
OS in V ∗ (line 3). If there is a colocation constraint of
type must or should between c and another component c′,
then either the VM or the PM hosting c′ is also added,
depending on whether it is a VM-level or PM-level colo-
cation constraint (lines 4-12). Such VMs/PMs are indeed
promising candidates, since mapping c onto them would
satisfy the colocation constraint. Similarly, if c has a VM-
based license, then all VMs containing a component with the
same license are added to V ∗ (lines 13-18), whereas if c has
a PM-based license, then all PMs containing a component
with the same license are added to P ∗ (lines 19-26). These
are again promising since mapping c onto them would incur
no license fee. For hardware affinity constraints of c, all PMs
offering the needed feature are added to P ∗ (lines 27-32).
From all PMs where c would fit without overload, the ones
with the highest load are also added to P ∗ (lines 33-35),
since mapping c onto them would lead to good utilization
and thus to relatively low energy consumption. In all these
steps, if a PM p is added to P ∗, then the VMs hosted on p
are added to V ∗. Finally, we add some further random VMs

Algorithm 1 Determining candidate PMs and VMs

1: procedure CANDIDATES(c)
2: V ∗ ← ∅, P ∗ ← ∅
3: Add to V ∗ a new VM with OS compatible with c
4: for all must or should colocation constraint of c do
5: Let c′ be the other component of the constraint
6: if VM-level colocation constraint then
7: Add v(c′) to V ∗

8: else /* PM-level colocation constraint */
9: Add p(v(c′)) to P ∗

10: Add each VM on p(v(c′)) to V ∗

11: end if
12: end for
13: if c has a VM-based license ℓ then
14: for all v ∈ V do
15: if there is a component in v with license ℓ then
16: Add v to V ∗

17: end if
18: end for
19: else if c has a PM-based license ℓ then
20: for all p ∈ P do
21: if there is a component in p with license ℓ then
22: Add p to P ∗

23: Add each VM on p to V ∗

24: end if
25: end for
26: end if
27: for all hardware affinity constraint of c do
28: for all PM p with the given PM feature do
29: Add p to P ∗

30: Add each VM on p to V ∗

31: end for
32: end for
33: Let P ′ be the set of PMs on which c would fit
34: Sort P ′ in decreasing order of CPU load
35: Add the first k1 PMs of P ′ to P ∗ and their VMs to V ∗

36: Add k2 random VMs to V ∗

37: Add k3 random PMs that are on to P ∗

38: Add k4 random PMs that are off to P ∗

39: return (V ∗, P ∗)
40: end procedure

Objectives Objectives 

Hard factors Hard factors 

Soft factors Soft factors 

Nr. of PM overloads Nr. of PM overloads 

Nr. of violated must colocation constraints Nr. of violated must colocation constraints 

Nr. of violated must not colocation constraints Nr. of violated must not colocation constraints 

Nr. of violated must hardware affinities Nr. of violated must hardware affinities 

Power consumption Power consumption 

License cost License cost 

Nr. of violated should colocation constraints Nr. of violated should colocation constraints 

Nr. of violated should not colocation constraints Nr. of violated should not colocation constraints 

Nr. of violated should hardware affinities Nr. of violated should hardware affinities 

VM size VM size 

Fig. 3. Minimization objectives of VM selection and placement

and PMs to V ∗ and P ∗ to extend the search space (lines
36-38). This is important especially if there are few VMs or
few dependencies (colocation constraints, common licenses,
affinity constraints). At the end, V ∗ × P ∗ defines the set of
candidates to examine.
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The other challenge in devising the COMBINED algo-
rithm is rooted in the multi-objective nature of the problem:
how to determine the best of the examined candidate con-
figurations. As Fig. 3 shows, we differentiate between hard
factors which should be 0 and soft factors that should be also
minimized but with a lower priority than the hard factors.

The factors listed in Fig. 3, except for “VM size,” directly
relate to costs or constraint violations that need to be mini-
mized. “VM size” has been included because, according to
our preliminary experiments, otherwise the algorithm tends
to colocate too many components in the same VM. This is
logical since – because of the overhead of VMs – mapping
the new component to an existing VM is always more
energy-efficient than creating a new VM for it. However,
having too large VMs may become a disadvantage in the
long run, leading to fragmentation of the available PM
capacity and hindering the colocation of future components
with existing ones even if this were really necessary (be-
cause of colocation constraints or license fees). Therefore,
since the algorithm makes online decisions based on current
objective values without seeing the future, it was necessary
to include VM size as a minimization objective to neutralize
the energy bias and develop a more future-proof mapping.

For each examined candidate configuration and each
optimization objective, we compute the difference that the
given selection and/or placement decision would have on
the given metric. Based on these atomic metrics, two com-
pound metrics are computed for each examined candidate
configuration: the sum of the hard factors and the weighted
sum of the soft factors (cf. Fig. 3). For the soft factors,
weighting is reasonable because power consumption values,
license fees, VM sizes and numbers of violations are of
different orders of magnitude, so they should be scaled
to the same range to allow a meaningful comparison later
on. The weight values should thus be chosen depending
on the range of license costs, power consumption values
etc. The weights can also be used to express differences
in the importance of the individual soft factors. For the
hard factors, weighting is not necessary (although possible)
because all factors are numbers of violations.

To decide whether candidate configuration x is better
than candidate configuration y, we use the following rela-
tion:

x ≺ y ⇔ hard(x) < hard(y) ∨

∨ (hard(x) = hard(y) ∧ soft(x) < soft(y)),

where hard(·) and soft(·) denote the two compound met-
rics defined above.

Putting all pieces together, Algorithm 2 shows the body
of the COMBINED algorithm. It should be noted how VM
selection and VM placement are interleaved in this algo-
rithm, since each examined configuration encodes both a
VM selection and a VM placement decision.

4.2 Separate VM selection and VM placement

For comparison, we also develop two policies for VM se-
lection (without VM placement) and two policies for VM
placement (without VM selection). Any VM selection policy
can be catenated with any VM placement policy, leading to
four different algorithms for deploying a new component.

Algorithm 2 The COMBINED algorithm for adding a new
component c

1: (V ∗, P ∗)← CANDIDATES(c)
2: for all v ∈ V ∗ do
3: for all p ∈ P ∗ ∪ {p(v)} do
4: Compute atomic objectives for (v, p)
5: Compute compound objectives for (v, p)
6: end for
7: end for
8: (v, p)← best examined configuration according to ≺
9: if v is a new VM then

10: Start new VM on p
11: else if p(v) 6= p then
12: Migrate v from p(v) to p
13: end if
14: Deploy c on v

Algorithm 3 The INFORMED policy for selecting a VM for
the new component c

1: Let v∗ be a new VM with OS compatible with c
2: V ∗ ← V ∪ {v∗}
3: for all v ∈ V ∗ do
4: Compute atomic objectives for selecting v for c
5: Compute compound objectives for selecting v for c
6: end for
7: v ← best examined VM according to ≺
8: if v = v∗ then
9: Start new VM

10: end if
11: Return v

4.2.1 DEDICATED selection policy

Our first VM selection policy always creates a new, dedi-
cated VM for the new component. Despite its simplicity, this
selection policy is quite powerful because it does not create
any unnecessary dependence between components, thus
leaving full flexibility to the subsequent placement as well
as future re-optimizations by live migration. Accordingly,
this approach has been used by some previous works [17],
[21]. The obvious drawbacks of this policy are the relatively
high overhead stemming from the high number of VMs and
the lack of colocation for components that must or should
be colocated.

4.2.2 INFORMED selection policy

To remedy the shortcomings of the DEDICATED selection
policy, we devise a much more sophisticated policy aiming
to make a well-informed decision on whether to colocate the
new component with existing components or to deploy it in
a new VM.

As shown in Algorithm 3, the INFORMED VM selection
policy closely resembles the COMBINED algorithm. The dif-
ferences stem directly from the fact that the INFORMED pol-
icy does not account for the placement: hence, it investigates
only the possible VMs, not pairs of VMs and PMs. Note also
that the INFORMED policy examines all the |V | + 1 possible
VMs, whereas the COMBINED algorithm had to sample from
its much larger search space to remain fast.

The biggest difference is in the way the objectives are
computed. From the metrics shown in Fig. 3, the “Nr. of
PM overloads,” “Nr. of violated must / should hardware
affinities,” and “Power consumption” objectives are not
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applicable at the VM selection stage and are thus ignored
in the INFORMED policy. As regards license costs, only
VM-based licenses can be considered. VM-level colocation
constraints can be fully evaluated, but concerning PM-level
colocation constraints, we can only be sure about a violation
in case of a must not or should not constraint (if the involved
components are mapped to the same VM); for a PM-level
must or should constraint, a violation cannot be determined
at the VM selection stage. The “VM size” metric can be of
course fully evaluated.

Because of the – soft – aim of minimizing VM size,
components will be only colocated if this is necessary or
advantageous for satisfying colocation constraints or for
minimizing license fees.

4.2.3 BLACK-BOX placement policy

The placement policy receives as input the VM returned by
the preceding VM selection policy, which may be a new
or an existing VM. The placement policy determines a PM
for this VM. In case of an existing VM, this means that the
placement policy may decide to migrate the selected VM.
This is in line with the COMBINED algorithm, which can
also migrate the VM selected for the new component.

The BLACK-BOX placement policy does not consider the
components within the VM to place, only its size. This is the
same approach as taken by most previous works in the area
of VM placement. As suggested by several researchers (e.g.,
Beloglazov and Buyya [5]), we use the best-fit heuristic to
choose the PM that has enough capacity to host the VM but
with the minimum remaining free capacity. The VM is then
placed on this PM.

Recall that the capacity of a PM is a multi-dimensional
vector. For comparing the free capacity of two PMs, we
first convert them to single numbers. For this purpose, we
take the minimum of the coordinates of the vector. In our
previous work we also compared some other metrics for
this purpose and found that the minimum metric gives good
results [33].

Since this placement policy only considers the size of the
VM, we can expect that it will lead to a good placement
in terms of energy consumption and number of overloads,
but will perform poorly in terms of license costs and confor-
mance with colocation and hardware affinity constraints.

4.2.4 WHITE-BOX placement policy

To address the shortcomings of the BLACK-BOX placement
policy, we devise a more sophisticated placement policy that
also considers the relations of the components within the
VM to be placed. Similarly to the INFORMED selection policy,
the idea is again to mimic the COMBINED algorithm as much
as possible, now at the level of VM placement.

As shown in Algorithm 4, this involves examining all
PMs as possible hosts for the VM and choosing the best one
in terms of the investigated objectives. From the objectives
of Fig. 3, now all atomic metrics are relevant except for “VM
size.” In terms of license costs, only PM-based licenses are
relevant at this stage; similarly, from the colocation con-
straints, only PM-level constraints are relevant. The other
metrics are fully evaluated.

It should be noted that the INFORMED selection policy
and the WHITE-BOX placement policy together base their

Algorithm 4 The WHITE-BOX policy for placing a VM v

1: for all p ∈ P do
2: Compute atomic objectives for placing v on p
3: Compute compound objectives for placing v on p
4: end for
5: p← best examined PM according to ≺
6: if v is a new VM then
7: Start new VM on p
8: else if p 6= p(v) then
9: Migrate v from p(v) to p

10: end if

decisions on the same set of information as the COMBINED

algorithm and also the way they examine and compare pos-
sible candidates is analogous. However, there are two main
differences. First, the COMBINED algorithm examines VM-
PM pairs, i.e., it considers selection and placement together,
whereas in the catenation of INFORMED and WHITE-BOX,
first only VMs are considered until one VM is selected,
and then only PMs are considered for the already selected
VM. This can be seen as an advantage of the COMBINED

algorithm. Second, both the INFORMED selection policy
and the WHITE-BOX placement policy consider all their
possible choices (all VMs respectively all PMs), whereas
the COMBINED algorithm only examines a subset of the
possible candidate configurations, so that it remains fast.
The more thorough search can be seen as an advantage of
the INFORMED and WHITE-BOX policies.

5 EVALUATION

Our aim is to compare the different approaches to VM
selection and VM placement:

• Decoupled VM selection and VM placement, as in
most existing approaches (DEDICATED+BLACK-BOX)

• Partial integration:

– VM selection also considers VM placement but
not vice versa (INFORMED+BLACK-BOX)

– VM placement also considers VM selection but
not vice versa (DEDICATED+WHITE-BOX)

• Semi-integrated: VM selection considers VM place-
ment and vice versa (INFORMED+WHITE-BOX)

• Fully integrated VM selection and VM placement
(COMBINED)

5.1 Setup

Algorithms for VM placement and VM selection are usually
evaluated either with a real cloud or by means of simulation.
Using a real cloud is of course more realistic but it comes
with several limitations. In particular, it is difficult to exper-
iment with many different parameter settings or to scale the
size of the experiment if a real cloud is used. Simulations are
much more flexible and hence more popular for research on
cloud resource management [38], [41], [48], [49]. Since we
would like to compare several different algorithms under
many different settings, a simulation-based approach is
more appropriate. To still obtain practically relevant results,
we used real-world test data, leading to a good compromise
between a real cloud and pure simulation.
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TABLE 2
Results for the base setup (component sizes only)

Algorithm Energy
[kWh]

Nr. of
overloads

Nr. of
migrations

Execution
time [ms]

COMBINED 8,319.35 0 2,390.6 4.0
DEDICATED+BLACK-BOX 8,570.03 0 1,780.5 0.1
DEDICATED+WHITE-BOX 8,538.66 0 1,520.2 0.5
INFORMED+BLACK-BOX 8,567.11 0 1,792.3 0.3
INFORMED+WHITE-BOX 8,539.47 0 1,496.2 0.9

We have implemented all algorithms presented in Sec-
tion 4 in a C++ program. To foster reproducibility, this
program is freely available from https://sourceforge.net/
p/vm-alloc/crosslayer.

In addition to the selection and placement algorithms
discussed so far, the program also features a re-optimization
algorithm which is invoked regularly and uses VM live
migrations to adapt the placement to workload changes.
The re-optimization algorithm works as follows: it takes a
random VM and uses the WHITE-BOX placement policy to
optimize its placement. This optimization step is repeated
kr times, where kr is a given constant.

For component sizes, we used a real workload trace
from the Grid Workloads Archive, namely the AuverGrid
trace, available from http://gwa.ewi.tudelft.nl/datasets/
gwa-t-4-auvergrid. From the trace, we used the first 10,000
tasks that had valid CPU and memory usage data. The
simulated time (i.e., the time between the start of the first
task and the end of the last one) is roughly one month, thus
giving sufficient exposure to practical workload patterns.

As PMs, we simulated HP ProLiant DL380 G7 servers
with Intel Xeon E5640 quad-core CPU and 16 GB RAM.
Their power consumption varies from 280W (zero load) to
540W (full load) [23]. Throughout the experiments, we focus
on two resource types: CPU and memory, i.e., d = 2. Con-
cerning virtualization overhead, previous work reported 5-
15% for the CPU [50] and 107-566 MB for memory [13]. In
our experiments, we use 10% CPU overhead and 300 MB
memory overhead. The VM placement is re-optimized every
5 minutes. Similarly, constraint violations are also checked
every 5 minutes.

Each reported result is the average of 10 runs.

5.2 Component sizes only

In our first experiment, components are only characterized
by their sizes, i.e., there are no license fees, colocation
constraints, nor hardware affinities, and each component
has the same OS. This is similar to the evaluation setup of
most previous works.

The results – according to the relevant metrics – are
shown in Table 2. As can be seen, all algorithms result in 0
overloads. In terms of energy consumption, the COMBINED

algorithm has a clear advantage over the others; the results
of the others are very close to each other. In particular, the
used selection policy has practically no effect. This is indeed
true because in this case the INFORMED policy has no reason
to colocate multiple components in the same VM, hence it
also starts a dedicated VM for each component. The WHITE-
BOX placement policy performs slightly better than the
BLACK-BOX policy. Since the components are characterized

only by their sizes, there is not much difference between the
two placement policies. The difference is only that BLACK-
BOX uses the best-fit heuristic whereas WHITE-BOX chooses
the PM based on its real power consumption.

The advantage of the COMBINED algorithm over the sec-
ond best in terms of energy consumption is 219.31 kWh, or
roughly 2.6%. The average electricity price in the Euro area
for industrial customers amounted to 0.125 Euro per kWh in
2015.3 Thus, the savings translate to 27.1 Euro. Scaling it to a
data center with 10 thousand PMs, considering a 12-month
period, and assuming a PUE (power usage effectiveness)
of 1.7, which is a typical value4, the total savings would
amount to over 240,000 Euro per year.

In terms of the number of migrations (fourth column of
Table 2), there is a clear difference between the algorithms.
This could be important because too many migrations could
lead to performance degradation or could even make the
system unstable [16], [42]. However, relative to the length of
the simulation, the number of migrations is actually quite
low for all algorithms; even for the COMBINED algorithm
which leads to the highest number of migrations, the av-
erage number of migrations per PM per day is only 3.32,
which should not cause any problems.

Similarly, the COMBINED algorithm takes considerably
more time (see last column of Table 2) than the other meth-
ods, but with an average execution time of 4.0 milliseconds,
it can be still considered fast enough.

5.3 License fees

In the next set of experiments, we investigate the effect of
license fees. For this purpose, the components are enriched
with randomly generated license information.

First, we assume 10 different PM-based licenses (and
no VM-based licenses). For each of them, the license fee
is randomly chosen between 100 and 1000. We varied the
number of components having a license from 2% to 10%
of all components; each of the license-relevant components
is associated to one of the 10 licenses, taken randomly.
The resulting total license fees achieved by the different
algorithms are depicted in Fig. 4(a). (Other metrics are not
shown because they are very similar to the values from Table
2; in particular, all algorithms lead to 0 overloads.)

The figure clearly shows the superiority of the COM-
BINED algorithm over all others. The difference keeps grow-
ing with increasing number of license-relevant components;
if 10% of all components have a PM-based license, then the
COMBINED algorithm achieves 44% lower license fees than
the best result of the other algorithms. Among the other
algorithms, there is no clear winner.

Fig. 4(b) shows the results of the same experiment but
with 50 instead of 10 PM-based licenses. Again, the COM-
BINED algorithm leads to the best results in most cases
and its advantage grows with increasing number of license-

3. http://ec.europa.eu/eurostat/statistics-explained/index.php/
Energy_price_statistics

4. http://www.datacenterknowledge.com/archives/2014/06/02/
survey-industry-average-data-center-pue-stays-nearly-flat-four-years/
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(c) 10 VM-based licenses

0

5000

10000

15000

20000

0

4000

8000

12000

16000

2 4 6 8 10

N
u

m
b

e
r 

o
f 

o
v

e
rl

o
a

d
s 

To
ta

l 
li

ce
n

se
 f

e
e

 

Percent of components with a license 

COMBINED DEDICATED+BLACKBOX DEDICATED+WHITEBOX

INFORMED+BLACKBOX INFORMED+WHITEBOX

overloads 

(INFORMED+BLACKBOX) 

overloads 

(INFORMED+WHITEBOX) 

(d) 50 VM-based licenses

Fig. 4. License costs achieved by the different algorithms for an increasing number of components with licenses

relevant components5. However, its advantage over the
other algorithms is significantly smaller in this case. This
is because now the number of different licenses is greater,
hence – given the same number of license-relevant compo-
nents – the number of components with the same license
is smaller, leading to less opportunities for cost saving by
colocation of components with the same license.

Next, we used VM-based instead of PM-based licenses.
The results for 10 VM-based licenses are shown in Fig.
4(c). The figure shows the license fees for all algorithms;
moreover, it shows the number of overloads (as bars) for
those algorithms where this was not 0. As can be seen,
DEDICATED leads to high license fees because it does not
colocate components, hence the license fee has to be paid for
every component. COMBINED achieves much lower license
fees (again, with a growing advantage). INFORMED leads to
even lower license fees. However, this is the result of too
aggressive colocation of components with the same license
fee, leading to VMs whose sizes surpass the PMs’ capacity,
resulting in overloads. COMBINED finds a good balance
between avoiding overloads and minimizing license fees.

5. For the extreme case when only 2% of components have a license,
the COMBINED algorithm is not the winner anymore. In this case, most
decisions of the COMBINED algorithm are governed by other objectives,
e.g., optimizing energy consumption. To that end, it puts multiple
components into VMs to achieve better utilization. This, however, can
lead to big VMs that cannot be colocated with others even if this would
be beneficial from a license fee point of view.

Increasing the number of (VM-based) licenses from 10
to 50 leads to a similar pattern, with smaller differences, as
shown in Fig. 4(d). DEDICATED again performs worst, but
the three other algorithms lead to similar results in terms of
license fees. Also, as long as the number of license-relevant
components is not too high, INFORMED+WHITE-BOX does
not generate overloads, hence it could be seen as a good
alternative to COMBINED. However, for 10% license-relevant
components, the number of overloads is already non-zero.

It is interesting to compare the relative performance of
COMBINED and INFORMED between Figures 4(c) and 4(d).
In Fig. 4(c), the number of components with the same license
is high, leading to significant optimization opportunities
that INFORMED fully leverages, resulting in lower license
fees – although at the cost of PM overloads – than achieved
by COMBINED. This is a clear trend for 6%, 8%, and 10%
of components having a license. In Fig. 4(d), the number of
components with the same license is much smaller, leading
to less optimization opportunities. Thus, the results of the
different algorithms are closer to each other. The results of
INFORMED and COMBINED are not significantly different:
sometimes one of them is a bit lower, other times the other
is a bit lower, without a clear winner.

5.4 Colocation constraints

The next set of experiments evaluates the impact of colo-
cation constraints. In each experiment, 100 colocation con-
straints were generated for randomly selected components.
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TABLE 3
Number of constraint violations plus number of overloads for different colocation constraints

Algorithm
PM-level VM-level

All
must should should not must not must should should not must not

COMBINED 1,956.9 140.1 0 0 1,728.6 137.1 0 0 449.3
DEDICATED+BLACK-BOX 12,541.8 12,321.9 1,572.9 1,573.5 17,726.5 17,491.9 0 0 8,969.7
DEDICATED+WHITE-BOX 13,752.2 10,585.6 0 0 16,899.5 17,105.7 0 0 7,587.0
INFORMED+BLACK-BOX 14,878.7 13,587.3 1,615.5 1,399.1 8,391.3 13,473.9 0 0 6,116.5
INFORMED+WHITE-BOX 13,416.7 11,141.3 0 0 953.2 1,179.3 0 0 6,258.3

Table 3 shows the results in a condensed form. Each column
corresponds to one experiment. For example, in the experi-
ment of the second column, all colocation constraints were
PM-level and of type must; in the 8th column, all colocation
constraints were VM-level and of type should not. While in
most columns, all colocation constraints were on the same
level and of the same type, the last column is different: it
is a mix of the 8 combinations of colocation level and type,
where each combination is present with approximately the
same number of constraints. For each experiment, we report
the sum of the number of colocation constraint violations
and the number of overloads.

For PM-level must and should colocation constraints
(second and third column of the table), the COMBINED

algorithm is clearly superior to all others, and all other
algorithms achieve similarly poor results. Looking more
precisely into the operation of the algorithms, the following
can be understood about the reasons:

• The INFORMED selection policy has no incentive to
colocate multiple components in the same VM since
in these experiments the colocation constraints are all
on the PM level. As a result, it creates a dedicated
VM for each component. This is why there is no
significant difference between the results of the two
VM selection policies.

• Since both VM selection policies create small VMs,
this leads to low fragmentation. Therefore, when a
PM-level colocation constraint motivates the WHITE-
BOX placement algorithm to place the new VM on
the PM where one of the already placed components
resides, it will often not succeed because the given
PM does not have sufficient free capacity. This is why
there is no significant difference between the results
of the two VM placement policies.

• The COMBINED algorithm on the other hand, when
confronted with this situation, will put the new
component into the same VM as its peer and then
migrate the VM containing both components to a
PM with sufficient free capacity. Note that the other
approaches also have this option, but do not choose
it because of the separate evaluation of the selection
and placement possibilities.

Concerning the PM-level should not and must not con-
straints, the results are more easily understood. The COM-
BINED algorithm as well as the WHITE-BOX placement pol-
icy are able to avoid constraint violations by not placing the
new component (respectively the VM where it has been put)
onto the same PM as some other component(s). The BLACK-
BOX placement policy, which does not consider colocation

constraints, necessarily leads to some violations. It is inter-
esting to note that the number of violations is now much
lower than in the case of must and should constraints. This is
not surprising though: placing the new VM on a random PM
has a high chance to meet a should not or must not constraint
if the number of “bad” PMs is low, whereas meeting a must
or should constraint has much lower probability.

For VM-level must and should colocation constraints, the
DEDICATED VM selection policy obviously leads to poor
results since it never selects the same VM for components
that should be colocated. In fact, these results are even
significantly worse than in the case of the similar PM-level
constraints, since in this case definitely all constraints will
be violated, whereas in the case of PM-level constraints, PM-
level colocation was still possible. The INFORMED selection
policy, on the other hand, puts all components that must
or should be in the same VM indeed into the same VM.
Together with the WHITE-BOX placement policy, this leads
to very good results, similar to those of the COMBINED

algorithm. For VM-level must colocation constraints, it even
improves on the results of the COMBINED algorithm.

For VM-level should not and must not colocation con-
straints, as can be seen, all tested algorithms achieve optimal
results. Not colocating some components in the same VM is
very easy, for example by using dedicated VMs for each
component.

Over all experiments with colocation constraints, the
COMBINED algorithm gives excellent results: with the ex-
ception of the VM-level must constraints, where it ranks
only second after the INFORMED+WHITE-BOX combination,
it always gives the best results, in several cases dramatically
better results than any other algorithm. This is also mirrored
in the last column of Table 3, showing the combined effect of
different colocation constraints. Here, too, the COMBINED al-
gorithm is the clear winner, leading to more than an order of
magnitude better results than all other algorithms. From the
results of the remaining algorithms it is also apparent that
the INFORMED VM selection policy has a clear advantage
over the DEDICATED policy. This is not surprising, given the
inability of the DEDICATED policy to appropriately handle
VM-level must or should colocation constraints.

5.5 Hardware affinity

In this set of experiments, the PMs were enriched with PM
feature information and the components were enriched with
hardware affinity requirements. In particular, we define kf
PM features and each PM has each feature with probability
pf . Each component requires (must relationship) each PM
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TABLE 4
Number of hard hardware affinity constraint violations plus number of

overloads, depending on the number of PM features

Algorithm
Nr. of PM features

1 2 3 4 5 6

COMBINED 0 322 0 97 140 425
DEDICATED+BLACK-BOX 11,745 24,589 32,780 42,621 56,264 71,904
DEDICATED+WHITE-BOX 0 0 0 343 0 0
INFORMED+BLACK-BOX 11,973 22,961 36,385 46,647 60,120 69,419
INFORMED+WHITE-BOX 0 0 0 643 121 8
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Fig. 5. Number of hard hardware affinity constraint violations plus num-
ber of overloads, depending on the percent of PMs with the required
feature

feature with probability pr respectively benefits from it
(should relationship) with probability pb.

First, we fix pf = 20%, pr = 1%, pb = 5%, and vary
kf from 1 to 6. The results are shown in Table 4. As can be
seen, the BLACK-BOX placement policy leads to poor results
with both selection policies. This is logical since the selec-
tion policies cannot do anything to fulfill hardware affinity
constraints, and the BLACK-BOX placement policy does not
look at the hardware affinity requirements of the compo-
nents within the VM to be placed. On the other hand, the
WHITE-BOX placement policy, which does account for the
hardware affinity requirements of the components within
the VM to be placed, achieves excellent results, irrespective
of the used VM selection policy. The COMBINED algorithm
achieves similarly good results. It should also be noted
that increasing kf leads to a higher number of hardware
affinity requirements; for the BLACK-BOX placement policy,
this also translates into more constraint violations. However,
for the other algorithms, the number of constraint violations
remains low.

In the next experiment, we considered a single PM fea-
ture and varied the percentage of PMs offering this feature
from 3% to 21%. In each run, 1% of all components required
the given feature while 5% of all components were defined
to benefit from it. The results, in terms of the number of
hard constraint violations (i.e., number of violations of hard
hardware affinity constraints plus number of overloads) are
shown in Fig. 5.

As can be seen, if only few PMs possess the required fea-
ture, then all algorithms lead to a high number of violations;
it is probably not even theoretically possible to fulfill all
hardware affinity requirements. As the number of PMs with
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Fig. 6. Number of hard hardware affinity constraint violations plus num-
ber of overloads, depending on the fraction of components with (hard)
hardware affinity requirements

the given feature increases, the results form two clusters: the
COMBINED algorithm and the algorithms using the WHITE-
BOX placement policy manage to use these PMs to fulfill a
growing number of hardware affinity requirements, leading
to a steady decrease in the number of hard constraint
violations. On the other hand, the BLACK-BOX policy hardly
benefits from the increased availability of “good” PMs, in
line with the fact that this VM placement policy does not
explicitly consider hardware affinities. Within the two clus-
ters, there are no significant differences, suggesting that VM
selection does not considerably influence the satisfaction of
hardware affinity requirements.

A very similar pattern can be observed also in Fig. 6.
In this experiment, a single PM feature is considered which
is offered by 20% of all PMs. The fraction of components
requiring the given feature is varied from 1% to 10%. As can
be seen in the figure, the BLACK-BOX VM placement policy
again leads to a high number of constraint violations, which
steeply increases with the growing number of components
with hardware affinity requirements. On the other hand,
the WHITE-BOX placement algorithm and the COMBINED

algorithm can solve the problem with a much lower number
of constraint violations.

5.6 Number of operating systems

We also varied the number of operating systems and let each
component require a randomly selected OS. However, the
number of the considered operating systems did not have a
noticeable effect on the used quality metrics.

5.7 Putting the pieces together

So far, the effect of different aspects was investigated in
isolation. In practice, all aspects may be present at the same
time. Therefore, we also present the results of an experiment
in which multiple aspects are applied as follows:

• License fees:

– Number of PM-based licenses: 10
– Number of VM-based licenses: 10
– Ratio of components with a license: 5%

• Colocation constraints:
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Fig. 7. Results with license fees, colocation constraints, and hardware
affinities together

– Number of PM-level constraints: 100
– Number of VM-level constraints: 100
– Ratio of constraints with type must, should,

should not, must not: 25% each

• Hardware affinities:

– Number of PM features: 3
– For each PM feature, ratio of PMs having the

feature: 20%
– For each PM feature, ratio of components re-

quiring the feature: 1%
– For each PM feature, ratio of components ben-

efiting from the feature: 5%

• Number of operating systems: 3

The results are shown in Fig. 7 according to three dimen-
sions: hard constraint violations, soft constraint violations,

TABLE 5
Effect of search space limitation: results relative to COMBINED

Metric Relative result of COMBINED-FULL

Hard violations -5.5%
Soft violations -0.6%
License costs +5.6%
Execution time +671%

and license costs. As can be seen, the BLACK-BOX VM
placement policy is not competitive in terms of both hard
and soft constraint violations, no matter which VM selec-
tion policy is used. From the remaining three algorithms,
the COMBINED algorithm delivers the best result accord-
ing to all three dimensions. The INFORMED+WHITE-BOX

algorithm is second according to all dimensions, with 89%
more hard constraint violations, 55% more soft constraint
violations, and 7% higher license costs than the COMBINED

algorithm. Finally, the DEDICATED+WHITE-BOX algorithm
leads to 8% more hard constraint violations, 6% more soft
constraint violations, and 3% higher license costs than the
INFORMED+WHITE-BOX algorithm.

5.8 Effect of search space limitation

As explained in Section 4.1, the COMBINED algorithm con-
siders only a subset of all possible PM-VM pairs, so that it
remains fast. Now we investigate the effect of this limitation
by comparing it against a version of the algorithm, called
COMBINED-FULL, that considers all possible PM-VM pairs6.

We have repeated the experiment of Section 5.7 also
with the COMBINED-FULL algorithm. As Table 5 shows,
COMBINED-FULL achieves an improvement of 5.5% in the
number of violations of hard constraints over COMBINED.
However, this comes at the expense of a comparable increase
in license costs as well as a more than 7 times increase in
the algorithm’s execution time. This shows that the method
used in COMBINED to determine sensible candidate solu-
tions represents a good trade-off between execution time
and solution quality.

6 CONCLUSIONS

Based on the measurement results of Section 5, we can now
try to answer the original questions regarding the benefits of
(i) doing VM selection and VM placement together and (ii)
including information about VM placement in VM selection
and about VM selection in VM placement. For this purpose,
we first summarize the empirical results:

• For PM-based licenses, the COMBINED algorithm re-
sults in up to 44% lower license fees than the second
best algorithm.

• For VM-based licenses, the COMBINED algorithm
and the INFORMED VM selection policy lead to sig-
nificantly lower license fees than the DEDICATED

policy. However, in the case of the INFORMED policy,
this comes at the cost of PM overloads.

6. It should be noted that also COMBINED-FULL is a heuristic. It
considers all possible solutions that use a single migration, but it does
not consider performing multiple migrations.
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• For PM-level must and should colocation constraints,
COMBINED leads to respectively 84% and 99% im-
provement over the second best algorithm.

• For PM-level should not and must not colocation con-
straints, the COMBINED algorithm and the WHITE-
BOX VM placement policy lead to clearly better re-
sults than the BLACK-BOX placement policy.

• For VM-level must and should colocation con-
straints, the COMBINED algorithm and the IN-
FORMED+WHITE-BOX algorithm lead to considerably
better results than the other algorithms.

• In the presence of hardware affinity constraints, the
COMBINED algorithm and the WHITE-BOX VM place-
ment policy result in up to 97% better results than the
BLACK-BOX placement policy.

• When all types of constraints were applied at
once, the BLACK-BOX policy performed poorly; from
the other algorithms, COMBINED was clearly the
best, INFORMED+WHITE-BOX was second, and DED-
ICATED+WHITE-BOX was the third according to all
considered dimensions.

• The COMBINED algorithm leads to 2-3% lower en-
ergy consumption than the four other tested meth-
ods. (Although not shown explicitly, this holds con-
sistently for all cases without overloads.)

Altogether, we can conclude that the COMBINED algo-
rithm is in all cases among the best-performing algorithms.
Sometimes it clearly outperforms all other methods (e.g., for
PM-based licenses), in other cases it is just one of the best
performers. However, in none of the test cases was it clearly
inferior to another algorithm. So the answer to the first ques-
tion is clear: combining VM selection and VM placement in
a single optimization algorithm leads to significant benefits
compared to the isolated treatment of the two problems as
in most existing works (DEDICATED+BLACK-BOX).

Regarding the second question, we can state that the
WHITE-BOX VM placement policy clearly outperforms the
BLACK-BOX policy. Hence, it is advantageous to include
component-level information in VM placement decisions.
The relationship between the DEDICATED and INFORMED

VM selection policies is less clear because in many cases,
the difference between their results was marginal. However,
there were some test cases where INFORMED led to clearly
better results: for VM-level must and should colocation con-
straints and, even more importantly, when all types of
constraints were applied at once. Thus we conclude that, for
these types of scenarios, it is also advantageous to include
in VM selection decisions foresight into VM placement.

In terms of the current state of the art, it should be
underlined that existing approaches almost exclusively fo-
cus either on VM selection or VM placement, ignoring the
other problem. Hence, the DEDICATED+BLACK-BOX algo-
rithm embodies the current state of the art. Compared to
this, our results show that the tighter the two problems are
integrated, the better results can be achieved.

The comparison between the fully integrated ap-
proach (COMBINED) and the semi-integrated approach
(INFORMED+WHITE-BOX) is tricky because none of them
dominates the other in all considered metrics. COMBINED

was better in handling licenses and PM-level colocation

constraints, the two approaches yielded similar results for
handling VM-level colocation constraints and HW affin-
ity constraints, while INFORMED+WHITE-BOX led to fewer
migrations and had lower execution time. The number of
migrations and the execution time of COMBINED are also
in an acceptable range, and so, since it leads to lower
license costs and fewer constraint violations, we consider
it preferable. Also in the experiment which contained all the
investigated aspects, the COMBINED approach led to better
results according to all measured metrics.

A further question is whether there is any “hidden”
overhead of the proposed approach, since it leads to more
co-locations and as VM isolation is not perfect, this could
lead to performance degradation. Fortunately, our model
supports anti-colocation constraints with which co-location
of components that would interfere with each other can be
prohibited. Therefore, the proposed approach will only co-
locate components that do not interfere.
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✦

A ASPECTS OF THE COMPONENT–VM–PM MAP-

PING

Depending on the characteristics of the application compo-
nents, the used VM selection and placement strategies, and
general DC management policies, there can be many differ-
ent aspects that must be taken into account in the trilateral
component–VM–PM mapping. In the following, we provide
an analysis of the most important aspects, grouped into
three categories: aspects relating to VM sizing, co-location,
and other affinity aspects.

A.1 VM sizing

The following aspects of the trilateral component–VM–PM
mapping must be taken into account in relation with the
sizing of VMs:

• Placeability. As demonstrated by the example of the
Introduction in the paper, the way components are
mapped to VMs influences the size of the resulting
VMs, which in turn determines the possible place-
ments of the VMs on the PMs and hence the costs of
the placement. It is difficult to make good decisions
in VM selection because the placeability of a VM
depends not only on its own size, but also on the
size of other – existing and future – VMs.

• Possibilities of live migration. VMs provide a
generic and transparent facility for migration in or-
der to adapt to changes in the workload. Although
some applications may offer the possibility to move
individual components from one VM to another, this
cannot be assumed in general. Hence in this paper
we assume that only VMs can be migrated. The VMs
are thus the unit of migration, which means that the
VMs’ sizes determine the granularity of migrations
[4]. From this point of view, it is beneficial to have
small VMs because they allow a fine-granular control
of the PMs’ utilization, thus avoiding fragmentation
and achieving near-optimal utilization.

• Overhead. Virtualization introduces some overhead
in terms of resource consumption. Since every VM
adds some overhead (e.g., the size of the guest oper-
ating system), from this point of view it is beneficial
to have a lower number of larger VMs. Obviously,

this contradicts the above aspect which would lead
to many small VMs, so that a good balance has to be
found between the two aspects.

A.2 Co-location

The following aspects all lead to some kind of constraints or
preferences on co-location of components in the same VM
and/or PM:

• Communication. For components that communicate
with each other, it may be necessary or at least
advantageous to map them to the same VM, or at
least to VMs on the same PM [5]. For example, a
legacy application (i.e., one that was not developed
with a multi-VM deployment in mind) may consist
of multiple components that communicate via shared
memory; in this case, these components have to be
mapped to the same VM. If they communicate for
instance through TCP sockets, then such a colocation
is not necessary, but for communication-intensive
applications it may still be advantageous in order to
reduce latency and save network bandwidth.

• Security. Although virtualization provides a level
of isolation between co-located VMs, it does not
provide sufficient defense against malicious attacks.
Using covert channels in hardware or software, a
malicious VM can gain sensitive information from
co-located VMs [2]. Therefore it is important to co-
locate VMs hosting critical components only with
VMs hosting only trusted components. In a private
cloud, security concerns are typically lower than in
public clouds, but in critical domains (e.g., bank-
ing), it is still important to isolate critical productive
components from the ones whose security is not
guaranteed.

• Fault tolerance. For some components, high avail-
ability may be necessary to improve reliability [6].
This has two important consequences for selection
and placement. First, such components should not
share a VM with other, less stable components to
avoid that the failure of another component crashes
the VM. (In contrast, they may be on the same PM
since a VM can tolerate the crashing of a co-located
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VM.) Second, if a component is replicated to guar-
antee high availability, then the replicated instances
should be placed on different PMs so that a PM fault
impacts only a single instance.

• Performance interference. Components in the same
VM compete directly for all system resources. Be-
tween VMs, the virtualization layer partitions some
resources (e.g., memory space), but this isolation is
far from perfect, so that for some resources – like
memory bandwidth or caches – there is also compe-
tition between co-located VMs, which may lead to
significant performance degradation [1]. Therefore,
components that use the same resource intensively,
should be packed into distinct VMs, possibly also on
distinct PMs.

• Correlated load peaks. Sudden load increases are
dangerous in servers with high utilization because
resource overloads may easily lead to SLO violations.
It is especially problematic if the load of multiple
components on the same PM or VM increases at the
same time. Therefore, co-location of several corre-
lated components should be avoided [3].

A.3 Other affinity aspects

The following aspects, leading to software or hardware
affinity preferences, must also be taken into account when
mapping components to VMs and VMs to PMs:

• Operating system dependency. In many cases, ap-
plication components depend on a specific operating
system (OS), a specific version (or range of versions)
of an OS, or are compatible only with a set of OSs.
While the OS of the VM can be chosen independently
from the host OS, the OS of the VM must match the
OS requirements of the components.

• Hardware affinity. Some components may require
some special hardware feature, or there may be a
preference for such. For example, a component may
run only on a PM with a GPU1 of a given vendor, or
it may be able to take advantage of such hardware to
boost its performance.

• Licensing. Some components may require costly li-
censes. There are many licensing models, several of
which are agnostic of placement: e.g., if license cost
depends on the number of users, then the place-
ment of the component is irrelevant. However, some
licensing constructs specify fees depending on the
number of machines (either VMs or PMs) on which
the software runs, in some cases also weighting
the number of machines with some coefficients of
computing power. For such licensing models, the
placement of the components does matter: colocating
multiple components with the same license on the
same VM or PM leads to a reduction of the license
fees to be paid.

A.4 A note on component sizing

In this work, we focus on software deployment. At this stage
we can assume that the components and their sizes (i.e.,

1. Graphical Processing Unit

resource requirements) are given. The components and their
sizes must be determined in an earlier phase of the software
development process in such a way that the performance of
the application complies with the SLOs that it has to fulfill.
This is a challenging task, but it is outside the scope of this
paper.
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