
1

A comment on “Process placement in multicore
clusters: Algorithmic issues and practical

techniques”
Zoltán Ádám Mann

IEEE Transactions on Parallel and Distributed Systems, vol. 27, num. 8, pp. 2475-2476, 2016

F

Abstract—In “Process placement in multicore clusters: Algorithmic is-
sues and practical techniques,” Jeannot, Mercier, and Tessier presented
an algorithm called TREEMATCH for determining the best placement
of a set of communicating processes on a hierarchically structured
computing architecture, described by a tree. In order to speed up the
algorithm, it was suggested to decompose levels of the tree with high
arity into several levels of smaller arity. The authors conjectured what
the optimal strategy for decomposition is. In this contribution, we prove
that their conjecture was right.

Index Terms—Parallel programming; high-performance computing;
multicore processing

1 INTRODUCTION

In their recent paper [1], Jeannot, Mercier, and Tessier
addressed the problem of mapping a set of MPI pro-
cesses onto a distributed architecture so as to minimize
overall execution time. In the context of communication-
intensive applications deployed on NUMA (Non-
Uniform Memory Access) clusters, this is an important
and challenging problem, because process placement
has significant impact on application performance. In
particular, processes that communicate intensively with
each other should be placed as near to each other as
possible in order to reduce data access latencies.

To this end, it was suggested that the communication
patterns of the application should be matched to the
underlying architecture. The authors devised an algo-
rithm called TREEMATCH, consisting of the following
three steps:

1) Gathering the communication patterns of the ap-
plication, i.e., the messages exchanged among the
processes. This is done using instrumentation and
profiling runs.

2) Gathering information about the available hard-
ware resources in a tree-like structure, including
switches, nodes, processors, cores, memories, and
caches. This is achieved by a dedicated tool called
HWLOC [2].

• The author is with Budapest University of Technology and Economics

3) Computing a matching between the MPI processes
and the available computing units1. This involves
traversing the tree of available resources from the
leaves upwards, and iteratively grouping the pro-
cesses.

Finally, the matching of processes to computing units
computed by TREEMATCH is used in the actual process
deployment, either in the form of resource binding or
using the MPI technique called rank reordering.

The whole approach revolves around the hierarchi-
cal structure of hardware resources, and the resulting
tree-based algorithm. The authors argue that operating
directly on this tree provides substantial benefits over
previous approaches using a topology matrix [3], [4],
because the flattened view of the topology matrix re-
sults in information loss compared to the natural tree
representation.

The TREEMATCH algorithm was first introduced in
an earlier work of Jeannot and Mercier [5]. The main
contribution of the recent paper in IEEE Transactions
on Parallel and Distributed Systems was a significant
reduction in the running time of the TREEMATCH al-
gorithm [1]. This was necessary because finding the
optimal grouping of processes on the given level of
the tree requires an exponential number of steps. More
specifically, let k denote the arity of the next level of the
tree (i.e., the number of child nodes that the nodes of
that level have, which is assumed to be identical for all
nodes of the given level) and let p denote the number of
process groups. Then, finding the optimal grouping for
the next level requires time proportional to

(
p
k

)
, which is

exponential in k [1].
In order to accelerate the algorithm, the authors sug-

gested to decompose a level of the tree with high arity
into several levels of smaller arity. Specifically, if d is a
divisor of k, then a node of the tree with arity k can
be decomposed into d nodes of arity k/d. This way, the
number of steps of the algorithm changes from

(
p
k

)
to

d ·
(

p
k/d

)
, which may be an improvement, depending on

1. A computing unit may be a processor or a processor core



2

the parameters. It was shown in the paper [1] that for p
large enough and k not prime, a reduction of algorithm
runtime can indeed be achieved this way. Moreover,
the simulation results showed that the performance of
the accelerated TREEMATCH algorithm compares very
favorably to competing approaches based on graph par-
titioning and graph embedding [1].

The main open question is how to choose d so that
d ·

(
p

k/d

)
is minimal because this will result in the best

performance. After checking all cases of k ≤ 128 and
p < 500, 000, it was conjectured that the optimum is
achieved when d is the highest non-trivial divisor of k
[1], but no proof was given. In the following, we prove
the correctness of this conjecture.

2 RESULT

Theorem 1. Let 1 < k < p be integers, k not a prime, p > 5.
For any divisor d of k, let f(d) := d ·

(
p

k/d

)
. Then among all

non-trivial divisors of k, f(d) is minimal for the greatest non-
trivial divisor of k.

Proof. Since d divides k, x := k/d is an integer with 1 ≤
x ≤ k. In terms of the variable x, we are looking for the
minimum of

g(x) =
k

x
·
(
p

x

)
=

k · p!

x · x! · (p− x)!
.

The quotient of two consecutive elements of the g(x)
sequence is

g(x + 1)

g(x)
=

x · x! · (p− x)!

(x + 1) · (x + 1)! · (p− x− 1)!

=
x · (p− x)

(x + 1)2
.

(1)

Therefore,

g(x + 1)

g(x)
> 1 ⇔ x · (p− x) > (x + 1)2

⇔ 0 > 2 · x2 + (2− p) · x + 1.

(2)

The expression 2 ·x2 +(2−p) ·x+1 is a convex quadratic
function in x, its discriminant is ∆ = (2− p)2− 8, which
is positive since p > 5. Hence, this quadratic polynomial
has two real roots x1 and x2; the condition of Equation
(2) is fulfilled exactly in the interval (x1, x2). What we
need from this is only that the condition is fulfilled in
exactly one interval: that is, if it is fulfilled in two values
of x, then it is fulfilled in all other values of x between
these two as well.

If x = 1, we get g(x+1)
g(x) = 1·(p−1)

(1+1)2 = p−1
4 > 1.

If x = p−1
2 − 1 = p−3

2 , we get g(x+1)
g(x) = (p−3)·(p+3)

(p−1)2 =
p2−9

p2−2p+1 = 1 + 2p−10
(p−1)2 > 1.

Together with the above observation, we obtain that
g(x+1)
g(x) is greater than 1 for all 1 ≤ x ≤

⌊
p−1
2

⌋
− 1. (It

should be noted that, although g(x) is only defined for
integer values of x, the expression for g(x+1)

g(x) obtained
in Equation (1) is sensible for all positive real numbers.
Since g(x+1)

g(x) is greater than 1 in x = 1 and in x = p−1
2 −1,

0

50

100

150

200

250

300

350

-7

-5

-3

-1

1

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2x^2+(2-p)x+1 g(x+1)/g(x) g(x)

Fig. 1. Example with p = 10 and k = 6. The values of
2x2 + (2 − p)x + 1 and g(x + 1)/g(x) are shown on the
left vertical axis; the values of g(x) are shown on the right
vertical axis.

and
⌊
p−1
2

⌋
− 1 is between these two, the condition is

fulfilled here as well.) As a consequence, g(x) is strictly
monotonously increasing in the interval

[
1,
⌊
p−1
2

⌋]
.

We are interested in the cases when d and x are non-
trivial divisors of k, which means that they must be
between 2 and bk/2c. Since k < p, all possible values
of x are in the interval

[
2,
⌊
p−1
2

⌋]
. Since g(x) is strictly

monotonously increasing in this interval, the minimal
value of g(x) is taken at the smallest possible value of
x, which corresponds to the greatest non-trivial divisor
d of k.

An example is shown in Figure 1. Here, p = 10, and so⌊
p−1
2

⌋
= 4. In accordance with the above argumentation,

g(x+1)
g(x) is greater than 1 in the [1, 3] interval, and hence

g(x) is strictly monotonously increasing in [1, 4].

ACKNOWLEDGMENTS

This work was partially supported by the Hungarian
Scientific Research Fund (Grant Nr. OTKA 108947).

REFERENCES
[1] E. Jeannot, G. Mercier, and F. Tessier, “Process placement in mul-

ticore clusters: Algorithmic issues and practical techniques,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 4, pp.
993–1002, 2014.

[2] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: a generic frame-
work for managing hardware affinities in HPC applications,” in
Proceedings of the 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Computing, 2010, pp. 180–186.

[3] H. Chen, W. Chen, J. Huang, and B. R. H. Kuhn, “MPIPP: an
automatic profile-guided parallel process placement toolset for
SMP clusters and multiclusters,” in Proceedings of the 20th Annual
International Conference on Supercomputing, 2006, pp. 353–360.

[4] G. Mercier and J. Clet-Ortega, “Towards an efficient process place-
ment policy for MPI applications in multicore environments,” in
Proceedings of the 16th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and Message Passing
Interface, 2009, pp. 104–115.

[5] E. Jeannot and G. Mercier, “Near-optimal placement of MPI pro-
cesses on hierarchical NUMA architectures,” in Euro-Par 2010, 2010,
pp. 199–210.


