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One of the most crucial steps in the design of embedded systems is hardware/software partitioning,
i.e. deciding which components of the system should be implemented in hardware and which ones
in software. Most formulations of the hardware/software partitioning problem areNP-hard, so the
majority of research e�orts on hardware/software partitioning has focused on developing e�cient
heuristics.

This paper considers the combinatorial structure behind hardware/software partitioning. Two
similar versions of the partitioning problem are de�ned, one of which turns out to be NP-hard,
whereas the other one can be solved in polynomial time. This helps in understanding the real cause
of complexity in hardware/software partitioning. Moreover, the polynomial-time algorithm serves
as the basis for a highly e�cient novel heuristic for the NP-hard version of the problem. Unlike
general-purpose heuristics such as genetic algorithms or simulated annealing, this heuristic makes
use of problem-speci�c knowledge, and can thus �nd high-quality solutions rapidly. Moreover, it
has the unique characteristic that it also calculates lower bounds on the optimum solution. It
is demonstrated on several benchmarks and also large random examples that the new algorithm
clearly outperforms other heuristics that are generally applied to hardware/software partitioning.

Categories and Subject Descriptors: J.6 [Computer-Aided Engineering]: Computer-aided
design (CAD); F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical
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1. INTRODUCTION

Today's computer systems typically consist of both hardware and software com-
ponents. For instance in an embedded signal processing application it is common
to use both application-speci�c hardware accelerator circuits and general-purpose,
programmable units with the appropriate software [Arató et al. 2003].
This is bene�cial since application-speci�c hardware is usually much faster than

software, and also more power-e�cient, but it is also signi�cantly more expensive.
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Software on the other hand is cheaper to create and to maintain, but slow, and
general-purpose processors consume much power. Hence, performance or power
critical components of the system should be realized in hardware, and non-critical
components in software. This way, an optimal trade-o� between cost, power and
performance can be achieved.
One of the most crucial steps in the design of such systems is partitioning, i.e.

deciding which components of the system should be realized in hardware and which
ones in software. Clearly, this is the step in which the above-mentioned optimal
trade-o� should be found. Therefore, partitioning has dramatic impact on the cost
and performance of the whole system [Mann and Orbán 2003]. The complexity of
partitioning arises because con�icting requirements on performance, power, cost,
chip size, etc. have to be taken into account.
Traditionally, partitioning was carried out manually. However, as the systems to

design have become more and more complex, this method has become infeasible,
and many research e�orts have been undertaken to automate partitioning as much
as possible.

1.1 Previous work

Based on the partitioning algorithm, exact and heuristic solutions can be di�erenti-
ated. The proposed exact algorithms include branch-and-bound [Binh et al. 1996],
dynamic programming [Madsen et al. 1997; O'Nils et al. 1995], and integer lin-
ear programming [Mann and Orbán 2003; Niemann 1998; Niemann and Marwedel
1997].
The majority of the proposed partitioning algorithms is heuristic. This is due

to the fact that partitioning is a hard problem, and therefore, exact algorithms
tend to be quite slow for bigger inputs. More speci�cally, most formulations of
the partitioning problem are NP-hard, and the exact algorithms for them have
exponential runtimes. The NP-hardness of hardware/software partitioning was
claimed by several researchers [Binh et al. 1996; Eles et al. 1996; Kalavade 1995;
Vahid and Gajski 1995], but we know only about one proof [Kalavade 1995] for a
particular formulation of the hardware/software partitioning problem.
Many researchers have applied general-purpose heuristics to hardware/software

partitioning. In particular, genetic algorithms have been extensively used [Arató
et al. 2003; Dick and Jha 1998; Mei et al. 2000; Quan et al. 1999; Srinivasan et al.
1998], as well as simulated annealing [Eles et al. 1997; Ernst et al. 1993; Henkel and
Ernst 2001; Lopez-Vallejo et al. 2000]. Other, less popular heuristics in this group
are tabu search [Eles et al. 1997] and greedy algorithms [Chatha and Vemuri 2001;
Grode et al. 1998].
Some researchers used custom heuristics to solve hardware/software partitioning.

This includes the GCLP algorithm [Kalavade and Lee 1997; Kalavade and Subrah-
manyam 1998] and the expert system of [Lopez-Vallejo and Lopez 1998; 2003], as
well as the heuristics in [Gupta and de Micheli 1993] and [Wolf 1997].
There are also some families of well-known heuristics that are usually applied

to partitioning problems. The �rst such family of heuristics is hierarchical cluster-
ing [Abdelzaher and Shin 2000; Barros et al. 1993; Vahid 2002; Vahid and Gajski
1995]. The other group of partitioning-related heuristics is the Kernighan-Lin
heuristic [Kernighan and Lin 1970], which was substantially improved by Fiduccia

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



138 · Péter Arató et al.

and Mattheyses [1982], and later by many others [Dasdan and Aykanat 1997; Saab
1995]. These heuristics have been found to be appropriate for hardware/software
partitioning as well [Lopez-Vallejo and Lopez 2003; Vahid 1997; Vahid and Le 1997].
Concerning the system model, further distinctions can be made. In particular,

many researchers consider scheduling as part of partitioning [Chatha and Vemuri
2001; Dick and Jha 1998; Kalavade and Lee 1997; Lopez-Vallejo and Lopez 2003;
Mei et al. 2000; Niemann and Marwedel 1997], whereas others do not [Eles et al.
1996; Grode et al. 1998; Madsen et al. 1997; O'Nils et al. 1995; Vahid and Le 1997;
Vahid 2002]. Some even include the problem of assigning communication events to
links between hardware and/or software units [Dick and Jha 1998; Mei et al. 2000].
In a number of related papers, the target architecture is supposed to consist of

a single software and a single hardware unit [Eles et al. 1996; Grode et al. 1998;
Gupta and de Micheli 1993; Henkel and Ernst 2001; Lopez-Vallejo and Lopez 2003;
Madsen et al. 1997; Mei et al. 2000; O'Nils et al. 1995; Qin and He 2000; Srinivasan
et al. 1998; Stitt et al. 2003; Vahid and Le 1997], whereas others do not impose this
limitation. Some limit parallelism inside hardware or software [Srinivasan et al.
1998; Vahid and Le 1997] or between hardware and software [Henkel and Ernst
2001; Madsen et al. 1997]. The system to be partitioned is generally given in the
form of a task graph, or a set of task graphs, which are usually assumed to be
directed acyclic graphs describing the dependencies between the components of the
system.

1.2 Our approach

In this paper, we take a more theoretical approach than most previous works by
focusing only on the algorithmic properties of hardware/software partitioning. In
particular, we do not aim at partitioning for a given architecture, nor do we present
a complete co-design environment. Rather, we restrict ourselves to the problem of
deciding�based on given cost values�which components of the system to imple-
ment in hardware and which ones in software. This problem will be formalized as a
graph bipartitioning problem. Using the graph-theoretic properties of the problem,
we can develop more powerful algorithms�as will be shown later. Furthermore, the
underlying problem de�nition is general enough so that the algorithms we propose
can be used in many practical cases.
Our aims are the following:

�Clarifying complexity issues, such as: Is partitioning really NP-hard? When is
it NP-hard? Why is it NP-hard?

�Developing more powerful partitioning algorithms by capturing the combinato-
rial structure behind the partitioning problem. That is, instead of applying
general-purpose heuristics to hardware/software partitioning, we develop algo-
rithms based on the graph-theoretic properties of partitioning. This way, we
hope to obtain more scalable algorithms.
Scalability is a major concern when applying general-purpose heuristics. Namely,
in order to be fast, such heuristics evaluate only a small fraction of the search
space. As the size of the problem increases, the search space grows exponentially
(there are 2n di�erent ways to partition n components), which means that the
ratio of evaluated points of the search space must decrease rapidly, leading to
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worse results. This e�ect can be overcome only if the small evaluated region
contains high-quality solutions. This is exactly what we intend to achieve by
making use of the combinatorial properties of the problem.

Speci�cally, we de�ne two slightly di�erent versions of the hardware/software
partitioning problem. One of them is proven to be NP-hard, whereas a polynomial-
time exact algorithm is provided for the other one. We believe that this di�erence
sheds some light on the origins of complexity of hardware/software partitioning.
Our main contribution is a novel heuristic algorithm for the NP-hard version of

the partitioning problem which is based on the polynomial-time algorithm for the
other version of the problem. This heuristic has the property mentioned above that
it only evaluates points of the search space that have a high quality in some sense.
Consequently, this heuristic outperforms conventional heuristics, which is demon-
strated with empirical tests on several benchmarks. Moreover, the new heuristic
has the unique property that it can determine a lower bound on the cost of the
optimum solution, and therefore it can estimate how far the result it found so far
lies from the optimum. This is a feature that no previous partitioning algorithm
possessed.
The rest of the paper is organized as follows. Section 2 provides formal de�nitions

for the hardware/software partitioning problem. This is followed by the analysis of
the de�ned problems in Section 3 and the description of our algorithms in Section 4.
Empirical results are given in Section 5, and Section 6 concludes the paper. Finally,
the proof of our theorems are presented in the Appendix.

2. PROBLEM DEFINITION

2.1 Basic model

In the basic model the system to be partitioned is described by a communication
graph, the nodes of which are the components of the system that have to be mapped
to either hardware or software, and the edges represent communication between
the components. Unlike in most previous works, it is not assumed that this graph
is acyclic in the directed sense. The edges are not even directed, because they
do not represent data �ow or dependency. Rather, their role is the following:
if two communicating components are mapped to di�erent contexts (i.e. one to
hardware and the other to software, or vice versa), then their communication incurs
a communication penalty, the value of which is given for each edge as an edge cost.
This is assumed to be independent of the direction of the communication (whether
from hardware to software or vice versa). If the communication does not cross the
hardware/software boundary, it is neglected.
Similarly to the edge costs mentioned above, each vertex is assigned two cost

values called hardware cost and software cost. If a given vertex is decided to be
in hardware, then its hardware cost is considered, otherwise its software cost. We
do not impose any explicit restrictions on the semantics of hardware costs and
software costs; they can represent any cost metrics, like execution time, size, or
power consumption. Likewise, no explicit restriction is imposed on the semantics
of communication costs. Nor do we impose explicit restrictions on the granularity
of partitioning (i.e. whether nodes represent instructions, basic blocks, procedures
or memory blocks). However, we assume that the total hardware cost with respect
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to a partition can be calculated as the sum of the hardware costs of the nodes that
are in hardware, and similarly, the software cost with respect to a partition can be
calculated as the sum of the software costs of the nodes that are in software, just
as the communication cost with respect to a partition, which is the sum of the edge
costs of those edges that cross the boundary between hardware and software.

While this assumption of additivity of costs is not always appropriate, many
important cost factors do satisfy it. For example, power consumption is usually as-
sumed to be additive, implementation e�ort is additive, execution time is additive
for a single processor (and a multi-processor system can also be approximated by
an appropriately faster single-processor system), and even hardware size is additive
under suitable conditions [Madsen et al. 1997]. Furthermore, although it is a chal-
lenging problem how the cost values can be obtained, it is beyond the scope of this
paper. Rather, we focus only on algorithmic issues in partitioning.

We now formalize the problem as follows. An undirected graph G = (V,E),
V = {v1, . . . , vn}, s, h : V → IR+ and c : E → IR+ are given. s(vi) (or simply si)
and h(vi) (or hi) denote the software and hardware cost of node vi, respectively,
while c(vi, vj) (or cij) denotes the communication cost between vi and vj if they are
in di�erent contexts. P is called a hardware-software partition if it is a bipartition
of V : P = (VH , VS), where VH ∪ VS = V and VH ∩ VS = ∅. (VH = ∅ or VS = ∅
is also possible.) The set of crossing edges of partition P is de�ned as: EP =
{(vi, vj) : vi ∈ VS , vj ∈ VH or vi ∈ VH , vj ∈ VS}. The hardware cost of P is: HP =∑

vi∈VH
hi; the software cost of P is: SP =

∑
vi∈VS

si; the communication cost of
P is: CP =

∑
(vi,vj)∈EP

c(vi, vj).

Thus, a partition is characterized by three metrics: its hardware cost, its software
cost, and its communication cost. These are rather abstract and possibly con�icting
cost metrics that should be optimized together. The most common approach is to
assemble a single objective function f(cost1, . . . , costl) containing all the metrics.
We consider two versions of f that can be regarded as the two extremes�yielding
two rather di�erent versions of the partitioning problem.

In the �rst version, the aim of partitioning is to minimize the weighted sum of
these three metrics, i.e. f is linear in all of its arguments. The weights are speci�ed
by the designer, and de�ne the relative importance of the three metrics. More
formally, we de�ne the total cost of P as TP = αHP +βSP +γCP , where α, β, and
γ are given non-negative constants, and the aim is to minimize TP .

In the second version, one of the cost metrics is constrained by a hard upper
limit. This case can also be modeled with an f function which adds an in�nite
penalty if the constraint is hurt. A possible interpretation can be the following: if
software cost captures execution time, and communication cost captures the extra
delay generated by communication, then it makes sense to add them. That is, we
de�ne the running time of the system with respect to partition P as RP = SP +CP .
We suppose that there is a real-time constraint, i.e. a constraint on RP , and the
aim is to minimize HP while satisfying this constraint.

To sum up, the partitioning problems we are dealing with can be formulated as
follows:
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P1: Given the graph G with the cost functions h, s, and c, and the constants
α, β, γ ≥ 0, �nd a hardware/software partition P with minimum TP .
P2: Given the graph G with the cost functions h, s, and c, and R0 ≥ 0, �nd
a hardware/software partition P with RP ≤ R0 that minimizes HP among all
such partitions.

2.2 Extensions to the basic model

The basic model of hardware-software partitioning captures many important char-
acteristics of the problem. Its compactness allows us to develop e�cient algorithms
and helps us better understand the nature of the partitioning problem. However,
the basic model can be extended in several ways to incorporate more details.
The problem graph can be extended with dependency information. In this case

the communication graph should be rather directed and acyclic. Most authors (see
Section 1.1 about previous work) follow this approach.
To respect dependency, the nodes ordered to a context should be scheduled prop-

erly, thus the additivity of execution times is not valid anymore. Scheduling requires
the execution time of each node; this can be the software/hardware cost or an ad-
ditional parameter of each node. Whether scheduling is regarded as part of the
partitioning or done afterwards is still a question under discussion in the commu-
nity (recall the di�erent approaches from Section 1.1).
These extensions might be bene�cial, but there is a risk that a too complex

model can hide the true nature of the problem and only very small instances can be
solved. First we show our algorithms for the basic model and then, in Section 4.4
we explain how they can be adapted to these extensions.

3. COMPLEXITY RESULTS

Theorem 3.1. The P1 problem can be solved optimally in polynomial time.

Proof. We can assume α = β = γ = 1 because otherwise we multiply each hi
by α, each si by β, and each cij by γ. With this modi�cation the problem becomes
similar to the one solved in [Stone 1977]. Although Stone handles only one cost
metric (time) instead of the linear combination of several cost metrics, the proof of
this theorem is identical to [Stone 1977]. The details are omitted, only the main
idea of the construction is given to help understand our later algorithms.
We construct an auxiliary graph (see Figure 1) G′ = (V ′, E′) based on G as

follows: V ′ = V ∪ {vs, vh}, E′ = E ∪ Es ∪ Eh, where Es = {(v, vs) : v ∈ V } and
Eh = {(v, vh) : v ∈ V }. G′ is also a simple, undirected graph, but in G′ only the
edges are assigned costs; the cost of edge e ∈ E′ is denoted by b(e), and de�ned as
follows:

b(e) =


c(e) if e ∈ E
hi if e = (vi, vs) ∈ Es

si if e = (vi, vh) ∈ Eh

Note that the edges in Es (i.e. those that connect the vertices to vs) are assigned
the h values, and the edges in Eh are assigned the s values, and not vice versa.

Lemma 3.2 (Stone, 1977). The value of the minimum cut in G′ between vs
and vh is equal to the optimum of the original graph bipartitioning problem.
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vh
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Fig. 1. The auxiliary graph

Algorithm 1 Polynomial-time algorithm for the P1 problem

1. Create the auxiliary graph.
2. Find a minimum cut in the auxiliary graph.

By Lemma 3.2, we have reduced the hardware/software partitioning problem to
�nding a minimum cut between two vertices in a simple undirected graph, for which
polynomial-time algorithms are known [Ahuja et al. 1993]. Note that the size of G′

is not signi�cantly larger than that of G: if G has n vertices and m edges, then G′

has n+ 2 vertices and m+ 2n edges. This proves the theorem.

Theorem 3.3. The P2 problem is NP-hard in the strong sense.

Proof. The proof can be found in Appendix A.

These two theorems show that�supposed that P 6= NP�the P2 problem is
signi�cantly harder than the P1 problem. This sheds some light on the origin of
complexity in hardware/software partitioning: under the assumption of additivity
of costs, the problem is easy if the di�erent cost factors are combined using weighted
sum to form a single objective function, whereas it becomes hard if they are bounded
or optimized separately.
The other lesson learned from the above two theorems is that not all formulations

of the partitioning problem are necessarily NP-hard. The P1 problem, which is
apparently easy, is also a meaningful formulation of the hardware/software parti-
tioning problem that can capture a number of real-world variants of the problem.
Hence, care has to be taken when claiming that partitioning is NP-hard.

4. ALGORITHMS

4.1 Algorithm for the P1 problem

The proof of Theorem 3.1 suggests a polynomial-time algorithm for the P1 problem,
as summarized in Algorithm 1.
Clearly, the �rst step of the algorithm can be performed in linear time. For the

second step, many algorithms are known. We used the algorithm of Goldberg and
Tarjan for �nding maximum �ow and minimum cut [Goldberg and Tarjan 1988;
Cherkassky and Goldberg 1997], which works in O(n3) time, where n denotes the

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



Algorithmic aspects of hardware/software partitioning · 143

number of vertices in the graph. Therefore, the whole process can be performed
in O(n3) time1. Note that O(n3) is just a theoretic upper bound for the runtime
of Algorithm 1. As will be shown in Section 5, the algorithm is extremely fast in
practice.
Note that the condition that α, β, and γ are non-negative is important because

no polynomial-time algorithm is known for �nding the minimum cut in a graph with
arbitrary edge costs (i.e. where the edge costs are not necessarily non-negative). In
fact, this problem is NP-hard.
It is important to mention that it is not essential that there are exactly three

cost metrics to optimize. The same approach works for an arbitrary number of
cost metrics as far as the linear combination of them should be minimized. (See
Section 4.4 for more details.)
Finally we note that the algorithm can easily accommodate the following exten-

sion to the partitioning model: some components can be �xed to software, while
others can be �xed to hardware (e.g. because the other implementation would not
make sense or because of some existing components that should be integrated into
the system). In this case, the components that are �xed to software are coalesced
to form the single vertex vs, and similarly, the components that are �xed to hard-
ware are coalesced to form the single vertex vh. If parallel edges arise, they can be
uni�ed to a single edge whose cost is the sum of the costs of the parallel edges. If
a loop (i.e. an edge connecting a vertex to itself) arises, it can be simply discarded
because it does not participate in any cut of the graph.

4.2 Heuristic algorithm for the P2 problem

We now show a heuristic for the P2 problem based on Algorithm 1. The idea is
to run Algorithm 1 with several di�erent α, β, and γ values. This way, a set of
candidate partitions is generated, with the property that each partition is optimal
for the P1 problem with some α, β, and γ parameters. Then we select the best
partition from this set that ful�lls the given limit on RP .
As already mentioned, the scalability of a heuristic depends on whether the eval-

uated small fraction of the search space contains high-quality points. We believe
that we can achieve this with the above choice of candidate partitions.
Obviously, the result of the run of Algorithm 1 is determined by the ratio of the

three weights, and not by their absolute values. Therefore, we can �x one of the
three, e.g. β, and vary only the other two. Thus, we have a two-dimensional search
problem, in which the evaluation of a point involves running Algorithm 1 with the
appropriate weights.
In order to keep our algorithm fast, we use two phases: in the �rst phase, we use

coarse-grained steps in the two-dimensional plane to �nd the best valid partitioning
approximately, and in the second phase we use a more �ne-grained search in the
neighborhood of the point found in the �rst phase (see Algorithm 2 for more details).
In both phases, possible α and γ values are scanned with increments dα and

dγ. Choosing the values for dα and dγ constitutes a trade-o� between quality and

1When Stone published his similar approach in [Stone 1977], the algorithms for �nding a minimum
cut in a graph were much slower. In fact, Stone claimed his partitioning algorithm to have O(n5)

running time, thus it was rather impractical.
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Algorithm 2 Heuristic algorithm for the P2 problem

Phase 1 : //Scan the whole search space
FOR(α = αmin; α < αmax; α = α+ dα)
FOR(γ = γmin; γ < γmax; γ = γ + dγ) {
run Algorithm 1 with parameters α, β, and γ to obtain optimal partition P ;
IF(RP < R0 AND HP < best_so_far) {
save current solution;
save previous and next α value (αprev, αnext);
save previous and next γ value (γprev, γnext);
reset dα and dγ;

}
ELSE
dα = (1 + ε)dα, dγ = (1 + ε)dγ;

}

Phase 2 : //Scan the region around the best point found in Phase 1
reset dα and dγ;
perform same method as in Phase 1, with α going between αprev and αnext and γ
going between γprev and γnext and using ε′ < ε instead of ε.

performance: if small increments are used, then the search is very thorough but
slow, if the increments are high, the search becomes fast but super�cial. As can
be seen in Algorithm 2, we apply a searching scheme that adjusts the increments
dynamically. More speci�cally, dα and dγ are multiplied with 1 + ε (where ε is a
�xed small positive number) in each step when no better solution is found. This
way, the algorithm accelerates exponentially in low-quality regions of the search
space. On the other hand, dα and dγ are reset whenever a better solution is found,
thus the search slows down as soon as it �nds a better solution. After our initial
tests, we �xed ε = 0.02 and ε′ = 0.01, which seemed to o�er a good trade-o�
between speed and quality.
This way, the �rst phase can �nd the approximately best values for α and γ, but

it is possible that the algorithm jumps over the best values. This is corrected in
the second phase. Clearly, this approach works �ne if the cost functions are smooth
enough and have a relatively simple structure. We will come back to this issue in
Section 5.
Finally, it should be mentioned how αmin, γmin, αmax and γmax are chosen.

The following theorem, the proof of which is omitted for brevity, is useful for this
purpose:

Theorem 4.1. (i) If α ≤ β · minv∈V
s(v)
h(v) , then the all-hardware partition is

optimal with respect to α, β and γ (regardless of the value of γ).

(ii) If α ≥ β · maxv∈V
s(v)
h(v) , then the all-software partition is optimal with respect

to α, β and γ (regardless of the value of γ).
(iii) Suppose that G is connected, and let cmin denote the smallest edge cost. If
min (α · h(V ), β · s(V )) ≤ γ · cmin, then either the all-hardware or the all-software
partition is optimal with respect to α, β and γ.
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γ = β · s(V )
cmin

Fig. 2. The region to be scanned

Therefore, the region that has to be scanned looks as depicted in Figure 2.

4.3 Determining lower bounds

As mentioned earlier, Algorithm 2 can also incorporate the feature of determining
lower bounds on the cost of the optimal solution of the given P2 problem instance.
This is a unique feature of this algorithm, that is o�ered by no other competing
heuristic. With the help of this feature, Algorithm 2 can maintain an estimate
of how far the best solution it found so far is from the optimum. This is very
advantageous because it helps evaluate the performance of the algorithm. Moreover,
if the lower bound and the found best solution are not far from each other, this
may indicate that there is no point in continuing the search. For instance, if the
cost values assigned to the nodes and edges of the graph are measured values with a
precision of 10%, then there is no point in continuing the search if the gap between
the lower bound and the found best solution is under 10% of the lower bound. This
way, we can reduce the runtime of the algorithm without any practical loss in the
quality of the found solution.
Informally, Algorithm 2 is able to determine the lower bounds because every

candidate partition that it evaluates is optimal for the P1 problem with some α, β,
and γ values. Hence, each evaluated candidate partition tells us something about
the costs of all partitions. This is formalized by the following theorem, the proof
of which can be found in Appendix B.

Theorem 4.2. Suppose that P is an optimal solution of the P1 problem with
the weights α, β, and γ. Let Q be any solution of the P2 problem (i.e. a partition
that satis�es the bound RQ ≤ R0). Then

HQ ≥ HP +
βSP + γCP −max(β, γ)R0

α
(1)

Note that the right-hand side of (1) contains only known numbers. Therefore, the
algorithm can compute a lower bound based on each evaluated candidate partition,
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and use the best one of these lower bounds. Unfortunately, there is no guarantee
that the lower bound will not be far o� the optimum. However, as shown in
Section 5, the gap between the found best partition and the lower bound was not
big for practical benchmarks.

4.4 Adaptation of the algorithms to other partitioning models

Recall some possible extensions to our basic model from Section 2.2. These exten-
sions can be easily handled by our algorithms without any change in our main idea:
try to use the good candidates found by the �rst algorithm to guide the search of
the second algorithm.
The algorithm for P1 can handle any number of cost metrics assigned to soft-

ware/hardware side, provided their weighted sum should be minimized; for example
every vertex vi might have a software execution time sti, a software implementation
e�ort sei, a hardware execution time hti, a hardware chip area hai and further on
a cut edge e implies a communication penalty of c(e). If our aim is to minimize
αSTP+βSEP+γHTP+δHAP+εCP with STP , SEP , HTP , HAP de�ned obviously,
then a similar auxiliary graph can be built as in the construction of Theorem 3.1,
but the new edge weights b(e) are as follows.

b(e) =


εc(e), if e ∈ E
γhti + δhai, if e = (vi, vs) ∈ Es

αsti + βsei, if e = (vi, vh) ∈ Eh

Lemma 3.2 will remain true for this graph, hence this extended P1 problem can be
similarly solved.
Moreover, scheduling of the tasks can also be incorporated in Algorithm 2. The

subroutine of Algorithm 1 returns with a possible solution candidate. One can
use any scheduling algorithm available in the literature to evaluate this candidate.
The scheduling should be inserted just after the call to Algorithm 1 in line 4 of
Algorithm 2. It makes the algorithm more complicated though, but it does not
change our approach. Therefore in the test phase we were focusing on the evaluation
of the basic algorithms to validate our concept.

5. EMPIRICAL RESULTS

We have implemented the above algorithms using the minimum cut algorithm of
Goldberg and Tarjan [Goldberg and Tarjan 1988; Cherkassky and Goldberg 1997].
We had to modify the construction in the proof of Theorem 3.1 slightly because
the used minimum cut algorithm works on directed graphs.
Generally, if we want to �nd the minimum cut in an undirected graph using an

algorithm for directed graphs2, then we have to change every undirected edge to
two directed edges going in opposite directions. However, edges directed to the
source or from the sink can be removed, because this does not change the value of
the maximum �ow, and hence it does not change the value of the minimum cut.

2There are also algorithms for �nding the minimum cut in an undirected graph, which are even
faster than the ones for directed graphs. However, we need a cut that separates two given vertices
(a so-called st-cut), and for this problem, no faster algorithms are known for the undirected case.
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n Running time of Algorithm 1 [sec]

100 0.0007
1000 0.0198
3000 0.0666
5000 0.1264
7000 0.1965
10000 0.2896

Table I. Running time of Algorithm 1

In our case, this means that the edges in the original graph are introduced in two
copies in the new graph, in opposite directions, but in the case of the additional
edges (i.e. edges in Es and Eh), only one copy is needed, directed to vh, or from
vs, respectively.
The algorithms have been implemented in C, and tested on a Pentium II 400MHz

PC running SuSE Linux. We conducted two sets of experiments: one for evaluat-
ing the performance of Algorithm 1, and one for evaluating the performance and
e�ectiveness of Algorithm 2.

5.1 Experience with Algorithm 1

Since Algorithm 1 �nds the optimal solution for the partitioning problem at hand,
we only had to test its speed on practical problem instances. (Recall from Sec-
tion 4.1 that it is an O(n3) algorithm, but this is only an asymptotic upper bound
on its running time.)
For testing Algorithm 1, several random graphs of di�erent size and with random

costs have been used. In order to reduce the number of test runs and the amount of
test data to process, we �xed the ratio of edges and vertices in the test graphs to 2,
which means that on average, each vertex has four neighbors. Previous experience
with real-world task graphs [Arató et al. 2003] has shown that this average is typical.
Table I shows measurement results concerning the running time of Algorithm 1

on graphs of di�erent size. As can be seen, the algorithm is extremely fast: it �nds
the optimum in the case of a graph with 10000 vertices and 20000 edges in less
than 0.3 seconds. Moreover, the practical running time of the algorithm seems to
be roughly linear.

5.2 Experience with Algorithm 2

Since Algorithm 2 is a heuristic rather than an exact algorithm, we had to deter-
mine both its performance and the quality of the solutions it �nds, empirically.
For this purpose, we compared it with two other heuristics that are widely used
for hardware/software partitioning: a genetic algorithm (GA) and an improved
Kernighan/Lin�type heuristic (KL). In the case of the GA it is important to tune
its parameters to match the characteristics of the problem domain. Details on this
can be found in [Arató et al. 2003].
In the case of the KL algorithm, we built on the improvements suggested by [Vahid

and Le 1997]. Speci�cally, [Vahid and Le 1997] de�ned the following changes: (i)
rede�ned a move as a single node move, rather than a swap; (ii) described an e�-
cient data structure; (iii) replaced the cut metric of the original KL heuristic by a
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Name n m Size Description

crc32 25 34 152 32-bit cyclic redundancy check. From the Telecommu-
nications category of MiBench.

patricia 21 50 192 Routine to insert values into Patricia tries, which are
used to store routing tables. From the Network cate-
gory of MiBench.

dijkstra 26 71 265 Computes shortest paths in a graph. From the Net-
work category of MiBench.

clustering 150 333 1299 Image segmentation algorithm in a medical applica-
tion.

rc6 329 448 2002 RC6 cryptographic algorithm.
random1 1000 1000 5000 Random graph.
random2 1000 2000 8000 Random graph.
random3 1000 3000 11000 Random graph.
random4 1500 1500 7500 Random graph.
random5 1500 3000 12000 Random graph.
random6 1500 4500 16500 Random graph.
random7 2000 2000 10000 Random graph.
random8 2000 4000 16000 Random graph.
random9 2000 6000 22000 Random graph.

Table II. Summary of the used benchmarks

more complex metric. We made use of these changes, with the only di�erence that
our cost function is slightly di�erent from theirs:

cost(P ) =

{
∞ if RP > R0

HP otherwise

Note that [Vahid and Le 1997] used the DAG property of their graph repre-
sentation to show that a move has only local e�ect, which is important for the
performance of the algorithm. This is also true in our case: by moving a node from
hardware to software or vice versa, only the gain value of its neighbors can change.
For testing, we used benchmarks from MiBench [Guthaus et al. 1997], our own

designs, as well as bigger, random graphs. The characteristics of the test cases
are summarized in Table II. n and m denote the number of nodes and edges,
respectively, in the communication graph. Size denotes the length of the description
of the graph (the performance of an algorithm is usually evaluated as a function
of the length of the input). We calculated the size as 2n + 3e because each node
is assigned two values�its hardware and software costs�and each edge is assigned
three numbers�the IDs of its endpoints and its communication cost.
Where software costs were not available, they were generated as uniform random

numbers from the interval [1, 100]. Where hardware costs were not available, they
were generated as random numbers from a normal distribution with expected value
κ · si and standard deviation λ · κ · si, where si is the software cost of the given
node. That is, there is a correlation, as de�ned by the value of λ, between a node's
hardware and software costs. This corresponds to the fact that more complicated
components tend to have both higher software and higher hardware costs. We tested
two di�erent values for λ: 0.1 (high correlation) and 0.6 (low correlation). The value

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.



Algorithmic aspects of hardware/software partitioning · 149

of κ only corresponds to the choice of units for software and hardware costs, and
thus it has no algorithmic implications. The communication costs were generated as
uniform random numbers from the interval [0, 2 ·µ ·smax], where smax is the highest
software cost. Thus, communication costs have an expected value of µ ·smax, and µ
is the so-called communication to computation ratio (CCR). We tested two di�erent
values for µ: 1 (computation-intensive case) and 10 (communication-intensive case).
Finally, the limit R0 was taken from the interval [0,

∑
si]. Note that R0 = 0 means

that all components have to be mapped to hardware, whereas R0 =
∑
si means that

all components can be mapped to software. All sensible values of R0 lie between
these two extremes. We tested two values for R0: one generated as a uniform
random number from the interval [0, 1

2

∑
si] (strict real-time constraint) and one

taken randomly from [ 12
∑
si,

∑
si] (loose real-time constraint).

So we tested the three algorithms on the above set of problems, using two values
for each of the three parameters (correlation between hardware and software costs,
CCR, R0). However, we found that the correlation between hardware and software
costs did not have any signi�cant impact on the performance of the algorithms.
Therefore we include four plots, according to the combinations of the two remaining
parameters, on the quality of the solutions found by the algorithms (see Figure 3).
Since the objective was to minimize costs, smaller values are better. The lower
bounds produced by Algorithm 2 are also shown. Based on the diagrams, the
following observations can be made:

�For relatively small graphs, all three heuristics yield equal or very similar results,
regardless of the parameter settings. Moreover, these results are very close to
the lower bound computed by Algorithm 2, meaning that they are at least near-
optimal.

�For bigger graphs, Algorithm 2 consistently outperforms the other two heuristics.
This is especially true in the low-CCR cases. In the high-CCR cases, the di�er-
ence between the algorithms is not so striking. This is probably due to the easier
nature of these problem instances (note that with growing CCR, the partition-
ing problem becomes essentially a simple minimum cut problem with polynomial
complexity). Moreover, the di�erence between the results of Algorithm 2 and the
other two heuristics is clearly growing.

�The results found by GA and KL are very similar, but in most cases the GA is
slightly better.

�The results found by Algorithm 2 are in most cases not very far from the lower
bounds it produced�the di�erence was 31% on average. Of course the di�erence
keeps growing with bigger graphs, but quite slowly. This proves the high quality
of both the solutions and the lower bounds found by our algorithm.

�The choice of the R0 parameter does not seem to signi�cantly impact the relative
performance of the algorithms. However, the lower bounds produced by Algo-
rithm 2 do seem to be sensitive to this parameter: they are clearly better for low
R0 values.

An even bigger di�erence between the three algorithms is their running time,
which is shown in Figure 4 (Here, only one plot is shown because the explained
parameter settings do not have a signi�cant impact on the running times). We can
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Fig. 3. Algorithm 2 vs. GA and KL: quality of found solution
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Fig. 5. Hardware cost of the optimal partition in the P1 problem as the function of the weights
α and γ

observe the following:

�Again, for relatively small graphs, the speed of the algorithms is comparable.
However, for bigger graphs, KL and Algorithm 2 are much faster than GA, and
again, the di�erence keeps growing with bigger graphs. For the biggest graphs,
GA is about 20 times slower than Algorithm 2.

�The running time of GA oscillates wildly. In some cases, it took over an hour
for the GA to terminate. However, even the shortest GA runs were much slower
than the other two algorithms.

�The fastest of the three is clearly the KL algorithm: for small graphs, it is about
5 times faster than Algorithm 2, but for bigger graphs the di�erence decreases.
For the biggest graphs, KL was about 2.5 times faster than Algorithm 2.

�The speed of both KL and Algorithm 2 is acceptable because both could solve
even the biggest problems in 2-3 minutes, and the smaller ones in a couple of
seconds.

Another question that we addressed empirically is whether or not the two-
dimensional search approach of Algorithm 2 is adequate.
The above results show that the algorithm performs very well on large bench-

marks. This can be attributed to the smoothness of the costs as functions of the
weights α, β, and γ. An example can be seen in Figure 5 showing the hardware
cost of the optimal partition in the P1 problem for di�erent values of the hardware
weight α and communication weight γ (the software weight β was �xed to 100).
Notice the smoothness and the simple structure of this function. Actually, it can
be proven that this function is monotonously decreasing in α.
In some test cases we also ran a modi�ed version of Algorithm 2 in which the two-

dimensional search space is searched uniformly in small steps, without augmenting
dα and dγ. The test results showed no improvement in the results; however, the
speed of the algorithm worsened signi�cantly. This justi�es the search strategy of
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Algorithm 2.
To sum up: Algorithm 2 o�ers a clear advantage over the other two heuristics

concerning the quality of the found solution. It is at the same time signi�cantly
faster than GA, and somewhat slower than KL, but still fast enough to be applicable
in practice. Moreover, it produces high-quality lower bounds.

6. CONCLUSION

In this paper, we de�ned two slightly di�erent versions of the hardware/software
partitioning problem (P1 and P2). We proved that the P1 problem can be solved in
polynomial time, but the P2 problem is NP-hard. The polynomial-time algorithm
for the P1 problem (Algorithm 1) makes use of the graph-theoretic properties of
the hardware/software partitioning problem. It has a worst-case running time of
O(n3) steps, but our empirical experiments showed that on practical examples it is
very fast.
Based on this algorithm, we also proposed a new heuristic for the P2 problem

(Algorithm 2) which works by running Algorithm 1 with several di�erent weights
to obtain high-quality candidate partitions, from which it chooses the best one
satisfying the given constraint.
Algorithm 2 possesses the unique feature that it can calculate lower bounds for

the optimum solution and hence it can evaluate how far its currently found best
solution lies from the optimum.
In our empirical tests on several benchmarks we compared Algorithm 2 with two

established partitioners: a genetic algorithm and an improved Kernighan/Lin�type
algorithm. We found that our algorithm consistently outperformed the other two
heuristics, while being slightly slower than KL and signi�cantly faster than GA.
We attribute the good scalability of our algorithm to the fact that it only evaluates
high-quality points of the search space (only those that are optimal solutions of the
P1 problem for some weights) and hence it makes better use of the combinatorial
properties of the search problem.
Generalization of our algorithms for multi-way partitioning and proving or dis-

proving approximation bounds for Algorithm 2 remain interesting future research
directions.

APPENDIX

A. NP�HARDNESS RESULTS

Theorem A.1. The P2 problem is NP-hard.

Proof. The proof can be found in [Mann and Orbán 2003].

However, the P2 problem is NP�hard in the strong sense as well, i.e. even if
the vertex and edge costs have to be polynomial in n. In the following we show a
reduction of the Minimum Bisection problem to P2.

Theorem A.2. The P2 problem is NP-hard in the strong sense.

Proof. We reduce the decision version of the Minimum Bisection problem,
which is known to be NP-complete [Garey and Johnson 1979], to P2.
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Given an instance of the minimum bisection problem on G(V,E) with n vertices,
where n is even, m edges and a limit K, our goal is to �nd a cut (A,B), for which
|A| = |B| = n

2 and the cutsize is at most K (K ≤ m).
Now associate the following instance of the P2 problem to it. Let h(vi) = s(vi) =

1 for each vi ∈ V and let c(vi, vj) =
1

m+1 for each (i, j) ∈ E. De�ne R0 := n
2 +

K
m+1 .

Clearly this instance has polynomial costs in n.
For X,Y ⊆ V we denote by m(X,Y ) the number of edges between X and Y and

by c(X,Y ) the total cost of edges between X and Y .
We claim that there exists a feasible bisection i� the optimum for the P2 problem

is at most n
2 . Indeed, if (A,B) is a solution for the bisection problem (|A| =

|B| = n
2 and m(A,B) ≤ K), then (A,B) is also a feasible solution for P2, since

s(B)+c(A,B) = |B|+ 1
m+1m(A,B) ≤ n

2 +
K

m+1 = R0. The hardware cost of (A,B)
in P2 is h(A) = |A| = n

2 , thus the optimum is at most n
2 .

Vice versa, if in the optimal partition (VH , VS) of P2 the hardware cost is at
most n

2 , then h(VH) = |VH | ≤ n
2 and s(VS) + c(VH , VS) ≤ n

2 + K
m+1 <

n
2 + 1, thus

s(VS) = |VS | ≤ n
2 , as it is an integer and c is non�negative. As both sides of the

partition (VH , VS) are not larger than n
2 , |VH | = |VS | =

n
2 must hold. This also

implies�using again the condition for the running time�that c(VH , VS) ≤ K
m+1 ,

hence m(VH , VS) ≤ K. So (VH , VS) is indeed a solution for the bisection problem
as well.

B. LOWER BOUND

Theorem B.1. Suppose that P is an optimal solution of the P1 problem with
the weights α, β, and γ. Let Q be any solution of the P2 problem (i.e. a partition
that satis�es the bound RQ ≤ R0). Then

HQ ≥ HP +
βSP + γCP −max(β, γ)R0

α
(2)

Proof. Since P is optimal with respect to the weights α, β, and γ, it follows
that

αHP + βSP + γCP ≤ αHQ + βSQ + γCQ

and hence

HQ ≥ HP +
βSP + γCP − βSQ − γCQ

α
(3)

Of course, this is also a lower bound on HQ, but the right-hand side cannot be
computed because SQ and CQ are not known. However, since Q is a valid partition,
it follows that

SQ + CQ = RQ ≤ R0

and therefore

βSQ + γCQ ≤ max(β, γ)SQ +max(β, γ)CQ = max(β, γ)RQ ≤ max(β, γ)R0

Substituting this into (3) proves the theorem.
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