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Abstract—Finding the best way to map virtual machines (VMs) to physical machines (PMs) in a cloud data center is an important
optimization problem, with significant impact on costs, performance, and energy consumption. In most situations, the computational
capacity of PMs and the computational load of VMs are a vital aspect to consider in the VM-to-PM mapping. Previous work modeled
computational capacity and load as one-dimensional quantities. However, today’s PMs have multiple processor cores, all of which can
be shared by cores of multiple multicore VMs, leading to complex scheduling issues within a single PM, which the one-dimensional
problem formulation cannot capture. In this paper, we argue that at least a simplified model of these scheduling issues should be taken
into account during VM placement. We show how constraint programming techniques can be used to solve this problem, leading to
significant improvement over non-multicore-aware VM placement. Several ways are presented to hybridize an exact constraint solver
with common packing heuristics to derive an effective and scalable algorithm.

Index Terms—VM placement; VM consolidation; cloud computing; data center; optimization algorithms; constraint programming
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1 INTRODUCTION

A S cloud computing is becoming mainstream, cloud
data centers (DCs) must serve an ever-growing

demand for computation and storage capacity. As a
result, the operation of DCs is becoming ever more
challenging: infrastructure providers must find the right
balance between the conflicting aims of keeping costs
down, reducing energy consumption, and adhering to
Service Level Agreements (SLAs) on the availability and
performance of the hosted applications [13].

A key driving force in cloud adoption is the prolifer-
ation of virtualization technologies, allowing the secure
and – more or less – isolated co-existence of multiple
virtual machines (VMs) on the same physical machine
(PM). This in turn enables a healthy utilization of phys-
ical resources. Live migration, the ability to move a VM
from one PM to the other with practically no downtime
[40], makes it possible to continuously adapt the VM-to-
PM mapping to changes in the VMs’ load and the PMs’
availability [41].

As a consequence of its business drivers and the tech-
nological possibilities, an infrastructure provider will
regularly re-optimize the VM-to-PM mapping in its DC,
with the aim of consolidating the VMs to the minimal
number of PMs that can accommodate them without
breaching the quality goals laid down in the SLA, and
switch off the PMs that were freed up in order to save
energy [39]. Determining the best VM-to-PM mapping is
the VM placement problem.

Because of its importance and inherent difficulty, a
huge number of approaches have been proposed to
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model and solve this problem. However, as shown by
our recent survey, the state of the art in VM placement
research is still unsatisfactory concerning both the used
problem models and algorithms [31]. Most previous
works agree that the computational capacity of PMs and
the computational load of VMs are crucial to take into
account in VM consolidation. However, computational
capacity and computational load are almost always cap-
tured by a single number per machine, turning VM
placement into a simplistic one-dimensional problem, in
which a set of VMs can be placed on a PM if and only
if the sum of their CPU loads does not exceed the CPU
capacity of the PM.

In reality, both PMs and VMs may have multiple CPU
cores. When a VM is mapped to a PM, each of the VM’s
CPU cores (vCPUs) must also be mapped to one of the
PM’s CPU cores (pCPUs); a pCPU can be shared by
multiple vCPUs. Therefore, the question whether a set of
VMs can be mapped to a PM is actually a more difficult
one, involving a non-trivial scheduling problem. This
scheduling problem is solved at runtime by the hyper-
visor scheduler. Existing algorithms for VM placement
ignore this problem by considering PM and VM CPUs
as a whole and not looking into their components.

The main thesis of this paper is that ignoring the
scheduling of cores during VM placement is an over-
simplification that may lead to suboptimal VM placement.
This issue will be discussed in detail in Section 3, but
for the moment, it will be illustrated with an example.

Consider a quad-core PM with 4000 MIPS (million
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instructions per second1) available capacity per core.
(This is the capacity available to VMs, after subtracting
the load of the VM Manager and other system software.)
Further, consider 3 dual-core VMs with the following
load:

• VM 1: core 1 – 2200 MIPS, core 2 – 2100 MIPS
• VM 2: core 1 – 2100 MIPS, core 2 – 2000 MIPS
• VM 3: core 1 – 2000 MIPS, core 2 – 1800 MIPS
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Fig. 1. Example mapping of VM cores on PM cores

As shown in Fig. 1, it is possible to map all vCPUs
on the pCPUs. However, if the load of core 1 of VM
3 is slightly increased, for instance to 2100 MIPS, then
such a mapping does not exist anymore. This can be
seen easily since the loads of the cores of VM 1 and 2
are such that no two of them can be mapped on the same
pCPU, so that they will occupy at least 2000 MIPS from
each pCPU, and therefore, no pCPU will have sufficient
remaining capacity for vCPU 1 of VM 3.

Some previous works suggested to model a multicore
processor with k cores and c capacity per core as a
single-core processor with capacity k · c [6]. However,
this approximation can be quite imprecise. In the above
example, the total capacity of the PM is 16,000 MIPS, the
total load of the VMs (when the load of the first core of
VM 3 is increased to 2100 MIPS) is 12,300 MIPS, way
below the capacity of the PM. Yet, as we have seen, the
PM cannot satisfy the computational requirements of the
three VMs. In other words, if a VM placement algorithm
looks only at the total capacity of PMs and total load
of VMs, without considering the mapping of vCPUs on
pCPUs, it may consolidate the three VMs onto the PM,
leading to an overload of one of the pCPUs and thus
potentially to an SLA violation for the affected VMs.

1. Throughout the paper, MIPS is used as the unit of CPU capacity
and CPU load. However, this is only an example. Other units could also
be used, e.g., clock cycles, FLOPS, or some logical units like Amazon’s
EC2 Compute Unit.

In order to devise a VM placement algorithm that
can effectively cope with the complexity of multicore
scheduling, new algorithmic techniques are necessary.
Most previous research used either fast greedy heuristics
with no guarantees about the quality of the solutions
they deliver, or exact methods that do not scale to
practical problem sizes. In this paper, we try to find
some middle ground. We argue that in a typical sce-
nario, it is acceptable to spend 1-2 minutes on VM
placement optimization. Moreover, there is typically a
lot of available computational capacity in a DC that
can be used for running the optimization algorithm.
Hence, supposing that the optimization algorithm can
be sufficiently parallelized, a significant portion of the
search space can be investigated.

We identified constraint programming as an ideal frame-
work that allows us to (i) formulate complex constraints
like multicore scheduling in a natural way; (ii) makes it
possible to define VM placement as a global optimization
problem with a well-defined objective function; and (iii)
by incorporating different heuristics, enables a balance
between solution quality and running time. Paralleliza-
tion is handled by splitting the search space into as many
parts as the number of parallel resources available for
running the algorithm, and then taking the best of the
solutions found in each part.

The contributions of the paper are:

• Identification of the aspects that need to be taken
into account for the placement of multicore VMs on
multicore PMs.

• Definition of a problem formulation of VM place-
ment, in which both PMs and VMs can have multi-
ple cores. Besides, the problem formulation includes
the cost of migration of VMs as well as the cost of
SLA violations.

• Combination of global search with heuristics in
a constraint programming framework, in order to
balance solution quality and solving time.

• A simulation-based empirical study to show that
the proposed algorithms deliver significantly better
results compared to a typical non-multicore-aware
heuristic proposed previously in the literature.

The rest of the paper is organized as follows. Section
2 reviews previous work, followed by a discussion on
the issues faced by multicore VM placement in Section
3. Sections 4 and 5 describe the used problem model and
our algorithms, respectively. An empirical evaluation is
presented in Section 6, and Section 7 concludes the paper.

2 PREVIOUS WORK

In recent years, the VM placement problem has received
much attention [31]. Typical problem formulations al-
most always include computational capacity of PMs and
computational load of VMs as a single dimension. In
fact, in many works, this is the only dimension that is
considered [3], [4], [5], [6], [7], [8], [9], [12], [20], [25],
[28], [44], [45]. Other authors included, beside the CPU,
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also some other resources like memory, I/O, storage, or
network bandwidth [11], [18], [19], [42], [48].

Multicore processors were hardly taken into account.
Some authors suggested to use the number of cores as
a metric, i.e., the number of available cores of a PM and
the number of cores that VMs occupy [26], [34], [41].
However, this approach does not support the sharing of
a pCPU by multiple vCPUs.

Several different objective or cost functions have been
proposed. The number of active PMs is often considered
because it largely determines the total energy consump-
tion [5], [9], [12], [19], [34], [45], [48]. SLA violations may
lead to penalties that also need to be minimized [4], [9],
[19], [20], [45], [48]. Usually, it is assumed that an SLA
violation happens if a PM is overloaded and thus the
impacted VMs are not assigned the amount of resources
that they would need [6], [9], [12], [42], [45], [47]. Another
important factor that some works considered is the cost
of migration of VMs [6], [12], [19], [41], [44].

Concerning the used algorithmic techniques, most
previous works apply simple heuristics. These include
packing algorithms inspired by results on the related bin-
packing problem, such as First-Fit, Best-Fit, and similar
algorithms [4], [5], [9], [20], [26], [29], [44], [45], other
greedy heuristics [35], [47] and straight-forward selection
policies [3], [37], as well as meta-heuristics [18], [19].

Some exact algorithms have also been suggested. Most
of them use some form of mathematical programming
to formulate the problem and then apply an off-the-shelf
solver. Examples include integer linear programming [3],
binary integer programming [11], [29], mixed integer
non-linear programming [20], and pseudo-Boolean op-
timization [34]. Unfortunately, all these methods suffer
from a scalability problem, limiting their applicability to
small-scale problem instances.

Optimal application placement on multicore architec-
tures has been considered for MPI processes [24]. How-
ever, that work was not in the context of virtualization
and VM placement; moreover, the sharing of a processor
core my multiple processes was not considered. Ahn et
al. considered VM placement in a multicore context from
the point of view of minimizing contention of resources
shared by co-located VMs like caches, and showed
that there is significant performance difference between
the best and worst placement especially for memory-
intensive workloads [1]. However, that work did not take
into account several other important characteristics of
the VM placement problem, like the capacity of the PMs
or SLA violations.

3 MULTICORE SCHEDULING ISSUES

Most of the existing VM placement algorithms only
consider the total CPU capacity of PMs and the total
CPU load of VMs, and assume that a set of VMs can be
mapped onto a PM if and only if their total CPU load is
not greater than the CPU capacity of the PM. In reality,
the allocation of vCPUs on pCPUs is a complex task to

be solved by the scheduler of the hypervisor. This will
be referred to as core scheduling. Beyond the placement of
the VMs, the results of core scheduling also impact over-
all performance and costs. Since core scheduling follows
only after VM placement, core scheduling is constrained
by the allocation of VMs to PMs, and it may lead to
results not anticipated by a non-multicore-aware VM
placement algorithm. Even if both VM placement and
core scheduling work optimally, if the VM placement
does not take into account the schedulability of vCPUs
on pCPUs, overall results may be sub-optimal.

In the following, we review some scheduling issues
that can adversely impact performance and/or costs if
not taken into account by the VM placement algorithm.

3.1 High sequential compute demand

Suppose a VM hosts a single-threaded application and
requires a single vCPU with 2000 MIPS to perform its
tasks in due time. A VM placement algorithm that only
looks at the total CPU capacity of PMs may decide
to place this VM on a PM with two pCPUs, offering
1000 MIPS per pCPU. This seems to be a good decision
for the VM placement algorithm because the total CPU
capacity of the PM is 2000 MIPS, just enough for the
given VM. However, since the application is single-
threaded, the VM will not be able to take advantage of
the two available pCPUs. It can only use one pCPU, and
will thus receive only 1000 MIPS capacity, leading to a
performance degradation of factor 2.

3.2 vCPU migration vs. pinning

The hypervisor may decide to dynamically re-arrange
the mapping of vCPUs to pCPUs. At any given time,
each vCPU is allocated to just one pCPU, but through
regular core migrations, a vCPU can be served by mul-
tiple pCPUs when regarded over a given period of time.

Core migration has an overhead, consisting not only
of the time needed to transfer the state of the vCPU from
one pCPU to the other, but also related to cache locality.
The latter is important if each pCPU has its own L1 (and
possibly also L2) cache, or a cache slice in a common
cache that it can access faster [38]. Migrating the vCPU
has the consequence that data has to be reloaded into
the cache of the new core. For these reasons, in some
situations it is more beneficial to pin vCPUs to specific
pCPUs, thus avoiding core migrations [24].

The exact impact of vCPU migration on VM perfor-
mance depends on several factors. Kim et al. showed
that, for the case of an under-committed CPU, the default
vCPU relocation behavior of the Xen scheduler results
in up to 15% performance overhead – but it is beneficial
for the over-committed case [27]. For asymmetric proces-
sors, DeVuyst et al. reported core migration overhead of
up to 44 msec [16]. For some applications, the overhead
of core migration may be negligible, whereas for others
it can be a major problem.
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Another reason for pinning a vCPU to a specific
pCPU may be per-pCPU software licensing, see e.g. [46].
In this case, the vCPUs running the given application
should be confined to a number of pCPUs for which the
appropriate license is available.

3.3 Further issues

Further multicore scheduling issues that may be relevant
for VM placement include:

• Multi-socket and NUMA architectures
• Hyper-threading
• Dedicated cores
• Asymmetric processors

Details on these issues are presented in the supplemental
material available online.

4 A POSSIBLE PROBLEM FORMULATION

In Section 3, a number of scheduling issues were men-
tioned that may have an impact on the cost and perfor-
mance of VM placement. What is common in these issues
is that a VM placement algorithm that only considers
the total CPU capacity of PMs and the total CPU load
of VMs is bound to make bad decisions. Therefore,
the remainder of this paper focuses on enhancing VM
placement by incorporating awareness of core scheduling. This
is possible if the mapping of VMs on PMs is combined
with mapping of vCPUs on pCPUs, resulting in an
optimization problem that combines VM placement and
– a somewhat simplified version of – core scheduling.

For sure, adding more details to the VM placement
problem will considerably enlarge the search space of
this already difficult optimization problem. Therefore,
scalability is a major concern and will be investigated
later on in more detail.

Which of the issues mentioned in Section 3 are relevant
in a given practical situation depends on several factors,
including workload characteristics (e.g., CPU-bound vs.
memory-bound applications) and the features of the
infrastructure (e.g., UMA vs. NUMA architecture). Each
possible combination of the issues of Section 3 may be
formulated as a slightly different optimization problem
(and that list is not intended to be exhaustive). In the
following, one possible such problem formulation will
be used, which addresses some of those issues. But
more importantly, our aim is to demonstrate that it is
possible to combine VM placement with core scheduling. This
problem model – and the resulting algorithms that will
be presented afterwards – can be modified as necessary
to accommodate different scheduling issues.

4.1 Formal problem model

We are given a set P of PMs. For a PM p ∈ P , the set of its
cores (pCPUs) is denoted by PC(p); the computational
capacity of each core of p is pcc(p) ∈ R

+. Besides, we are
given a set V of VMs. For each VM v ∈ V , the set of its
cores (vCPUs) is denoted by V C(v). PC :=

⋃
{PC(p) :

p ∈ P} denotes the set of all pCPUs, and similarly, V C :=⋃
{V C(v) : v ∈ V } denotes the set of all vCPUs.
We assume that the VM-to-PM mapping is regularly

re-optimized based on changes in the VMs’ load and po-
tentially in PMs’ availability. There is a current mapping
of VMs to PMs, represented by a function map0 : V → P .
Furthermore, we assume there is an estimate of the VMs’
load for the next period: for each vCPU vc ∈ V C,
vcl(vc) ∈ R

+ denotes its estimated load. Based on the
new estimates, our goal is to compute a new mapping
map : V → P .

The cost of a mapping is comprised of three com-
ponents: the number of active PMs, the number of
migrations, and the number of overloaded pCPUs. A
PM is called active if at least one VM is mapped to it.
PMs that are not active can be switched to sleep mode.
Therefore, to save energy, we should aim at minimizing
the number of active PMs, denoted by A(map).

A VM v ∈ V must be migrated if map(v) 6= map0(v).
Since migration incurs significant additional load for
the involved machines as well as for the network, it
is important to also minimize the number of migrations,
denoted by M(map).

If a pCPU is overloaded, then the vCPUs it serves do
not obtain the required computational capacity, which
may lead to performance degradation and to an SLA
violation. Thus, it is important to keep the number of
pCPU overloads low. In order to determine the number
of overloaded pCPUs, we need a mapping of vCPUs to
pCPUs, denoted by

cmap : V C → PC. (1)

The core mapping problem is described by the following
rules:

1) Each vCPU of each VM must be mapped on exactly
one of the pCPUs of the PM that accommodates the
VM. Formally:

∀v ∈ V, ∀vc ∈ V C(v) : cmap(vc) ∈ PC(map(v)).
(2)

2) A pCPU can accommodate multiple vCPUs, even
belonging to multiple VMs.

3) The vCPUs of a VM can be served by the same or
by different pCPUs of the PM.

4) A vCPU cannot be split on multiple pCPUs.

For a pCPU pc ∈ PC, cmap−1(pc) is the set of all
vCPUs mapped on this pCPU. Hence, pCPU pc ∈ PC
of PM p is overloaded if and only if

∑

vc∈cmap−1(pc)

vcl(vc) > pcc(p). (3)

The number of overloaded pCPUs is denoted by S(cmap).
The cost function that we must minimize is given by

F (map, cmap) = α ·A(map) + µ ·M(map) + σ · S(cmap),
(4)

where α, µ, and σ are non-negative constants determin-
ing the relative weight of the three sub-goals. Our aim
is to find mappings map and cmap that minimize F .
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TABLE 1
Summary of notation

Notation Explanation

P set of PMs
PC(p) set of pCPUs of PM p
PC set of all pCPUs of all PMs
pcc(p) computational capacity of each core of PM p
V set of VMs
V C(v) set of vCPUs of VM v
V C set of all vCPUs of all VMs
vcl(vc) estimated load of vCPU vc for the next period
map0 current mapping of VMs to PMs
map new mapping of VMs to PMs (to be determined)
cmap mapping of vCPUs to pCPUs (to be determined)
A(map) number of active PMs
M(map) number of migrations
S(cmap) number of overloaded pCPUs
F (map, cmap) cost function to be minimized
α weight of the number of active PMs
µ weight of the number of migrations
σ weight of the number of overloaded pCPUs

Table 1 gives a summary of the used notations.

4.2 Discussion and variations

As mentioned earlier, the suggested problem model is
just one possibility. Its main feature is that it combines
VM placement (determining the map function) with a
simplified version of core scheduling (determining the
cmap function). The main simplification is that time-
dependent dynamic features of scheduling are not in-
cluded. Nevertheless, we believe this model is a good
compromise: introducing the cmap function without
time-dependence already allows us to reason about spe-
cific cores and thus address the issues mentioned in
Section 3. Also including time-dependence could be a
next step, but it would again considerably blow up the
search space with limited improvement in precision.

4.2.1 Core mapping rules

In Section 4.1, four rules were introduced to define what
is allowed and what is not allowed in core scheduling. It
can be seen easily that Rules 1)-4) state exactly the same
as equations (1)-(2).

Rule 3 may be seen as too permissive as it allows mul-
tiple vCPUs of the same VM to be accommodated by the
same pCPU, which might be undesirable for applications
that need true parallelism. In this case, the model can be
extended with an additional constraint to exclude this:
∀v ∈ V, ∀vci 6= vcj ∈ V C(v) : cmap(vci) 6= cmap(vcj).

Rule 4 is the result of the reasoning in Section 3.2
about the uses of pinning. It is also possible that this
reasoning is valid for some critical VMs but not for
all. This would require a somewhat more complicated
problem formulation, in which the above model of core
scheduling is used for the critical VMs, but for the others,
also a fractional mapping is allowed (e.g., a vCPU can
be mapped to the extent of 70% to one pCPU and to
30% to another one). It is not very difficult to extend the

above problem formulation in this way, but it makes the
formalization more cumbersome.

4.2.2 Cost function

Minimizing the number of active PMs, the number of
migrations, and the number of SLA violations due to
resource overloads are all typical objectives that have
been widely used in VM placement research. (But an
important difference is that we consider the overload of
individual pCPUs, whereas previous work considered
overload of the CPU as a whole.) For example, the work
of Beloglazov and Buyya uses these metrics [6], whereas
other works use a subset of these metrics [9], [20], [44].

There are many variations concerning the details of
these metrics. For example, instead of just the number
of active PMs, one could also consider their total energy
consumption (taking into account the different power
efficiency of the PMs as well as load-dependent dynamic
consumption) because the real objective is energy min-
imization, and minimizing the number of active PMs
is just a way to achieve that. Similarly, instead of the
number of migrations, one could consider the total cost
of migrations, where the cost of a migration may depend
on factors such as the memory image size of the given
VM. All these concerns are orthogonal to our work; our
problem formulation could easily be modified to take
them into account if necessary.

A further question is how to define a proper opti-
mization problem based on multiple cost metrics. One
possibility is to formulate a multi-objective optimization
problem and look for Pareto-optimal solutions [18], [43].
Another approach is to constrain all but one of the
metrics and optimize according to the remaining one
[2], [11]. The third possibility is to combine multiple
metrics into a single objective function, for example as a
weighted sum of the metrics [21], [25], [37]. We chose this
third approach but the other two would also be possible.

4.2.3 Further issues

Further discussion on the appropriateness and possible
extensions of the problem model is provided in the
supplemental material.

5 ALGORITHMS

We devise multiple algorithms for the problem defined
in Section 4.

5.1 The case for constraint programming

Constraint programming (CP) has already been pro-
posed for related problems [17], [22], [23] and shown to
be a useful tool for deriving high-quality solutions in ac-
ceptable time. However, CP does not belong to the really
popular approaches used for VM placement: algorithms
in this field almost exclusively fall into one of three
categories: greedy heuristics, proprietary heuristics, and
(mixed) integer programming.
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Our problem model includes a strong scheduling com-
ponent: a highly combinatorial problem for which CP is
known to be an excellent approach [10]. Besides, CP has
the advantage that variations such as the ones discussed
in Section 4.2 can be incorporated with relative ease by
posting the appropriate constraints.

5.2 A very short introduction to CP

Since CP is not so widely known, we give a brief intro-
duction to the most fundamental concepts. For further
details, we refer to the available rich literature, e.g. [10]
and references therein. As implementation framework,
we used the CLPFD (constraint logic programming over
finite domains) library [15] of SICStus Prolog 4.2.3.

A typical constraint program consists of the following
main steps:

1) Definition of the variables and their domains. The
domain of a variable is the set of possible values
that the given variable can be assigned.

2) Posting the constraints. Each constraint contains one
or more variables and defines a relation that those
variables must fulfill.

3) Search. This is usually the most time-consuming
phase in which the CP engine searches the space
of possible variable assignments to find a solu-
tion that fulfills all constraints or, in the case of
an optimization problem, a solution fulfilling all
constraints and maximizing or minimizing a given
objective function. The search procedure is a back-
track search algorithm that can be customized in
several ways to achieve good performance.

A key concept is pruning. When a variable x is as-
signed a value, the constraints involving x wake up and
propagate the consequences of this assignment. As a
result, some values of another variable y may become
infeasible; these are then pruned from the domain of
y. This change to the domain of y may in turn wake
up further constraints that may prune further values
from the domain of a third variable and so on. Pruning
infeasible values as early as possible helps to keep
the size of the search tree manageable, thus increasing
efficiency.

CLPFD supports a wide range of constraints, includ-
ing arithmetic, propositional, and combinatorial con-
straints. It also supports reification with which the truth
value of a given constraint can be mirrored in a Boolean
variable. For example, the constraint (X #> Y) #<=>

B expresses that B must have the value 1 if X is greater
than Y and 0 otherwise. Boolean variables are normal
variables with the domain {0,1} and can be manipu-
lated just as any other integer variables.

5.3 Pure CP solution

Our first approach consists of formulating the problem
using CP (see Fig. 2).

Two sets of primary variables are used. VMs are
numbered from 1 to n = |V | and PMs are numbered

1: Define variables and their domains
2: 1 ≤ j ≤ n : xj ∈ {1, . . . ,m}
3: 1 ≤ jc ≤ nc : yjc ∈ {1, . . . ,mc}
4: 1 ≤ j ≤ n : zj ∈ {0, 1}
5: 1 ≤ jc ≤ nc, 1 ≤ ic ≤ mc : ujc,ic ∈ {0, 1}
6: 1 ≤ ic ≤ mc : wic ∈ {0, 1}
7: A,M, S, F ∈ N

8: End
9: Define constraints

10: xj and yjc are compatible (using table)
11: A = |{xj : 1 ≤ j ≤ n}| (using nvalue)
12: xj 6= map0(vmj)⇔ zj
13: M =

∑n

j=1
zj (using sum)

14: yjc = ic⇔ ujc,ic

15:
∑nc

jc=1
ujc,ic · vcl(vcjc) > pcc(pcic) ⇔ wic (using

scalar_product)
16: S =

∑mc

ic=1
wic (using sum)

17: F = α ·A+ µ ·M + σ · S
18: End
19: Perform search
20: k parallel threads
21: each running a randomized backtrack search
22: with timeout τ
23: minimizing F
24: End
25: Return solution with lowest F

Fig. 2. Pseudo-code of the pure CP algorithm

from 1 to m = |P |. For 1 ≤ j ≤ n, variable xj encodes
the PM that VM j should be mapped to; the domain of
each xj is 1, . . . ,m. vCPUs are numbered consecutively
from 1 to nc = |V C| and pCPUs consecutively from 1 to
mc = |PC|. Then, for each 1 ≤ jc ≤ nc, the variable yjc
encodes the pCPU that should accommodate vCPU jc;
the domain of each yjc is 1, . . . ,mc.

The xj variables encode the map, the yjc variables the
cmap function. It must be ensured that the two mappings
are consistent, meaning that the vCPUs of a VM can
be mapped by cmap only on the pCPUs of the PM
where the VM is mapped by map (Rule 1 in Section
4.1). This can be elegantly and efficiently assured by
means of a single table/2 constraint, one of the built-
in combinatorial constraints of CLPFD [14]. In order
to define a k-ary finite relation, table(A,B) can be
used, where both A and B are lists, and each element
of both A and B is a list of length k. The relation itself is
defined by B: the elements of the list B are the valid
k-tuples that form the relation. For compactness, the
lists within B may also contain ranges. For example,
B=[[1,10],[2,20..22]] means that the valid tuples
are (1,10), (2,20), (2,21), (2,22). The elements of A are
tuples of variables; the constraint ensures that each of
these tuples of variables will satisfy the relation specified
by B. In our case, table/2 is used to define the binary
relation between each yjc variable and the corresponding
xj variable. Therefore, A will be a list of all pairs (xj ,yjc),
where the vCPU jc belongs to VM j. The elements of B
are of the form [i,ic_min..ic_max], where 1 ≤ i ≤ m
specifies a PM, and ic_min and ic_max denote the
index of its first and last pCPU, respectively, in the
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consecutive numbering of all pCPUs in PC. This way,
table(A,B) ensures indeed that the mapping of VMs
and the mapping of vCPUs will be compatible.

From the xj variables, the number of active PMs can be
calculated easily: this is the number of different values
taken by the xj variables. For this purpose, the built-
in nvalue/2 constraint can be used. In general, the
constraint nvalue(Num,Vars), where Num is either a
variable or an integer and Vars is a list of variables,
assures that the number of different values taken by
Vars equals Num. In our case, this can be used with the
variable representing the number of active PMs as Num
and the list of the xj variables as Vars.

For calculating the number of migrations, we need to
define a set of secondary variables: for each 1 ≤ j ≤ n,
zj is a Boolean variable that has the value 1 if and only if
VM j is migrated, i.e. xj 6= map0(vmj). The zj variables
are determined from the xj variables using reification,
and the number of migrations is calculated as the sum
of the zj variables using the built-in sum/3 constraint.

For determining the number of overloaded pCPUs,
our first implementation follows a similar logic. We
define further secondary variables: for each 1 ≤ jc ≤ nc,
1 ≤ ic ≤ mc, the Boolean variable ujc,ic encodes whether
vCPU jc is mapped on pCPU ic. The ujc,ic variables can
be determined from the yjc variables using reification,
and based on the ujc,ic variables, the total load of a
pCPU can be calculated using the scalar_product/4

built-in constraint. Based on the loads of the pCPUs, the
number of pCPU overloads can be determined using an-
other round of reification and summation; the auxiliary
variables wic (i ≤ ic ≤ mc) encode whether pCPU ic is
overloaded.

Given the three cost factors A, M , and S, the cost func-
tion F can be calculated and the constraint engine in-
structed to find a solution that minimizes this cost func-
tion, using the minimize option of the labeling/2

built-in procedure. Only the primary variables are la-
beled, since the value of the secondary variables can be
inferred from them.

We customized the search procedure of the constraint
engine, which uses an exhaustive backtrack search by
default, to make it more efficient. For selecting the next
variable to branch on, we use the first-fail heuristic: the
variable with the smallest domain is selected. For enu-
merating the possible values of the chosen variable, we
implemented a custom randomized procedure, so that
different runs of the search will likely explore different
parts of the search space. This is a great opportunity
for parallelization: we run k parallel searches, each with
timeout τ , where k depends on the number of parallel
processing units that are available and τ is a pre-defined
amount of time that we are willing to wait for the result.
At the end, we return the best of the results found by
the k searches.

5.4 Enhanced pure CP solution

Preliminary experiments with our first CP implementa-
tion revealed a bottleneck that caused scalability issues.
As mentioned above, for calculating the number of
overloaded pCPUs, nc ·mc auxiliary variables (the ujc,ic

variables) had to be introduced and calculated with a
similar number of constraints. It should be noted that
otherwise our CP model scales linearly with input size,
only this part scales quadratically. As the number of
pCPUs and vCPUs increases, this becomes a problem
in terms of both memory consumption and the time re-
quired for manipulating the high number of constraints.

Therefore, in a second version of our CP solution, we
implemented a dedicated global constraint for calculat-
ing the number of pCPU overloads directly from the yjc
variables, using the possibilities offered by CLPFD for
defining user-level global constraints. This way, there is
no need for the quadratic number of auxiliary variables
and so the CP model scales linearly with input size.

Compared to the pseudo-code in Fig. 2, lines 5-6 and
14-16 are disappear. Instead of lines 14-16, S is calcu-
lated directly from the yjc variables using the dedicated
constraint nr_overloads.

5.5 Greedy VM-to-PM mapper

As a baseline, we also investigate a greedy algorithm
inspired by well-known bin-packing heuristics. Specifi-
cally, we use the algorithm of Beloglazov et al. that was
shown to be quite effective for the VM-to-PM mapping
problem in practice and can be seen as a typical example
of a state-of-the-art non-multicore-aware VM placement
algorithm [4], [5]. It aims at minimizing power consump-
tion by minimizing the number of active PMs as well
as minimizing the number of migrations while obeying
the (one-dimensional) capacity constraints of the PMs.
The algorithm works by first removing the VMs from
lightly used PMs so that they can be switched off and
removing a minimal set of VMs from overloaded PMs
so that they will not be overloaded (a so-called minimal
relieving set [32]). In a second phase, the algorithm finds
a new accommodating PM for the removed VMs using
the Modified Best Fit Decreasing (MBFD) heuristic2. See
Fig. 3 for more details.

The original algorithm does not define a mapping
of vCPUs on pCPUs. Since we need that mapping for
evaluating the number of pCPU overloads, we extended
the algorithm with a further step, in which each vCPU
is mapped on a randomly selected pCPU of the accom-
modating PM (lines 16-19).

2. In its original form, the algorithm chooses for each VM the PM
that has sufficient capacity and that would lead to the lowest increase
in power consumption; in case of a tie, it chooses the first such PM.
Since in our model only the number of active PMs counts, not their
exact power consumption values, the algorithm simply chooses the
first PM with sufficient capacity.
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1: L← ∅
2: for all p ∈ P do
3: if p is underloaded then
4: remove all VMs from p
5: add the VMs to L
6: else if p is overloaded then
7: remove a minimal relieving set of VMs from p
8: add the VMs to L
9: end if

10: end for
11: sort L in descending order of CPU load
12: for all v ∈ L do
13: for all p ∈ P do
14: if load(p) + load(v) ≤ cap(p) then
15: allocate v on p
16: for all vc ∈ V C(v) do
17: choose pc ∈ PC(p) randomly
18: allocate vc on pc
19: end for
20: break
21: end if
22: end for
23: end for

Fig. 3. Pseudo-code of the greedy algorithm

5.6 Hybrid approaches

Our initial experiments reinforced our expectation that
the greedy algorithm is much faster than the CP ap-
proach, but, since it does not account for core mapping,
it leads to a high number of pCPU overloads. In the
following, we devise possible hybrid algorithms (which
will later be denoted as hybrid1, hybrid2, and hybrid3)
to combine the strengths of the two approaches.

5.6.1 Greedy algorithm with schedulability analysis

This is essentially the same as the above greedy algo-
rithm, with a single modification. When looking for a
new accommodating PM for a given VM, the original
MBFD heuristic determines whether the VM fits on a
PM by simply checking whether the PM’s current load
plus the VM’s load is not greater than the PM’s capacity
(line 14 in Fig. 3). The modified algorithm performs
instead a schedulability analysis, i.e., it verifies that the
vCPUs of the VMs that are currently mapped to this PM,
together with the vCPUs of the new VM, can be mapped
to the pCPUs of the PM. This analysis is carried out
using constraint programming. All other steps of Fig. 3
remain unchanged; line 14 is replaced by a call to the
schedulability check shown in Fig. 4.

5.6.2 Greedy algorithm with optimized core mapping

This is the same as the normal greedy algorithm, but
after the VM-to-PM mapping has been established, the
mapping of cores is not done randomly, but by attempt-
ing to find an optimal mapping of cores for each PM
and its accommodated VMs. The core mapping is found
using constraint programming, with the objective of
minimizing the number of pCPU overloads. Compared
to Fig. 3, lines 16-19 are substituted by a call to the core
mapping procedure depicted in Fig. 5.

1: procedure SCHEDULABLE(PM p, set of VMs W )
2: Let V C(W ) =

⋃
{V C(v) : v ∈W}

3: Number vCPUs in W from 1 to |V C(W )|
4: Number pCPUs of p from 1 to |PC(p)|
5: Define variables and their domains
6: 1 ≤ jc ≤ |V C(W )| : yjc ∈ {1, . . . , |PC(p)|}
7: End
8: Define constraints
9: no core is overloaded

10: End
11: Perform search
12: standard backtrack search algorithm
13: End
14: return whether solution has been found
15: end procedure

Fig. 4. Pseudo-code of the schedulability analysis

1: procedure COREMAPPING(PM p, set of VMs W )
2: Let V C(W ) =

⋃
{V C(v) : v ∈W}

3: Number vCPUs in W from 1 to |V C(W )|
4: Number pCPUs of p from 1 to |PC(p)|
5: Define variables and their domains
6: 1 ≤ jc ≤ |V C(W )| : yjc ∈ {1, . . . , |PC(p)|}
7: S ∈ N

8: End
9: Define constraints

10: S equals the number of core overloads
11: End
12: Perform search
13: standard backtrack search algorithm
14: minimizing S
15: End
16: return best solution found
17: end procedure

Fig. 5. Pseudo-code of the optimized core mapping pro-
cedure

5.6.3 Greedy algorithm with schedulability analysis and

optimized core mapping

This is a combination of the above two possibilities: the
MBFD algorithm is extended with schedulability analy-
sis to account for multicore scheduling in its decisions,
and afterwards, the mapping of cores is determined
using the constraint programming approach, explicitly
minimizing the number of pCPU overloads. Compared
to Fig. 3, line 14 is replaced by a call to the schedulability
check of Fig. 4, while lines 16-19 are replaced by a call
to the core mapping routine of Fig. 5.

5.7 Two-stage CP algorithm

This is a relaxation of the pure CP approach using ideas
from the extended greedy algorithm. In the first stage,
we search the space of possible VM-to-PM mappings
with the aim of minimizing the simplified cost function
F ′(map) = α · A(map) + µ · M(map) + σ · S′(map).
At this stage, core mapping is not considered yet. The
number of overloads (S′) is calculated at the level of
PMs: a PM is considered overloaded if the total load
of all vCPUs of all VMs mapped to the PM exceeds
the PM’s total computing capacity (similar to the one-
dimensional checks of the original MBFD algorithm).
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In the second stage, when the VM-to-PM mapping is
already determined, the optimal mapping of cores (wrt.
the number of pCPU overloads) is found for each PM
and the VMs it accommodates.

Both stages use CP (see Fig. 6), aiming to find the
global optimum for the given cost function, but with a
timeout. Because of the split of stages, even if both stages
find their optima, this is not necessarily the optimum
for the whole problem. However, the rationale behind
the split of stages is that this way, the search space
is dramatically reduced, thus allowing a more effective
search.

1: Define variables and their domains
2: 1 ≤ j ≤ n : xj ∈ {1, . . . ,m}
3: 1 ≤ j ≤ n : zj ∈ {0, 1}
4: A,M,S′, F ′ ∈ N

5: End
6: Define constraints
7: A = |{xj : 1 ≤ j ≤ n}|
8: xj 6= map0(vmj)⇔ zj
9: M =

∑n

j=1
zj

10: S′ equals the number of overloaded PMs
11: F ′ = α ·A+ µ ·M + σ · S′

12: End
13: Perform search
14: standard backtrack search algorithm
15: minimizing F ′

16: End
17: /* Second stage */
18: for all p ∈ P do
19: call COREMAPPING for p and its hosted VMs
20: end for

Fig. 6. Pseudo-code of the twostage algorithm

5.8 Limiting the runtime

As mentioned earlier, the search procedure of the pure
CP algorithm is tailored so that it makes k indepen-
dent searches, each with time limit τ . This way, if
k parallel processing units are available for executing
the algorithm, it can finish in τ time. For the sake of
comparability, the runtime of the other algorithms needs
to be limited similarly.

The greedy algorithm is very fast, so that no time limit
is needed. In the hybrid1 algorithm, the schedulability
analysis is carried out a high number of times and may
be relatively time-consuming; therefore, its running time
has to be limited. Let ν denote the number of VMs to
migrate and m the number of PMs. For each VM to
migrate, the possible PMs are tried – using schedulability
analysis – until one is found where the VM fits. Assum-
ing that on average m/2 PMs must be tried, altogether
ν ·m/2 runs of the schedulability analysis procedure are
necessary. Assuming again k parallel processing units
and an overall time limit of τ , the time limit per run is
2 · k · τ/(ν ·m).

Similarly, in the hybrid2 algorithm, the running time
of the search procedure for optimized core mapping
needs to be limited. Since this procedure is run for each

of the m PMs once, and can be again parallelized, the
resulting time limit per run is k · τ/m. In the hybrid3
algorithm, the running time of both the schedulability
analysis searches and the core mapping searches must
be limited; the corresponding limits can be calculated
similarly as above. Finally, in the twostage algorithm, the
time budget of τ must be split between the two stages; in
our current implementation, this is achieved by simply
halving it. Moreover, the τ/2 time available for the
second stage must be split between m independent core
mapping searches, resulting in time limits of k · τ/(2 ·m)
for each search.

6 SIMULATION RESULTS

In order to foster the reproducibility of the results, the
used programs as well as measurement data are pub-
licly available from http://www.cs.bme.hu/~mann/
data/multicore_VM_placement/.

6.1 Experimental setup

All measurements were carried out on a notebook com-
puter with Intel i3-3110M CPU running at 2.40 GHz and
4GB RAM, with Windows 7 Enterprise.

Unless otherwise noted, we used τ = 60sec and
k = 10, i.e., the algorithms would finish within 1 minute,
assuming 10 parallel processing units for running them.

The cost of a solution is evaluated using the cost func-
tion defined in Section 4.1, with the following weights:
α = 3, µ = 1, σ = 2.

TABLE 2
PM types

Type Number of cores Capacity per core

1 2 1000
2 4 2000
3 8 3000

In the first experiments, synthetic data were used. We
model a DC with three types of PMs having different
capacity, as shown in Table 2. Each PM in the DC
belongs to one of the three types, with each type having
probability 1/3. VMs are randomly generated to have
1, 2, or 4 cores (each with equal probability), and the
load of each vCPU is generated as a uniform random
number between 100 and 1500. For the initial VM-to-
PM mapping, each VM is mapped to a PM selected in a
uniform random manner.

6.2 Experiment 1: density

In a first experiment, we fix the number of PMs to 200,
and vary the number of VMs from 50 (lightly loaded
DC) to 1200 (heavily loaded DC) in steps of 50. For each
instance, all the six algorithms presented in Section 5 are
run. The results are shown in Fig. 7.

As can be seen, the greedy and hybrid1 algorithms
perform very similarly to each other, and not too well
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Fig. 7. Cost of the solution delivered by the different
algorithms for 200 PMs and varying number of VMs

compared to the other algorithms. This can be explained
by the fact that these two algorithms do not strive for
an optimal mapping of vCPUs on pCPUs. The hybrid2
algorithm outperforms the ones mentioned previously,
showing the importance of a powerful search method
for finding an appropriate mapping of vCPUs on pC-
PUs. The hybrid3 algorithm, which adds schedulability
analysis to hybrid2, consistently performs even better.
This is interesting because the schedulability analysis
did not help much in the case of hybrid1 over greedy:
apparently, a-priori schedulability analysis is only useful
in combination with intelligent a-posteriori scheduling.

The CP algorithm performs very well: in almost all
cases, it yields the best results among all investigated
algorithms. On one hand, this is not surprising, because
it performs a systematic search and explicitly minimizes
the given objective function. On the other hand, the
excellent performance of the CP algorithm could not be
taken for granted since the applied time limit allows it
to only scan a tiny fraction of the vast search space.3

The empirical results show that the CP algorithm can
quickly achieve very good results, without the need for
an exhaustive search.

Finally, the twostage algorithm performs also quite
well, especially for VM numbers greater than 300, where
it delivers results that are almost as good as the ones
of the CP algorithm. This shows that constraint pro-
gramming, together with appropriate heuristic splitting
of the search space, can be indeed very powerful. For
low densities, the hybrid3 algorithm is also quite good
(better than twostage), but after about 300 VMs, where
the problem starts to be highly constrained, the twostage
algorithm is clearly better. For very high densities, the
results delivered by the CP and twostage algorithms are
almost 60% better than those of the greedy algorithm,
underlining the importance of systematic search for

3. As an example: for 200 PMs and 600 VMs, there are 200600 pos-
sible VM-to-PM mappings: an enormous number, and core scheduling
makes the search space even much larger.

highly constrained problems.

TABLE 3
Detailed results for 200 PMs and 600 VMs

Algorithm Active PMs Migrations pCPU overloads Total cost

CP 178 138 0 672
greedy 148 355 236 1271
hybrid1 149 357 227 1258
hybrid2 148 355 107 1013
hybrid3 149 357 87 978

twostage 191 6 74 727

The costs in Fig. 7 are with respect to the cost function
defined in Section 4.1. It is also interesting to look at
the individual components of the cost function. As an
example, Table 3 shows the details for 200 PMs and 600
VMs. As can be seen, the greedy algorithm is character-
ized by too aggressive consolidation: it results in a low
number of active PMs, but many pCPU overloads. The
latter shortcoming is effectively mitigated by the hybrid2
and especially the hybrid3 algorithms: they lead to a re-
duction of 55% respectively 63% in the number of pCPU
overloads, virtually without affecting the other two cost
components. The twostage algorithm also leads to a low
number of pCPU overloads; the higher number of active
PMs is compensated by a significantly reduced number
of migrations. Finally, the CP algorithm which explicitly
minimizes the number of overloads in its systematic
global search, achieves a very low number of overloads
(0 in this case). Concerning the number of migrations,
it is less effective than the twostage algorithm, but
still much better than the other competing algorithms,
leading to the overall best solution.

6.3 Experiment 2: scalability

0

1000

2000

3000

4000

5000

0 200 400 600 800 1000

C
o

st
 

Number of PMs 

CP greedy hybrid1 hybrid2 hybrid3 twostage

Fig. 8. Cost of the solution delivered by the different
algorithms for varying input sizes, where the number of
VMs is twice the number of PMs

The next experiment aims at evaluating the scalability
of the algorithms. For this purpose, we fixed the n/m
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ratio4 to 2, and varied m from 50 to 1000, in steps of
50, see Fig. 8. Although in the beginning, the CP and
twostage algorithms deliver the best results, they do not
scale well. Their running time is bounded, and since they
perform systematic search, it can happen that they do
not find any solution within the given time limit. For CP,
this is the case for inputs with m > 350, for twostage,
this happens for m > 300. The other algorithms scaled
well even to the biggest investigated inputs (m = 1000,
n = 2000). The greedy and hybrid1 algorithms are
consistently outperformed by the remaining algorithms,
with hybrid3 delivering consistently the best results,
which are roughly 25% better than those of the greedy
algorithm.

Of course, there are also much bigger DCs, with tens
or hundreds of thousands of PMs. It is clear that our
algorithms featuring a very detailed model of PMs and
VMs cannot be applied in that scale. From the above
experiments, we can see that the proposed algorithms
work well for some hundreds of PMs (e.g., CP works
for up to 300 PMs, hybrid3 works for up to 1000 PMs).
Thus, they are applicable to DCs of small and medium-
sized organizations which are actually responsible for
the major part of carbon emission caused by DCs [33].
In big DCs, hierarchical VM placement algorithms may
be used, where on the higher hierarchy levels only
aggregate information is used. Our algorithms utilizing
more detailed information can be used on the level of
racks or clusters; fortunately, they do scale to the size
necessary for that.

6.4 Experiment 3: runtime vs. quality

In order to guarantee acceptable runtimes, the presented
algorithms traverse only a fraction of the search space.
The trade-off between effort and result quality is gov-
erned by two parameters: the time limit τ and the level
of parallelism k.
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Fig. 9. Cost of the solution delivered by the CP algorithm
with different values of the time limit τ

4. Recall that n denotes the number of VMs, m the number of PMs.
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Fig. 10. Cost of the solution delivered by the CP algorithm
with different number of parallel search threads (k)

In this experiment, the number of PMs is fixed at 200
and the number of VMs at 400, and the results of the CP
algorithm are shown for varying values of τ (Fig. 9) and
k (Fig. 10).

As expected, increasing either τ or k typically leads to
results with lower costs, although this is not always the
case: since the algorithm is randomized, different runs
may explore different parts of the search space, leading
to some noise in the results.

Interestingly, increasing k has a more pronounced
effect on the cost of the result than increasing τ . This
can be seen also quantitatively: the Pearson correlation
coefficient between k and the cost of the result is -0.91,
whereas between τ and the cost of the result it is -0.56.
They are both negative, meaning that an increase in k or
τ tends to lead to a decrease in solution cost, but a value
near to -1 indicates a stronger correlation. Moreover,
increasing k from 1 to 32 decreases solution cost by 1.7%,
whereas increasing τ from 10s to 320s decreases solution
cost by only 1.5%.

This difference is probably due to the fact that running
the same search for more time leads to more thorough
exploration of the same part of the search space, which
may actually be far from the optimum, whereas run-
ning more searches increases the probability that better
regions of the search space are reached. An interest-
ing consequence is that even if there are not sufficient
parallel processing units available, it may be better to
make several shorter searches sequentially than making
a single long search. This finding is in line with previous
experience with other combinatorial algorithms for hard
problems [30].

It can also be observed that the effect of increasing
both k and τ is rather small. This means that already
modest computation time and resources are sufficient for
the algorithm to perform quite well.

6.5 Experiment 4: cost function

Our cost function is the weighted sum of the number of
active PMs, the number of migrations, and the number
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of core overloads. Now we investigate how different
settings for the weights influence the tradeoff that the
CP algorithm finds between the conflicting optimization
goals.
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Fig. 11. Effect of changing the weight of the number of
active PMs in the cost function (α)
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Fig. 12. Effect of changing the weight of the number of
migrations in the cost function (µ)

In Fig. 11, the weight of the number of active PMs
is varied from 1 to 256, while the other two weights
are set to 1. As expected, increasing α leads to solutions
with fewer active PMs, at the cost of an increase in the
number of migrations. Similarly, in Fig. 12, the weight of
the number of migrations is varied from 1 to 256, while
the other two weights are set to 1. This leads to solutions
with fewer migrations, at the cost of a higher number of
active PMs. Thus we can conclude that by setting the
weights appropriately, the trade-off between these two
conflicting goals can be tuned.

It is interesting to note that the number pCPU over-
loads is always very small, in many cases even 0. This
is probably due to the proprietary constraint that we
implemented in order to make the calculation of the
number of pCPU overloads more efficient (see Section
5.4). This constraint offers stronger pruning capabilities

than the built-in constraints used for calculating the
other two cost components, introducing a bias towards
solutions with a very low number of pCPU overloads.

6.6 Experiment 5: real-world trace

After the experiments with synthetic test data, we also
wanted to explore the applicability of our algorithms
in a more realistic scenario. For this purpose, we used
the fastStorage trace from the Bitbrains data center,
serving enterprise applications mainly in the financial
domain, which is one of the very few publicly available
virtualized IaaS traces [36]. This trace, available from
the Grid Workloads Archive5, contains resource usage
data from 1,250 VMs, including CPU load (in terms of
the provisioned CPU capacity in MHz), sampled every 5
minutes. The VMs have 1 to 32 cores, with an average of
3.3 vCPUs per VM. The evolution of the overall compute
demand of the VMs over time is shown in Fig. 13.

For our experiment, we used the trace data from 24
hours, i.e., 288 consecutive samples. For evaluating one
of our algorithms, we let it compute a new mapping after
each sample, based on the VM sizes from the sample and
the mapping that it had computed previously, thus re-
optimizing the mapping after every 5 minutes.

Unfortunately, the public trace does not contain infor-
mation about the underlying hardware resources. There-
fore, we assume the following hardware configuration:

• 150 PMs with Intel Xeon X5570 CPUs, with 8 pCPUs
running at 2.93GHz

• 150 PMs with Intel Xeon E5530 CPUs, with 4 pCPUs
running at 2.40GHz
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Fig. 13. Evolution of the demand of the 1,250 VMs in the
Bitbrains trace over 288 consecutive samples (24 hours)

Although the number of PMs (300) and VMs (1,250)
is not significantly greater than in our previous exper-
iments, the average number of cores per machine is
considerably higher in this case. Since this makes the
total number of pCPUs and vCPUs quite high, only the
greedy, hybrid1, hybrid2, and hybrid3 algorithms can be

5. http://gwa.ewi.tudelft.nl
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Fig. 14. Results of different VM placement algorithms on
the Bitbrains trace

applied (the systematic global search procedures of the
cp and twostage algorithms do not produce valid results
within the given time limit). The results are shown in Fig.
14.

As can be seen, the results of all algorithms closely
follow the evolution of the demand. However, the hy-
brid2 and hybrid3 algorithms perform consistently much
better than the other two (just like in the previous
experiments). The best algorithm outperforms the non-
multicore-aware greedy algorithm by roughly 50%.

7 CONCLUSIONS AND FUTURE WORK

In this paper we argued that ignoring the scheduling
of cores during VM placement is an over-simplification
that may lead to suboptimal results, and we showed that
core-level placement information is necessary in many
cases to achieve good overall performance and cost. We
presented a possible formulation of the VM placement
problem, in which pCPUs can be shared in non-trivial
ways between vCPUs. We proposed constraint program-
ming to cope with the resulting complex optimization
problem, and also several possible heuristically boosted
variants of the pure CP approach. Our empirical results
showed that the new algorithms outperform a traditional
non-multicore-aware approach by 25-60%. Pure CP de-
livers excellent results within acceptable time for up to
350 PMs and 700 VMs, whereas the hybrid algorithms
produce very good results even for 1000 PMs and 2000
VMs. Thus we can conclude that the combined problem
of VM placement and core scheduling can be effectively
approached with the presented methods for practically
useful problem sizes.

As future research, we would like to extend the pre-
sented approach with other resource dimensions (like
memory and I/O). We expect this to further constrain the
search space, which is advantageous for the CP-based
approaches. Furthermore, we would like to enhance the
presented systematic search algorithms with more ad-
vanced heuristics for narrowing down the search space.
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✦

A MULTICORE SCHEDULING ISSUES

Here, some extensions to Section 3 of the paper are
discussed.

A.1 Multi-socket and NUMA architectures

The effects of the vCPU-pCPU mapping on VM per-
formance are considerably amplified by multi-socket
systems: if the vCPUs of a VM are mapped to pCPUs
in different sockets, this can degrade the performance of
the VM significantly. For example, Ibrahim et al. report
an average performance degradation of 20% for CPU-
intensive VMs on a 4-socket machine [7]. The situation
is even worse for NUMA (non-uniform memory access)
architectures because of the loss of data locality through
the mapping on multiple NUMA nodes. In the same
article, performance degradation of up to 82% is reported
for a 4-node NUMA machine [7].

A VM placement algorithm that ignores the CPU
structure of the PMs may lead to large performance
penalties. For example, consider two PMs and three
VMs: PM A has two dual-core CPU sockets whereas PM
B has a single quad-core CPU socket; VM 1 has four
cores and VMs 2 and 3 have two cores each. Each pCPU
has a capacity of 1000 MIPS and each vCPU requires
also 1000 MIPS. As shown in Fig. 1, there are two
possible VM placements, and for a CPU-core-oblivious
VM placement algorithm, they seem to be equally good.
However, the placement in Fig. 1(a) would incur a
significant penalty because of the lack of containment
for VM 1.

Seemingly, this issue could be remedied if NUMA
nodes are modeled as multiple PMs for the VM place-
ment algorithm. But this is not a good solution because
the NUMA nodes of a machine can share important
resources (e.g., disk or network interface) that a VM
placement algorithm should take into account.

A.2 Effects of hyper-threading

Many of today’s servers use processors that sup-
port simultaneous multi-threading, often called hyper-
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(b) Placing VMs 2 and 3 on PM A and VM 1 on
PM B

Fig. 1. Two possible VM placements

threading (HT). With HT, a pCPU can run two threads in
parallel. This usually results in better use of the available
resources because if one thread must wait for a load
instruction, the other can still perform useful work. A
pCPU with HT enabled appears as two “logical” cores.

However, because of the shared resources, the result-
ing two logical cores do not offer twice the performance
of a non-HT core. According to Intel’s original estimate,
HT may result in performance improvement of up to
30% [14], which is consistent with recent independent
measurements [15], [19]. The actual performance im-
provement depends on the characteristics of the work-
load, such as memory access patterns and inter-thread
communication patterns [16].

A VM placement algorithm may regard a hyper-
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threaded core as one or two pCPUs, but the capacity
of the pCPUs is different in the two cases. For example,
a core with non-HT performance of 1000 MIPS may offer
HT performance of 1300 MIPS. Thus it can be regarded
either as a pCPU with 1000 MIPS or two pCPUs with 650
MIPS each. Which one of the two is better depends on
the kinds of VMs that need to be allocated: for example,
for allocating a VM with a single 800 MIPS vCPU, the
first case is better, whereas for allocating a VM with two
600 MIPS vCPUs, the second is better. Unfortunately, a
non-multicore-aware VM placement algorithm will not
be able to model this situation correctly.

A.3 Dedicated cores

Although virtualization ensures some level of isolation
between co-located VMs, this isolation is not perfect:
e.g., the shared last-level cache and memory interface
may lead to contention between co-located VMs, thus
potentially resulting in performance degradation [9].
Known as the “noisy neighbor” effect, a VM exerting
high pressure on the shared resources may seriously
degrade the performance of another VM on the same
PM. Kocsis et al. showed that a 10-second CPU burst
of one VM may lead to an outage of several minutes
for a performance-sensitive application running in a co-
located VM [11].

For performance-critical VMs (e.g., soft real-time ap-
plications), therefore, it is good practice to allocate ded-
icated vCPUs, thus minimizing the noisy neighbor ef-
fect [10]. However, this is a tricky situation for a VM
placement algorithm that only considers the total CPU
capacity of PMs and the total CPU load of VMs. The
problem is that the CPU capacity that a given VM
occupies from a PM is not constant but depends on
the PM. For example, consider a single-core VM with
CPU load 500 MIPS, requiring a dedicated core. If the
VM is allocated on a PM whose cores have 1000 MIPS
capacity, then the VM occupies 1000 MIPS from this PM.
However, on a PM with 2000-MIPS cores, the same VM
occupies 2000 MIPS, a situation not foreseen by current
VM placement algorithms.

A.4 Asymmetric processors

Many of the published VM placement algorithms as-
sume that all PMs are equal, see e.g. [2], [3], [4], [5], [17],
[18], [20]. More advanced algorithms take into account
that PMs may be different in terms of capacity and/or
energy efficiency [1], [8], [13].

Heterogeneity is also possible within a PM. This is
the case for asymmetric multicore chips, which feature
cores of different computational capacity and power
efficiency. It has been shown that for several types of
workloads, asymmetric processors can achieve better
performance and power characteristics than symmetric
CPUs in which all cores are the same [6], [12].

To take advantage of asymmetric processors, VM
placement must be aware of the per-core capabilities of

the PMs. For example, if a PM possesses one fast core
and several slower cores, then it will be a good host for a
single-core VM with high computational load and some
further VMs with low load, but it is not suitable for a
VM requiring two high-performance vCPUs.

B CONNECTION OF THE PROBLEM FORMULA-
TION TO THE ABOVE ISSUES

It is worth to revisit the issues presented in Section 3
of the paper and above and discuss how they can be
addressed in the framework of our problem formulation
(presented in Section 4 of the paper).

• High sequential compute demand. If a vCPU is
mapped to a pCPU with lower capacity, this will
automatically lead to a pCPU overload. Since the
problem formulation aims at minimizing the num-
ber of pCPU overloads, it will aim at eliminating
such situations as much as possible.

• vCPU migration vs. pinning. This has already been
discussed in the paper.

• Multi-socket and NUMA architectures. Our prob-
lem model contains two levels: machines (PM/VM)
and cores (pCPU/vCPU). In order to accurately
model multi-socket architectures, three levels would
be needed: machines, sockets, and cores. A less
precise but much simpler alternative is to use just
two levels: machines and sockets, and treat the cores
belonging to the same socket as one big core with
the total capacity of those cores. This is a sensible
model if vCPU movement is much cheaper within
a socket than between different sockets. This is then
the same as our model, with sockets in lieu of cores.

• Effects of hyper-threading. In its current form, the
problem model does not address HT issues. How-
ever, the availability of per-core information (pcc(p)
and vcl(vc)) and the core mapping (cmap) makes it
relatively easy to extend the problem model with
HT. A HT-capable core can be modeled with a pair
of pCPUs pc1, pc2 so that either pc1 has capacity
pccnon−HT and pc2 has capacity 0, or both have
capacity pccHT . The definition of when a core is
overloaded must be changed accordingly.

• Dedicated cores. Again, the availability of core
mapping information makes it easy to incorporate
this in the problem model. If VM v requires dedi-
cated cores, then for each vCPU vc of v, the follow-
ing must be ensured: |cmap−1(cmap(vc))| = 1.

• Asymmetric processors. It is straight-forward to
extend the model to incorporate this: instead of the
PM-level pcc(p) numbers, each pCPU pc may have
its own pcc(pc) capacity.
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