In: Software Engineering and Development ISBN 97&3692-146-3
Editor: Enrique A. Belini, pp. 25-35 © 2009 Novai&we Publishers, Inc.

Short Communication A

EMBEDDING DOMAIN -SPECIFIC LANGUAGES IN
GENERAL -PURPOSEPROGRAMMING L ANGUAGES

Zoltan Adam Mann
AAM Consulting Ltd.; Budapest University of Techogly and Economics

ABSTRACT

In recent years, domain-specific languages haven lmeposed for modelling
applications on a high level of abstraction. Altgbuthe usage of domain-specific
languages offers clear advantages, their desiga fgghly complex task. Moreover,
developing a compiler or interpreter for these leages that can fulfil the requirements
of industrial application is hard. Existing toolsrfthe generation of compilers or
interpreters for domain-specific languages arel &l an early stage and not yet
appropriate for the usage in an industrial setting.

This paper presents a pragmatic way for designind asing domain-specific
languages. In this approach, the domain-specifiguage is defined on the basis of a
general-purpose programming language. Thus, gepergtamming mechanisms such as
arithmetics, string manipulations, basic data stm&s etc. are automatically available in
the domain-specific language. Additionally, theigesr of the domain-specific language
can define further domain-specific constructs, kadba types and operations. These are
defined without breaching the syntax of the undedygeneral-purpose language.
Finally, a library has to be created which providles implementation of the necessary
domain-specific data types and operations. This tegre is no need to create a compiler
for the new language, because a program writtehérdomain-specific language can be
compiled directly with a compiler for the underlgirgeneral-purpose programming
language. Therefore, this approach leverages theanéabes of domain-specific
languages while minimizing the effort necessary tfer design and implementation of
such a language.

The practical applicability of this methodologydemonstrated on a case study, in
which test cases for testing electronic controltaurire developed. The test cases are
written in a new domain-specific language, whichum is defined on the basis of Java.
The pros and cons of the presented approach ameiea in detail on the basis of this
case study. In particular, it is shown how the @nésd methodology automatically leads
to a clean software architecture.

26 Zoltan Adam Mann

1. INTRODUCTION

In the last decades, the requirements toward sétivave become tougher and tougher.
The complexity of the problems that are solved bfgwsre is growing, while at the same
time the expectations concerning numerous othen-faactional, aspects (for instance,
maintainability, usability, fault-tolerance, paediém, throughput etc.) have also increased
significantly. Moreover, in today’s highly compét# software market, it is crucial to
minimize time-to-market for software, to be abledquickly add fixes or new features to
products.

Since the human brain has not evolved significamtlthis time, the only way to create
more complex software more quickly is to raise theel of abstraction for software
development. Just imagine how it would be to dgvedoftware that should fulfil today’s
requirements, if you had to keep in mind which pi@f data is in which register of the
processor!

In order to cope with increasing complexity, thefpssion moved from machine code to
assembler, from assembler to high-level programrtanguages, then to object orientation,
to component orientation etc. Today, we think imm® of high-level programming
abstractions, such as components, threads, GUlealsnetc., and not in terms of what the
hardware can offer (registers, memory addressesrupts).

Despite all this development, the requirementssditeahead of what we can deliver
safely with our current software development pradi So, what will be the next quantum
leap in increasing the level of abstraction?

Many researchers agree that the destination ofjdhimey will be some kind afodel
orientation[6]. Software development will mean creating astadzt, logical model ofvhat
the software is supposed to do, without technieshits onhow it will fulfil those aims. As
formulated by Brooks in his seminal paper “No gihNmillet,” the essence of software
development is the construction of abstract, comedstructures; the difficulties arising from
the representation of these structures within taenéwork of a programming language are
just accidental and are decreasing with scientifogress [1].

There are some debates in the research communityhah the future model oriented
software development process will look fike

» One possibility is to define a universal modelliagguage that can be used for the
development of any software application. Most nlytathe Object Management
Group (OMG) follows this path with the Unified Mdtleg Language (UML) [12].
In contrast, others argue that modelling at a ydalyh level of abstraction is only
possible with domain-specific concepts, which can bdest accomplished by a
domain-specific language (DSL). In recent yearss thtter approach has gained
tremendously in popularity [2] and is also the topf this paper. More on DSLs can
be found in Section 2.

* Another question is how to bridge the gap betwéenabstract model and the real
features of the available platform. Two main apphes can be distinguished,
similar to compiled vs. interpreted programminggiaages. The first approach

OAlso, there are minor differences in the terminolagyg, model-based vs. model-driven vs. model-oriented.

Embedding DSLs in General-Purpose Programming Lages! 27

consists ofgenerating (possibly in more than one step) program code ftom

model, after which the code can be executed usiadjtional mechanisms. For
instance, the OMG’s Model-Driven Architecture (MDAYpradigm falls into this
category [11]. The other approach consistsexécutingthe model itself with a
suitable model interpreter. As an example, the Hbedde UML (XUML) approach

belongs to this category [9].

* When hearing the word ‘model,” one tends to thihla graphical representation, like
an UML model. However, graphical modelling has litgitations. Not only is a
graphical representation less appropriate for nm&ciprocessing, but also for the
human reader, it is quite hard to understand huisdfer more) of pages of graphical
models. Usually, a textual model is more concise ean therefore scale better in
model size when readability is concerned. Thusutmodelling languages became
more popular in recent years [5].

In the rest of the paper, textual domain-specHioguages are considered. The issue of
generating code from the model vs. interpreting rttalel itself will be discussed in more
detail.

1.1. PAPER ORGANIZATION

The rest of the paper is organized as follows. écti®n 2, the concept of DSLs is
described in more detail, with special emphasistlo® challenges associated with the
development of a DSL. Section 3 contains a casdysintroducing the domain of testing
electronic control units. In this domain, theraiseed for a DSL for the specification of test
cases. Section 4 describes the proposed pragmajiofrdefining a DSL based on a general-
purpose language in principle, followed by the secpart of the case study in Section 5, in
which the practical applicability of the proposegpeach is presented for specifying test
cases for electronic control units. Section 6 dosta discussion of the lessons learned in the
application of the proposed methodology, while B&ct concludes the paper.

2. DSLs

2.1. GENERAL PROPERTIES OF DSLs

A DSL is a language for the description of prograorsof models of prograrison a
specific field of application (called @domain. Since the language is tailored to one domain,
complex constructs and abstractions of the domainbe supported directly by the language.
A number of benefits are expected from this cleau$ on one domain, such as:

» Concise representation of complex issues;
e Gain in productivity;

OFrom a theoretical point of view, the distinctioetlween a program and a model of the program is aafifigince
a model can be defined as an abstract representditioaystem, and thus the program itself can alsegerded
as a model.

28 Zoltan Adam Mann

* Improved maintainability;
» Better communication between IT and functional depents;
» Efficient development of variants and of softwareduct lines.

The idea of domain-specific languages is not nelerd are several languages that are
already widely used and can be regarded as a @8lndtance:

e SQL (Structured Query Language) for the definitioh database queries and
manipulations;

e XSLT (eXtensible Stylesheet Language Transformatifor the definition of
transformations between XML (eXtensible Markup Laage) files;

» sed scripts for string manipulations;

* make scripts for directing the software build process.

As can be seen from this list, these widely usetld>8e usually tailored to tachnical
domain. Forfunctional’ domains, the idea of DSLs can also be leveragedgter, by the
nature of functional domains, these languages sueally known and used only by a limited
set of experts. Examples include:

e CPL (Call Processing Language) for the definitibinternet telephony services;
e BPMN (Business Process Modeling Notation) for thefindtion of business

processes;

+ OWL (Web Ontology Language) for the definition afitologies for the Semantic
Web;

» VoiceXML for the definition of interactive voice @iogues between a human and a
computer.

2.2. CREATING DSLs

Developing a DSL and the supporting tool chain tgree-consuming process requiring
much care and deep expertise [10]. The procesdeativided into five phases: decision,
analysis, design, implementation, and deploymédniJ&t of these, especially challenging are
the analysis phase and the implementation phase.

In the analysis phase, the constructs of the dortah should be integrated into the
language have to be identified and formalized. @&uiih there are several methodologies for
this kind ofdomain engineeringhis phase is definitely time-consuming and rezpispecial
expertise.

In the implementation phase, the necessary tooinchaust be developed for the
language: editor, compiler / interpreter, debugpesfiler etc. Parts of this can be automated
(e.g., parser generation), and there are kElaguage workbenchel8] for facilitating the

Oln this context, the distinction between technimad functional is as follows. Functional issuesthose intrinsic
properties of the system which result directly from the eser’s functional requirements. In contrast, technical
issues are related to the implementation of theesyswith a specific technology. Accordingly, a teiclh
domain is relevant for the IT expert, whereas a foneti domain may also be relevant to the end user.

Embedding DSLs in General-Purpose Programming Lages! 29

whole process (e.g., Eclipse Modeling FrameworkgrbBoft Visual Studio DSL Tools).
However, not all the steps can be fully automasedthat creating efficient tools for a non-
trivial DSL remains a difficult process with a lot manual work. In particular, developing a
compiler or interpreter for the language that caifilfthe requirements of industrial
application is hard.

3. CASE STUDY—PART 1

As a case study for a domain-specific languagedtmain of testing electronic control
units (ECUSs) in vehicles is considered.

An ECU is an embedded computer system with a dpecifntrol function within a
bigger mechatronic system. For instance, a higheamccontains nowadays up to 80 ECUs
(e.g., ABS, tuner, night vision camera controlbag control etc.). The ECUs within a car are
interconnected so that they can exchange mesdagethe interconnection of ECUs several
bus technologies are in use, from which two arentwost common ones: Controller Area
Network (CAN) and Media Oriented System TranspdtOST). CAN supports the
transmission of 8-byte messages with a data rate od 500 kilobit/sec and a non-negligible
error rate. MOST is a more expensive technologyppstting the safe transmission of
messages of up to 4 kilobyte in length and a datof up to 23 megabit/sec. Moreover, the
two technologies differ significantly in their aggdising scheme.

Car manufacturers spend huge amounts of resouritestesting whether every ECU
obeys its specification in every possible comboratind under all imaginable circumstances.
Testing ECUs has several flavours and there arralemethodologies. In this paper, we will
focus on the testing of generisystem functionge.g. power management, security,
personalization) that have to be implemented ime®CU according to the same logical
specification, but with different technical detaiésg. depending on the bus technology used
by the ECU (CAN/MOST) [4]. It should also be nottdht, in order to find errors in the
earliest possible stage, these generic systemidmscare usually first implemented and tested
in the form of a software simulation on a PC.

The testing of these functions basically considtssending different sequences of
messages to them and comparing the replies fronE@Id with the expected behaviour
(whether there was a reply at all; whether timiaguirements were met; whether the data in
the reply were as expected etc.).

Now the challenge is the following. The test cdsesesting (a) the PC simulation of the
function; (b) the implementation of the functionartCAN ECU; (c) the implementation of the
function in a MOST ECU are almost the same atdlgechl level. However, at the level of the
communication technology, the three cases are dliffierent. The aim is to define the test
cases only once, at a sufficiently high level ddtediction, and use them in all three cases (see
Figure 1).

Thus, the goal is to define a DSL with the follogimain concepts:

* Sending of messages with defined content to theeBysinder Test (SUT);
e Waiting for messages from the SUT with given timaumstraints;
e Comparing the contents of a received message vithdefined pattern.

30 Zoltan Adam Mann

Simulation

Model of testcase J

rd

:'I

r 4

| execution for CAN

CANECU

execution forMOST

execution for
simulated ECUs

MOSTECU

Simulated boardnet

Figure 1. The same logical test cases should beutee for different ECU implementations

The DSL should be free of any references to theipecommunication technology;
however, it should be possible to run the test cag#hout modification on any of the
supported technology platforms.

The resulting DSL is described in Section 5.

4. A PRAGMATIC APPROACH TO DSL DEVELOPMENT

In light of the challenges associated with the t@wrent of a DSL (see Section 2), we
suggest that DSLs should be developed from scratdy if (a) there are some specific
requirements concerning the tool chain that areeratise hard to fulfil (e.g., hard
requirements concerning performance may requirerg specific optimizing compiler) and
(b) the foreseen wide-spread usage of the DSLfigsstihe efforts. Otherwise, we propose
using a pragmatic approach in order to leverageb#ireefits of DSLs even in projects with
very limited budget, as follows.

The DSL should be defined on the basis of an exjstjeneral-purpose programming
language (GPL). Thus, general mechanisms suchitagnatics, string manipulations, basic
data structures etc. are automatically availablgnéDSL. Additionally, the designer of the
DSL will of course define further, domain-specifagnstructs. These can be categorized as
data types and operations. Both can be definedulithreaching the syntax of the underlying
GPL, as data types and operations in the GPL. liginallibrary has to be created which
provides implementation in the GPL for the definddmain-specific data types and
operations. In other words: the DSL is nothing &@PL enriched with domain-specific data
types and operations, which are defined in the @fimselves. A program written in the
DSL is thus at the same time also a program ifGiRE.

The representation of the DSL within the GPL isgildle, because there are so many
degrees of freedom in the design of the DSL. Ugu#ike requirements concerning the future
DSL are very high-level: what kinds of domain counsts should be available in the language

Embedding DSLs in General-Purpose Programming Lages! 31

and what kinds of operations should be possibléhese constructs (see for instance the
requirements formulated in Section 3 in connectwith the DSL for ECU test case
specification). There are usually no strict constsaon the syntax of the language, so any
logical, readable, and coherent syntax can be uBHeds, the syntax of a GPL is usually
applicable.

This approach has several major advantages. Fiedl; gsince a program in the DSL is at
the same time also a program in the GPL, the witoakchain of the GPL can be used for
programs written in the DSL. This way, the effdrigolved in the creation of the DSL are
drastically reduced. Moreover, it is safe to asstiméthe tool chain of a GPL is significantly
more mature — concerning comprehensiveness, coess;t documentation, etc. — than the
tools that would be created for the sake of the DFglrthermore, many useful features of the
DSL can simply be inherited from the GPL “free bficge,” such as macros, inheritance, etc.
— features that you might not bother to includéhimlanguage if developed from scratch.

Of course, this approach also has some limitatifh$or some reason, there are very
specific requirements concerning the syntax of@B& that cannot be found in any available
GPL, then this approach cannot be applied. Alsis #pproach does not yield a clear
separation between code and model, which can beldem if some team members are
supposed to work on the model only.

In any case, since the presented approach allowthdoquick and easy construction of
DSLs, it can be used as a rapid prototyping metloggo Suppose for instance that for a
given domain DSL1 is created using the above mellbggl. The language can be tried in
practice and fine-tuned based on the experienea igarly stage of the design. Afterwards, a
second language DSL2 can be created which is seralntequivalent to DSL1, but its
syntax is closer to the logical syntax of the domastead of the syntax of the GPL. Then,
only a DSL2-to-DSL1 compiler must be created, idenrto have a full-fledged DSL (namely,
DSL2) with moderate efforts.

5. CASE STUDY —PART 2

We have applied the presented approach to the ESUchse specification domain
presented in Section 3. That is, we developed afd6the black-box testing of ECUs, based
on Java as the underlying GPL.

5.1. DESIGN OF THE DSL

The building blocks of test cases consist of thedisgy of messages to the ECU and the
waiting for the reply from the ECU. The most comnsaenario is that the test case sends a
message to the ECU and expects a reply in a givem frame. Such a building block can
have a variety of parameters, such as:

* The message that should be sent to the ECU;
» Criteria for the acceptance of the reply (e.g1Bimust be 0 in the reply);
e Minimum and maximum reply time.

32 Zoltan Adam Mann

There are other, similar building blocks. For imst@, it is possible to specify that, after
having sent a given message to the ECU, no replst mwive within a given time frame.
From such building blocks, complex test cases eacompiled, as shown in Figure 2.

/Nnquiry + 1st reply

messageToSend=new Messagelnquiry(TEST_ID);
idOfExpectedReply=TEST_ID;
minimalWaitTime=0;

maximalWaitTime=100;
sendMessageAndWaitForReply();

/12nd reply
minimalWaitTime=175;
maximalWaitTime=225;
waitForReply();

/13rd reply
waitForReply();

/lwait one more period; no further reply should arr ive
waitNoReply();

Figure 2. Example test case.

This test case tests that an inquiry sent to the ESults in exactly 3 replies, from which
the first one must arrive within 100 millisecondtea sending the inquiry and the next two
with a gap of approximately 200 milliseconds betwtem.

The grammar of the DSL is specified in EBNF notaiio Figure 3.

<test case> := <first-block> <block>*
<first-block> := <param-spec> <command>
<block> := <param-spec-opt> <command>
<param-spec> := <inquiry-spec>
<reply-spec>+
<min-time-spec>
<max-time-spec>
<param-spec-opt> ;= <inquiry-spec>?
<reply-spec>*
<min-time-spec>?
<max-time-spec>?
<inquiry-spec> := "messageToSend=new Messagelnquiry S
<inquiry-params>");"
<inquiry-params> ;= <id>| ...
<reply-spec> := "idOfExpectedReply=" <id>";" | ...
<min-time-spec> := "minimalWaitTime=" <number>";"
<max-time-spec> := "maximalWaitTime=" <number> ";"
<command> := "sendMessageAndWaitForReply();"
| "sendMessageNoReply();"
| "waitForReply();"
| "waitNoReply();"

Figure 3. Grammar of the DSL for ECU testing

Embedding DSLs in General-Purpose Programming Lageg 33

5.2.IMPLEMENTATION OF THE DSL

The domain-specific constructs of the language e-attributesminimalWaitTime
messageToSend etc. as well as the operationaitForReply() etc. — are specified in
an abstract Java class calleE@UTest. All test cases are Java classes that inherit tfom
abstract class, so that these attributes and apesatan be used in all the test cases (see
Figure 4).

Of course, the exact behaviour of these operataeyends on the used technology
(calling Java routines vs. using CAN messages ss1iguMOST messages). Hence, the
operations in the cladsCUTest do nothing but delegate the work to an adaptee. dlass
ClientTest can be parameterized with different adapters datgr to the used
technology. All details concerning the technologg ancapsulated in the relevant adapter.
The test cases themselves are free of any technobtated details.

The domain-specific
language constructs
are defined in the
parent class.

Simulation

CANECU

MOSTECU

L

Figure 4. Embedding the DSL into Java via inhed&n

imulated boardnet

This way, the challenge described in Section 3 ét: rihe test cases are specified at a
logical level, only once, but can be used withoay anodifications with the different
technologies.

6. DISCUSSION
Based on the presented case study, two issuessaussed:

* The consequences of using an underlying GPL oD 8le
* The resulting software architecture.

34 Zoltan Adam Mann

6.1. CONSEQUENCES ON THE LANGUAGE

As can be seen from Figure 2 and Figure 3, theagyof the language is sufficiently
simple, and contains only constructs of the givemain. Thus, expressing test cases in the
DSL is really simple and easy to understand. Irti@dar, it is much simpler than its
implementation in Java, in particular because dftieell involves at least two threads: one for
receiving the asynchronous incoming messages,ttiex tor checking the elapsed time and
interrupting the first one after the specified amioof time. The chosen syntax elegantly
hides this complexity from the user, who can thaeu$ on the logic of the test case instead of
the difficulties of multithreaded Java programming.

It should also be noted that, although embeddirgg DISL into Java imposes some
constraints on the syntax of the DSL (e.g., everymand must be followed by a semicolon),
these restrictions are not disturbing at all.

What is more, the embedding in Java provides aflgiowerful features free of charge.
For instance, comments can be added to the test easording to Java syntax, although this
was not explicitly defined in the language gramniare importantly, when judging the
acceptability of the data contained in an incomimgssage, the full power of Java can be
used to perform sophisticated computations (ekg &asubstring of the data field, interpret it
as a hexadecimal number, compute a formula basethi@mumber etc.). Defining these
features from scratch, without relying on the énmigtfeatures of Java, would be a quite
tedious and time-consuming task.

6.2. THE RESULTING ARCHITECTURE

When looking only at the result in Figure 4, onaildoargue that this is a pure Java
system, without any use of a DSL. In a way, thisideed the case: through the embedding in
Java, at the end all artefacts are in Java, anD®teis not visible at all.

However, when assessing Figure 4 thoroughly, oneatso state that the result is a really
clean architecture in which technology-related cadeé functional (i.e., test-related) code is
successfully separated, in the sensgepfaration of concerndt should also be noted that this
feature is guaranteed automatically by the usagiefDSL, since the DSL only contains
constructs of the domain, and no technology-reladsdes. Therefore we can conclude that
even if the DSL is not visible in the final produits use is justified also by the final product
because the consequent use of the DSL leads aitaftyato the presented clean software
architecture.

Moreover, as mentioned in Section 4, the opticstilsavailable to extract the test cases
from the Java program into separate non-Java filed transform them in an automated way
to Java or interpret them on-the-fly, if a looseupgling is needed.

7. CONCLUSION

This paper has presented a pragmatic approacihdodevelopment of DSLs, in which
the DSL is not created from scratch, but rathertam of an existing GPL. The GPL is
extended with domain-specific constructs that afindd and implemented as data structures

Embedding DSLs in General-Purpose Programming Lages! 35

and operations in the GPL. This way, the toolstier GPL can be used directly also in
connection with the DSL, which drastically reduties efforts of implementing the DSL.

The presented case study showed how this appr@ache applied in practice. A DSL
has been devised for the black-box testing of EG¢he basis of Java. With the presented
approach, it is possible to specify the test caseshigh level of abstraction, without making
any reference to the underlying technology (whetbAN, MOST, or direct Java function
calls). The resulting DSL is simple and easy tg usareover, its use leads automatically to a
clean software architecture.

To sum up: the presented approach helps to leveregpower of DSLs even in small
projects in which creating a full-fledged DSL fraoratch would not be feasible.

8. REFERENCES

[1] Brooks, F. P., Jr.: No Silver Bullet — Essence andidents of Software Engineering,
Computey 1987

[2] Cook, S.; Jones, G.; Kent, S.; Wills, A. C.: Dom&jpecific Development with Visual
Studio DSL ToolsAddison-Wesley2007

[3] Fowler, M.: Language workbenches — the killer app domain specific languages?,
http://www.martinfowler.com/articles/languageWorkloa.html

[4] Heider, A.; Mann, Z. A.; Staudacher, B.: VerteiltBystem,Automobil Elektronik
03/2006

[5] Karlsch, M.: A model-driven framework for domainesgffic languagesMaster’'s
thesis, Hasso-Plattner-Institute of Software SystBmgineering2007

[6] Kempa, M.; Mann, Z. A.: Aktuelles Schlagwort: Modafiven Architecture|nformatik
SpektrumAugust 2005

[7] Ludwig, F.; Salger, F.. Werkzeuge zur domanensigehén Modellierung,
OBJEKTspektrun03/2006

[8] Luoma, J.; Kelly, S.; Tolvanen, J.: Defining Dom&pecific Modeling Languages —
Collected Experience®roceedings of the 4th OOPSLA Workshop on Doma@tifip
Modeling 2004

[9] Mellor, S; Balcer, M: Executable UML — A foundatidor model-driven architecture,
Addison-Wesley2002

[10] Mernik, M; Heering, J.; Sloane, A. M.: When and htavdevelop domain-specific
languagesACM Computing Surveysolume 34, issue 4, pages 316-344, 2005

[11] Object Management Group: Model Driven Architectuwigp://www.omg.org/mda/

[12] Object Management Group: Unified Modeling Languddtn://www.uml.org/

