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Abstract

In order to cope with the increasing complexity of system design, component-based
software engineering advocates the reuse and adaptation of existing software com-
ponents. However, many applications � particularly embedded systems � consist of
not only software, but also hardware components. Thus, component-based design
should be extended to systems with both hardware and software components.

Such an extension is not without challenges though. The extended methodology
has to consider hard constraints on performance as well as di�erent cost factors.
Also, the dissimilarities between hardware and software (such as level of abstraction,
communication primitives etc.) have to be resolved.

In this paper, the authors propose such an extended component-based design
methodology to include hardware components as well. This methodology allows
the designer to work at a very high level of abstraction, where the focus is on
functionality only. Non-functional constraints are speci�ed in a declarative manner,
and the mapping of components to hardware or software is determined automatically
based on those constraints in the so-called hardware/software partitioning step.

Moreover, a tool is presented supporting the new design methodology. Beside
automating the partitioning process, this tool also checks the consistency between
hardware and software implementations of a component.

The authors also present a case study to demonstrate the applicability of the
outlined concepts.
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1 Introduction

The requirements towards today's computer systems are tougher than ever.
Parallel to the growth in complexity of the systems to be designed, the time-
to-market pressure is also increasing. In most applications, it is not enough
for the product to be functionally correct, but it has to be cheap, fast, and
reliable as well.

Component-based software engineering holds the promise of overcoming the
design productivity gap by the systematic reuse of software components [1,2].

In this paper, we address the problem of using a component-based methodol-
ogy in the design of embedded systems. According to a recent study, embedded
software is an over $1.4 billion business and is growing steadily [3]. Embedded
systems have become a part of our lives in the form of consumer electronics,
cell phones, smart cards, car electronics etc. These computer systems con-
sist of both hardware and software. The design of the hardware and software
parts cannot be done separately because they depend heavily on each other.
Therefore, the design of such systems involves hardware/software co-design
(HSCD [4]). It should also be noted that the di�erences between hardware and
software and their interaction also contribute signi�cantly to the complexity
of the systems. Therefore, the design of such systems would also bene�t from
a component-based methodology.

Of course, the reuse of previously designed components is not unfamiliar in
the hardware world either. Actually, because of the high costs of hardware
production, the idea of reusing existing units and creating the new applications
out of the existing building blocks is even more adopted in the hardware world.
This process has led from transistors to logic gates, then to simple circuits like
�ip-�ops and registers, and then to more and more complex building blocks
like microprocessors. Today's building blocks perform complex tasks and are
highly adaptable. These building blocks are called IP (intellectual property)
blocks [5�7].

Despite the striking similarity between IP blocks and software components,
there are also some important di�erences:

• Since modi�ability is not a key issue in hardware design, there is no strict
decoupling between the interface and the implementation of an IP block.
• Similarly, there are no standardized high-level component models (such as
e.g. CORBA or EJB in the software world), nor supporting middleware
platforms.
• The 'interface description' of an IP block (which is typically just a textual
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description and a data sheet) is very low-level, focusing on voltages and
clock signals.

This paper introduces a component-based design methodology that handles
hardware and software components in a uniform way by using a generic com-
ponent notion focusing on functionality, and by using software-like interface
adapters for hardware. The methodology is described in Section 2. The authors
have also developed a tool supporting the new concepts, which is demonstrated
in Section 3. Moreover, a case study was conducted to evaluate the practical
applicability of the presented concepts (Section 4). Section 5 presents related
work, and �nally, Section 6 concludes the paper.

2 Extended component-based methodology

Based on the growing needs towards system design, as well as both the soft-
ware and hardware industry's commitment to emphasize reuse as the remedy
for growing design complexity, we propose a novel HSCD methodology we call
component-based hardware-software co-design (CBHSCD). CBHSCD is an
important contribution in the Easycomp (Easy Composition in Future Gener-
ation Component Systems 1 ) project of the European Union. The main goal of
CBHSCD is to assemble the system from existing pre-veri�ed building blocks
allowing the designer rapid prototyping [8,9] at a very high level of abstrac-
tion. At this abstraction level components do not know any implementation
details of each other, not even whether the other is implemented as hardware
or as software. The behavior of this prototype system can be simulated and
validated at an early stage of the design process. CBHSCD also supports hi-
erarchical design: the generalized notion of components makes it possible to
reuse complex hardware-software systems as components in later designs.

2.1 Basic concepts

Our overall aim is to handle hardware components similar to software ones
and use the existing software composition methodologies to assemble complex
heterogeneous systems. To achieve this, hardware components should be pro-
vided with a software�like interface hiding all hardware�speci�c details. The
need for a high�level abstract interface has led us to the following component
notion.

We de�ne a component as a functional unit. The composition of components

1 www.easycomp.org
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Table 1
Mapping between the hardware and software notations

Software notation Hardware notation

property ←→ status/state signal

method call ←→ start/enable signal, command

event ←→ interrupt

is based on their functionality. This functionality is captured by the interface
of the component. It is described in a very generic way, via methods, properties
and events. Although these terms originate from the software�world, they are
general enough to capture the functional behavior of hardware elements as
well. The status and state signals of the hardware component can be mapped
to properties, the various start/enable signals and commands to method calls,
and the interrupts to events. This mapping (see Table 1) is realized by a
wrapper surrounding the hardware component. To be exact, the wrapper is
designed around the device driver communicating directly with the hardware
(see Fig. 1). The device driver and the wrapper together hide all hardware-
speci�c details including port reads/writes, direct memory access (DMA) etc.:
these are all done inside the wrapper and the device driver, transparently for
other components. As a consequence hardware components behave exactly the
same way as software ones for the rest of the system, they can be composed as
software components, they can also participate in remote method calls both
as initiator or as acceptor.

driverDevice

Hardware

Hardware wrapper

Fig. 1. Wrapper around a hardware component to achieve software�like interface

The functionality captured by the interface is completely decoupled from its
implementation. It is also possible to have more than one implementation
for the same interface. What is more, it is possible that there is a hardware
implementation and a software implementation for the same interface. One
of our main motivation was to achieve hardware/software transparency, which
means that a change between the two implementations is transparent to the
rest of the system, hence the decision which implementation to use can be
made as late as possible. The designer works with abstract behavioral units
in the majority of the design process.

We can identify three di�erent kinds of components. There can be components
for which there is only a software implementation. For instance, GUI elements
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or a database component are typically implemented in software. Similarly,
there can be components for which there is only a hardware implementation.
For example, it does not make sense to implement a video card in software.
And �nally, there can be components for which there is both a hardware
and a software implementation. For instance, a cryptographic algorithm can
be realized either by a program or by a special-purpose hardware unit. Such
components will be called partitionable components (see Fig. 2).

partitionable component
Interface of

Hardware wrapper

driverDevice

Hardware

EJB wrapper

EJB component

Fig. 2. Example partitionable component with two implementations

After transforming the components to a generic abstract component model,
the composition and communication between components can be realized with
existing software methodologies [10]. The communication between the compo-
nents is facilitated through a middleware layer, which consists of the wrappers
for the respective component types, as well as support for the naming of com-
ponents, the conversion of data types and the delivery of events and method
calls. (See Section 4 for an example.) This way we can achieve hardware-
software transparency much in the same way as middleware systems for dis-
tributed software systems achieve location and implementation transparency.
The resulting architecture is shown in Fig. 3. Note that the adapters facilitat-
ing the event�to�method mapping can be generated automatically [10].

COM wrapper

COM component

Hardware wrapper

driverDevice

Hardware

Middleware

Fig. 3. Communication between a COTS software component (COM component in
this example) and a hardware unit. The dotted line indicates the virtual communi-
cation, the full line the real communication.

The drawback of this approach is the large communication overhead intro-
duced by the wrappers and the middleware layer in general. Furthermore, this
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is only problematic if the communication between hardware and software in-
volves many calls, which is not typical. Most often, a hardware unit is given
an amount of data on which it performs computation-intensive calculations
and then it returns the results. In such cases, if the amount of computation is
su�ciently large, the communication overhead is less important. However, the
�exible but complicated wrapper structure is only used in the design phase,
and it is replaced by a simpler, faster, but less �exible communication infras-
tructure in the synthesis phase. There are standard methodologies for that
task, see e.g. [11,6].

2.2 CBHSCD process

The main steps of CBHSCD are shown in Fig. 4. In the following each subtask
is detailed except the issues related to synthesis which are beyond the scope
of CBHSCD.

Component selection

Composition

Real−time constraints

Cost & timing info

Partitioning

Component repository

Problem specification

Synthesis Technology spec

Consistency check

Simulation
Validation

Fig. 4. The process of CBHSCD

Component selection. The process starts by selecting the appropriate com-
ponents from a component repository based on the problem speci�cation. (A
related �eld of research addresses the problem of automating the component
selection process, see e.g. [5,12], but this is orthogonal to CBHSCD.) From
the aspect of CBHSCD it does not matter how the components are imple-
mented: CBHSCD does not aim at replacing or reinventing speci�c hardware
design and synthesis methods or software development methods. Instead, it re-
lies on existing methodologies and best practices, and only complements them
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with co-design aspects. The used components might include pure software and
pure hardware components, but mixed components are also allowed, as well
as components which exist in both hardware and software. In the latter case
the designer does not have to decide in advance which version to use (only
the functionality is considered), but this will be subject to optimization in the
partitioning phase.

Composition. After the components are selected, they are composed to form
a prototype system. This composition mechanism deals with abstract func-
tional units with interfaces; the implementation issues, the hardware/software
boundary are irrelevant at this stage.

Each component provides an interface for the outside world. The speci�cation
of this interface is either delivered with the component or if the component
model provides a su�cient level of re�ection, it can be generated automati-
cally. One of the important contributions of CBHSCD is that the composition
of all components is based on remote method calls between components sup-
ported by the underlying middleware. Since hardware components are also
transformed to the generic component model, they can be composed using the
technique in [10].

Composition is supported by a visual tool that provides an intuitive graphical
user interface as well as an easy-to-use interconnection wizard. This ease-of-use
helps to overcome problems related to the learning-curve, since traditionally
system designers have had to possess professional knowledge on hardware,
software and architectural issues; thus, the lack of quali�ed system designers
has been a critical problem.

Simulation and validation. Since the application has been composed of
tested and veri�ed components, only the correctness of the composition has
to be validated by simulation. The individual units are handled as black-box
components in this phase and only functional simulation is carried out. For
instance, if a calculation is required from a hardware component, one would
only monitor the �nal result passed back to the initiator component and not
the individual steps taken inside the hardware. If problems are detected, the
component selection and/or composition steps can be reviewed.

It is important to note that components are fully operable at composition time
(e.g. a button can be pressed and it generates events), hence the application
can be tried out by simply triggering an event or sending a start signal to a
component. This helps validate the system enormously.

Since the design is only in a premature prototyping phase, it is possible that
the (expensive) hardware components are not available at this stage 2 . If the

2 Before partitioning it is not even known of each component whether to be realized
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hardware component is already available and the component is decided to be in
the hardware context, it can be used already in the simulation phase. However,
it is possible that we want to synthesize or buy the hardware component only
if it is surely needed. In this case, we can use software simulation instead.

Note that simulation concentrates only on the functionality and not on the
timing characteristics of the system. The latter is unfortunately distorted by
the several indirections caused by the wrappers around the components. Of
course these wrappers are eliminated during synthesis.

Partitioning. After the designer is convinced that the system is functionally
correct, the system has to be partitioned, i.e. the partitionable components
have to be mapped to either their software or hardware implementation. (The
'mapping' of components which only exist in hardware or only in software
is trivial.) This is an important optimization problem, in which the optimal
trade-o� between cost and performance has to be found, since hardware is
typically faster but more costly than software. (See Section 4 for an exam-
ple.) Traditionally, this has been the task of the system designer, but manual
partitioning is very time-consuming and often yields sub-optimal solutions.

CBHSCD on the other hand makes it possible to design the system at a very
high level, only concentrating on functionality. This frees the designer from
dealing with low-level implementation issues. It is important to note that up to
this point, the design process is completely implementation-independent. Par-
titioning is automated based on a declarative requirements speci�cation. We
de�ned a graph-theoretic model for the partitioning problem and developed
appropriate algorithms for it [13,14]. The partitioning algorithm takes into
account the software running times, hardware costs (price, area, heat dissi-
pation, energy consumption etc.), communication costs between components
as well as possible constraints de�ned by the user (including soft and hard
real-time constraints, area constraints etc.). This is very helpful for the design
of embedded systems, especially real-time systems. When limiting the running
time, partitioning aims at minimizing costs. Similarly, when costs are limited,
the running time is minimized. It is also possible to constrain both running
time and costs, in which case it has to be decided whether there is a system
that ful�lls all these constraints, and in the case of a positive answer, such a
partition has to be found.

To generate all the input data for the partitioning algorithm is rather challeng-
ing. In case of hardware costs, it is assumed that the characteristic values of
the components are provided with the component itself by the vendor. Com-
munication costs are estimated based on the amount of exchanged data and
the communication protocol. Concerning the running times, a worst case (if
hard real-time constraints are speci�ed) or average case running time is either

in software or hardware.
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provided with the component or extracted by pro�ling techniques. An indepen-
dent research �eld deals with the measurement or estimation of these values,
see e.g. [15,16]. The time and cost constraints must be speci�ed explicitly by
the designer via use cases (see Section 3 for more details).

Consistency check. The requirement of hardware/software transparency im-
plies two consistency problems speci�c to CBHSCD. Note that we are not deal-
ing here with the�otherwise very important�consistency of the composition
which occurs in pure software composition as well [17], only with additional
consistency problems due to hybrid hardware/software systems.

The �rst is the interface consistency problem. The question to answer here is
whether or not two implementations can form a partitionable component.

To ensure interface consistency, the compulsory features of a given compo-
nent, that is: those features that both implementations have to implement,
are speci�ed in an interface description �le. Then, it is automatically checked
if the two implementations do implement the required features.

The second is the state consistency problem. The prototype system is likely
to be partitioned and repartitioned several times during the design process.
Each time to realize a transparent swap between implementations, the new
implementation should be set to exactly the same state as the current one,
because otherwise it might behave di�erently in the future than expected by
the rest of the system. The designer might not want to reset the whole system
to its initial state (and restart the simulation process) every time the system is
repartitioned, so the state consistency must be handled in a more sophisticated
way. It is not straightforward to achieve this, because the components are
regarded as black-box, and it is generally not possible to access all the state-
variables from the outside. (A number of component models explicitly forbid
stateful components to avoid these problems.)

To address the state consistency problem we should de�ne the notion of con-
sistent states :

Two implementations are in consistent states if the same sequence of
method calls can be executed on them and they produce the same output.

The consequence of this de�nition is, that starting the two implementations
from consistent states and executing the same sequence of method calls on
them, they will be again in consistent states.

Assuming that the initial states of the two implementations are consistent, we
can bring the newly selected implementation to a state consistent with the old
one by automatically repeating the same sequence of method calls and prop-
erty changes that had been performed on the old one by the outside world
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since the last consistent states. (Remember that the old and new implemen-
tations o�er the same interface, hence providing exactly the same methods,
properties etc.) This way, we can guarantee that consistent states are reached.

A special attribute is associated with every method in the description of the
component which speci�es the e�ect of this method on the state of the com-
ponent. The appropriate methods to repeat have to be selected intelligently
according to these attributes. (See Section 3 for more details.)

3 CWB-X: a tool for CBHSCD

Our tool to support CBHSCD is an extension of a component-based soft-
ware engineering tool called Component Workbench (CWB), which has been
developed at the Vienna Technical University in the Easycomp project [10].

CWB is a graphical design tool for the easy composition of applications from
COTS software components. The main contribution of CWB is the support
for multiple component models, like COM, CORBA, EJB etc. To achieve this,
CWB uses a generic component model called Vienna Composition Framework
(VCF). This generic model o�ers a �exible way to represent components, hence
all existing software component models can be transformed to this one by
means of wrappers.

In the philosophy of CWB, each component is associated with a set of features.
A feature is anything a component can provide. A component can declare the
features it supports and new features can also be added to the CWB. The
most typical features are the following.

Property The properties (attributes) provided by the component.
Method The methods of the component.
Eventset The sets of events the component can emit.
Lifecycle If a component has this feature, then it can be created and de-
stroyed, activated or deactivated.

GUI The graphical interface of the component.

Each component model is implemented as a plug-in in the CWB (see Fig 5).
The plug-in class only provides information about the features the component
can o�er, the real functionality is hidden in the classes implementing the
features. New component models can be implemented by creating a new plug-
in class and a class for each required feature.

For the communication between the components, CWB o�ers event-to-method
communication, i.e. a component triggers an event which induces a method
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Generic Component Model

COM
Plugin

CORBA
Plugin

EJB
Plugin

CORBA EJBCOM

GUI

CWB

Fig. 5. The architecture of the CWB.

call in all registered components. The registration mechanism and the remote
method call is supported by Java. A wizard helps the user to set up a proper
connection. Adapters are automatically created to facilitate the communica-
tion between the components.

The used components are already operable at composition-time. This is very
advantageous because this way the simulation and evaluation of the system is
possible already in the early phases of the design process. Also, the user can
invoke methods of the components, thus use cases or call sequences can be
tested without any programming e�orts.

3.1 Extension of CWB to support CBHSCD

CWB o�ers a good starting point for a hardware-software co-design tool be-
cause of its �exibility and extensibility. We extended CWB to support CBH-
SCD principles. In CWB-X (CWB eXtended), the designer of a hardware-
software application may select software, hardware, or partitionable compo-
nents from a repository. These components can originate from di�erent ven-
dors and di�erent component models. The selected component is put on the
working canvas. In case of pure software components, the operable component
itself�with possible GUI�can appear, but in case of hardware components
the component itself might not be available and simulation is used.

To enable the integration of hardware components in CWB-X, new component
models are added to the CWB as plug-ins. Similarly to the software side, there
is a need for several hardware component models according to the di�erent
ways the actual hardware might be connected to the computer. This goal is
complicated by the lack of widely accepted industry standards for IP interface
and communication speci�cation.

Since the implementation details of a component should be transparent for the
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other components, the hardware components should provide similar features
as the software ones. Therefore we de�ne the Method, Property and Eventset
features for hardware components as well, and map methods to operations of
the underlying hardware, properties to status information and initial parame-
ters, and events to hardware interrupts. Our mapping is actually between the
device driver and the generic component model of the CWB, hence the plug-in
does not have to address hardware�speci�c low�level issues.

To identify the features a hardware component can provide, re�ection is neces-
sary, i.e. information about the interface of the component. Today's IP vendors
do not o�er a standardized way to do that, often a simple text description is
attached to the IP. In our model we require a hardware component to provide
a description about its features (Properties, Methods, Events).

The composition of components is supported by wizards. Due to the wrappers,
hardware components act the same way as software ones, thus the wizards of
the CWB can be used.

When the architecture of the designed application is ready, partitioning is
performed. We have integrated a partitioning algorithm [13] based on integer
linear programming (ILP). This is not an approximation algorithm: it �nds
the exact optimum. This approach can handle systems with several hundreds
of components in acceptable time. For the automatic partitioning process, the
various cost parameters and the time constraints must be speci�ed.

Time constraints are de�ned on the basis of use cases. A use case involves some
components of the system in a given order. A component can also participate
multiple times in a use case. The designer de�nes a use case by specifying the
sequence of components a�ected in it and gives a time constraint for the sum
of the execution times of the concerned components including communication.
The constraints for all use cases are simultaneously taken into account during
partitioning.

The partitioning algorithm also needs the estimated running times and com-
munication cost parameters. As mentioned previously, the measurement or
estimation of these cost values is a large independent research �eld (see e.g.
[15,16]). We are aware of the importance of these measurements, but this is
currently at an initial stage in our tool: we expect that this data is explicitly
given.

CWB-X is able to check both interface and state consistency. To each par-
titionable component a Java-like interface is attached which describes the
required features of the implementations. The tool checks whether the asso-
ciated implementations are appropriate. Furthermore, to each method in this
interface description �le an attribute is ordered, which describes the behavior
of this method in the state consistency check. The value and the meaning of
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the attribute are the following:

NO_EFFECT: the corresponding method has no e�ect on the state of the com-
ponent, thus it should not be repeated after repartition.

REPEAT_AT_REPARTITION: the corresponding method a�ects the state but has
no side e�ect, thus it should be repeated after repartition.

REPEAT_AT_REPARTITION_ONCE: the same as the previous one, but in a se-
quence of calls to this method only the last one should be repeated. An
example is setting a property to a value.

SIDE_EFFECT: the method does a�ect the state and also has some side e�ect
(e.g. sends 100 pages to the printer) or takes too long to repeat.

CWB-X logs every method call and property change since the last implemen-
tation swap. If all these belong to the �rst three categories, the correct state
will be set automatically after the change of the implementations by repeating
the appropriate function calls. If there is at least one call with SIDE_EFFECT,
the system shows a warning and asks the designer to decide which methods
to repeat. The designer is supported by a detailed log in this decision.

4 Case study

In this section, the CBHSCD methodology is demonstrated step by step on an
example application. In this example a frequency modulated signal should be
decoded. A signal generator (which is not part of the system to be designed)
generates a signal with frequency modulation. The frequency of the incoming
signal should be measured and the signal is decoded to 0 or 1 according to the
measured frequency value. This task appears in several real-world applications.
The architecture of the system can be seen in Fig. 6. The frequency measurer
(FM) measures the frequency of the incoming signal and sends the measured
value periodically to the demodulator unit (DU). The DU decodes the signal
and sends the result to the displayer. The displayer consists of two components:
a textual display shows the current value of the decoded signal, and a chart
shows the graph of the alteration of the value. Furthermore, there are two
buttons that control the measurer through start and stop signals. Both the
FM and the DU are partitionable components.

There are two implementations available for the FM: the �rst one is a pro-
gram on a PIC 16F876 microcontroller (software implementation) and a �eld-
programmable gate array (FPGA) on a XILINX VIRTEX II XC2V1000 card
(hardware implementation). The two implementations behave exactly the same
way, but their performance (and cost) is di�erent. The microcontroller is able
to precisely measure the frequency up to 25kHz (i.e. taking a sample lasts
40µs). The FPGA on the other hand can take a sample in 50ns, thus it can
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Fig. 6. The architecture of the example application

measure up to 20MHz without any problem. However, the FPGA is more
costly. The software implementation of the DU runs on the same microcon-
troller, while the hardware implementation is an ASIC (application speci�c
integrated circuit). Again the two implementations di�er in price and perfor-
mance.

The designer might want to impose several constraints on the system to be
designed. These constraints are bound to use�cases of the system. In this
example the following constraints are de�ned.

Frequency constraint (C1). The constraint de�nes an upper bound on
taking one sample of the signal by the FM. This constraint implicitly de-
clares the maximum frequency that should be handled correctly. In our ex-
ample let us de�ne the maximum frequency to be 50kHz, hence one sample
should be taken in 20µs.

Response time constraint (C2). Prescribes the time needed for a sent bit
to appear in the displayer, that is the response time of the system for an
input. We de�ne this limit as 1200µs.

The task of the partitioning algorithm is to decide which implementations
to use for the partitionable components to satisfy the constraints. For the
partitioning algorithm the system is converted to a graph representation with
hardware and software costs on the vertices and communication costs on the
edges. Fig. 7 depicts the graph corresponding to the demo application. (For
simplicity, only the components a�ected by the constraints are shown.) For
each partitionable node there are two values speci�ed: the hardware cost (e.g.
in $) and the worst case software running time (in µs). For the edges the
communication overhead is given (also in µs) 3 . Note that this cost arises only
if the edge crosses the hardware/software boundary.

Table 2 shows the optimal hardware/software partitions found by our algo-

3 The values are for demonstrative purposes only.
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Fig. 7. The graph representation of the system for the partitioning algorithm

rithm. (See [13,14] for more details on the partitioning model.) If only con-
straint C1 is imposed, then FM should be implemented in hardware since in
software it would require 40µs to take one sample, thus violating C1. To min-
imize cost, all the other components should be in software, and there are no
other constraints forbidding this. If only C2 is required, then all components
can be put into software, since the total running time is 40+100+1000 < 1200.
If both C1 and C2 are imposed, both FM and DU should be put into hard-
ware. FM because of C1, and DU because of C2. (If we put only FM into
hardware, the (FM,DU) edge would cross the hardware/software boundary,
hence the total running time would be 200+100+1000, violating C2.) The ex-
ample clearly demonstrates how the tool automatically achieves an optimal
trade�o� between price and performance.

Table 2
Optimal hardware/software partitions found by our tool according to the required
constraints.

Constraints Software Hardware Hardware cost

C1 DU, Disp FM 10

C2 FM, DU, Disp � 0

C1+C2 Disp FM, DU 18

The described demo can be realized in CWB-X as follows. There are six com-
ponents: two JavaBeans buttons (start and stop), a text�eld and a chart com-
ponent for display, the FM and the DU declared as a partitionable compo-
nent with the two implementations detailed above 4 . The device driver of the
hardware components is wrapped by a CWB wrapper providing a software-
like interface. Special adapter classes are then generated automatically by the
CWB for facilitating communication. Note that di�erent hardware compo-
nents with the same device driver interface (which is the case e.g. for the two
implementations of the FM) require only one wrapper.

The structure of the system can be demonstrated on an example communi-
cation process. Fig. 8 shows the reaction of the system on pressing the start
button. Each component on the �gure is separated by a dashed line, the lower
part contains the type of the component, while the upper part shows the name
of the speci�c component. The arrows indicate the communication between

4 The signal generator is regarded as an outside source, hence not part of the system
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components, the labels on the arrows mean either a method call or other kinds
of communication. One can see how the device driver hides all the hardware�
and communication�speci�c details.
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frame
end

specific
event handling

Component model

enable()

comm. channel:
serial port

fire pressEvent

FM

Hardware
component

driver
device

FM
dev. driver

FM
wrapper

CWB
wrapper

CWB
wrapper

JavaBeans
wrapper

Adapter
Comm.

catch event

pressEvent
to

startMethod
process

component
JavaBeans

Start button

event() start()

Middleware layer

Fig. 8. Communication induced by pressing the start button.

For the purposes of the consistency check, an interface description of the re-
quired features is also provided with the component (Fig. 9). The tool checks
whether the interfaces of the wrappers match the requirements. The interface
description also contains the attributes necessary for the state consistency
mechanism.

package frequency;

public interface FrequencyMeasurerInterface {

SIDE_EFFECT public void start();

SIDE_EFFECT public void stop();

NO_EFFECT public void takeOneSample();

NO_EFFECT public String getMeasuredFrequencyString();

NO_EFFECT public Integer getMeasuredFrequency();

REPEAT_AT_REPARTITION_ONCE public void setCountEveryEdge(boolean b);

NO_EFFECT public boolean getCountEveryEdge();

NO_EFFECT public void addFreqMeasuredEventListener(Listener l);

NO_EFFECT public void removeFreqMeasuredEventListener(Listener l);

}

Fig. 9. Part of the required interface (with state consistency attributes) of the par-
titionable frequency measurer (FM) component
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In the composition phase the start and stop buttons are mapped with the aid
of the mentioned wizard to the start and stop methods of the FM, respec-
tively. The FM sends an interrupt whenever a new measured value is ready.
This interrupt appears as an event in CWB-X, which triggers the DU to ask
for the measured value. When the DU is ready with the decoding, it again
sends an interrupt. This triggers the setText function of the TextField and
the addValue function of the chart. The system can be immediately simulated
without any further e�ort: after pressing the start button the current imple-
mentation of the FM starts measuring the signal of the generator and the
displayer displays the measured values. The system can be partitioned and re-
partitioned an arbitrary number of times based on the de�ned constraints; the
state consistency mechanism makes sure that the change in implementation
remains transparent to the rest of the system.

5 Related work

In recent years, there has been a substantial amount of work in the sys-
tem design community targeting the design of SoC-s (System on Chip), and
making use of existing components (IP blocks, also called Virtual Compo-
nents) [18,6,19,20,7]. Unfortunately, most of these approaches handle low-
level interconnection issues in system design, and provide very little tool sup-
port. There are hardly any standards for the interoperability of IP blocks.
Although the VSI Alliance has published some standards and speci�cations
in this �eld [21], they only handle the lowest levels of interconnection, i.e. the
physical details.

A higher level of abstraction characterizes the approaches for hardware/software
co-simulation [6,22,20,23]. They aim at enabling the simulation of the sys-
tem in the early stages of the design, either functionally, or concerning both
functionality and performance (real-time simulation). Our work also uses co-
simulation; however, we support the designer with several automatisms (par-
titioning, consistency checks) as well.

Another interesting thread of related work is concerned with the automatic
synthesis of hardware/software interfaces [11,24,6]. This approach is rather
orthogonal to our work, because it aims at constructing run-time interfaces,
whereas we focus only on the design phase, and hence use composition-time
wrappers.

Component selection and trading [18,5,12] is also a related research �eld that
is orthogonal to our approach. Here, the aim is to de�ne description formats
for components which enable the automatic retrieval of suitable components
for a given task.
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In the component-based software engineering community, the most strongly
related e�orts are those concerned with the adaptation of components [25�
27,10]. Our way of using wrappers for this task is similar to these approaches;
however, we also consider hardware components, which also leads to such
issues as partitioning, which are not present in pure software systems.

6 Conclusion

This paper presented an extension to component-based software engineering to
also include hardware components. The new methodology, called component-
based hardware/software co-design (CBHSCD) provides a uniformly high level
of abstraction for software, hardware, and partitionable components.

The concepts of CBHSCD, as well as partitioning, enable advanced tool sup-
port for the system-level design process. Our tool CWB-X is based on the
Component Workbench (CWB), a visual tool for the composition of software
components of di�erent component models. CWB-X extends the CWB with
new component models for hardware components as well as partitioning and
consistency checking functionality. We presented a case study to demonstrate
the applicability of our concepts and the usefulness of our tool.

We believe that the notion of CBHSCD uni�es the advantages of hardware
and software design to a synergetic system-level design methodology, which
can help in designing complex, reliable and cheap computer systems rapidly.
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