
CACEV: a Cost and Carbon Emission-Efficient
Virtual Machine Placement Method for Green

Distributed Clouds
This paper was published in: IEEE 13th International Conference on Services Computing, pages 275-282, 2016.

Ehsan Ahvar1, Shohreh Ahvar1,3, Zoltán Ádám Mann2, Noel Crespi1, Joaquin Garcia-Alfaro1 and Roch Glitho3
1Institut Mines-Telecom, Telecom SudParis, France.

Emails: {ehsan.ahvar,shohreh.ahvar,noel.crespi,joaquin.garcia alfaro}@telecom-sudparis.eu
2University of Duisburg-Essen, Germany. Email: zoltan.mann@gmail.com

3Concordia University, Canada. Email: glitho@ciise.concordia.ca

Abstract—Distributed clouds have recently attracted many cloud
providers and researchers as a topic of intensive interest. High
energy costs and carbon emissions are two significant problems
in distributed clouds. Due to the geographic distribution of data
centers (DCs), there are a variety of resources, energy prices and
carbon emission rates to consider in a distributed cloud, which
makes the placement of virtual machines (VMs) for cost and
carbon efficiency even more critical than in centralized clouds.
Most previous work in this field investigated either optimizing
cost without considering the amount of produced carbon or vice
versa. This paper presents a cost and carbon emission-efficient VM
placement method (CACEV) in distributed clouds. CACEV con-
siders geographically varying energy prices and carbon emission
rates as well as optimizing both network and server resources
at the same time. By combining prediction-based A* algorithm
with Fuzzy Sets technique, CACEV makes an intelligent decision
to optimize cost and carbon emission for providers. Simulation
results show the applicability and performance of CACEV.

I. INTRODUCTION

Recent cloud infrastructures are increasingly geographically
distributed. The distributed cloud has some benefits in compar-
ison to the centralized cloud such as lower upfront investment,
vulnerability to natural disasters and proximity to users. Due to
the geographical distribution of data centers (DCs), distributed
clouds offer a pool of resource options with different prices and
carbon emission rates.

Carbon emission and cost are currently two critical concerns
for cloud providers and network operators. Energy consumption
(EC) has a direct effect on both cost and carbon emission.
DCs worldwide consumed 270 TWh of energy in 2012, with a
Compound Annual Growth Rate (CAGR) of 4.4% from 2007
to 2012 [1], [2]. According to predictions, they will account for
about 8% of worldwide electricity consumption by 2020, and
will generate about 2.6% of global carbon emission [3], [4].
Therefore, providers try to reduce their EC and carbon emission.
For example, France Telecom-Orange has the ambition of
decreasing its EC and carbon emission from 2006 to 2020 by
15 and 20% respectively [5].

As a result, energy saving methods are needed to help
providers to reduce both cost and carbon emission. However,

as energy prices and carbon emission rates vary by location
(e.g., because of different energy sources), energy savings alone
may not necessarily or effectively imply reduction of carbon
emission and cost. In addition to EC which is important for both
cost and carbon efficiency, energy price factor for cost efficiency
and cleanness of energy sources for carbon efficiency have to
be considered. Above all, there is no correlation between the
cleanness (carbon footprint) of a locations energy sources and
the energy price for that location [3]. Therefore, to optimize
both cost and carbon emission, we need to solve a three-
dimensional problem: (i) how to minimize EC (usually in form
of resource utilization optimization) (ii) how to find resources
with best energy price and (iii) how to choose the resources
which are connected to energy sources with lowest carbon
emission rate. Considering these three, sometimes conflicting,
dimensions simultaneously makes the problem very complex.

The main objective of this paper is to devise a new VM place-
ment algorithm considering the above three-dimensional prob-
lem to optimize both cost and carbon emission in a distributed
cloud. To do so, we try to allocate newly requested VMs using
currently active cloud devices (i.e., physical machines (PMs)
and network elements) in order to avoid the EC associated with
the activation of devices from sleep mode and also to have the
lowest possible number of active devices.

To offer a realistic solution, the paper considers a detailed
system model characterized by the following points:

1) heterogeneity of resources (DCs, PMs, switches) and VMs
2) heterogeneity of EC models of cloud elements (e.g.,

different PMs may have different EC models)
3) effects of workload on EC of devices (e.g., EC of a PM

depends on its CPU load)
4) multiple paths between a pair of PMs
5) a more intelligent algorithm, in contrast to the greedy

heuristics that most existing approaches use [17]
6) joint optimization of PM (server) and network resources
7) considering variety in price and location among the re-

sources
8) ability to select resources from multiple DCs to serve a

request
9) taking into account inter-VM communication

10) IaaS Service Level Agreement (SLA) violation
To address these points, this paper proposes a cost and

carbon emission-efficient VM placement method (CACEV) for
distributed cloud environments. CACEV builds on ideas of
integrating the prediction-based A* search algorithm [18] with
Fuzzy Sets technique to obtain better results than typical greedy
heuristics. It is a VM placement algorithm for joint optimization
of servers and network, which also considers price, location and
carbon emission rate of resources. It can select multiple DCs for
the reasons of cost and carbon emission efficiency or capacity
limitations. Network and data transfer awareness in selecting
DCs/PMs and placing VMs makes CACEV capable to optimize
network traffic as well.

CACEV is designed for allocating batch jobs, also supporting
applications with inter-VM communication. To prevent SLA
violations, CACEV adopts utilization thresholds (for more in-
formation, see [21]). The goal is to preserve free resources to
prevent SLA violations due to consolidation in situations where
resource requirements of VMs increase. When selecting PMs,
CACEV makes sure not to violate the upper threshold.

The rest of the paper is organized as follows: Section II
describes related work. Section III introduces our system model
and Section IV defines the problem. The proposed algorithm
is described in Section V. Section VI evaluates CACEV and
Section VII concludes the paper.

II. RELATED WORK

Previous work addressed some of the 10 points listed in the
Introduction to characterize the problem, but only in isolation.
To our knowledge, our work is the first to address all aspects
in combination.

Li et al. [10] and Dong et al. [11] considered server and
network resources at the same time for their proposed VM
placement algorithms. You et al. [12] designed a network-aware
VM placement method to improve communication cost. But all
these works are limited to a single-DC environment and are not
appropriate for a distributed cloud with varying resource prices.
Alicherry et al. [13] proposed algorithms for network-aware
selection of DCs and allocation of VMs on PMs in a distributed
cloud. But their primary objective is to minimize the maximum
latency in communication between the VMs allocated for a user
request, which is different from our objective. They also did not
consider hardware and VM heterogeneity in their solution. Our
previous study [14] focused on improving communication cost
between DCs in a distributed clouds. But, unlike this paper, it
did not consider server cost, nor VM placement inside DCs. In
addition, our current work is different from all mentioned results
since we consider not only costs but also carbon emission.

Khosravi et al. [15] addressed both energy and carbon emis-
sion during VM placement in a distributed cloud. However,
they did not consider the variability of energy prices. Also,
inter-VM communication was not considered, although it is
an important factor for reducing traffic and energy of network
resources. Zhou et al. jointly considered SLA, electricity cost,

and emission reduction for distributed DCs [4] and, recently,
Gu et al. proposed a method to minimize carbon emission
of cloud DCs while satisfying constraints on response time,
electricity budget and maximum number of running PMs in
an environment with homogeneous PMs [16]. Different from
our work which is for batch jobs with constraints on inter-VM
communication, these papers target service jobs with constraints
on response time.

III. SYSTEM MODEL

We consider a hierarchical distributed cloud architecture
[6] including a cloud controller and site (i.e., DC) and PM
controllers. The DCs are given by a complete graph G1 =
(Dc,E1, wDc,wE1) where Dc is a set of DCs, wDc denotes
their current capacity, E1 consists of connected edges (repre-
senting network paths), and wE1 denotes the edge weights (e.g.,
number of routers on the network path). Each DC has its own
Power Usage Effectiveness (PUE) value and is associated with
one or more energy sources with different carbon footprint rates
and energy prices. PUE is defined as the ratio of total power
consumed by a DC to the power consumed by IT devices [15].
We assume the cloud provider owns or leases a high-capacity
backbone network to carry the traffic between DCs. Inside
DCs, our model (and our proposed VM placement algorithm)
supports both structured (e.g., Fat-Tree [7]) and arbitrary [8]
topologies.

Each DCj (1 ≤ j ≤ |Dc|) is represented by a weighted
graph G2j = (Nj , E2j , wNj , wE2j) where Nj is the set of
nj PMs and wNj shows their current capacity. Similar to [9],
for every pair of PMs x and y in DCj , a set of pre-calculated
paths from PM x to PM y is considered. E2j consists of the
set of calculated paths between pairs of PMs in DCj . Resource
parameters of each PMi are given as a vector wE2i, including
CPU, memory, disk, and I/O bandwidth. Each basic resource
unit is represented by one slot [10]. We consider sleep and
active modes for both PMs [26] and switches [24], [25].

The model supports different types of VMs. Each VM type
k (1 ≤ k ≤ U) is specified by a vector V ck of requested
resources, including CPU, memory, disk, and I/O bandwidth in
unit of slots.

To handle time-varying request rates and energy prices, time
is split into equal time windows (T). A set A including r
requests is received in each time slot T [19]. We assume that
within a time slot T the energy price is fixed, and the IaaS
provider rents VMs based on unit of the time slots (even if a
VM is finished in the middle of T , the rental fee should be paid
for the whole time window).

Each request Ri (1 ≤ i ≤ r) demands mi VMs where M =∑r
1Ri. A request usually requires multiple VMs which need to

communicate to each other. A traffic matrix TRM.M contains
VM relations and/or the amount of traffic exchanged among the
M VMs. TRM.M can be created either from traffic information
attached to the requests coming from PaaS or normal users,
or created based on estimation techniques. Operating cost and
carbon emission are related to the amount of EC by server and
network resources. EC of a PM is considered as a function

of its CPU, since the CPU is the major component of power
consumption in a PM [2], [26], [23]. Routers and switches are
the main contributors to network EC [20].

IV. PROBLEM FORMULATION

An IaaS cloud controller receives a set A of requests (i.e.,
tasks or applications) in a time slot T . The cloud controller has
to select appropriate DCs and distributes VM requests to the
selected DCs. The distributed requests in each selected DC are
then allocated on appropriate PMs. Moreover, appropriate paths
are selected between related PMs. All symbols in this section
and their definitions can be found in Table I.

The objective is to select a subset of DCs and, then, in each
selected DCj choose a subset of the PMs to accommodate the
set A of requests (including M VMs) in a way which leads to
optimal overall cost (OverallCost) and carbon emission (Car-
bonEmission). OverallCost depends on the EC of the selected
resources and on its price. Carbon emission can be improved by
reducing EC of resources and selecting resources with access
to energy sources with low carbon emission (i.e., low carbon
emission rate). The Cost and Carbon emission Optimization
Problem (CCOP) in distributed clouds is formalized as follows:


minimize OverallCost+ CarbonEmission, where
OverallCost = DcCost+ ComCost, and
CarbonEmission = DcEmission+ ComEmission

(1)

with the constraint that the selected DCs must have enough total
capacity to accommodate the M VMs:∑

j∈Dc

nj∑
i=1

(wNi · SelDCj) ≥
M∑
j=1

V cj . (2)

A. Overall cost formulation (OverallCost)

DcCost in Eq.(1) is the cost of incremental energy of selected
DCs (both servers and intra-DC networks) to accommodate the
requests. TSerEnj , TNetEnj and EnPrj are the incremental
server energy, network energy, and the energy price in DCj .

DcCost=

d∑
j=1

PUEj ·(TSerEnj+TNetEnj)·EnPrj ·SelDCj

(3)

TSerEnj =

nj∑
i=1

SerEni · Selti (4)

SerEni =

M∑
k=1

E iinc,VMk
· VMk,i (5)

Subject to the following constraints:

VMk,i ≤ Selti, ∀i, k 1 ≤ i ≤ nj , 1 ≤ k ≤M, (6)
nj∑
i=1

VMk,i = 1, ∀k 1 ≤ k ≤M, (7)

M∑
k=1

VMk,i · V ck ≤ wNi, ∀i 1 ≤ i ≤ nj . (8)

Eq. (6) ensures that a VM can be assigned only to one of
the selected PMs. Eq. (7) guarantees that each VM is assigned
to exactly one PM and (8) guarantees that the total load of
the VMs assigned to a PM does not exceed its capacity. IE of
running VMk on PMi is computed as follows:

E iinc,VMk
= (EN i

wakeUp + EN i
idle) · SeriSlp + E iV Mk

. (9)

If PMi is in sleep mode and receives the first VM, it needs
to spend energy EN i

wakeUp to go from sleep to active mode.
If active but idle, PMi consumes constant energy of EN i

idle;
VMk adds E iV Mk

to it. As the first VM lets the PM wake from
sleep mode, the resulting EC is EN i

wakeUp+EN i
idle+ E iV Mk

.
But for VMs added to an already active PM, the increase in
energy is only E iV Mk

. To compute E iV Mk
, we use formulas from

[26] and [22]:

EN i = EN i
idle +

M∑
k=1

(E iV Mk
· VMk,i) (10)

EN i = EN i
idle + (EN i

max − EN i
idle) · ωi (11)

ωi =

∑M
k=1(CPUVMk

· VMk,i)

CPU imax
(12)

Using (10) and (11) for one VMk, E iV Mk
is computed:

EN i
idle+

M∑
k=1

(E iV Mk
·VMk,i) = EN i

idle+(EN i
max−EN i

idle)·ωi

(13)

E iV Mk
= (EN i

max − EN i
idle) ·

CPUVMk

CPU imax
. (14)

To calculate TNetEnj , we first compute NetEnij :

NetEnij =

δij∑
pkt=1

NetEnpktij . (15)

Here, δij is computed based on the characteristics of the
allocated VMs on PMi and PMj and also TR information:

δij =

M∑
q=1

M∑
w=1

VMqi · VMwj · trq,w (16)

NetEnpktij =

PAij∑
φ=1

αpktijφ ·
∑

B∈λijφ

EBinc,pkt (17)

PAij∑
φ=1

αpktijφ = 1; ∀pkt∈δij i, j ∈ X (18)

Today’s DC networks are typically provisioned with redundant
links and excessive bandwidth to accommodate peak traffic
loads and tolerate link failures, and run well below capacity
most of the time [27]. Therefore, in (17), we assume at least
one path with enough link capacity between each PM pair.

The incremental energy consumption of a network element
B is computed analogously to servers (see Eq. (9)):

EBinc,pkt = (EBwakeUp + EBidle) ·NB
Slp + EBpkt (19)

TABLE I
OVERVIEW OF THE USED NOTATION

General parameters and notation
d = | Dc | number of DCs Nj set of PMs in DCj
nj number of PMs in DCj ComCost inter-DC network costs for running the set A of requests
OverallCost total cost of running the set A of requests DcEn IE for running the set A of requests within DCs
DcCost costs of running the set A of requests within DCs IE Incremental energy
CarbonEmission carbon emission amount for running A EC Energy consumption

Request parameters
M number of requested VMs in A V cj vector of requested resources of VMj

VMi requested VMs, 1 ≤ i ≤M
Quantities relating to server costs

wNi capacity vector of PMi CEj carbon emission rate (in g/kW) for DCj
SerEni IE caused by running VMs of set A on PMi TSerEnj IE caused by servicing the set A of requests in DCj
Selti =1 if at least one VM of set A is on PMi, otherwise 0 VMki =1 if VMk is allocated on PMi

E iV Mk EC of running VMk on PMi (without considering PMi mode) E iinc,VMk
IE on PMi caused by running VMK

EN i EC of PMi for processing VMs of set A EN i
wakeUp energy needed for PMi to go from sleep to active mode

EN i
idle EC of PMi if idle (i.e., active, with zero load) EN i

max maximum EC of PMi (i.e., with full load)
ωi percentage of the CPU usage of PMi CPU imax processing capacity of PMi (FLOPs/sec)
CPUVMk

CPU load of VMk (FLOPs/sec) SeriSlp =1 if PMi is in sleep mode, 0 if in active mode
rk carbon emission rate of energy source k in DCj SelDCj =1 if DCj is selected, otherwise 0
EnPrj price of energy for DCj

Quantities relating to network costs
NB
Slp =1 if network element B is in sleep mode, otherwise 0 ComEnab IE of data transfer between DCa and DCb for set A

δij number of exchanged packets between PMi and PMj for set A EBpkt EC of element B to serve a packet (without considering element modes)
EBinc,pkt IE of an element B caused by servicing the packet pkt λijφ number of intermediate elements between PMi and PMj on φth path
NetEnij network EC for data transfer between PMi and PMj TNetEnj total network EC for set A on selected PMs of DCj
αpktijφ =1 if packet pkt is assigned to the φth path between PMi and PMj NetEnpktij IE of network elements between PMi and PMj for transferring pkt
Rij number of exchanged packets between PMs i and j for the set A TR(tr)M.M traffic matrix for set A (M VMs)
trq,w amount of traffic (packet numbers) between VMq and VMw EBp needed per-packet processing energy
EBS&F per-byte store and forward energy L packet length in bytes
PAij number of paths between PMi and PMj λ′ab number of intermediate elements between DCa and DCb
δ′ab number of exchanged packets between DCa and DCb for set A ComEnabpkt IE of network to transfer pkt between DCa and DCb
ComPrab energy price of communication between DCa and DCb ComCEab carbon emission of communication between DCa and DCb

In (19), EBpkt is computed as follows [20]:

EBpkt = EBp + EBS&FL, (20)

where EBp and EBS&F are constants for a given switch or router
configuration. Finally, the total IE of the network for running
A on selected PMs of DCj is given by:

TNetEnj =
∑
i∈N

∑
j∈N
j 6=i

NetEnij . (21)

Only the selected PMs will be considered automatically in (21),
because in (15), when there is no traffic between PMi and PMj

(δij=0), the related NetEnij = 0 as well.
Inter-DCs communication cost (ComCost) in Eq.(1) includes
the incremental energy of the inter-DC network to transfer data
for running the set A of requests. ComEnab is the incremental
energy between DCa and DCb; ComPrab is the energy unit
price for communication between DCa and DCb.

ComCost =
∑

a,b∈Dc

ComEnab ·ComPrab ·SelDCa ·SelDCb

(22)

ComEnab =

δ′ab∑
pkt=1

ComEnpktab =

δ′ab∑
pkt=1

∑
B∈λ′

ab

EBinc,pkt (23)

δ′ab =
∑
i∈Dca

∑
j∈Dcb

M∑
q=1

M∑
w=1

VMqi · VMwj · trq,w (24)

B. Computing carbon emission
DC carbon emission (DcEmission) in Eq.(1) is the carbon
emission amount caused by incremental energy within the se-
lected DCs (servers and intra-DC networks) to run the requests:

DcEmission =
d∑
j=1

PUEj · (TSerEnj + TNetEnj) · CEj · SelDCj , (25)

where CEj is the average carbon emission rate (in g/kW) of
the energy sources of DCj . It is computed as follows [4]:

CEj =

∑`
k=1 CE

k
j · rk∑`

k=1 CE
k
j

, (26)

where CEkj and rk denote the electricity generated by energy
source k and its carbon emission rate, respectively.
Inter-DC carbon emission (ComEmission) in Eq.(1) is the
amount of incremental carbon emission resulting from data
transfer between the selected DCs:

ComEmission=
∑

a,b∈Dc

ComEnab · ComCEab · SelDCa · SelDCb,

(27)
where ComCEab is the average carbon emission rate for
communication between DCa and DCb.

V. COST AND CARBON EMISSION-EFFICIENT VIRTUAL
MACHINE PLACEMENT (CACEV)

CACEV is a two-stage VM placement algorithm (see Algo-
rithm 1). Stage 1 selects DCs and distributes VMs on them

simultaneously (joint DC selection-VM distribution, lines 2-3).
Stage 2 chooses PMs in each selected DC and allocates VMs on
them simultaneously (joint PM selection-VM placement, lines
4-6). For both stages, CACEV first creates candidate subgraphs
and then selects the best subgraph in terms of overall cost and
carbon emission. CACEV is structured as follows.
Module 1: VM Mapper (VMM). The VMM module (lines 30-
38) receives a candidate v (PM or DC) with its current capacity
and a set X of VMs with their traffic information (TRM.M)
as input. Starting from each VMi ∈ X , VMM creates one
subset. It first starts from VM1. If the capacity of v is greater
than the load of VM1, VMM adds an element VMnew which
has the highest traffic with VM1. If v still has free capacity,
a third element (a VM which has highest traffic with the two
already selected VMs) is added to the subset. This procedure
continues until the capacity of v is exhausted or all elements
of X are allocated. After creating a subset starting from VM1,
the VMM module creates the second subset starting from VM2,
etc. Finally, there are |X| subsets of VMs so that any would fit
into v. VMM selects the subset with highest inter-VM traffic
and maps it to v.
Module 2: Candidate Subgraph Creator (CSC). This module
(lines 8-20) receives a weighted graph G = (V,E,wV,wE) and
a list of VMs as input and returns |V | subgraphs. The aim of
CSC is to determine for each vi ∈ V an induced subgraph
G′(vi) with sufficient total capacity and optimized overall cost-
carbon emission. G′(vi) is grown from {vi} as starting point
by iteratively adding one vertex a time. The already selected
vertices are stored in an array SbG; initially, SbG[i][0]=vi.
In each step, CSC checks whether the selected vertices have
sufficient total capacity. If yes, G′(vi) is finished. Otherwise, the
PFBS module is called to select one more vertex for inclusion
in SbG, and the cycle continues, until the total capacity of
the selected vertices is sufficient. Then, G′(vi) is the subgraph
induced by SbG. This way, a subgraph is created for each vertex
v as starting point, yielding altogether |V | candidate subgraphs.

Selecting each vertex vi as starting point is important because
the subgraph formed starting from vi will often be biased
towards vertices in the proximity of vi; taking the best one of
the candidate subsets helps to find a globally optimal subset. In
principle, it would also be possible to consider all subgraphs of
G with sufficient total capacity. However, the number of all such
subgraphs can be exponential, making this approach intractable
in practice. In contrast, our method is a faster, polynomial-time
heuristic.
Module 3: Prediction and Fuzzy Sets-Based Selector (PFBS).
Whenever CSC needs to add a new vertex to the candidate
subgraph G′ being generated, it calls the PFBS module (lines
21-29). Let SubGr denote the list of already selected vertices
in subgraph G′ and V \ SubGr the vertices still available in
G for selection. PFBS receives a graph G, SubGr and a set of
VMs as input and returns the most cost/carbon effective vertex
vi ∈ V \ SubGr to be included in the subgraph.

The PFBS mechanism is based on a combination of the
A∗ algorithm [18] and Fuzzy Sets technique. Selecting the
best node only in cost or carbon emission is almost a simple

Algorithm 1: CACEV Algorithm
Input : G1(V 1, E1, wV 1, wE1): a weighted graph of DCs; TotalVM[M]:M

requested VMs; TR[M][M]:VM traffic matrix;
G3={G2i(V 2i, E2i, wV 2i, wE2i) : G2i internal graph of
DCi,1 ≤ i ≤ |V 1| }

Output: Selecting appropriate DCs and PMs and Placing requested VMs on them
1 Function mainCACEV(G1, G2, TotalVM)
2 (sGrDCs,VMsOnDCs)= CSC (G1,TotalVM);
3 SelsGrDC = FBSS(sGrDCs,VMsOnDCs);/*returns the best subgraph of DCs*/
4 foreach DC ∈ SelsGrDC do
5 (sGrPMs,VMsOnPMs)=CSC(G2DC ,VMsOnDCs[SelsGrDC][DC])/*returns

subgraphs of PMs of DCk*/
6 SelsGrPM= FBSS(sGrPMs,VMsOnPMs);

7 return(SelsGrDC,SelsGrPM,VMsOnPMs[SelsGrPM])/*selected DCs,PMs,VMs on
them*/

8 Function CSC(G(V,E,wV,wE),VM[])/*returns G subgraphs, their allocated VMs*/
9 Let SbG[|V |][|V |]= {}, SubGrVM[|V |][|V |][|X|]= {}

10 copy members of array VM[] into a set X;
11 for 1 ≤ i ≤ |V | do
12 Let SbG[i][j]=vi, j=0, X′ = {}
13 SubGrVM[i][j]← VMM(wvi, X \X′, TR);
14 TC=wvi; TR =

∑|X|
k=1 size(VM [k])

15 /*TC:Total Capacity, TR:Total Requirement*/
16 while TC < TR do
17 j ← j+1;
18 (vnew, SubGrVM [vi]) = PFBS(G,SubGr[vi], X \X′, TR);

/*selects one more vertex and its VMs*/
19 Let SbG[i][j]=vnew , TC=TC+wvnew

20 return (SbG,SubGrVM) /*returns candidate subgraphs*/

21 Function PFBS (G(V,E,wV,wE),SbG[],X,TR)
22 cmin =∞;
23 foreach vi ∈ V \ SubGr do
24 if vcpui < SLAThreshold then
25 SubGrVM[vi][j]← VMM(wvi, X, TR);
26 compute c(vi) using Equations (28)-(38);
27 if c(vi) < cmin then
28 cmin = c(vi), selected = vi;

29 return (selected,SubGrVM[vi])

30 Function VMM(v, X, TR)
31 foreach VMi ∈ X do
32 Y = {}
33 Add VMi to set Y
34 Allocate VMi on v
35 while (v not fulled) or (Y 6= X) do
36 Find a VMnew ∈ X \ Y with total highest traffic with Y elements
37 Allocate VMnew on v, add VMnew on Y, add Y to sSet

38 return (a subset of sSet with highest inter-VMs traffic)

39 Function FBSS(SbG[][],SbV[][])/*returns the best subgraph and its VMs*/
40 MFmin =∞, i=0
41 while SbG[i] 6= null do
42 compute cost(SbG[i]) using Equation (39);
43 compute carbon(SbG[i]) using Equation (40);
44 compute MF (SbG[i]) using Equation (41);
45 if MF (SbG[i]) < MFmin then
46 MFmin=MF(SbG[i])
47 selected=SbG[i]

48 i=i+1

49 return selected

work. But making a certain decision to select the best node
considering these two, sometimes conflicting, metrics simulta-
neously is more complex and even sometimes not possible. To
this end, we use Fuzzy Sets technique. Fuzzy Sets technique
[28] is an effective method for modeling uncertainty and for
processing vague or subjective information in mathematical
models. It has been utilized to a great variety of real problems.
The Fuzzy Sets theory considers membership values which are
indicated by a value on the range [0, 1]. Where 0 representing

absolute Falseness and 1 shows absolute Truth. PFBS considers
a (fuzzy) set which includes all possible (DC or PM) candidates.
The membership function of this set maps each candidate to
a membership value (MV) in the range [0, 1]. Inspired by
the A∗ algorithm, the membership function (for each possible
candidate vi ∈ V \ SubGr) combines the costs and carbon
emission incurred by selecting the candidate vi and an estimate
of the overall costs and carbon emission that will be incurred
in the future if vi is selected now. The estimation aspect of
A∗ algorithm helps to consider capacity of each candidate
in addition to cost and carbon emission. For each possible
candidate vi ∈ V \ SubGr, the A∗ function is

c(vi) = g(vi) + h(vi). (28)

The algorithm selects the candidate with the smallest c(vi) value
or highest membership value of MV (vi) (i.e., MV (vi) = 1−
c(vi)). Here, g(vi) is the incremental overall cost and carbon
emission incurred by selecting vi and includes the incremental
network and server costs and carbon emission. g(vi) will be
certainly incurred if vi is selected.

g(vi) = K1 ·K2, (29)

where K1 and K2 are normalized values of cost and carbon
emission (in range of [0,1]) respectively.

K1 =
SerEnvi · EnPrvi +NetEnvi ·NetPrvi

SerEnmax · EnPrmax +NetEnmax ·NetPrmax
,

(30)

K2 =
SerEnvi · SerCEvi +NetEnvi ·NetCEvi

SerEnmax · SerCEmax +NetEnmax ·NetCEmax
,

(31)
where SerEnvi is the IE of the selected vi caused by running

allocated VMs of the set A on it. EnPrvi is the current price of
energy in location of vi. NetPrvi is the energy price for network
elements. For intra-DC network, it can be the same as EnPrvi .
NetEnvi is the IE of network elements caused by adding the
candidate vi to the subgraph:

NetEnvi =
∑

vj∈SbG

NetEnvi,vj , (32)

where NetEnvi,vj is the IE of transferring data from candidate
vi to already selected vertices. For DC selection, NetEnvi,vj
is computed based on (23) and for PM selection (15) is used.
PFBS calls for each candidate vi the VMM module to detect
allocated VMs on the candidate vi and, then, computes δi,j for
PMs based on (16) and for DCs from (24). Recall that (15) also
selects the best path between two PMs.

The function h(vi) is an estimate of the incremental overall
cost and carbon emission caused by the further vertices that we
have to select later on to accommodate all the M VMs.

h(vi) = K1′ ·K2′, (33)

where K1′ and K2′ are normalized values of the estimated cost
and carbon emission (in range of [0,1]) respectively.

NS · SerEnavg · EnPravg +NE ·NetEnavg ·NetPravg
NS · SerEnmax · EnPrmax +NE ·NetEnmax ·NetPrmax

.

(34)

NS · SerEnavg · SerCEavg +NE ·NetEnavg ·NetCEavg

NS·SerEnmax·SerCEmax+NE·NetEnmax·NetCEmax
,

(35)
where NS and NE are the estimated number of vertices and
edges (network paths) that will be added later to the subgraph
(in the course of allocating the remaining VMs), SerEnavg is the
estimated average and SerEnmax the maximum possible IE for
a new vertex, NetEnavg is the estimated average and NetEnmax
the maximum possible IE of the network for the further edges.
EnPriceavg and NetPriceavg are the average, EnPricemax and
NetPricemax the maximum price of energy for vertices and
edges, respectively. To estimate NE, recall that G is a complete
graph, so that each new node added to a subgraph with z vertices
will add z new edges. After adding vi to the subgraph with
z vertices, it will consist of z + 1 vertices, so adding further
vertices will lead to z + 1, z + 2, . . . new edges. Hence, if y
further vertices will have to be selected after vi, we have

NE =

(z+1)+(y−1)∑
k=z+1

k = z · y + y · (y + 1)

2
. (36)

y =
M − ((

∑
w∈Al F (w)) + F (vi))

AvgS
, (37)

where M is the total number of VMs needed for the set A of
requests,

∑
w∈Al F (w) is the number of allocated VMs till now

for the user request, F (vi) is the number of VMs that can be
allocated if vi is chosen next, and AvgS is the average capacity
of all vertices.

It remains to estimate NetEnavg , the average network EC
for the edges that will be added to the subgraph in subsequent
steps. One possibility is to use the average network EC among
all PMs. This would be a good estimate if we sampled edges
randomly. However, our algorithm is biased towards edges of
lower energy, so that the overall average may be an overesti-
mate. We can get a more accurate estimation by calculating the
average EC of the edges that the algorithm has selected so far,
i.e., the edges within a set SubGr that includes the subgraph G′

as well as the candidate vi (say Al’). However, when selecting
the second vertex, G′ has only one vertex and no edge, so in this
case, we use the average network EC between the first vertex
and all other vertices.

NetEnavg =


∑

vi∈Al′

∑
vj∈Al′,vj 6=vi

NetEn(vivj)

z(z+1)/2
if z > 1∑

w∈P

NetEn(sw)/N − 1 if z = 1, Al′ = {s}

(38)
Putting all the pieces together, we get a fairly good estimate of
the overall cost-carbon emission to select candidate v. Based
on these estimates, the algorithm can select the best choice.
Module 4: Fuzzy Sets-based Best Subgraph Selector (FBSS).
This module receives as input a set of subgraphs (SbG) along
with a list of allocated VMs on their vertices (SbV). Subgraph i
of this set is denoted by SbG[i]. SbV[i] consists of the allocated
VMs of SbG[i]. FBSS computes the overall cost (Eq.(39)) and
carbon emission (Eq.(40)) of all subgraphs (lines 42-43) and
then selects the most appropriate one in terms of overall cost
and carbon emission using Fuzzy Sets technique (lines 44-47).

While selecting the best subgraph based on only cost or carbon
emission is easy, finding the best subgraph in both aspects
simultaneously is a real challenge. Fuzzy Sets, here, help us
to find the best subgraph in both aspects of cost and carbon
emission.∑
v∈SbG[i]

∑
j∈SbV [i]

Evinc,j · EnPr(v) +
∑

v,v′∈SbG[i]

Netv,v′ ·NetPr(v)

(39)∑
v∈SbG[i]

∑
j∈SbV [i]

Evinc,j · CE(v) +
∑

v,v′∈SbG[i]

Netv,v′ ·NetCE(v),

(40)
where Einc,i is computed based on (9)-(14), Netv,v′ for DC
subgraphs is computed from (23) and for PM subgraphs from
(15)-(18). As we have the list of allocated VMs for each vertex,
the number of exchanged packets between two nodes is easily
computed for PMs from (16) and for DCs from (24).

After computing OverallCosti and CarbonEmissioni for a
subgraph SbG[i], function MF (SbG[i]) is considered

OverallCosti
MaxOverallCost

· CarbonEmissioni
MaxCarbonEmission

. (41)

Finally, the subgraph with lowest MF (SbG[i]) or highest
membership value MV (SbG[i]) is selected (MV (SbG[i]) =
1−MF (SbG[i])).

VI. PERFORMANCE EVALUATION

For our experiments, we used a modified version of the
CloudSim simulator [29]. We considered a distributed cloud
including 10 DCs. The capacity of the whole distributed cloud
was chosen randomly, between 1,000 and 2,000 resource slots,
in each run. This total capacity was divided among the DCs
(each DC has capacity between 100 and 200 slots). Each PM
has available capacity between 10-15 slots. Three different sets
of requests with 100, 200, and 300 VMs were considered. The
traffic matrix of the VMs was generated randomly.

Based on information from the US Energy Information Ad-
ministration [31, Table.5.6.A], we consider energy price is in
range [4,20] Dollar Cents/kWh and for each DC was randomly
selected between 4 and 20. For inter-DC networks the energy
price was considered as average (12 Cent/kWh). The PUE value
was considered in range [1.56,2.1] based on [15]. We considered
six energy sources with different carbon emission rates from
[4] (Nuclear:15, Coal:968, Gas:440, Oil:890, Hydro:13.5 and
Wind:22.5 g/kWh), and assumed five different combinations
with average 100,200,300,400 and 500 g/kWh. We selected one
of them randomly for each DC.

The path length for each PM pair inside a DC was randomly
chosen from 1 to 8 hops (switches) and for DC pairs from 10 to
20 routers. We used real energy models for routers and switches
from [20] and for servers from [30].

We evaluate the performance of CACEV by comparing it
against CACEV-Cost, CACEV-Carbon, Random and Greedy
resource allocation algorithms. CACEV-Cost is a version of
CACEV which only considers cost optimization and CACEV-
Carbon only considers carbon footprint optimization. Com-
paring CACEV to these two special versions can show how

CACEV manages to find a trade-off between the two optimiza-
tion goals. The Random algorithm starts by selecting a vertex
(DC or PM) randomly and placing as many VMs as possible
in the selected vertex. If not all VMs could be allocated in the
selected vertex, then a further vertex is selected, again randomly,
to place the remaining VMs. This process is repeated until the
requested number of VMs is placed. The Greedy algorithm
selects a vertex with maximum free capacity and allocates as
many VMs from the request as possible in the selected vertex.
If further VMs are necessary, then the Greedy algorithm selects
from the remaining vertices again the one with maximum free
capacity. This process continues until all VMs are placed [13].

It is worth highlighting that, even though the parameters
(e.g. capacity) of the DCs and PMs are set randomly, they
remain fixed across the runs of all tested algorithms, to ensure
comparability of the results. Because of simulation limitations,
each run simulated one hour. However, the result values may
seem small on the given scale (1 hour), but it is only to show
efficiency of the proposed algorithm. The values can be much
larger in real world with a longer time scale. For each test, we
report the results as average of 10 runs.

Fig. 1 shows the simulation results (each run simulated one
hour, so that the cost and carbon emission values are for one
hour). In particular, Fig. 1 (a) and (e) show how CACEV could
make a joint cost-carbon emission optimization successfully.
CACEV outperforms the Random and Greedy algorithms in
both dimensions. It was predictable that CACEV-Cost can
get the best cost efficiency. However, the carbon emission of
CACEV-Cost is sometimes even worse than that of Random
or Greedy. Similarly, CACEV-Carbon is the best in carbon
efficiency but performs poorly in cost efficiency. In general,
CACEV improves 45-115% in carbon emissions on CACEV-
Cost while incurring 20-60% higher costs. In comparison to
CACEV-Carbon, CACEV improved total cost by 40-60% while
increasing carbon emission only by 10-30%.

As seen in Fig. 1 (i), Greedy always has the least number
of selected DCs. Together with Fig. 1(a)-(d), this shows that
only reducing the number of selected DCs (and PMs) does not
lead to total cost reduction. In Fig. 1 (j), because of the limited
simulation time scale, there is no significant difference in EC
between the methods. Since there are still big differences in
costs and carbon emissions, this shows the importance of taking
into account the different energy sources (i.e., with variety of
prices and emission rates) of the DCs in a distributed cloud.

VII. CONCLUSION

This paper addressed the problem of allocating VMs in
distributed clouds with the aim of optimizing overall cost and
carbon emission together. We have claimed that combining
multiple metrics, i.e., joint optimization of network and server
resources along with resource prices and carbon emission rate,
can significantly optimize overall cost and carbon emission
together. We have also claimed a prediction-based A* algorithm
can give more sophisticated results than typical greedy heuris-
tics for DC/PM selection, because it also predicts the overall
cost and carbon emission that will be incurred by future DC/PM

0

10

20

30

40

50

60

100 200 300

T
ot

al
 C

os
t

($
 C

en
t)

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(a)

0

10

20

30

40

50

60

100 200 300

S
er

. C
os

t
($

 C
en

t)

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(b)

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

100 200 300

N
et

. C
os

t
($

 C
en

t)

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 200 300

In
te

r
D

C
 C

os
t

($
 C

en
t)

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(d)

0
2
4
6
8

10
12
14
16

100 200 300

T
ot

. C
ar

. E
m

is
. (

gr
)

H
u

n
d

re
d

s

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(e)

0
2
4
6
8

10
12
14
16

100 200 300

S
er

. C
ar

. E
m

is
. (

gr
)

H
u

n
d

re
d

s

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(f)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

100 200 300

N
et

. C
ar

. E
m

is
. (

gr
)

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(g)

0

2

4

6

8

10

12

14

100 200 300

In
te

r
D

C
 C

ar
. E

m
is

. (
gr

)

Req. Num .

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(h)

0

1

2

3

100 200 300

N
u

m
. o

f
S

el
. D

C
s

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(i)

0

1

2

3

4

5

100 200 300

T
ot

. E
n

er
gy

 C
on

s.
 (

J)

T
ho

u
sa

n
d

s

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(j)

Fig. 1. Simulation results for set of requests with 100, 200 and 300 VMs:
(a) total cost, (b) server cost, (c) intra-DC network cost, (d) inter-DC network
cost, (e) total carbon footprint, (f) server carbon footprint, (g) intra-DC carbon
footprint, (h) inter-DC carbon footprint, (i) number of selected DCs and (j) total
energy consumption (EC).

selection and based on the prediction makes more intelligent
VM placement decisions. To this end, motivating from the
A* algorithm, we have proposed a cost and carbon efficient
VM placement method (CACEV). We have also proposed the
idea of using Fuzzy Sets to make an appropriate decision in
this environment with multiple, sometimes conflicting, metrics.
Simulation results prove that CACEV can considerably optimize
overall cost and carbon emission in comparison to other algo-
rithms. The results also show that only minimizing the number
of used DCs/PMs is not enough to optimize the overall cost and
carbon emission.

REFERENCES

[1] M. Dayarathna, Y. Wen and R. Fan, “Data Center Energy Consumption
Modeling: A Survey”, IEEE Communications Surveys & Tutorials, 18(1),
2016.

[2] D. Hatzopoulos, I. Koutsopoulos, G. Koutitas, W. van Heddeghem, “Dy-
namic Virtual Machine Allocation in Cloud Server Facility Systems with
Renewable Energy Sources”, IEEE ICC Conference, Budapest, Hungary,
2013.

[3] P. Xiang Gao, A. R. Curtis, B. Wong, S. Keshav, “Its Not Easy Being
Green”, ACM SIGCOMM, Finland, 2012.

[4] Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, J. C. S. Lui and H. Jin,
“Carbon-aware Load Balancing for Geo-distributed Cloud Services”, IEEE
21st International Symposium on Modelling, Analysis & Simulation of
Computer and Telecommunication Systems, San Francisco, CA, 2013.

[5] S. Gosselin, F. Saliou, F. Bourgart, E. Le Rouzic, S. Le Masson, A. Gati,
“Energy Consumption of ICT Infrastructures: an Operator’s Viewpoint”,
38th ECOC Conference, Amsterdam, 2012.

[6] M.H. Kabir, G.C. Shoja, S. Ganti, “VM Placement Algorithms for Hierar-
chical Cloud Infrastructure”, 6th IEEE CloudCom, Singapore, 2014.

[7] M. Al-Fares, A. Loukissas, A. Vahdat, “A scalable, commodity data center
network architecture”, ACM SIGCOMM. USA, 2008.

[8] A. Singla, C. Hong, L. Popa, P. Brighten Godfrey, “Jellyfish: Networking
Data Centers Randomly”, 9th USENIX conference (NSDI), USA, 2012.

[9] M. Rahnamay-Naeini, S. Sen Baidya, E. Siavashi, and N. Ghani, “A
Traffic and Resource-aware Energy-Saving Mechanism in Software Defined
Networks”, IEEE ICNC-SIREN, USA, 2016.

[10] X. Li, J. Wu, S. Tang, S. Lu, “Let’s stay together: Towards traffic aware
virtual machine placement in data centers”, IEEE INFOCOM. 1842–1850
Toronto, CA, 2014.

[11] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, S. Cheng, “Energy-Saving
Virtual Machine Placement in Cloud Data Centers”, IEEE/ACM CCGrid.
618–624 Delf, 2013.

[12] K. You, B. Tang, and F. Ding, “Near-optimal virtual machine placement
with product traffic pattern in data centers”, IEEE ICC, 3705-3709, 2013.

[13] M. Alicherry, and T.V. Lakshman, “Network aware resource allocation in
distributed clouds”, IEEE INFOCOM, 963-971, 2012.

[14] E. Ahvar, S. Ahvar, N. Crespi, J. Garcia-Alfaro, Z.A. Mann, “NACER: a
Network-Aware Cost-Efficient Resource allocation method for processing-
intensive tasks in distributed clouds”, IEEE NCA, Cambridge, USA, 2015.

[15] A. Khosravi, S. Kumar Garg, and R. Buyya, “Energy and Carbon-Efficient
Placement of Virtual Machines in Distributed Cloud Data Centers”, Euro-
Par, 2013.

[16] C. Gu, C. Liu, J. Zhang, H. Huang and X. Jia, “Green scheduling for
cloud data centers using renewable resources”, IEEE Infocom workshop,
Hong Kong, 2015.

[17] Z.A. Mann, “Allocation of virtual machines in cloud data centers – a
survey of problem models and optimization algorithms”, ACM Computing
Surveys, 48(1), 2015.

[18] S. J. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach”,
Prentice Hall, 2010.

[19] Z. Xu, W. Liang, “Minimizing the Operational Cost of Data Centers
via Geographical Electricity Price Diversity”, IEEE Conference on Cloud
Computing. 99–106 Santa Clara, 2013.

[20] A. Vishwanath, K. Hinton, R.W.A. Ayre, R.S. Tucker, “Modeling Energy
Consumption in high-capacity routers and switches”, IEEE Journal on
selected areas in communication. 32(8) 1524–1532, 2014.

[21] A. Beloglazov and R. Buyya, “Energy Efficient Allocation of Virtual
Machines in Cloud Data Centers”, 10th IEEE/ACM Conference on Cluster,
Cloud and Grid Computing, 2010.

[22] G. Warkozek, E. Drayer, V. Debusschere, S. Bacha, “A new approach to
model energy consumption of servers in Data Centers”, IEEE Conference
on Industrial Technology (ICIT), 211–216 Athens, 2012.

[23] I.S. Moreno, J. Xu, “Customer-Aware Resource Overallocation to Improve
Energy-Efficiency in Real-Time Cloud Computing Data Centers”, IEEE
Conference on Service-Oriented Computing and Applications. 1–8 Irvine,
USA, 2011.

[24] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, N. McKeown, “ElasticTree: Saving Energy in Data Center
Networks”, 7th USENIX conference on Networked systems design and
implementation, USA, 2010.

[25] N. Vasi, P. Bhurat, D. Novakovic, M. Canini, S. Shekhar, and D. Kosti,
“Identifying and Using Energy-Critical Paths”, 7th ACM Conference on
Emerging Networking Experiments and Technologies, USA, 2011.

[26] C. Mobius, W. Dargie, A Schill, “Power Consumption Estimation Models
for Processors, Virtual Machines, and Servers” IEEE Transactions on
Parallel and Distributed Systems. 25(6), 2014.

[27] W. Fang, L. Xiangmin, S. Li, L. Chiaraviglio, N. Xiong, “VMPlanner:
Optimizing virtual machine placement and traffic flow routing to reduce
network power costs in cloud data centers”, Computer Networks, 57(1),
179–196, 2013.

[28] L. Zadeh, “Fuzzy sets”, Inform. Control, Vol.8, pp.338-353, 1965.
[29] R.N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya,

“CloudSim: a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms”, Software:
Practice and Experience, 41(1) 23-50, 2011.

[30] X. Zhang, J. Lu, X. Qin, “BFEPM:Best Fit Energy Prediction Modeling
Based on CPU Utilization”, IEEE Conference on Networking, Architecture
and Storage. 41–49, 2013.

[31] US Energy Information Administration. www.eia.gov/electricity/monthly/
epm table grapher.cfm?t=epmt 5 6 a

