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Abstract

Data centers in public, private, and hybrid cloud settings make it possible to provision virtual machines
(VMs) with unprecedented flexibility. However, purchasing, operating, and maintaining the underlying
physical resources incurs significant monetary costs and also environmental impact. Therefore, cloud
providers must optimize the usage of physical resources by a careful allocation of VMs to hosts, contin-
uously balancing between the conflicting requirements on performance and operational costs. In recent
years, several algorithms have been proposed for this important optimization problem. Unfortunately,
the proposed approaches are hardly comparable because of subtle differences in the used problem mod-
els. This paper surveys the used problem formulations and optimization algorithms, highlighting their
strengths and limitations, also pointing out the areas that need further research in the future.
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dation, green computing

1 Introduction

In recent years, the increasing adoption of cloud computing has transformed the IT industry [20]. From a
user’s perspective, the practically unlimited scalability, the avoidance of up-front investments, and usage-
based payment schemes make cloud computing a very attractive option. Beside globally available public
cloud solutions, enterprises also take advantage of similar solutions in the form of private clouds and hybrid
clouds.

Large, virtualized data centers are serving the ever growing demand for computation, storage, and net-
working. The efficient operation of data centers is increasingly important and complex [4]. Beside the
traditional cost factors of equipment, staff, etc., energy consumption is playing an increasing role, because
of both its costs and its environmental impact. According to a recent study, data center energy consump-
tion is the fastest growing part of the energy consumption of the ICT ecosystem; moreover, the initial cost
of purchasing the equipment for a data center is already outweighed by the cost of its ongoing electricity
consumption [32].

Cloud data centers typically make extensive use of virtualization technology, in order to ensure isolation
of applications while at the same time allowing a healthy utilization of physical resources. Virtual machines
(VMs) are either provided directly to the customers in case of an Infrastructure-as-a-Service (IaaS) provider,
or are used to wrap the provisioned applications in case of Software-as-a-Service (SaaS) or Platform-as-a-
Service (PaaS) providers [108].

An attractive option for saving energy in data centers is to consolidate the virtual machines to the
minimal number of physical hosts and switching the unused hosts off or at least to a less power-hungry
mode of operation (e.g., sleep mode). However, too aggressive VM consolidation can lead to overloaded hosts
with negative effects on the delivered quality of service (QoS), thus potentially violating the service level
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agreements (SLA) with the customers. Hence, VM allocation must find the optimal balance between QoS
and energy consumption [19, 89].

Good VM allocation also helps to serve as many customer requests as possible with the given set of
resources, and thus amortizing the expenses related to purchasing, operations, and maintenance of the equip-
ment (computing, network, and storage elements, as well as the physical data center infrastructure with
cooling, redundant power supplies, etc.). In fact, achieving good utilization of server capacities was one
of the key drivers behind the wide spread of virtualization technology. Today, virtualization and the live
migration of VMs between hosts are key enablers of efficient resource allocation in data centers [8].

Beside using its own data center, a cloud provider can – in times of extremely high demand – use VMs
from other providers as well, for example in a cloud federation or hybrid cloud setting [24]. This way, the
cloud provider can serve its customers without restrictions. However, this further enlarges the search space
for the best allocation.

In this paper, we focus on the VM allocation problem, i.e., determining the placement of VMs on physical
hosts or using external providers, taking into account the QoS guarantees, the costs associated with using
the hosts – with special emphasis on energy consumption – and the penalties resulting from VM migrations.
Several algorithms have been proposed in the literature for this important and challenging optimization
problem. However, these algorithms address slightly different versions of the problem, differing for example
in the way the communication between hosts is modeled or how multi-core CPUs are handled. Lacking a
generally accepted definition of the VM allocation problem, or some versions of the problem, many researchers
came up with many different versions, and these differences can have substantial impact on algorithm runtime
and/or on the applicability of the algorithm. This somewhat chaotic situation is even worsened by the fact
that some authors failed to explicitly and precisely define the version of the problem that they are addressing,
so that this must be figured out indirectly from the algorithms that they proposed or the way they evaluated
their algorithms.

The primary aim of this paper is to “tidy up” the relevant problem formulations. Specifically, we start
with a discussion of the context and the actors of the VM allocation problem (Section 2), followed by a
description of the characteristics of the problem in Section 3. Section 4 presents a survey of the problem
formulations existing in the literature, showing how those works fit into our general framework. Although
our main focus is on problem formulations, we complete the survey of the literature with a brief description
of the algorithms that have been proposed and how they were evaluated (Section 5). This is followed by a
more detailed description of the most important algorithmic works of the field (Section 6), a discussion of
the areas that we believe will need further research in the future (Section 7), and our concluding remarks
(Section 8).

In this paper, we are mostly concerned with the details of problem formulations and their algorithmic
implications. Technical details relating to infrastructure, architecture, and implementation issues are covered
only as necessary for the aim of the paper.

2 Problem context

The VM allocation problem is one of the core challenges of using the cloud computing paradigm efficiently.
Cloud computing encompasses several different setups, and depending on this, also the VM allocation problem
has different flavors.

Usually, cloud computing scenarios are classified along two dimensions [108, 90]. One dimension concerns
the nature of the offered service, differentiating between three categories: Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). The other dimension refers to whether the
service is provisioned in-house (private cloud), by a public provider (public cloud), or a combination of the
two (hybrid cloud). The three possibilities along both dimensions give rise to 9 different possibilities.

Another classification focuses on service deployment scenarios [62]. Here it is assumed that a Service
Provider (SP) would like to deploy a service on the infrastructure provided by one or more Infrastructure
Providers (IPs) [94]. Depending on the relationship(s) between the SP and IP(s), the following scenarios are
distinguished [62]:

• Public cloud: the SP makes use of the IP’s infrastructure offering available to the general public.

• Private cloud: the SP uses its own resources, so that it also acts as IP.

2 2



Allocation of Virtual Machines in Cloud Data Centers Z. Á. Mann

• Bursted cloud: a hybrid of the above two, in which both in-house resources and resources rented from
a public IP are used.

• Federated cloud: the SP contracts only one IP, but the IP collaborates with other IPs to share the load
in a manner that is transparent to the SP.

• Multi-cloud: the SP uses multiple IPs to deploy (parts of) the service.

• Cloud broker: the SP contracts a single broker, which contracts multiple IPs but hides the complexity
of the multi-cloud setup from the SP.

From our point of view, the crucial observation is that in each scenario, there is a need to optimize the
allocation of VMs to physical resources, but this optimization may be performed by different actors and may
have different characteristics, depending on the exact setup [84, 37]. Using the classification of Li et al., the
VM allocation problem occurs in the respective scenarios as follows:

• Public cloud: the IP must optimize the utilization of its resources, in order to find the best balance
between the conflicting requirements on profitability, performance, dependability, and environmental
impact.

• Private cloud: the same kind of optimization problem occurs for the provider that acts as both SP and
IP in this case1.

• Bursted cloud: two slightly different optimization problems occur:

– The IP must solve the same kind of optimization problem as above.

– The SP must solve a similar problem for its own resources, extended by the possibility to off-load
some VMs to an external IP.

• Federated cloud: the IPs must solve an optimization problem similar to the one the SP faces in the
bursted cloud setup, i.e., optimization of own resources coupled with workload off-loading decisions.

• Multi-cloud: again, two different optimization problems occur:

– The IPs must solve the same kind of optimization problem as in the public cloud setup.

– The SP must solve an optimization problem in which the optimal allocation of parts of the service
to the IPs is decided.

• Cloud broker: from an optimization point of view, this is the same as the multi-cloud scenario, with
the broker taking the role of the SP.

In the following, we try to describe the VM allocation problem in a manner that is general enough to
cover the above variants, and make the differences explicit only when this is necessary. We use the term
Cloud Provider (CP) to refer to the entity who must carry out the VM allocation (which can be either the
SP or the IP, depending on the setup). We assume that the CP must allocate VMs to a set of available
resources. In general, there can be two kinds of resources: they can belong either directly to the CP, or the
CP can also rent resources from external CPs (eCPs). Depending on the specific setup, it is possible that the
CP has only own resources and there are no eCPs, but it is also possible that the CP has no own resources,
it can only select from eCPs. The case in which both internal resources and eCPs are available can be seen
as the common generalization of all of the above scenarios.

3 Problem characteristics

Depending on the exact setup, there can be some differences in the most appropriate problem formulation,
but the main characteristics of the VM allocation problem are in most cases the following:

1However, there can be subtle differences, e.g., SLAs tend to be less formal, VM sizes are more flexible etc.

3 3



Allocation of Virtual Machines in Cloud Data Centers Z. Á. Mann

• The CP accommodates VMs on the available physical machines (PMs) or by renting capacity from
eCPs.

• The number of VMs changes over time as a result of upcoming requests to create additional VMs or to
remove existing VMs.

• The resource requirements (e.g., computational power, memory, storage, network communication) of a
VM can vary over time.

• The PMs have given capacity in terms of these resources.

• The usage of resources incurs monetary costs and consumes electric power. The magnitude of the costs
and power consumption may depend on the type, state, and utilization of the resources.

• VMs can be migrated from one PM to another by means of live migration. This takes some time and
creates additional load for the involved PMs and the network.

• PMs that are not used by any VM can be switched to a low-energy state.

• If the QoS requirements of the customer are not met, this may result in a penalty.

In the following, we investigate these aspects in more details.

3.1 VMs

A VM is usually characterized by:

• The number of CPU cores

• Required CPU capacity per core (e.g., in MIPS)

• Required RAM size (e.g., in GB)

• Required disk size (e.g., in GB)

Additionally, there can be requirements concerning the communication (bandwidth, latency) between
pairs of VMs or a VM and the customer.

All of a VM’s resource requirements can vary over time. Depending on the type of application(s) running
on the VM, the VM’s resource requirements can be relatively stable, changing periodically (e.g., in daily
rhythm), or oscillating chaotically. In order to optimize resource usage, the CP must be well aware of the
current resource requirements of the VMs and, even more importantly, the resource requirements expected
for the near future [44].

In a public cloud setting, it is common that the CP offers standardized types of VMs. In a private cloud
setting, customers usually have more freedom in specifying the parameters of a requested VM.

3.2 Resources

The resources available to the CP can be of two types:

• PMs, owned by the CP

• eCPs, from which VMs can be leased

These two resource types are significantly different. The CP’s own PMs are white-box resources: the CP
has detailed information about their state (e.g., power consumption characteristics, current workload, tem-
perature) and it is the CP’s responsibility to optimize the usage of these resources. On the other hand, eCPs
represent black-box resource pools: the CP has no knowledge about the underlying physical infrastructure,
it only knows the interface to request and manage VMs. Obviously, the CP has no direct influence on the
underlying physical resources in this case.

4 4



Allocation of Virtual Machines in Cloud Data Centers Z. Á. Mann

Another important difference is that utilizing VMs from eCPs incurs direct costs that are normally higher
than using the CP’s own resources, since they also cover the eCP’s profit. Therefore, a CP will usually first
try to use its own resources, and use eCPs only as an extension in times of demand peaks. It is also possible
that a CP has no resources on its own, and uses eCPs only [39].

Own PMs can reside in one or more Data Centers (DCs). If two PMs reside in different DCs, this usually
leads to higher latencies in the communication between them, compared to the case when both PMs are in
the same DC. Also live migration is usually done only within DC boundaries.

3.3 PM characteristics

The utilization or load of a PM measures to what extent its resources are utilized by the VMs residing on
it. The most critical resource in terms of utilization is the CPU. On the one hand, it is the CP’s interest to
achieve high CPU utilization, in order to make the best use of the available resources. On the other hand, if
CPU load is too high, this makes it likely that the VMs residing on the given PM do not receive the required
capacity, which may lead to SLA violations and damage customer satisfaction. Too high CPU load may
also lead to over-heating and it can accelerate aging of the hardware. For these reasons, many researchers
concentrated on CPU load.

However, other resources like memory or disk space can also become a bottleneck [95]. Of particular
interest is the cache, because current virtualization technologies do not ensure isolation of the cache usage of
individual VMs accommodated by the same PM, leading to contention between them [58, 100]. Thus, it is
important to model and predict the performance interference that can be expected when co-locating a pair
of VMs [56].

Power consumption of a PM is a monotonously increasing function of the CPU load [55]. Determining
the exact dependence of power consumption on CPU load is a non-trivial problem on its own and is even
application-dependent [57]. Also, the load of other system components (e.g., disk) may play an important
role. However, a linear approximation of power consumption as a function of CPU load works quite well
across a wide range of applications and platforms [83]. Hence, several authors assumed linear dependence on
CPU load [6, 51, 38, 60, 40, 93].

The amount of energy actually consumed by a PM does not only depend on power efficiency, but also
on the duration. As shown by Srikantaiah et al., consolidating an increased amount of workload on a server
improves energy consumption up to a certain point, when the usage of some resource of the server starts
to saturate. Further increasing the load of the server leads to a slow-down of the execution of applications;
since jobs take longer, the energy per job starts to increase [89].

Energy consumption of a server has a substantial static component that does not depend on the load of
the server: even if a PM is “empty,” i.e., it accommodates no VM, its energy consumption is non-negligible.
In order to save more energy, it is therefore necessary to switch empty PMs to a low-energy state. In the
simplest case, a PM has two states: On and Off. More sophisticated models include multiple states with
different characteristics, e.g., On, Sleep, Hibernate, and Off. Realistically, switching between states takes
some time, the amount of which depends on the source and target states. For instance, switching between
On and Sleep is usually much quicker than switching between On and Hibernate; however, Hibernate will
consume less energy than Sleep [44]. Nevertheless, most of the existing works use only a simplified two-state
model.

In order to react to variations in the utilization, PMs usually offer – either directly, or through the
virtualization platform – several possibilities. Dynamic voltage and frequency scaling (DVFS) is widely used
to scale up or down the frequency of the CPU: in times of high load, the frequency is scaled up in order to
increase performance at the cost of higher power consumption, whereas in times of low load, it is scaled down
to decrease power consumption [60]. Using virtualization, it is possible to explicitly size the VMs by defining
their share of the physical resources, and VMs can also be resized dynamically [29]. Scaling requests from
the VMs can be used by the virtualization layer to determine the necessary physical scaling [74].

3.4 eCP characteristics

eCPs may offer VMs in two possible ways: either the eCP pre-defined some VM configurations from which
customers can choose (example: Amazon EC2), or customers can define their own VM configuration by
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specifying the needed amount from each resource (example: IC Cloud); this can make a difference in the
achievable efficiency [45].

There can be considerable differences between eCPs concerning prices and pricing schemes, and even the
same eCP may offer multiple pricing schemes [63]. For example, some providers offer discounted long-term
rental rates and higher rates for the pay-as-you-go model [39]. The latter is often based on time quanta like
hours. Further, there may be a fee proportional to the usage of some resources like network bandwidth [61].
In recent years, a further pricing scheme emerged: spot instances, the price of which depends on the current
load of the provider. When the provider has a lot of free capacity, spot instances are cheap, but they become
more expensive when the load of the provider is getting higher. Consumers can specify until what price they
would like to keep the spot instance [30].

3.5 Communication and networking

VMs are used by customers to perform certain tasks, which are often parts of a bigger application, e.g.,
tiers of a multi-tier application [51]. This results in communication between the VMs. In some cases, this
can mean the transfer of huge amounts of data, which may lead to an unacceptable increase in latency or
response time as well as increased energy consumption in the affected hardware elements (PMs, routers,
switches, etc.).

For the above reasons, it is beneficial to place VMs that communicate intensively with each other on the
same PM, or at least within the same DC [8]. On the other hand, VMs that belong to the same application
may exhibit correlation between their loads, increasing the probability that they will peak at the same time;
this also has to be considered carefully in the VM allocation [101].

In some cases, the available network bandwidth can become a bottleneck. Some authors model network
bandwidth the same way as any other resource of the PMs [11, 26, 75, 85, 105]. Others focus specifically on
the communication among the VMs and try to minimize the resulting communication cost [70] or makespan
[5]. Some works use a detailed network model with one or more layers of switches and communication links
among switches and between switches and PMs, based on different topologies [50, 11]. Analogous problems
arise also concerning the communication between multiple clouds [13].

A strongly related issue is the mapping of data on storage nodes. Some applications use huge amounts
of data that are to be mapped on specialized storage nodes, leading to considerable network traffic between
compute nodes and storage nodes. In such cases, the placement of VMs on compute nodes and the placement
of application data on storage nodes are two interrelated problems that must be considered together in order
to avoid unnecessarily high network loads [59].

Beside communication among VMs and between VMs and storage nodes, there is also communication
with entities outside the cloud. An important example are the users. In several applications, the response
time experienced by users is critical. The response time is the sum of the network round trip time and the
processing time, and can thus be optimized by serving user requests from a data center offering a combination
of low latency to the respective user and quick processing [53].

3.6 SLAs

By SLA, we mean any agreement between the CP and its customers on the expected service quality. The
SLA defines Service Level Objectives: key measures to determine the appropriateness of the service (e.g.,
availability or response time). The SLA can be a formal document, specifying exactly for each SLO the
performance indicators, the way they are measured, target values, as well as financial penalties for the case
of non-fulfillment [92]. However, in many cases – notably in private cloud settings, where the provider and
the customers belong to the same organization – SLAs can be less formal and less detailed. It is also possible
that there is no written SLA at all. But even in such a case, customers do have expectations about service
quality, and failure to fulfill those expectations damages the reputation of the CP, which will in the long run
lead to customer churn and thus to profit loss.

Hence it is in all cases the CP’s financial interest to pay attention to the – explicit or implicit – SLAs and try
to avoid or at least minimize the number of SLA violations. This constrains the consolidation opportunities
because too aggressive VM consolidation and overbooking of PMs would increase the probability of SLA
violations [95].
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We may differentiate hard and soft SLOs. A hard SLO must be fulfilled in any case. A soft SLO should
be fulfilled as much as possible, but may be violated (usually at the price of a financial penalty). From a
problem formalization point of view, hard SLOs must be modeled as constraints, whereas soft SLOs are no
constraints but the number violations of a soft SLO must be minimized, and hence it will be part of the
objective function.

Another distinction concerns the level of abstraction of the SLOs. Basically, we can differentiate between
user-level SLOs describing quality metrics as observed by users (e.g., application response time, application
throughput) and system-level SLOs defining the underlying technical objectives (e.g., system availability).
Generally, user-level SLOs are more appropriate indicators of service performance; nevertheless, from a
provider point of view, it is easier to control the system-level metrics, which will then indirectly determine
the user-level metrics. For this reason, translating user-level objectives to system-level requirements is an
important problem on its own [28].

An SLA violation occurs if one or more of the SLOs are not met. In many cases, this is the result of a
situation in which a VM is not being allocated the required capacity, for instance because of too aggressive
consolidation. But also other factors, e.g. inappropriate sizing of VMs or inadequate elasticity solutions can
lead to an inability to serve requests within the boundaries stated in the SLA.

3.7 Live migration

Live migration of a VM from one PM to another makes it possible to react to the changing resource require-
ments of the VMs [9]. For example, in times of low demand, several VMs can be consolidated to one PM, so
that other PMs can be switched off, thus saving energy. When the resource demand of the VMs increases,
they can be migrated to other PMs with a lower load, thus avoiding SLA violations. For these reasons, VM
migration is a key ingredient of dynamic VM placement schemes [93].

On the other hand, VM migrations take time, create overhead, and can have adverse impact on SLA
fulfillment [85]. A VM migration may increase the load of both the source and the target PM, puts additional
burden on the network, and makes the migrated VM less responsive during migration [51]. Therefore, it is
important to keep the number of live migrations at a reasonable level.

Understanding the exact impact of live migration is a difficult problem on its own. A possible model for
predicting the duration and overhead of live migration was presented by Verma et al. [102, 103]. According to
their findings, migration increases the load of the source PM, but not the load of the target PM. In contrast,
other researchers also measured increased load on the target PM [85]. The quest for a universally usable
model of migration overhead is still ongoing [91].

3.8 Actions of the CP

The CP has to update the VMs’ placement in several cases:

• To react to a customer request [88]

• To react to critical situations [41] and changes in system load [87]

• In the course of a regular evaluation of the current placement, in order to improve overall optimization
objectives (see Section 3.9)

The first case is quite obvious. If a customer requests a new VM, it must be allocated on a PM or eCP.
If a customer requests the cancellation of an existing VM, it must be removed from the hosting PM or eCP.
Although rarely considered in the literature, but a customer may also request a change in the parameters of
a VM (e.g., resizing). In all these cases, the CP must make a change to the current placement of VMs. This
may also be a good occasion to review and re-optimize the placement of other VMs. For example, if a VM
was removed upon the request of the customer, and the affected PM hosts only one more VM with a small
load, then it may make sense to migrate that VM to another PM, so that this PM can be switched off.

Often, a customer request consists of multiple VMs, for example, VMs hosting the respective tiers of a
multi-tier application [48]. Another important example is the case of elastic services: here, the number of
VMs that take part in implementing the service changes automatically based on system-load (auto-scaling)
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[62, 52]. In such cases, it is important to consider the placement of the affected VMs jointly, in order to avoid
excessive communication costs [1].

The CP must also react to unplanned situations, like overloading of servers that may threaten SLA
adherence [105], thermal anomalies [85], or breakdown of servers. Server unavailability may also be a planned
situation (e.g., maintenance).

Beside the above reactive actions, a CP will also have to regularly review and potentially re-optimize the
whole VM placement, in order to find a better fit to the changed demand of the existing VMs, modified eCP
rental fees, modified electricity prices, or other changes that did not require immediate action but made the
placement sub-optimal [87, 93]. Such a review may be carried out at regular times (e.g., every 10 minutes), or
it may be triggered by specific events. For instance, a CP can continuously monitor the load of its servers or
the performance of the VMs, and whenever some load or performance indicator goes below or above specified
thresholds, this may be a reason to re-consider the VM placement.

Re-optimizing the VM placement may consist of one or more of the following actions:

• Migration of a VM from one host to another one

• Switching the state of a PM

• Starting/ending the rental of a VM from an eCP

• VM re-sizing

Increasing or decreasing the resource allotment of a VM (“VM re-sizing”) can take multiple forms. In the
case of VMs mapped on a PM owned by the CP, the VMM (Virtual Machine Monitor) can be instructed to
set the resources allocated to the respective VMs as necessary [105, 42, 102]. In the case of VMs rented from
eCPs, it may make sense to re-pack the application into VMs of different size, e.g., into a smaller number of
larger VMs. This gives rise to an interesting balance between horizontal elasticity (number of VMs for the
given service) and vertical elasticity (size of the VMs) [87].

3.9 Objectives

VM placement is inherently a multi-objective problem [38, 97, 107]. The following is a list of typical objectives
for the CP:

• Monetary objectives:

– Minimize fees paid to eCPs

– Minimize operations costs

– Amortize capital expenditures

– Maximize income from customers

– Avoid penalties

• Performance-related objectives:

– Satisfy service-level objectives (availability, response time, makespan etc.)

– Minimize number of SLA violations

• Energy-related objectives:

– Minimize overall energy consumption

– Minimize number of active PMs

– Minimize carbon footprint

• Technical objectives:

– Minimize number of migrations

– Maximize utilization of resources
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– Balance load among PMs

– Minimize network traffic

– Avoid overheating of hardware units

Of course, not all of these goals are independent from each other, e.g., several other objectives can
be transformed to a monetary objective. Nevertheless, there are several independent or even conflicting
objectives that VM placement should try to optimize. Given k objectives, in order to come to a well-defined
optimization problem, one common technique is to constrain k − 1 of the objectives and optimize the last
one; another possibility is to optimize the weighted sum of the k objectives.

4 Problem models in the literature

A huge number of papers have been published about different versions of the VM allocation problem. In
the following, we first give a categorization in Section 4.1, and then review the problem models of the most
important works. Most existing works concentrate on either the Single-DC or the Multi-IaaS problem (defined
in Section 4.1), which are quite different in nature; these problem formulations are discussed in Sections 4.2
and 4.3, respectively. Finally, some other problem models are described in Section 4.4.

4.1 Important special cases and subproblems

The problem described in Section 3 is very general. Most authors investigated special cases or subproblems,
the most popular of which are presented next. It should be noted that these problem variants are not
necessarily mutually exclusive, so that a given work may deal with a combination of them.

4.1.1 The Single-DC problem

The subproblem that has received the most attention is the Single-DC problem. In this case, the CP has
a single DC with a number of PMs, and there are no eCPs. Usually, the number of PMs is assumed to be
high enough to serve all customer requests. Typical objectives are optimizing the utilization of resources and
minimizing overall energy consumption, subject to performance constraints (SLAs). Since all PMs are in the
same DC, network bandwidth is often assumed to be uniform and sufficiently high so that it can be ignored.

4.1.2 The Multi-IaaS problem

In this case, the CP does not own any PMs, it uses only leased VMs from multiple IaaS providers. Since there
are no PMs, all concerns related to them – states and state transitions, sharing of resources among multiple
VMs, load-dependent power consumption – are void. Power consumption plays no role, the main goals are
minimizing the monetary costs associated with VM rental and maximizing performance. Since data transfer
between the different IaaS providers can become a bottleneck, this also has to be taken into account.

It is important to mention that the literature on the Multi-IaaS problem is mostly unrelated to the
literature on the Single-DC problem. On one hand, this is natural because the two problems are quite
different. On the other hand, a hybrid cloud provider must solve a combination of these two problems. This
is why we include both of them in our paper, and we expect increased convergence between them in the
future.

4.1.3 The One-dimensional VM placement problem

In this often-investigated special case, only the computational demands and computational capacities are
considered, and no other resources. Moreover, the CPU is taken to be single-core, making the problem truly
one-dimensional.

The question whether one or more dimensions are taken into account is independent on whether own PMs
or eCPs are used. In other words, the one-dimensional VM placement problem can be a special case of the
Single-DC, the Multi-IaaS, or other problem formulations.
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4.1.4 The On/Off problem

In this case, each PM has only two states: On and Off. Furthermore, the power consumption of PMs that
are Off is assumed to be 0, while the power consumed by PMs that are On is the same positive constant for
each PM, and dynamic power consumption is not considered. The transition between the two power states
is assumed to be instantaneous. As a consequence, the aim is simply to minimize the number PMs that are
On. This is an often-investigated special case of the Single-DC problem.

4.1.5 Online vs. offline optimization

As mentioned in Section 3.8, the CP must react immediately to customer requests. This requires local
modifications: allocating a new VM to a host, possibly turning on a new host if necessary, or deallocating
a VM from a host, possibly switching the host to a low-energy state if it becomes empty. Finding the best
reaction to the customer request in the given situation is an online optimization task.

On the other hand, the CP can also – e.g., on regular occasions – review the status of all VMs and
hosts, and possibly make global modifications, e.g., migrating VMs between hosts. Finding the best new
configuration is an offline optimization task.

These are two distinct tasks, for which a CP may use two different algorithms.
It should be noted that there is some ambiguity in the literature on the terminology used to differentiate

between the above two cases, and the terms “online” and “offline” are used by some authors to describe
other problem characteristics. We use these notions in this sense because this is in line with their generally
accepted meaning in the theory of algorithms.

4.1.6 Placement tasks

Closely related to online vs. offline optimization is what we may call the placement task. On the one
hand, (i) initial placement and (ii) placement re-optimization must be differentiated: the former determines
a placement for a new set of VMs, whereas the latter optimizes an existing placement. (The key difference
is that placement re-optimization must use migrations, which is not necessary for initial placement.) On the
other hand, based on the set of VMs for which the placement is determined, the following three different
levels can be distinguished: (i) all VMs of the CP, (ii) a set of coupled VMs, e.g., the VMs implementing a
given service, or (iii) a single VM. Since these are two independent dimensions, we get 6 possible placement
tasks; all of them are meaningful, although some are rather rare (e.g., initial placement of all VMs occurs only
when a new DC starts its operation). It should also be noted that some works addressed multiple placement
tasks, e.g., initial placement of a single VM and placement re-optimization of all VMs.

4.1.7 The Load prediction problem

When the CP makes some change in the mapping of VMs or the states of PMs at time instance t0, it can base
its decision only on its observations of VM behavior for the period t ≤ t0; however, the decision will have an
effect only for t > t0. The CP could make ideal decisions only if it knew the future resource utilization of the
VMs. Since these are not known, it is an important subproblem to predict the resource utilization values of
the VMs or their probability distributions, at least for the near future.

Load prediction is seen by some authors as an integral part of the VM placement problem, whereas others
do not consider it, either because VM behavior is assumed to be constant (at least in the short run), or it is
assumed that load prediction is done by a separate algorithm. Load prediction may or may not be considered,
independently from the types of resources, i.e., also within the Single-DC or Multi-IaaS problem.

4.2 The Single-DC problem

The Single-DC problem has received a lot of attention also before the cloud computing age, with the main
objective of achieving good utilization of physical resources in a DC. Early works include Muse, a resource
management system for hosting centers [27], approaches to using Dynamic Voltage Scaling for power man-
agement of server farms [46] and to dynamic provisioning of multi-tier internet applications [98], as well as
first results on consolidation using VM migration [54]. The term “load unbalancing” was coined to describe
the objective of consolidating load on few highly utilized PMs instead of distributing them among many PMs
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with low utilization [79]. From about 2007, as virtualized data centers have become ever more prevalent,
the amount of research on resource management in DCs has seen significant growth [15, 5, 99]. These works
already exhibited all of the important characteristics of the problem: consolidation of the VMs on fewer PMs
using migrations, taking into account service levels and load fluctuations.

In recent years, the handling of SLA violations has become more sophisticated and energy consumption
has become one of the most crucial optimization objectives. For example, the work of Beloglazov and Buyya
[9, 7, 6] and Guazzone et al. [42, 43] has focused specifically on minimizing energy consumption.

Energy minimization can be primarily achieved by minimizing the number of active servers; it is thus no
wonder that many works focused only on this and ignored the dynamic power consumption of PMs (leading
to the special case of the On/Off problem). Exceptions include the work of Jung et al., which treated dynamic
power consumption as a linear function of CPU load [51], as well as the non-linear function used by Guazzone
et al. [42], and the table-based approach used in pMapper [99].

Most of the works on the Single-DC problem consider only the CPU capacity of the PMs and the com-
putational demand of the VMs, but no other resources, reducing the problem to a single dimension. Several
authors mentioned this deficiency as an area for future research [8, 42]. Only few works take into account
also memory [82, 88] or memory and I/O as further dimensions [72, 95, 105]. Moreover, the sharing of cores
of multi-core CPU-s was hardly addressed explicitly. For example, Beloglazov and Buyya model a multi-core
CPU by means of a single-core CPU with capacity equal to the sum of the capacities of the cores of the
original multi-core CPU [9]. Another extreme is the approach of Ribas et al., which does consider multi-core
CPU-s, but only the number of cores is taken into account, their capacity is not [82].

The majority of these works did not address the Load prediction problem. A notable exception is the
early work of Bobroff et al. [15], which uses a stochastic model to predict probabilistically the future load of
a VM based on past observations. More recently, Guenter et al. used linear regression for similar purposes
in a slightly different setting without virtualization [44]. Beloglazov and Buyya introduce a Markov chain
approach for a related, but perhaps somewhat simpler problem: to detect when a PM becomes overloaded
[10].

Concerning the investigated SLAs, most works consider the number of occasions when a server is over-
loaded [7, 6, 15], which indirectly lead to SLA violations. Only few works considered directly the response
time [42] or waiting time [86] as specific metrics with quantitative QoS requirements.

The main characteristics of some representative works are summarized in Table 1. The meaning of the
table’s columns is explained below. A full circle means that the cited work explicitly deals with the given
characteristic as part of their problem formulation and algorithms; an empty circle means that the given
work does not explicitly address it.

• Resources: the types of resources of VMs and PMs that are taken into account

– CPU: computational capacity of the PM and computational load of the VMs are taken into account.

– Cores: individual cores of a multi-core processor are differentiated.

– Other: at least one resource other than the CPU (e.g., memory) is also taken into account.

• Energy: the way energy optimization is supported by the given approach

– Switch off: the given approach aims at emptying PMs so that they can be switched to a low-power
state.

– Dynamic power: also the dynamic power consumption of the PMs is taken into account.

• Placement: the kind of placement task addressed by the given work

– Initial: the initial placement of the VMs is determined.

– Reoptimization: an existing placement is optimized.

– All VMs: the placement of all VMs in the DC is determined.

– VM set: the placement of a set of coupled VMs that together form a service is determined.

– One VM: the placement of a single VM is determined.

• SLA: the way SLAs are handled (see also Section 3.6)
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Table 1: Characteristics of problem models in the Single-DC problem

Resources Energy Placement SLA Other

Paper C
P

U

C
or

es

O
th

er

S
w

it
ch

o
ff

D
y
n

am
.

p
ow

er

In
it

ia
l

R
eo

p
ti

m
iz

a
ti

on

A
ll

V
M

s

V
M

se
t

O
n

e
V

M

S
of

t

U
se

r-
le

ve
l

P
ri

or
it

ie
s

D
iff

er
en

t
P

M
s

M
ig

ra
ti

o
n

M
ig

ra
ti

o
n

co
st

D
at

a
tr

an
sf

er

L
oa

d
p

re
d

ic
t.

[5] • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦
[6] • ◦ ◦ • • • • • ◦ • • ◦ ◦ • • ◦ ◦ ◦
[9] • ◦ ◦ • • • • • ◦ • • ◦ ◦ • • • ◦ ◦
[10] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •
[11] • ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦
[15] • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •
[17] • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • • • • ◦ ◦
[31] ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦
[42] • ◦ ◦ • • ◦ • • ◦ ◦ • • ◦ • • ◦ ◦ ◦
[44] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ •
[45] ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
[49] • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦
[51] • ◦ ◦ • • ◦ • • ◦ ◦ • • ◦ ◦ • • ◦ •
[65] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
[72] • ◦ • • ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
[82] ◦ • • • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
[86] ◦ ◦ ◦ • ◦ ◦ • • ◦ • • • • ◦ • ◦ ◦ ◦
[88] • ◦ • • ◦ ◦ • • ◦ • ◦ ◦ ◦ • • • ◦ ◦
[89] • ◦ • • • • • • ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦
[95] • ◦ • ◦ ◦ • ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ •
[99] • ◦ ◦ • • ◦ • • ◦ ◦ ◦ • ◦ • • • ◦ ◦
[101] • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ • • ◦ ◦ •
[105] • ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • • • ◦ •
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– Soft: soft SLAs are supported.

– User-level: user-level SLAs are supported.

– Priorities: VMs may have different priorities.

• Other: some other important aspects

– Different PMs: differences in the capacity and/or power consumption of PMs is leveraged to find
the best VM-to-PM mapping.

– Migration: the approach leverages migration of VMs between PMs.

– Migration cost: migration costs are taken into account and must be minimized.

– Data transfer: the communication between VMs is taken into account.

– Load prediction: the future load of the VMs is predicted by the approach based on past observa-
tions.

As can be seen in Table 1, there are many differences between the approaches that were presented in
the literature. In fact, it is hard to find two that address exactly the same problem. Of course, there are
some basic properties that are typical of most approaches, e.g. the CPU is considered in almost all works,
as well as the possibility to migrate VMs and to switch off unused PMs. Other characteristics, such as the
sharing of individual cores of a multi-core CPU among VMs or communication between VMs are still largely
unexplored.

Of course, Table 1 should not be seen as a valuation of these works (assuming that more filled circles
indicate a higher “score”). Also approaches that tackle a limited version of the problem can be highly valuable
if that problem is practically meaningful and the approach addresses it in an effective and efficient way. It
is also important to mention that we focus here only on problem models and algorithms, but some works
include many other aspects. Indeed, some works describe complete systems that are successfully applied in
practice, such as Mistral [51], Muse [27], pMapper [99], and Sandpiper [105].

4.3 The Multi-IaaS problem

As already mentioned, the Multi-IaaS problem is quite different from the Single-DC problem. In the Multi-
IaaS problem, the utilization and state of PMs, as well as their energy consumption, are not relevant. On
the other hand, monetary costs related to the leasing of VMs from eCPs, appear as a new factor to consider.
In fact, some works consider quite sophisticated leasing fee structures: e.g., VMs reserved for longer periods
may be cheaper than on-demand VMs [39], or the costs may consist of a fixed rental fee and usage-based
variable fees for the used resources [61].

In many formulations of the Multi-IaaS problem, the entities that need to be mapped to resources are
not VMs but (computational) tasks. This is not really a significant conceptual difference though: also in the
Single-DC problem, the actual goal is to map applications or components of applications to resources, and
VMs are just wrappers that facilitate the safe co-location of applications or components of applications on
the same resources and their migration.

More importantly, communication and dependencies among the tasks are often considered important in-
gredients of the Multi-IaaS problem [14, 39, 75] – in contrast to the Single-DC problem, where communication
among VMs is hardly considered.

In the Multi-IaaS problem, the tasks and their dependencies are often given in the form of a directed
acyclic graph (DAG), in which the vertices represent the tasks and the edges represent data transfer and
dependencies at the same time. Scientific workflows are popular examples of complex applications that
are well suited for a DAG representation [75, 106]. The resulting problem, often called “workflow scheduling
problem” [3], has the advantage of solid mathematical formalism using graph theory; moreover, it is similar to
other multi-resource scheduling problems (e.g., multiprocessor scheduling), so that a rich arsenal of available
scheduling techniques can be applied to it [78]. Beside minimizing cost, the other objective of such scheduling
problems is to minimize the makespan of the workflow, i.e., the time it takes from start of the first task to
finish of the last task.

The main characteristics of some representative works are summarized in Table 2. The meaning of full
versus empty circles is the same as in Table 1. The meaning of the table’s columns, where different from
those of Table 1, is explained below.
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Table 2: Characteristics of problem models in the Multi-IaaS problem

Resources Scheduling Costs Other

Paper C
P

U

C
or

es

O
th

er

D
ep

en
d

en
ci

es

M
a
ke

sp
an

L
on

g-
te

rm
re

n
ta

l

O
n

-d
em

an
d

U
sa

ge
-b

as
ed

M
ig

ra
ti

on

L
oa

d
p

re
d

ic
ti

on

[14] ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦
[22] • ◦ ◦ ◦ • ◦ • ◦ • ◦
[39] ◦ • ◦ • • • • ◦ ◦ ◦
[61] ◦ ◦ • ◦ • • ◦ • ◦ ◦
[64] • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦
[75] • ◦ • • • ◦ • • ◦ •
[76] • ◦ ◦ • ◦ ◦ • • ◦ ◦
[96] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
[97] ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦
[104] • ◦ ◦ ◦ • ◦ • ◦ ◦ •

• Scheduling: the way scheduling-related aspects are modeled

– Dependencies: dependencies between tasks arising from data transfer are considered.

– Makespan: minimization of the workflow’s makespan is either an explicit objective or there is an
upper bound on the makespan.

• Costs: the kinds of monetary costs of leased VMs that the approach takes into account

– Long-term rental: discounted fees for VMs that are rented for a long term (e.g., multiple months)

– On-demand: fees that are either proportional to the time the VM is used or charged for small
time quanta (e.g., hourly), based on the number of time quanta the VM is used

– Usage-based: fees that are proportional to the used amount of some resource, e.g., the number of
transferred bytes to/from a VM

• Other: some miscellaneous aspects

– Migration: the approach leverages migration of tasks between VMs or between eCPs.

– Load prediction: the future load of the tasks is predicted by the approach based on past observa-
tions.

As can be seen from Table 2, computational capacity and computational load, which are mostly considered
one-dimensional (i.e., without accurate modeling of multi-core CPUs) is also the focus of most works in
the Multi-IaaS context, just like in the case of the Single-DC problem. Makespan minimization and the
minimization of on-demand rental costs are considered in most works. The other aspects are rarely handled.
Again, it is interesting to note how different the used problem formulations are.

4.4 Other problem formulations

Although most of the relevant works fall into either the Single-DC or the Multi-IaaS category, there are a
few works that address some other, more general problems.
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4.4.1 Multi-DC

An important generalization of the Single-DC problem is the Multi-DC problem, in which the CP possesses
multiple DCs. For an incoming VM request, the CP must first decide in which DC the new VM should be
provisioned and then on which PM of the selected DC. While the second step is the same as the Single-
DC problem, choosing the most appropriate DC may involve completely different decision-making [1]. A
possibility is to consider the different power efficiency and carbon footprint of the different DCs, taking into
account that different DCs may have access to different energy sources, e.g., some DCs may be able to better
leverage renewing energy sources. In an attempt to optimize overall carbon footprint, the CP may prefer to
utilize such “green” DCs as much as possible [55].

4.4.2 Hybrid cloud

In most works that address hybrid cloud setups, the CP owns one DC and also has some eCPs at its disposal.
This can be seen as a common generalization of the Single-DC and the Multi-IaaS problems.

Casalicchio et al. address this problem with an emphasis on the Single-DC subproblem. That is, the
PMs are explicitly modeled, migrations between PMs are allowed but incur a cost, there is a sophisticated
handling of SLAs, but communication and dependencies among VMs are not handled, similarly to many
formulations of the Single-DC problem [24].

In contrast, the approach of Bittencourt et al. shows more similarity to formulations of the Multi-IaaS
problem. Here, dependencies among the tasks are given in the form of a DAG, there is a hard deadline on the
makespan, and the objective is to minimize the total VM leasing costs, as is common in workflow scheduling.
The own DC of the CP is modeled as a special eCP, offering free resources, but only in limited quantity
[12, 13].

Bossche et al. use a similar approach, which is largely based on the Multi-IaaS problem, and own DCs
are modeled as special eCPs offering free resources in limited quantity [16]. They explicitly allow to have
more than one own DC, so that this can be seen as a common generalization of the Multi-DC and Multi-IaaS
problems. On the other hand, the model uses a number of restrictions, e.g., communication and dependencies
between VMs are not supported, nor migration of VMs or aspects related to power consumption.

5 Overview of proposed algorithms

From a theoretical point of view, we must differentiate between exact algorithms that are guaranteed to
always deliver the optimum, and heuristics that do not offer such a guarantee. Although the majority of
the proposed algorithms are heuristics, also some exact algorithms have been proposed, so it makes sense to
review the two groups separately.

As already mentioned, most of the literature deals with either the Single-DC problem or the Multi-IaaS
problem, and these two are quite different. Interestingly, the exact methods proposed for the two problems
are very similar, hence we review them together. On the other hand, the heuristics proposed for the two
problems are quite different, so we review them separately.

5.1 Exact algorithms

In most cases, the exact algorithm consists of formulating the problem in terms of some mathematical
programming formalism and using an existing solver to solve the mathematical program.

Integer Linear Programming (ILP) seems to be by far the most popular way to express both the Single-
DC [5, 44, 65] and the Multi-IaaS problem [39, 61, 64], or even their common generalization [16] as a
mathematical program. Several authors found that even the special case of ILP in which each variable is
binary (BIP – Binary Integer Programming) is sufficient to express the constraints of the problem in a natural
way [16, 61, 64, 65].

Some authors preferred to use non-linear constraints, leading to a Mixed Integer Non-Linear Programming
(MINLP) formulation [43] or a Pseudo-Boolean (PB) formulation with binary variables and a combination
of linear and non-linear constraints [82].

For all these mathematical programs, appropriate solvers are available, both as commercial and as open-
source software packages. In each case, the solver will deliver optimal results, but its worst-case runtime is
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exponential with respect to the size of the input, so that solving large-scale problem instances takes much
too long. Most researchers turned to heuristics for this reason.

It is important to mention that an ILP formulation can be useful in devising a heuristic. Removing the
integrality constraint, the resulting Linear Programming (LP) formulation can be solved in polynomial time.
The result obtained this way may not be integer, but in some cases a rounding method can be used to turn
it into an integer solution with near-optimal cost [5, 39].

5.2 Heuristics for the Single-DC problem

Several authors observed the similarity between the VM placement problem and the well-known bin-packing
problem, in which objects of given weight must be packed into a minimum number of unit-capacity bins.
Indeed, if only one dimension, e.g., the computational demand of the VMs and the computational capacity
of the PMs is considered, and the aim is to minimize the number of PMs that are turned on, the resulting
problem is very similar to bin-packing. There are some simple but effective heuristics for bin-packing, like
First Fit (FF), in which each object is placed into the first bin where it fits, Best Fit (BF), in which each
object is placed in the bin where it fits and the remaining spare capacity is minimal, and Worst Fit (WF), in
which each object is placed in the bin where it fits and the remaining spare capacity is maximal. Despite their
simplicity, these algorithms are guaranteed to deliver results that are at most 70% off the optimum [34, 35].
This approximation ratio can be improved if the objects are first sorted in decreasing order of their weights,
leading to the modified algorithms First Fit Decreasing (FFD), Best Fit Decreasing (BFD) etc. Specifically,
if OPT denotes the optimal number of bins, then FFD is guaranteed to use no more than 11/9OPT + 6/9
bins [33].

These simple bin-packing heuristics can be easily adapted to the VM placement problem. Indeed, the
usage of FF has been suggested [15], just like BF [9], WF [51, 65, 95], FFD [99, 101] and BFD [7, 6, 42]. It
should be noted though that the approximation results concerning these algorithms on bin packing do not
automatically carry over to the more complicated VM placement problem [68].

Metaheuristics have also been suggested, e.g., simulated annealing [47], genetic algorithms [40], and ant
colony optimization [38].

Some authors proposed proprietary heuristics. Some of them are simple greedy algorithms [86, 105] or
straight-forward selection policies [5, 7, 6, 88]. Others are rather complex: for example, the algorithm of
Jung et al. first determines a target mapping by means of a Worst-Fit-like heuristic, but then uses an A∗

tree traversal algorithm to create a reconfiguration plan, taking into account not only the adaptation costs,
but also the cost of running the algorithm itself (which means that search space exploration is restricted
if the algorithm has already run for a long time); moreover, this algorithm is carried out in a hierarchical
manner, on multiple levels [51]. Mishra and Sahoo categorize both PMs and VMs according to what kind
of resource is used by them most (from the three investigated dimensions, which are CPU, memory, and
I/O) into so-called resource triangles, and attempt to match them on the basis of complementary resource
triangles (e.g., a VM that uses the CPU most should be mapped on a PM where the CPU is the least used
resource), at the same time also taking into account the utilization levels [72]. Verma et al. devised an
algorithm that starts by analyzing the workload time series of the applications to determine an envelope of
the time series that captures the bulk and the peak of the distribution, which information is then used to
cluster the applications on the basis of correlating peaks, and then the application clusters are spread evenly
on the necessary number of PMs [101]. However, none of these sophisticated heuristics offer performance
guarantees in terms of approximation factors.

A different approach is to regard the VM placement problem as a control task, in which a controller tries
to balance the utilization of the PMs between the conflicting objectives of minimizing power consumption and
keeping performance levels, and to apply control-theoretic methods. This includes fuzzy control techniques
[86] and distributed PID controllers [95].

5.3 Heuristics for the Multi-IaaS problem

The heuristic algorithms that have been proposed for the Multi-IaaS problem are quite heterogeneous. The
simplest algorithms include list scheduling [14], greedy provisioning and allocation policies [104], greedy
scheduling and clustering algorithms [75], and simple proprietary heuristics [22]. Metaheuristics have also
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been suggested, e.g., particle swarm optimization [76]. Also, more sophisticated algorithms have been pro-
posed, e.g., based on existing algorithms for the knapsack problem [61].

The above algorithms, whether simple or sophisticated, offer no performance guarantees, or at least, none
has been proven. An exception is the work of Tsamoura et al., addressing a multi-objective optimization
problem, in which makespan and cost are minimized simultaneously. That is, the aim is to find Pareto-
optimal solutions in the time–cost space, and also the bids of eCPs are in the form of time–cost functions.
Drawing on earlier results [77], an approximation algorithm with pseudo-polynomial runtime can be devised
[97].

5.4 Algorithms for other problem formulations

As already mentioned in Section 4.4, there are few works considering other problem formulations, like the
Multi-DC problem or hybrid cloud setups, and these works are similar to either the Single-DC or the Multi-
IaaS problem. Accordingly, the algorithms that have been proposed for these problem formulations are also
similar to the ones for the other problem variants.

In particular, Binary Integer Programming has been suggested to optimally solve the task allocation
problem in a hybrid cloud scenario [16]. Hill climbing has also been used as a simple heuristic [24], as well
as proprietary heuristics [12]. Heuristics inspired by bin-packing play a role here as well, e.g., First Fit [55],
and Mills et al. compare several bin-packing-style heuristics in a multi-DC setup [71].

5.5 Evaluation of algorithms

Most papers also provide some evaluation of the algorithms they propose. In most cases, this evaluation is
done empirically, but there are also some examples of rigorous mathematical analysis.

5.5.1 Rigorous analysis

Tsamoura et al. proved the correctness and complexity of their algorithms: an exact polynomial-time
algorithm for a special case and an approximation algorithm with pseudo-polynomial runtime for the general
case, albeit for a rather uncommon problem formulation [97].

For some restricted problem versions, polynomial-time approximation algorithms have been presented
with rigorously proven approximation guarantees [1, 2, 18, 68].

Guenter et al. proved an important property of the linear program that they proposed: that its optimal
solution will be integral, without explicit integrality constraints, thus allowing the use of an LP solver instead
of a – much slower – ILP solver [44].

5.5.2 Empirical evaluation

In many cases, the evaluation was carried out using simulation. There are simulators specifically for cloud
research, for example CloudSim [21], but many researchers used their own simulation environments. Rela-
tively few researchers tested their algorithms in a real environment [31, 51, 57, 66, 70, 74, 101, 103, 105] or
using a combination of real hardware and simulation [85, 93, 95, 104, 109]. It has to be added though that
in most of these cases, the “real” environment used for evaluation was rather small (e.g., just a handful of
PMs and VMs). Apparently, most researchers do not have the possibility to make experiments on large-scale
real systems.

As a compromise between pure simulation and a real evaluation environment, several researchers used
traces from real applications and real servers. Some research groups of industry players used traces from
their own infrastructure [40, 44, 99, 109]. Others used publicly available workload traces, e.g., from the
Parallel Workloads Archive (http://www.cs.huji.ac.il/labs/parallel/workload/) of the Hebrew Uni-
versity [36, 50, 86], the Grid Observatory (http://grid-observatory.org/) [85], PlanetLab (http://www.
planet-lab.org/) [9, 10], or workload traces made available by Google (https://code.google.com/p/
googleclusterdata/) [81, 82]. A related approach, taken by several researchers, was to use a web applica-
tion with real web traces: for example, RUBiS, a web application for online auctions [25], has been used my
multiple researchers with various web server traces [51, 95]; Wikipedia traces were also used [37]. Other bench-
mark applications used include the NAS Parallel Benchmarks (http://www.nas.nasa.gov/publications/
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npb.html) [58, 73, 96, 103], the BLAS linear algebra package (http://www.netlib.org/blas/) [103] and
the related Linpack benchmark (http://netlib.org/benchmark/hpl/) [31, 99].

6 Details of some selected works

Because of the sheer volume, it is impossible to provide a detailed description of all works in the field. However,
we selected some of the most influential and most interesting works and give more details about them in the
following. “Most influential” has been determined based on the yearly average number of citations that the
given paper has received according to Google Scholar (http://scholar.google.com), as of February 2015,
and this list has been extended with some other works that are – in our opinion – also of high importance to
the field.

According to the above metric, the most influential papers are those of Beloglazov and Buyya from the
University of Melbourne (one of those papers is joint work with Abawajy). They address the Single-DC prob-
lem, focusing on the single dimension of CPU capacity of PMs and CPU load of VMs. The main optimization
objective is to consolidate the workload on the minimal number of PMs with the aim of minimizing energy
consumption. As a secondary objective, also the number of migrations should be kept low. The authors’
early works focus on analyzing the context of and requirements towards such an optimization framework, as
well as architectural considerations and preliminary results on some efficient optimization heuristics [7, 8].

Those heuristics are presented in more detail in a later paper [6]. The main idea is to first remove all
VMs from lightly used PMs so that they can be switched off and also remove some VMs from overloaded
PMs so that they will not be overloaded. In a second phase, a new accommodating PM is searched for the
removed VMs. The latter subproblem is seen as a special version of the bin-packing problem, in which the
bins may have differing sizes (different PM capacities) and prices (different energy efficiency of the PMs). For
this problem, the authors developed the Modified Best Fit Decreasing (MBFD) heuristic, which considers
the VMs in decreasing order of load and allocates each of them to the PM with best energy efficiency that
has sufficient capacity to host it. For the problem of selecting some VMs to migrate off an overloaded PM,
the authors consider several heuristics. The Minimization of Migrations (MM) policy selects the minimum
number of VMs that must be removed to let the PM’s load go back to the normal range. The Highest
Potential Growth (HPG) policy selects the VMs that have the lowest ratio of current load to requested load.
Finally, the Random Choice (RC) policy selects the VMs to be removed randomly. The authors used the
CloudSim framework to simulate a DC with 100 PMs and 290 VMs to evaluate the presented heuristics and
compare them to a Non-Power Aware method (NPA), one using DVFS only, and a Single-Threshold (ST)
VM selection algorithm. The simulation results, accompanied by a detailed statistical analysis, demonstrate
the superiority of the presented methods with respect to energy consumption, number of SLA violations, and
number of migrations. From the presented VM selection methods, the MM heuristic proved best.

In a related paper, the same authors provide a mathematical analysis of some rather restricted special
cases or sub-problems of the single-DC problem [9]. In particular, they provide optimal offline and online
algorithms for the problem of when to migrate a VM off from a PM, and prove an upper bound for the
competitive ratio of online algorithms for the case of n homogeneous PMs. Besides, they also consider some
adaptive heuristics for dynamic VM consolidation. The problem is the same as the one considered in the
other works of the authors, and the algorithms are also similar, but are now adaptive: instead of using fixed
thresholds for determining under-utilization and over-utilization, the thresholds now adapt to the variability
of the VMs’ load. For this, several methods are considered: Median Absolute Deviation (MAD), Interquartile
Range (IQR), Local Regression (LR), and Robust Local Regression (RLR). The performance of the algorithms
is evaluated again using CloudSim, but this time with a simulated DC with 800 heterogeneous PMs and real
workload traces from PlanetLab. Also here, the authors carried out a very thorough statistical analysis to
come to the conclusion that the LR method outperforms the others in terms of energy consumption and SLA
violations.

Finally, yet another paper of the same authors looks at one specific sub-problem of VM consolidation: how
to decide when a PM is overloaded, and consequently, when VMs should be removed [10]. Two conflicting
goals are taken into account: on the one hand, the time when the host is overloaded should be minimized
in order to avoid performance degradation and SLA violation; on the other hand, the overload detection
method should signalize an overload only if absolutely necessary, in order to keep the utilization high and
avoid unnecessary migrations. The authors devise a method using Markov chains for stationary workloads,
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which can also be applied to non-stationary workloads by using the Multisize Sliding Window workload
estimation technique. Simulation results on PlanetLab traces demonstrate the good performance of the
proposed method.

Bobroff, Kochut, and Beaty from IBM Research investigated a similar problem: they also aim at mini-
mizing the number of active PMs and the number of SLA violations by carefully consolidating VMs to PMs
in a single DC [15]. Here, also, the problem is one-dimensional, with the CPU being the single investigated
resource, and SLA violations are assumed to happen if the CPU of a PM is overloaded. As a generic solution
framework, the authors propose the Measure-Forecast-Remap cycle, in which the workload consumption of
VMs is measured, based on which their future resource demand is forecast, and a new VM-to-PM mapping
is generated. This cycle is iterated at regular time intervals of length τ . (In the practical examples, τ is
15 minutes.) The Remap phase is based on the similarity to the bin-packing problem and makes use of a
First-Fit heuristic. The strength of the paper lies in the solution for the Forecast phase (the Load prediction
problem, in our terminology). It is based on a sophisticated time series analysis, aiming to identify the
principal periodic components of the load distribution based on past data. As a result, the future load can be
estimated along with the distribution of the prediction error. This allows consolidation with a given upper
limit on the allowed probability of server overload.

Another similar work is pMapper by Verma, Ahuja, and Neogi from IBM India and IIT Delhi [99].
Also here, the aim is to optimize the mapping of VMs to PMs with respect to energy consumption and
number of migrations. Another similarity is the one-dimensional nature of the problem, considering only
CPU capacity and CPU load. Beside trying to switch off PMs, the authors emphasize dynamic power
consumption. Interestingly, they find that utilization does not determine power consumption and argue that
this prohibits the use of global optimization techniques. Instead, local power efficiency characteristics are
formulated that seem to hold in practice and can be exploited for local optimization techniques. Based on
these insights, three algorithms are presented. The first one, called mPP (min Power Parity), is a variation
of the FFD heuristic: it considers VMs in decreasing order of CPU load, and puts each VM into the PM
with sufficient capacity that offers the best energy efficiency. The weakness of this method is that it can lead
to a prohibitively large number of migrations. Hence, the second algorithm, mPPH (min Power Placement
with History) enhances mPP by taking into account the starting allocation, so that unnecessary migrations
can be avoided. The third algorithm, pMaP, goes one step further in decreasing the number of migrations:
it uses mPPH to generate a recommended new placement, but actually performs only those migrations that
improve the overall energy – migrations tradeoff. The algorithms were implemented in the framework of the
pMapper system, and tested with a simulator using server utilization traces from a real data center. The
authors’ algorithms were compared to a non-power-aware load-balancer and a static placement approach.
The results show that at high levels of utilization, the difference between the algorithms’ results is not so
significant, but at lower utilization, the proposed algorithms perform significantly better, with pMaP being
the best. Finally, it is important to note that the paper contains several other aspects beyond the algorithmic
part, for example, the pMapper architecture and practical experience about (deficiencies of) the performance
isolation provided by virtualization.

A closely related paper, also from the IBM India Research Lab, investigates the opportunities for static
placement in more detail. The work of Verma, Dasgupta, Nayak, De, and Kothari starts with a very detailed
empirical assessment of server traces from a real data center [101]. Among other findings, they establish
that VMs’ actual resource requirements are most of the time less than half of the maximum value and that
there is significant correlation between the load of some pairs of VMs – especially those that belong to the
same application. The authors then use these insights for designing optimization algorithms with the aim of
minimizing energy consumption and the number of PM overloads, taking into account the single dimension
of CPU load. The authors argue that for static (long-term) placement, the correlation between the loads
of VMs, especially between their peak loads, is key: VMs with correlating peak load should not be placed
on the same PM. They propose two new algorithms. CBP (Correlation Based Placement) is an extension
of pMapper’s placement algorithm, using some given percentile of the load distribution of a VM (e.g., the
size at 90% of the cumulative distribution function) as its size, and avoiding the co-location of VMs with a
correlation of their loads higher than a given limit. The other algorithm (Peak Clustering Based Placement
– PCP) is completely new and works by clustering the VMs based on correlation between their peak loads
and distributing VMs of the same cluster evenly among the PMs. The algorithms were evaluated using
simulation, based on server traces from the data center where the first experiments were carried out. A
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comparison with pMapper’s placement algorithm (which is optimized for dynamic placement) shows the
superiority of the newly proposed algorithms for static placement, with PCP performing best in most cases.
Finally, the authors show how the two new algorithms can be tuned, as they are quite sensitive to the used
cutoff parameters and the training period.

Another paper that also starts with empirical investigations is the work of Srikantaiah (Pennsylvania
State University) and Kansal and Zhao (Microsoft Research). Their focus is on the minimization of energy
consumption by means of consolidation, subject to performance constraints [89]. In contrast to the works
described above, they consider two kinds of resources: CPU and disk. The main finding of the paper is the
observation that consolidation impacts performance and energy consumption in a highly non-trivial manner.
Up to some point, increasing the utilization leads to higher energy efficiency, as expected. However, at some
point, some resource of the PM saturates, so that further increase in the utilization leads to performance
degradation; since jobs take longer to complete, the energy consumption per job increases. As a result,
energy consumption per job is a U-shaped function of utilization, yielding an optimal level of utilization.
The authors propose to aim for this optimal utilization, which should be determined in an offline profiling
phase. Afterwards, a two-dimensional packing heuristic is used, where the bin sizes correspond to the optimal
utilization of the PMs. The heuristic is a variation of Worst-Fit, aiming at maximizing the remaining free
capacity of PMs. This heuristic can be used both for accommodating new VMs and for optimizing the current
placement of the VMs.

A quite different problem formulation was addressed by Meng, Pappas, and Zhang from IBM Research:
they also consider the Single-DC problem, but with the aim of minimizing network communication costs [70].
The PMs’ resources are not considered in details, but it is assumed that some capacity planning approach
has been used to define a number of slots on each PM, and the task is to map the VMs to the slots,
under the assumption that each VM fits into any slot. As input, the communication intensity is given for
all pairs of VMs as well as the communication cost for all pairs of slots. The VM-to-slot mapping should
minimize the resulting total communication cost. The authors classify this problem as a quadratic assignment
problem, and prove its NP-hardness by reduction from Balanced Minimum k-Cut. They propose a multi-level
clustering algorithm: it clusters the VMs based on communication intensity, it clusters also the slots based
on communication costs, maps VM clusters to slot clusters, and then calls itself recursively for each of the
generated VM cluster – slot cluster pairs. The next part of the paper is quite uncommon: for two special
communication matrices and four network topologies, the authors try to determine the optimal cost (or, if
this is not successful, a lower bound) and the expected cost of random placement, in order to assess the
optimization opportunities. The authors also evaluate the practical performance of their proposed algorithm
and compare it with two general-purpose quadratic assignment heuristics, using a combination of real server
traces and synthetic additions. The results show that the proposed algorithm finds slightly better results
with significantly shorter running time than the other heuristics.

Communication costs also play a vital role in the DAG scheduling approaches that are common for Multi-
IaaS problem formulations. A representative example is the work of Pandey, Wu, Guru, and Buyya from the
University of Melbourne [76]. Here, the aim is to map the tasks of a scientific workflow on cloud resources.
For each task and each compute resource, it is given how long it would take and how much it would cost to
execute the task on the resource. Dependencies between the tasks are given in the form of a DAG. For each
edge of the DAG, the amount of transferred data is given; similarly, for each pair of compute resources, the
cost of communication between them is given. For a mapping of tasks to resources, the total cost of a resource
is defined as the execution cost of the task on this resource plus the sum of the data access costs along the
incident edges; the objective is to minimize the maximum cost of a resource. For this optimization problem,
the authors propose the use of Particle Swarm Optimization (PSO), a popular metaheuristic. Each particle
encodes a task-resource mapping. The optimization is carried out in an online manner: first, the source tasks
of the DAG are allocated; when some tasks have finished executing, the allocation of the tasks that are ready
to be executed is again optimized using PSO and so on. The algorithm was evaluated using simulation on
a rather small problem instance (3 compute resources, 5 tasks) and compared to an algorithm that always
selects the fastest but most expensive resource. Unsurprisingly, the solution found by the proposed algorithm
incurs lower costs.

Another approach to the Multi-IaaS problem is presented by Tordsson (Umea University) and Montero,
Moreno-Vozmediano, and Llorente (Universidad Complutense de Madrid) [96]. Here, we can select from
a list of possible VM types, where each VM type is associated with a capacity. There are multiple cloud
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providers, and for each pair of VM type and cloud provider, the hourly rental fee is given. The aim is to
select a set of altogether n VMs from the cloud providers, such that the total price is below a given limit and
the total capacity is maximal. This optimization problem is formulated as an integer program and solved
using CPLEX, a commercial off-the-shelf solver. The authors also show how some further constraints can be
incorporated, e.g., the number of VMs of a given type can be constrained. The algorithm is evaluated using
three real cloud providers and four VM types, allocating a total of 16 VMs to run a distributed benchmark
application. Experimenting with different cost limits, an interesting observation is that in most cases the
optimal allocation involves more than one cloud provider, highlighting the practicality of such a multi-cloud
setup. Beyond the algorithmic part, the authors also discuss some other aspects, like the role of a cloud
broker in ensuring interoperability between different cloud providers.

7 Areas in need of further research

Despite the large amount of work already presented in the literature, there are still several aspects that, in
our opinion, have not yet been addressed satisfactorily. This is true both for problem formulations and for
algorithms. Moreover, the state of the art concerning the evaluation of algorithms also needs improvement.
We elaborate on these topics in the next subsections.

7.1 Problem formulations

We see the following issues as the most important deficits in the prevalent problem formulations.

• Hybrid cloud. As already mentioned, most works address either the Single-DC or the Multi-IaaS
problem. Very few works address hybrid clouds, and even those have usually a strong bias in the
modeling either towards the Single-DC or the Multi-IaaS subproblem, modeling the other parts only
rudimentarily. Yet, hybrid clouds play an increasingly important role in practice [13, 73]. Especially
in enterprise environments, hybrid clouds are becoming the standard, and so enterprise IT executives
face decisions every day that relate to both in-house and cloud resources [23]. Hence, in the future, we
expect to see more research about genuine hybrid cloud problem formulations.

• Task–VM–PM mapping. In the Single-DC problem, the usual formulation is about mapping VMs
to PMs. In the Multi-IaaS problem, it is more common to investigate the mapping of tasks to VMs.
However, these are just two sides of the same coin: users actually want to get their tasks mapped to
PMs, and VMs are just a tool that is used to enable this mapping in a safe and efficient way. This
becomes especially clear in a hybrid cloud setting, where the users’ tasks are either wrapped into VMs
assigned to local PMs or they are directly mapped to eCPs’ VMs. Hence, in the future, we expect to
see a converged model of the trilateral task–VM–PM assignment.

• Co-optimization. VM placement is just one level where power consumption is optimized. But power
consumption optimization techniques are also implemented on the server level (e.g., Dynamic Voltage
and Frequency Scaling), the level of individual components (e.g., switching unused cores, cache ways,
memory banks, disks etc. to a low-energy state), and in network equipment (routers, switches), making
up altogether a very complex system. In particular, it is not clear how these different optimization
techniques interact, possibly interfere with each other [80]. It is not clear whether the optimal decision
in the VM placement problem, if it does not account for the other optimization levels, is indeed the
best choice for the overall system’s power consumption. More research is needed to better understand
these interactions.

• Multi-core CPUs. The existing problem formulations in the literature either do not model multi-core
CPUs at all, or model them in a very simplistic way. This compromises the practical applicability of
such approaches, because multi-core CPUs are now omnipresent.

• Communication. Data transfer among VMs is another aspect severely missing from many existing
problem formulations, especially in the case of the Single-DC problem, although it can impact over-
all system performance substantially. In the literature about the Multi-IaaS problem, communication
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among tasks is more frequently taken into account; however, almost exclusively coupled with the as-
sumption that all dependencies are given in the form of a DAG. In practice though, there are often
cyclic communication scenarios (e.g., two applications regularly exchanging information in both direc-
tions), and in many cases, the communication paths are not static but change at runtime depending
on real-time information. Also, the modeling of workflows as DAGs usually assumes finish-to-start
dependencies between adjacent tasks, but in practice, the second task can usually start its execution
once some partial results of the first task are available. For these reasons, although the DAG schedul-
ing approach is tempting because of its theoretical clarity, its applicability is limited to some narrow
domains. Further research is needed on more widely applicable models of communication among VMs.

• Co-location interference. When deciding to place a set of VMs on a PM, many works only check
that the total size of the VMs does not exceed the PM’s capacity. However, in practice, there are also
other attributes of the VMs that influence how suitable they are for co-location. One factor to consider
is correlation: how likely it is that the resource demand of several of the VMs will increase at the
same time [101]. Another factor is the “noisy neighbor” effect: since current virtualization technologies
do not offer complete performance isolation of the co-located VMs, if one of the VMs uses a resource
excessively, this may degrade the performance of the others [56]. Up to now, very few works addressed
these issues.

7.2 Algorithms

The most important deficiency in terms of algorithms is that mostly heuristic algorithms (in most cases, quite
simple heuristics) have been proposed, without any performance guarantee. This is problematic because even
if they perform well in controlled experiments, they may yield poor results in real settings, especially for large
and highly constrained problem instances.

• Exact algorithms. Since the VM placement problem contains the bin-packing problem as special case,
which is NP-hard in the strong sense [69], there is no hope for an exact algorithm with polynomial or even
pseudo-polynomial runtime. Nevertheless, there is still much that could be done in the context of exact
algorithms, e.g., efficiently solvable special cases, fixed-parameter tractability, randomized algorithms
with limited error probability, algorithms with low typical-case complexity [67]. Those authors that did
experiment with exact solutions, usually used off-the-shelf solvers for different classes of mathematical
programming; the fact that those solvers took a long time to solve even mid-sized problem instances
does not mean that it is not possible to come up with better exact algorithms, tailored specifically to
the given problem.

• Approximation algorithms. Another logical possibility that is largely unexplored as yet would be to
use approximation algorithms, i.e., polynomial-time algorithms that are guaranteed to deliver a result
with cost at most constant times the optimum. Since there are good approximation algorithms for the
bin-packing problem, this may suggest that similar results could also be achieved for the VM placement
problem.

• Coping with uncertainty. Most algorithms assume that all parameters of the problem are fixed and
precisely known constants. (Even the approaches that attack the Load prediction problem assume that
parameters other than the VMs’ load are fixed and precisely known.) However, in reality, cloud data
centers are very complex and highly dynamic systems, so that a real cloud management system must
cope with estimation errors (e.g., PMs’ background load is not constant, so that the estimate of a PM’s
available capacity may turn out be incorrect) and unforeseen events (e.g., a PM may be damaged or
may need to be restarted because of an urgent operating system patch). The algorithms presented so
far in the literature are usually not robust enough to handle such situations.

7.3 Evaluation of algorithms

Beside the problem formulations and the proposed algorithms, we feel a need for improvement also in the
way algorithms for VM allocation are usually evaluated.
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• Analytic evaluation. Most papers in the literature completely lack an analytic evaluation of the
proposed algorithms. As a minimum, an estimation of the asymptotic worst-case runtime and mem-
ory consumption of the algorithms should be given. If mathematically feasible, an estimation of the
asymptotic average-case behavior of the algorithms (using some appropriate probability distribution of
the input parameters) would be even more interesting. Alternatively, an analysis of some more eas-
ily handled special cases would also contribute to a better understanding of and thus to an increased
confidence in the proposed algorithms.

• Empirical evaluation. In absence of a detailed analytic evaluation, the empirical evaluation of the
proposed algorithms is very important. Ideally, each new paper should show the advantages of the
proposed method by means of a systematic comparison to previously suggested methods on a large
number of different, practically relevant benchmark instances. Unfortunately, this is hardly ever done.
One problem is that there are no widely accepted benchmarks for the VM placement problem (and
its special cases), another issue is the co-existence of many different problem formulations, making
meaningful comparisons difficult. But independently from these issues, researchers often compare their
approaches to trivial algorithms or to algorithms that do not take into account some important char-
acteristic of the problem, compare different versions of their own algorithm to each other, or do not do
any comparison at all. As a result, we have currently no way to tell which of the proposed algorithms
works best. The community will need to develop more rigor concerning the empirical evaluation of
algorithms in order to better support the future development of the field.

8 Conclusions

We presented a survey of the state of the art in the VM allocation problem. Because of the large number
of papers in this field, we could not describe all of them, but we tried to show a representative selection
of the most important works. As we have seen, most papers deal with either the Single-DC or the Multi-
IaaS problem, but also within those two big clusters, there are significant differences between the problem
formulations used in each paper. Currently, the literature on these two subproblems is mostly disjoint, with
only few works addressing a combination of the two. However, we argued that in order to capture hybrid
cloud scenarios, a convergence of these two fields will be necessary in the future.

Given the diversity of the available approaches to VM placement, a natural question that arises is: which
method is best, or, more realistically, when to use which method. Unfortunately, the heterogeneity of the
considered problem formulations and the lack of meaningful algorithm comparison studies make it very
hard to answer these questions. We see here definitely the need for future work comparing the real-world
performance of algorithms under different scenarios. Also, a regular competition would be very helpful
for the community, similarly to competitions of other fields, like the Competition on Software Verification
(http://sv-comp.sosy-lab.org/).

For now, we can make recommendations mainly based on problem formulations. That is, in order to find
out which approaches may be most suitable in a given situation, one should first determine if the Single-DC,
the Multi-IaaS, or some of the other variants apply. Then, the main characteristics should be identified
according to Tables 1 or 2. For example, in the case of communication-intensive workloads, one should
consult the approaches that take inter-VM communication costs into account; likewise, if there are stringent
SLAs on response time, then one should focus on approaches that support such user-level SLOs etc. This
way, the search can be narrowed down to a small number of works that need to be evaluated in detail.

We hope that our survey will help practitioners select the most appropriate existing works and that it will
also contribute to the maturation of this important and challenging field by demonstrating both the previous
achievements and the areas for future research.
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