EEEETEEEE

el W W I
MUEGYETEM 1782

PARTITIONING ALGORITHMS FOR
HARDWARE/SOFTWARE CO-DESIGN

— Ph.D. dissertation —

Zoltan Adam Mann

Supervisor: Professor Péter Arato

Budapest University of Technology and Economics
Department of Control Engineering and Information Technology

2004

Abstract

Hardware/software co-design (HSCD) is the discipline of automating the design of complex
embedded systems with functionality in both hardware and software. The central task of
HSCD is hardware/software partitioning, which aims at deciding which components of the
system to implement in hardware and which ones in software. During partitioning, the
conflicting requirements on performance, costs, energy consumption, etc., have to be taken
into account.

The dissertation addresses the hardware/software partitioning problem from an algo-
rithmic point of view. It proposes a novel formal framework for the definition of different
variants of the problem. This is important because different variants of the problem can
have very different complexity. Indeed, it is shown in the dissertation that although most
variants are NP-hard, there are also important cases that can be solved optimally in
polynomial time. This was previously not known in the HSCD community.

Furthermore, the dissertation proposes three new heuristics for the NP-hard versions
of the problem. The first is a genetic algorithm that is significantly more effective than
previous genetic approaches to hardware/software partitioning. The basis for this out-
standing performance is the consistent handling of invalid individuals, i.e., partitions that
violate some design constraint.

The second algorithm is an adaptation of the Kernighan-Lin (KL) heuristic which
was originally developed for a different graph partitioning problem. The adaptation also
involved transferring improvement possibilities that have been proposed for the original KL
algorithm to this new domain, as well as addressing the problem of choosing an appropriate
data structure for the efficient implementation of the algorithm.

While the first two algorithms are innovative ways of using previously known paradigms,
the third one is based on a completely new view on the partitioning problem, making use
of its combinatorial properties. It works by optimally solving a set of related, yet easier
problems, thus generating candidate partitions from which the best is then selected. Beside
excellent performance, an unprecedented advantage of this algorithm is that it can also
generate lower estimates on the optimum of the problem.

It is demonstrated with empirical results how the three algorithms can cope with indus-
trial benchmarks as well as large random problem instances. The strengths and weaknesses
of the algorithms are investigated, which makes it possible to decide which one to use in a
given situation. This vital question was previously not addressed in the HSCD literature.
It is also presented how the new heuristics have already been applied in real-world projects,
and how they can be used to create faster, cheaper, smaller, more power-efficient, and more
reliable embedded computer systems.

Contents

Introduction

1.1 Previous work
1.2 Research goals.
1.3 Problem formulation
1.4 About this dissertation e

Complexity results

2.1 NP-hardnessresults
2.2 Polynomiality results
2.3 Approximability
2.4 SumMmMary . .o oL oL .. e

Genetic algorithm

3.1 GAingeneral
3.2 Application to the partitioning problemo 0oL
3.2.1 Individuals
3.2.2 Population.
3.2.3 Imitial populationo L oL
3.2.4 Fitness functiono oL
3.2.5 Genetic operations Lo
3.2.6 Stopping criterion oL
3.3 Empirical evaluationo oL
3.4 Discussionol oL e

Kernighan-Lin-type algorithm

4.1 Motivation L.
4.2 Previous work

4.2.1 The Kernighan-Lin algorithm and its variants

4.2.2 KL in the context of hardware/software partitioning.
4.3 Challenges e
4.4 The skeleton of the algorithm 0 0.
4.5 The gain function oL L
4.6 The starting partitiono

23
23
24
25
25
25
26
27
28
28
31

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

4.7 Tie-breaking 44
4.8 Locking schemes L 45
4.9 Efficiency 46
4.10 Extension possibilities L 48
4.10.1 Considering more than two cost metrics 48

4.10.2 Incorporating scheduling and other tasks 49

4.11 Empirical results oo 51

5 MFMC-based algorithm 53
5.1 Motivation L 93
5.2 Description of the algorithm 00000, 54
5.3 Monotonicityo 55
5.4 Extreme values for a, S, and vo 57
5.5 Determining lower bounds Lo 59
5.6 Implementation and empirical resultso L. 61
5.6.1 Implementation, 61

5.6.2 Experience with Algorithm 1. 62

5.6.3 Smoothness 62

5.7 Extension possibilities L o 63

6 Comparison of the algorithms 65
6.1 Analytical comparison 65
6.1.1 [Initial partitions 65

6.1.2 Stopping 66

6.1.3 Parallelization Lo 67

6.1.4 Stabilityo 67

6.1.5 Extension possibilities oo 0oL 68

6.1.6 Tuning oL 68

6.1.7 Generating candidate partitions 0L L 69

6.1.8 Relative importance of the cost metrics 69

6.1.9 Determinism. e 69

6.2 Empirical comparison Lo Lo 70
6.2.1 The benchmarks 70

6.2.2 Optimal solutions 73

6.2.3 Test configurationo 73

6.24 Results. 73

7 Applications 83
A Notations 86

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

B Basics of complexity theory 89
B.1 Asymptotic growth rates oo Lo 89
B2 Pand NP e 89
B.3 Pseudo-polynomiality and strong N'P-hardness 90

C Problem definitions 92
C.1 Variants of the hardware/software partitioning problem 92
C.2 Other problems 92

C.2.1 The KNAPSACK problem 92
C.2.2 The MINIMUM BISECTION problem 93

Chapter 1

Introduction

The requirements towards today’s computer systems are tougher than ever. Parallel to the
growth in complexity of the systems to be designed, the time-to-market pressure is also
increasing. In most applications, it is not enough for the product to be functionally correct,
but it has to be cheap, fast, and reliable as well. With the wide spread of mobile systems
and the advent of ubiquitous computing, size, heat dissipation, and energy consumption are
also becoming crucial aspects for a wide range of computer systems, especially embedded
systems.

Embedded systems have become a part of our lives in the form of consumer electron-
ics, car electronics, mobile phones, smart cards etc. These computer systems consist of
both hardware and software; they together determine the operation of the system. More-
over, the differences between hardware and software as well as their interaction contribute
significantly to the huge complexity of the systems.

To take into account all of these aspects in the design process is becoming next to im-
possible. According to the International Technology Roadmap for Semiconductors [30], the
most crucially challenged branch of the computer industry is system design. The Roadmap
clearly declares that Moore’s law can hold on for the next decades only if innovative new
ways of system design will be proposed to handle the growing complexity.

To address specifically the problem of designing complex mixed hardware/software
systems, a considerable amount of research has taken place in the field of hardware/software
co-design (HSCD?) since the early 1990s [40, 33, 41, 51, 62, 93, 70, 94]. The main objectives
of HSCD are the exploitation of synergies between hardware and software, computer-aided
exploration of the design space, and automatic optimization of key parameters of the
designed system, such as performance and cost.

In this context, hardware means application-specific hardware units, i.e., hardware
designed and implemented specifically for the given system, whereas software means a
program running on a general-purpose hardware unit, such as a microprocessor. For a
significant amount of functionality of embedded systems, both a hardware implementation
and a software implementation is possible. In such cases, the two implementation options

IThe used abbreviations and notations are summarized in Appendix A.

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

typically have complementary advantages and disadvantages, as outlined in Table 1.1.
This is the reason why it is beneficial to use both hardware and software components to
implement a given system: performance-critical or power-critical components of the system
should be implemented in hardware, whereas non-critical components in software. This
way, an optimal trade-off can be found between performance, power, and costs.

HSCD is also facilitated by the tendency that several vendors offer customizable hard-
ware boards (such as field-programmable gate arrays) with integrated processor cores [81].

Hardware Software

Speed faster slower
Production cost more costly cheaper
Energy consumption lower higher
Heat dissipation lower higher
Maintainability hard easier

Table 1.1: Typical advantages and disadvantages of hardware vs. software solutions

However, hardware/software co-design also poses significant challenges. The most im-
portant is partitioning, i.e., deciding which components of the system should be imple-
mented in hardware and which ones in software. This is clearly the step in which the
above-mentioned optimal trade-off between the conflicting requirements should be found.
Unfortunately, finding such an optimal trade-off is by no means easy, especially because of
the large number and different characteristics of the components that have to be considered.

Furthermore, the communication overhead between hardware and software also has to
be taken into account during partitioning. Namely, if one of two communicating compo-
nents is implemented in hardware, and the other one in software, then the communication
between them incurs a significant overhead. If they are both in hardware or both in soft-
ware, then the overhead is typically much lower. (An exception is when the two components
are both implemented in software, but reside on different processors. In this case, the com-
munication overhead is not negligible in terms of time. However, even in this case, other
costs associated with the communication between components—such as implementation
effort or occupied chip area of the communication logic—are significantly lower than in the
case of communication between hardware and software.)

For this reason, the system to be partitioned is usually modeled with a graph, the nodes
of which represent the components of the system, and the edges represent communication,
calls, or dependencies between the components. Furthermore, the nodes and edges are
assigned several cost values, such as execution time, size requirement, delay etc. It is also
an important task of HSCD to obtain these cost values.

The main steps of a HSCD framework are outlined in Figure 1.1. As can be seen,
the HSCD process starts from a high-level, yet formal system specification. Usually, it is
beneficial to start from an executable specification, because this facilitates the estimation

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

System specification

High-level Static Profiling
synthesis analysis

Graph representation

HW costs SW costs Communication costs

Partit@

Hardware Interface Software

Figure 1.1: Block diagram of a possible hardware/software co-design framework

of the cost values. Therefore, a high-level programming language—e.g., C or Matlab—is
often used for this purpose.

In order to perform partitioning, first the appropriate graph representation has to be
extracted from the system specification. It should be noted at this point that there are
several possibilities for the granularity of this graph representation. The nodes of the
graph can represent low-level entities of the system, such as single instructions of the
original executable specification, but much higher levels are also possible, e.g., the nodes
can represent functions or procedures [44].

Beside extracting the graph, also the required cost values have to be determined for
each node and edge. This task is by no means trivial; in fact, the computation of each
cost metric is a challenge on its own. For example, hardware-related costs (hardware
production costs, occupied chip area, etc.) are often computed using the techniques of
high-level synthesis [14, 23, 35, 7, 65, 12]. Software-related costs on the other hand are
often calculated using static analysis or measured by means of profiling [72, 75, 47, 64].

Based on all these input data, the partitioning algorithm decides which nodes to put
into hardware and which ones into software. At the end of the HSCD flow, a synthesis
phase is responsible for synthesizing the hardware part using, e.g., commercial hardware
synthesis tools, the software part using standard compiler tools, and the arising interfaces
between the two parts. The interfaces have to be generated on both sides, i.e., the software
part has to be extended with appropriate device drivers, interrupt handlers etc., and the
hardware part has to be extended with the appropriate communication logic [18, 88]. This

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

final synthesis step is also an important research field on its own, as well as the validation
and verification of the system [86].

In this work, the focus is solely on the algorithmic aspects of the central phase of HSCD,
i.e., on partitioning. This is motivated by the enormous importance of partitioning: better
partitioning algorithms enable the design of faster, more economical, and more power-
efficient computer systems. Of course, partitioning is always a part of a HSCD framework
and interacts with other parts of it. A possible way of integrating the partitioning algo-
rithms presented in this dissertation into a HSCD framework is described in [11].

1.1 Previous work

Traditionally, partitioning was carried out manually, and even today, manual partitioning
is often applied [76, 67, 58|. However, as the systems to be designed have become more and
more complex, this method has become inappropriate, because it is very time-consuming
and typically it leads to suboptimal results. For this reason, many research efforts have
been undertaken to automate partitioning as much as possible.

Concerning the exact problem definition, there are significant differences between the
suggested partitioning approaches. One of the main differences is whether partitioning
only means deciding which components of the system to map to hardware and which
ones to software, or it includes other tasks as well. In particular, many researchers con-
sider scheduling (i.e., determining starting times for the components) as part of partition-
ing [24, 29, 52, 61, 69, 71|, whereas others do not [31, 39, 62, 72, 92, 90]. Some formulations
of the hardware /software partitioning problem even include the problem of assigning com-
munication events to physical links between hardware and/or software units |29, 69].

Furthermore, in a number of related papers, the target architecture is supposed to
consist of a single software and a single hardware unit [31, 39, 41, 44, 61, 62, 69, 72, 76,
82, 83, 92|, whereas others do not impose this limitation. Some exclude parallelism inside
hardware or software [82, 92] or between hardware and software [44, 62].

The system to be partitioned is generally given in the form of a task graph, or a set
of task graphs, which are usually assumed to be directed acyclic graphs describing the
dependencies between the components of the system.

The proposed methods also vary significantly concerning model granularity, i.e., the
semantics of a node. There have been works on low granularity, where a node represents
a single instruction or a short sequence of instructions [15, 17, 76, 48|, middle granularity,
where a node represents a basic block [50, 56, 75|, and high granularity, where a node
represents a function or procedure |2, 41, 71, 91|, as well as flexible granularity, where a
node can represent any of the above [44, 90].

When looking at the algorithms that have been suggested for hardware/software par-
titioning, one can differentiate between exact and heuristic methods. The proposed exact
algorithms include branch-and-bound [21], dynamic programming [62, 72|, and integer
linear programming [66, 70, 71].

The majority of the proposed partitioning algorithms is heuristic. This is due to the

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

fact that partitioning is a hard problem, and therefore, exact algorithms tend to be quite
slow for bigger inputs. More specifically, most formulations of the partitioning problem
are N'P-hard [51, 66], and the exact algorithms for them have exponential runtimes.

Many researchers applied general-purpose heuristics to hardware/software partitioning.
In particular, genetic algorithms have been extensively used [6, 29, 69, 77, 82|, as well as
simulated annealing [32, 33, 44, 59]. Other, less popular heuristics in this group are tabu
search [32| and greedy algorithms [24, 39].

Some researchers used custom heuristics to solve hardware/software partitioning. This
includes the GCLP algorithm [52, 53| and the expert system of |60, 61|, as well as the
heuristics in [41] and [93].

There are also some families of well-known heuristics that are usually applied to parti-
tioning problems. The first such family of heuristics is hierarchical clustering [1, 16, 90, 91].
The other group of partitioning-related heuristics was pioneered by the Kernighan-Lin al-
gorithm [54], which was substantially improved by Fiduccia and Mattheyses [34], and later
by many others [27, 78, 43, 57, 79, 46, 95]. These heuristics have been found to be appro-
priate for hardware/software partitioning as well [61, 89, 92]. More details on this topic
can be found in Section 4.2.

1.2 Research goals

The aim of my research was to investigate the hardware/software partitioning problem
from an algorithmic point of view. This consists of two main tasks:

e Investigation of the algorithmic complexity of the problem. It was claimed by several
researchers that partitioning is N/P-complete, but only one particular formulation
of the problem has been proven to be really N’P-hard. However, that formulation
also included the scheduling problem, and the proof also depended on the hardness of
scheduling. On the other hand, the literature also includes several other formulations
of the partitioning problem that do not include scheduling, and the complexity of
these problem formulations was not proven. For this reason, one of my aims was
to investigate the complexity of different formulations of the partitioning problem,
possibly finding polynomially solvable cases, or to formally prove N'P-hardness.

e The other main goal concerned the N'P-hard versions of the problem, since—as re-
vealed by my investigations—several formulations of the problem are indeed N/P-hard
even without scheduling. Nonetheless, these problems have to be solved somehow in
practice. Therefore, I developed efficient heuristics for them. In contrast to most
previous work in the field, the primary aim was not to include as many details of
partitioning as possible in the algorithms, but rather to enhance efficiency for a more
limited problem.

A related task is to test, tune, and compare the heuristics on benchmark problems.
It is important to determine the effectiveness and speed characteristics of the algo-
rithms, because this is the basis for deciding which one to use in a given situation.

8

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

This vital question was previously not addressed explicitly in the HSCD literature.
As it turns out, there is no clear winner from the algorithms: depending on the char-
acteristics of a given problem instance (such as the ratio of communication costs to
other costs or how tight the constraints are) it varies which one is the best algorithm.

The practical benefit of the new, enhanced partitioning heuristics is manifold, both for
the design process and the resulting product. In the design process, the designers can work
at a higher level of abstraction, thus enabling them to focus on the most important and
most innovative aspects of the functionality of their designs. Non-functional requirements
can be specified in a declarative way, and are guaranteed automatically, thus freeing the
designers from tedious and stereotypical tasks. This leads to a shorter and cheaper design
cycle, which is a vital business advantage.

Concerning the resulting product, the usage of a high-quality partitioning algorithm
guarantees high performance and reasonable costs at the same time. Automatic partition-
ing typically also implies higher dependability because the design process is less error-prone.
Furthermore, it extends the boundaries of the functionality that can be implemented with a
given technology. All of this implies—beyond the business advantage—also a considerable
positive impact on society.

One of the main challenges of the research was its interdisciplinary nature: it included
methods from computer engineering, computer science, operational research, graph theory,
and heuristic optimization.

1.3 Problem formulation

The model that will be used throughout this work was suggested by our research group |[6,
10]. It only focuses on partitioning, and does not include scheduling and other tasks of
a HSCD environment. We believe that decoupling the specific tasks of HSCD enables
us to develop more powerful algorithms. Of course, this requires some simplification in
the problem formulation and thus results in a loss of precision because the partitioning
algorithm has only an estimate of the cost metrics. Conversely, the complexity of the
problem is drastically reduced, and thus a bigger percentage of the search space can be
searched. This way, similar or even better results are achieved than by considering all
aspects together but scanning only a small fraction of the huge search space.

In our model, the system to be partitioned is described by a communication graph,
the nodes of which are the components of the system that have to be mapped to either
hardware or software, and the edges represent communication between the components.
Unlike in most previous works, it is not assumed that this graph is acyclic in the directed
sense.? The edges are not even directed, because they do not represent data flow or
dependency. Rather, their role is the following: if two communicating components are
mapped to different contexts (i.e., one to hardware and the other to software, or vice

2This is a significant advantage of this model, since acyclicity can be hardly guaranteed in real-world
task graphs.

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

versa), then their communication incurs a communication penalty, the value of which is
given for each edge as an edge cost (also called communication cost). This is assumed to
be independent of the direction of the communication (whether from hardware to software
or vice versa). If the communication does not cross the hardware/software boundary, it is
neglected, since on most architectures inter-context communication is orders of magnitude
more costly than intra-context communication.

Similarly to the edge costs mentioned above, each vertex is assigned two cost values
called hardware cost and software cost. 1f a given vertex is decided to be in hardware, then
its hardware cost is considered, otherwise its software cost. We do not impose any explicit
restrictions on the semantics of hardware costs and software costs; they can represent
any cost metric, like execution time, size, or power consumption. Likewise, no explicit
restriction is imposed on the semantics of communication costs. Nor do we impose explicit
restrictions on the granularity of partitioning (i.e., whether nodes represent instructions,
basic blocks, procedures, or even memory blocks). However, we assume that the total
hardware cost with respect to a given partition can be calculated as the sum of the hardware
costs of the nodes that are in hardware, and similarly, the software cost with respect to
a partition can be calculated as the sum of the software costs of the nodes that are in
software, just as the communication cost with respect to a partition, which is the sum of
the edge costs of those edges that cross the boundary between hardware and software (i.e.,
the cut edges).

While this assumption of additivity of costs is not always appropriate, many important
cost factors do satisfy it. For example, power consumption is usually assumed to be
additive, implementation effort is additive, execution time is additive for a single processor
(and a multi-processor system can also be approximated by an appropriately faster single-
processor system), and even hardware size is additive under suitable conditions [62].

The problem can now be formalized as follows. A simple undirected graph G = (V, E),
V = {vy,...,v,}, as well as the cost functions s,h: V — R" and ¢: E — R" are given.
s(v;) (or simply s;) and h(v;) (or h;) denote the software and hardware cost of node v;,
respectively, while c(v;,v;) (or ¢;;) denotes the communication cost between v; and v; if
they are in different contexts.

P is called a hardware-software partition if it is a bipartition of V: P = (Vj, Vi), where
Vi UVs =V and VN Vs = (. (Note that Vi = () or Vg = () is also possible.) The set of
cut edges with respect to partition P = (Vy, Vi) is defined as:

Ep = {(vi,vj) ;€ VS,Uj eVyorv; € VH,Uj c Vs}

The hardware cost of P is: Hp = ZWGVH hi; the software cost of P is: Sp =)
the communication cost of P is: Cp =3, g, ¢(vi,v)).

Thus, a partition is characterized by three metrics: its hardware cost, its software
cost, and its communication cost. These are rather abstract and typically conflicting
cost metrics that should be optimized together. There are several ways to formulate a
well-defined optimization or decision problem based on these three cost metrics. In the
following, five different problems are defined; each of them is an important design problem

U¢€VS Si;

10

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

in its own right.?

In the first three versions, two of the cost metrics are added. A possible interpretation
is the following: if software cost captures execution time, and communication cost captures
the extra delay generated by communication, then it makes sense to add them. That is,
we define the running time of the system with respect to partition P as Rp = Sp + Cp.
Now it is possible to constrain both Rp and Hp, or constrain one of them and minimize
the other one. In the first version of the problem—which will be denoted by P1—there
is both a real-time constraint, i.e., a constraint on Rp, and a hardware constraint, i.e.,
a constraint on Hp. This is a decision problem, i.e., it has to be decided if a partition
satisfying both constraints exists. All other versions are optimization problems.

In the second version (called P2) Hp is constrained and the aim is to minimize Rp. In
the third version (P3) there is a real-time constraint, i.e., a constraint on Rp, and the aim
is to minimize Hp while satisfying this constraint.

In the fourth version (P4), Sp and Cp are not added. Rather, there is a constraint on Sp
and a constraint on Hp and the aim is to minimize Cp while satisfying the two constraints.*
A possible interpretation is the following. Hardware cost is the occupied area, which is
constrained by the available chip size. Software cost is code size, which is constrained
by available memory—on some architectures, e.g., in smart cards, the size of the memory
can be the most stringent constraint on the software part [20]. Communication cost is
implementation effort, which should be minimized (while obeying the two constraints),
because implementing the necessary wrappers to enable communication between hardware
and software is a tedious task.

In the fifth version (P5), the aim of partitioning is to minimize the weighted sum of
the three cost metrics. The weights are specified by the designer, and define the relative
importance of the three metrics. More formally, the total cost of P is defined as Tp =
aHp + 3Sp +vCp, where «, (3, and are given non-negative constants, and the aim is to
minimize Tp.

To sum up, the partitioning problems we are dealing with can be formulated as follows:

3These problem definitions are summarized in Appendix C.1.

4Tt is assumed in this case that there are valid partitions, i.e., partitions that satisfy both constraints.
It should be noted that in the case of P2 and P3 the analogous assumption is always true because the
all-software partition is always valid for P2 and the all-hardware partition is always valid for P3. Thus
no extra assumption was needed in those versions of the problem.

11

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

P1 Given the graph G with the cost functions h, s, and ¢, and Ry > 0, Hy > 0,
decide whether there is a hardware/software partition P with Rp < R and
Hp < H,.

P2 Given the graph G with the cost functions h, s, and ¢, and Hy > 0, find a
hardware/software partition P with Hp < H, that minimizes Rp among all
such partitions.

P3 Given the graph G with the cost functions h, s, and ¢, and Ry > 0, find a
hardware/software partition P with Rp < R, that minimizes Hp among all
such partitions.

P4 Given the graph GG with the cost functions h, s, and ¢, and Sy > 0, Hy > 0, such
that there are hardware/software partitions with Sp < Sy and Hp < H,, find
a partition P with Sp < Sy and Hp < Hj that minimizes C'p among all such
partitions.

P5 Given the graph GG with the cost functions h, s, and ¢, and the constants «, 3,y >
0, find a hardware/software partition P with minimum 7.

Sometimes, the following generalization of the problem will be considered (which can
be defined for any of the above five versions): for some nodes it is prescribed which context
they should be mapped to (e.g., because the other implementation would not make sense
or because of some existing components that should be integrated into the system). In this
case, it has to be assumed not only in the case of P4, but also in the case of P2 and P3
that there are valid partitions, because this is not guaranteed anymore.

At some places, the following notations will also be used. For a set X C V let s(X) =
> vex S(v) and similarly, h(X) = > _y h(v). Let ¢(X,V \ X) denote the sum of the costs
of the cut edges belonging to the partition (X, V \ X).

1.4 About this dissertation

This work is organized as follows. First, the algorithmic complexity of the above problems
is investigated (Chapter 2, Thesis 1). In particular, it will be shown that the first four
versions of the partitioning problem are NP-hard, whereas the fifth version can be solved
in polynomial time. The possibilities for approximation algorithms will also be discussed.

In the remainder of the dissertation, three heuristic algorithms are proposed for the
P3 version of the partitioning problem. (These algorithms can also easily be adapted to
the other versions of the problem.) In particular, Chapter 3 presents a genetic algorithm
(Thesis 2), Chapter 4 describes an algorithm based on the Kernighan-Lin heuristic for graph
bisection (Thesis 3), and a combinatorial algorithm, called the MFMC-based algorithm
(Thesis 4), is presented in Chapter 5. Afterwards, the three heuristics are compared both
from an analytical point of view and empirically on a number of benchmark problems

12

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

(Chapter 6). Finally, Chapter 7 presents some practical applications of the proposed
algorithms.
Each chapter starts with a short summary of the thesis that the chapter is about.

13

Chapter 2

Complexity results

The contributions of this chapter can be summarized as follows:

Thesis 1: I proved that problem P1 is N'P-complete, and problems P2 and P3 are
NP-hard. Problem P4 is also N"P-hard, moreover, I also proved that if P # NP, then
even no approximation algorithm can exist for P4. However, I gave a polynomial-time
exact algorithm for the P5 problem.

These results can be categorized into three groups: N P-hardness results, which are
presented in Section 2.1, polynomiality results, presented in Section 2.2, and issues related
to approximation algorithms, presented in Section 2.3. Appendix B summarizes the used
basic notions of complexity theory.

2.1 N’P-hardness results

Most natural formulations of the hardware/software partitioning problem are A/P-hard.
At least, this was claimed by several researchers |21, 31, 51, 91|, but only one particular
formulation of the problem has been proven to be really N'P-hard [51]. However, that
formulation also included the scheduling problem, and the proof also depended on the
hardness of scheduling.

Moreover, as will be demonstrated in Section 2.2, the P5 problem, which is also a
natural formulation of the hardware/software partitioning problem, can be solved in poly-
nomial time, and thus it is not NP-hard, unless P = N'P. Therefore it is not true that all
formulations of the partitioning problem are necessarily N"P-hard. In fact, the complexity
of those formulations that do not include scheduling is not clear. This shows the impor-
tance of the following theorem. It is the first A/P-hardness theorem for a formulation of
the partitioning problem that does not include scheduling.

Theorem 1. The P1 problem is N'P-complete even if only graphs with no edges are
considered.

14

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Proof. P1 is in NP, because if partitioning is possible with the given limits, then such a
partition is a good witness for this.

To prove the N'P-hardness, the known AP-complete KNAPSACK' problem [74] will be
reduced to P1. Let an instance of the KNAPSACK problem be given. (There are n objects,
the weights of the objects are denoted by w;, the price of the objects by p;, the weight
limit by W and the price limit by K. The task is to decide whether there is a subset X of
objects, so that) ..y w; < W and), p; > K.) Based on this, an instance of P1 can
be defined as follows: V = {vy,...,v,}, E =10. Let h; = p;, s;, = w; foreach i = 1,... n.
(Since E is empty, there is no need to define c.) Introducing A = > _\ pi, let Ro = W
and Hy= A - K.

Now it should be proven that this instance of P1 is solvable if and only if the original
KNAPSACK problem has a solution.

Assume first that this instance of P1 has a solution P = (Viy, V), where Vy UVs =V
and Vy N Vs = (). This means that

Rp= Y wi<Ry=W (2.1)

V; GVS

and
Hp=) p<Hy=A-K=3} p-K

v, eVy v eV

The last equation can also be formulated as:
K < Zpi—ZpiZZpi- (2.2)
v; eV ’UiGVH ’UiEVS

Equations (2.1) and (2.2) prove that X = Vg is a solution of the original KNAPSACK
problem.
Now assume that X solves the original KNAPSACK problem. Therefore:

Zsi:Zwigl/V:Ro (2.3)

v; EX v, EX

and

ZPiZKZA—HOZ Zpi_HO

v, €EX v; eV
that is

HoZZPi—ZPi: Z pi = Z hi. (2.4)
v; EV v;€EX viEV\X viEV\X

Equations (2.3) and (2.4) verify that P := (V' \ X, X)) solves P1. O

This result easily implies the hardness of the P2 and P3 problems as well:

1See Appendix C.2 for details.

15

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Theorem 2. P2 and P3 are N'P-hard® even if only graphs with no edges are considered.

Proof. P1 can be reduced to P2: the solution of P2 is a partition where Hp < Hy and
Rp is minimal; let this value be R},. Clearly P1 is solvable if and only if R}, < R.

P1 can be reduced to P3: the solution of P3 is a partition where Rp < Ry and Hp is
minimal; let this value be H}. Clearly P1 is solvable if and only if H} < H. O

In Section 2.3, it will be proven that the P4 problem is also A/P-hard.

The proofs of the above two theorems show that, in the special case when the graph has
no edges, the P1 problem is equivalent to the decision version of the KNAPSACK problem,
whereas the P2 and P3 problems are equivalent to its optimization version.

Although the KNAPSACK problem is N'P-hard, its complexity arises only because the
numbers in it (the weights, prices, and limits) can be exponentially large. In fact, there
exist pseudo-polynomial algorithms for the KNAPSACK problem, i.e., algorithms whose
running time is polynomial in the numbers that appear in the problem instance. Hence,
if the numbers that appear in the problem instance are polynomial in the size of the
input, then the problem can be solved in polynomial time |74]. Thus, the same applies to
hardware/software partitioning as well if communication costs can be neglected.

In the following it will be proven that in the general case—i.e., when the graph also has
edges—the partitioning problem is even harder than the KNAPSACK problem. Specifically,
it will be shown that it is N/P-hard in the strong sense, which means that it is A/P-hard
even if only polynomial-size numbers are allowed. This will imply in particular that not
even a pseudo-polynomial algorithm can exist for partitioning unless P = N'P. Also note
that this is the first such theorem for hardware/software partitioning.

Theorem 3. The P1 problem is N'P-complete in the strong sense.

Proof. It has already been proven in Theorem 1 that P1 is in N'P.

Now the decision version of the MINIMUM BISECTION problem, which is known to be
NP-complete [37], will be reduced to P1.

An instance of the MINIMUM BISECTION problem consists of a graph G = (V, E) with
n vertices, where n is even, m edges and a limit K (with K < m), and the goal is to find
a cut (A, B), for which |A| = [B| = % and the number of cut edges is at most K.

Now associate the following instance of the P1 problem to it. The graph will be the
same. Let h(v;) = s(v;) = 1 for each v; € V and let c(v;,v;) = 5 for each (4,5) € E.
Define Ry := 5 + mLH and H, := 5. Clearly all cost values appearing in this instance of
P1 are polynomial in n.

For X, Y C V| the set of edges between X and Y will be denoted by E(X,Y).

Now it has to be proven that there exists a feasible bisection if and only if this instance of
P1 is solvable. Indeed, if (A4, B) is a solution for the bisection problem (i.e., |A| = |B| = 3

2P1 is N'P-complete, but P2 and P3 are ’only’ A"P-hard, because P2 and P3 are not decision problems
and thus they are not in N'P.

16

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

and |E(A, B)| < K), then (A, B) is also a solution for P1, since

1 n K
N S —|B|+ ——|E(A,B)|< =+ —— =R
vEB e€E(A,B)

and

S hv) = 4] = g — H,.

vEA

Vice versa, let us assume that the P1 instance has a solution (Vy, Vs). Then

n
Vil =) h(v) < Hy = B (2.5)
veVy
and K
Yos)+ Y c(e)SRozg—l— 1<g+1, (2.6)
vEVS e€E(Vy,Vs) mr
thus

n
Vsl =D s(v) <5, (2.7)

vEVg
since it is an integer and ¢ is non-negative. As both sides of the partition (Vy, Vs) are
not larger than 2 (expressed by (2.5) and (2.7)), |Vy| = |Vs| = % must hold. This also

2 2

implies—using again (2.6)—that > p., v, cle) < mLH, hence |E(Vy,Vs)] < K. So

(Vi, Vs) is indeed a solution for the bisection problem as well. O

Using the same reductions as in the proof of Theorem 2, Theorem 3 implies the following
result:

Theorem 4. The P2 and P3 problems are N'P-hard in the strong sense. 0]

Concerning the complexity of the P1, P2, and P3 problems, Theorem 3 and Theorem 4
are stronger results than Theorem 1 and Theorem 2. The reason why Theorem 1 and
Theorem 2 have been presented at all, is that they show the connection of partitioning
and the KNAPSACK problem. That is, in the special case when communication can be
neglected and the numbers appearing in the problem instance are not too big, the problem
can be solved efficiently using the algorithms for the KNAPSACK problem.

2.2 Polynomiality results

First it should be noted that the other extreme, i.e., when communication is the only
significant cost, and hardware and software costs can be neglected, is easy, even if the cost
values can be arbitrarily large. If no other restriction is made, then—regardless of which
version of the problem is considered—mapping every node to hardware, or mapping every
node to software are optimal solutions, because their cost is 0.

17

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Now consider the generalization in which some nodes are prescribed to be in software
and some others in hardware. More formally, let Vg denote the set of nodes that are
prescribed to be in software, and Vj; the set of nodes that are prescribed to be in hardware,
where Vi;NVg = (), and at least one of V7 and Vg is not empty. In this case, the partitioning
problem reduces to finding a minimum s —¢ cut, or a minimum cut [4] in a modified graph,
as shown below, and can thus be solved in polynomial time. This holds for all of the
problems P1-P5.

First, let us consider the case when both Vj; and Vg are non-empty. Then the graph
should be modified as follows: Vj; is coalesced to a single vertex v, and Vs is coalesced to
a vertex vs. If parallel edges arise, they can be unified to a single edge whose cost is the
sum of the costs of the parallel edges. If a loop (i.e., an edge connecting a vertex to itself)
arises, it can be simply discarded because it does not participate in any cut of the graph.
After these modifications, the minimum-cost partition can be determined by finding the
minimum cut between v, and v,.

If, on the other hand, either V; or Vg is empty, then one can proceed as follows.
Suppose for instance that Vg = (). Then, Vj is again coalesced to a single vertex vy, as
above (parallel edges and loops are handled in the same way as above). However, the
minimum-cost partition can now be determined by finding the globally minimum cut in
this modified graph. This, too, can be solved in polynomial time. Thus, the following
theorem has been proven:

Theorem 5. If Vv € V : h(v) = s(v) = 0, then all the problems P1-P5 can be solved in
polynomial time, even if some nodes are prescribed to be in hardware and some others are
prescribed to be in software. 0]

Moreover, the time complexity of these algorithms is essentially the same as that of
finding the minimum cut, or the minimum s —¢ cut in a graph. The best known algorithms
for finding the minimum cut in a graph have complexity of O(n?), and O(nm) for finding
the minimum s — ¢ cut [26].

Now I leave the topic of efficiently solvable special cases, and go on to show that the
P5 problem is solvable in polynomial time even in the general case.

Theorem 6. The P5 problem can be solved optimally in polynomial time.

Proof. Tt can be assumed that o« = f = 7 = 1 because otherwise each h; is multiplied by
a, each s; by 3, and each ¢;; by 7.

With this modification the problem becomes similar to the one solved by Stone in [84].
Although Stone handles only one cost metric (time) and not the linear combination of
several cost metrics, the proof of this theorem is identical to [84]. The details are omitted,
only the main idea of the construction is given to help understand the algorithm that will
be based on it.

An auxiliary graph (see Figure 2.1) G’ = (V', E') is constructed based on G as follows:
V' =V U{vs,un}, B = EUE;U Ep,, where Eg = {(v,v5) :v € V} and E, = {(v,vp) : v €

18

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

V'}. G’ is also a simple, undirected graph, but in G’ only the edges are assigned costs; the
cost of edge e € E’ is denoted by b(e), and defined as follows:

cle) ifeek
ble) = < h; if e = (v;,v;) € Ej
S; if e = (v;,vp,) € Ey,

Note that the edges in F; (i.e., those that connect the vertices to v,) are assigned the h
values, and the edges in E}, are assigned the s values, and not vice versa.

Vo~ Vi

Figure 2.1: The auxiliary graph

Lemma 1 (Stone, 1977). The value of the minimum cut in G’ between vs and vy, is equal
to the optimum of the original graph bipartitioning problem. O

By Lemma 1, P5 can be reduced to finding a minimum cut between two vertices in a
simple undirected graph, for which polynomial-time algorithms are known [4]. Note that
the size of GG’ is not significantly larger than that of G: if G has n vertices and m edges,
then G’ has n + 2 vertices and m + 2n edges. This proves the theorem. O

The above proof suggests a polynomial-time algorithm for the P5 problem, as summa-
rized in Algorithm 1.

Algorithm 1 Polynomial-time algorithm for the P5 problem
1. Create the auxiliary graph.
2. Find a minimum cut between v, and vy, in the auxiliary graph.

Clearly, the first step of the algorithm can be performed in linear time. For the second

step, many algorithms are known. For my implementation, I used the max-flow-min-
cut (MFMCQ) algorithm of Goldberg and Tarjan |38, 25|, which works in O(n?) time,
where n denotes the number of vertices in the graph. Therefore, the whole process can be

19

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

performed in O(n?) time.®> Note that O(n?) is just a theoretic upper bound for the runtime
of Algorithm 1. Empirical experience has shown that the algorithm is extremely fast in
practice (see Section 5.6.2).

Note that the condition that «, 3, and v are non-negative is important because no
polynomial-time algorithm is known for finding the minimum cut in a graph with arbitrary
edge costs (i.e., where the edge costs are not necessarily non-negative). In fact, this problem
is N'P-hard [68].

It is important to mention that it is not essential that there are exactly three cost
metrics to optimize. The same approach works for an arbitrary number of cost metrics as
far as the linear combination of them should be minimized (see Section 5.7).

It should also be noted that the algorithm can easily accommodate the extension to
the partitioning model, in which some components are fixed to software, while some others
are fixed to hardware. In this case, the same method is used as in the proof of Theorem 6
with the sole difference that the vertices vy and v, need not be added to the graph, but
rather they arise by coalescing the nodes that are prescribed to be in software, and by
coalescing the nodes that are prescribed to be in hardware, respectively (just like in the
proof of Theorem 5).

Finally, I would like to contrast Theorem 6 to the results of Section 2.1. It can be
seen that—supposed that P # N'P—the P5 problem is significantly easier than the other
problems. (It has not yet been proven that the P4 problem is also N'P-hard, but this
is also true, and it will be proven in Section 2.3.) This sheds some light on the origin
of complexity in hardware/software partitioning: under the assumption of additivity of
costs, the problem is easy if the different cost factors are combined using weighted sum to
form a single objective function, whereas it becomes hard if they are bounded or optimized
separately.

The other lesson learned from these theorems is that not all formulations of the par-
titioning problem are necessarily N'P-hard. The P5 problem, which is apparently easy,
is also a meaningful formulation of the hardware/software partitioning problem that can
capture a number of real-world variants of the problem. Hence, care has to be taken when
claiming that partitioning is NP-hard. Notwithstanding, in the rest of this work the main
focus will be on the N'P-hard versions of the partitioning problem.

2.3 Approximability

Since P2, P3, and P4 are N'P-hard optimization problems, it is a natural question whether
they can be at least approximated in polynomial time. A k-approzimation algorithm (where
k > 1) for a minimization problem is a polynomial-time algorithm whose result is guar-
anteed to be at most x times the optimum [45]. The question is whether there exist

3When Stone published his similar approach in [84], the algorithms for finding a minimum cut in a
graph were much slower. In fact, Stone claimed his partitioning algorithm to have O(n°) running time,
thus it was rather impractical.

20

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

approximation algorithms for these problems. In the case of P4, the answer is negative if

P # NP:

Theorem 7. The P4 problem is N'P-hard. Furthermore, if P # NP, then no approxi-
mation algorithm can exist for P4.

Proof. According to Theorem 1, the P1 problem is NP-hard even in the special case when
graphs with no edges are considered. Now, a Karp-reduction will be presented from this
special case of P1 onto P4. It will follow immediately that P4 is NP-hard. Moreover,
the Karp-reduction will be such that the second claim will also easily follow.

Let an instance of P1 with no edges be given. That is, it has to be decided whether
the vertices can be partitioned in such a way that ZviEVs s; < Ry and ZuievH h; < H,.
Based on this, an instance of P4 is constructed. The graph will be the same, except that
two new nodes and an edge are added. The two new nodes will be called z and y, and
the new edge will be called e. The two endpoints of e are z and y, and its communication
cost is 1. The costs of node x are chosen in such a way that z will surely be in software:
s(z) = 0 and h(x) is a large number which is greater than the hardware limit. In the case
of y: h(y) =0 and s(y) = M, where M is a positive number with the following property:

Ro+ M > Z S;. (2.8)

v, EV

The costs of the other nodes are unchanged. Finally, the limits in the newly created
problem instance are H) = Hy and S, = Ry + M.

Now, it has to be proven that these limits are admissible in the sense that there is a
partition that fulfills both limits. Indeed, according to Inequality (2.8), putting all nodes
but y to software is such a valid partition.

Recall that in the case of P4, the aim is to minimize Cp, while obeying the two
constraints. Clearly, the minimum of C'p in the newly created problem instance is either 0
or 1, depending on whether edge e is cut or not. Now it has to be proven that the original
problem instance is solvable if and only if the optimal Cp is 0. Suppose first that the
original problem instance is solvable. Then place the nodes in the new problem instance
in the same way as they are placed in the solution of the original problem. According to
the definition of S{, there is enough room left on the software side to place node y into
software as well, and thus e is not cut, Cp = 0.

On the other hand, if the optimal Cp is 0, then in an optimal solution y has to be in
software, and hence, only Ry room is left for the other nodes in software, and of course H,
room is available on the hardware side. Therefore, the remaining nodes build a solution to
the original problem. Thus, the above construction is indeed a Karp-reduction, and so P4
is N'P-hard.

It remains to show that if P # AP, then no approximation algorithm can exist for P4.
If there were a k-approximation algorithm for P4 with some x > 1, then this algorithm
would yield a result of 0 if the optimum is 0, and a result between 1 and « if the optimum
is 1. Thus, solving the newly created problem instance with this algorithm would tell us

21

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

whether the original problem was solvable or not. Since the original problem was N P-hard,
this is not possible in polynomial time, unless P = N'P. O

Concerning the other two problems, it is still an open question whether there exist
constant-factor approximation algorithms for them: no such algorithm is known, but a
hardness result (in the sense of Theorem 7) is not known either. However, an O(log”n)-
approximation algorithm has been presented for the P2 problem in [73]. Unfortunately,
this algorithm has little practical relevance because of its high approximation factor and
its high complexity.

In order to illustrate the hardness of approximating these problems, I will prove a simple
negative result: that the greedy algorithm is not an approximation algorithm for the P3
problem.* By greedy algorithm, the following is meant: it starts from the all-hardware
partition, which is certainly valid in the case of P3. In each step, it checks which nodes
can be moved from hardware to software without hurting the constraint on Rp, and moves
the node with highest hardware cost from these. It stops when no more moves are possible.

Proposition 1. The result of the greedy algorithm can be arbitrarily far from the optimum
of the P83 problem.

Proof. Let G be a complete graph on n vertices. For each vertex v, let s(v) = h(v) = 1,
and for each edge ¢, let c¢(e) = 2. Let Ry = n. Then it is clear that the optimal solution is
to put every node to software. The optimum is thus 0.

On the other hand, the greedy algorithm starts with all nodes in hardware, and it
cannot move any node to software. This is because moving a node to software would lead
to Rp = 1+2(n—1) =2n — 1> R,. Therefore the algorithm stops without making a
move, and its result is n. O

2.4 Summary

To sum up the results of this chapter: P5 is solvable optimally in polynomial time, but all
other problems are N/P-hard in general. Moreover, no practically usable approximation
algorithms are known for our AN/P-hard optimization problems, and at least in the case of
P4, it could be proven that no such approximation algorithm can be hoped for.

For these reasons, the rest of this work considers the usage of heuristics.

4Note that several optimization problems can be approximated with greedy algorithms, e.g., binpack-
ing and many formulations of the scheduling problem [45]. This result shows that approximating hard-
ware/software partitioning is not that easy. Furthermore, this result will be important in Chapter 4.

22

Chapter 3

(Genetic algorithm

In this and the next two chapters, three different heuristic algorithms are presented for the
P3 problem. The contribution of this chapter can be summarized as follows:

ﬁ‘hesis 2: I developed a genetic algorithm for hardware /software partitioning. It h
different from previous genetic algorithms in the following respects:

e The population can also contain individuals that violate the constraints; however,
they are punished by the fitness function. This way, genetic operations can be
applied without restriction, which enables more efficient optimization.

e I developed and tested different methods to make sure that the initial population
contains valid individuals, but does not lack diversity.

e [implemented and tested several methods for cross-over and several different

\ fitness functions. /

3.1 GA in general

Since there are very good books and surveys on genetic algorithms (see, for instance, |28, 55]
and references therein), I will only give here a very brief, rather practical introduction, and
clarify notations and terminology.

In order to implement a genetic algorithm, one has to do the following. First, an initial
population of individuals representing some possible solutions of the problem must be set
up somehow. After that, in each iteration a new population is generated from the previous
one using the genetic operations: recombination, mutation, and selection (the latter is
sometimes called elitism). So in each step there are two populations. The new population
is first partially filled using recombination, then the rest using selection. Mutation is
then used on some individuals of the new population. See Algorithm 2. The order of
the operations is important because this way individuals created by recombination and
mutation surely get into the new population, even if they are not very fit, so they have the

23

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

chance to propagate their possibly good properties. Note that it is also possible to define
further genetic operations, but these are the most common ones, and they suffice for the
aims of this chapter.

Algorithm 2 Skeleton of the GA

1. Create initial population

2. Calculate the fitness of each individual

3. Perform recombination rate - size_of population recombinations, and insert the off-
springs into the new population

Fill the remaining positions of the new population using selection

Perform mutation _rate - size_of _population mutations in the new population

If stopping criterion met, stop

Replace the old population with the new one

Goto 2.

® N oo

Mutation is important because it guarantees diversity and thus helps leaving local
optima. Its implementation is simple: a randomly chosen gene of a randomly chosen
individual is altered randomly. Of course there can be variants: one can alter one gene at
a time or maybe more genes at once, one can allow only slight modifications of a gene or
any modification etc.

The aim of recombination is to mix good properties of the individuals so that a sequence
of genes corresponding to a good property can spread across the whole population. It is
implemented by generating one or more (usually two) new individuals by the crossover of
two individuals. Individuals are usually not chosen with uniform probability for recom-
bination (as for mutation for instance), since it is more probable to get good genes from
individuals having high fitness values.

Selection is also necessary, it is used to propagate good individuals and to eliminate bad
ones. It is implemented by simply copying the best individuals into the new population.
In some variants it is not necessarily the best ones who survive, but they are selected with
a higher probability.

In most cases, individuals are represented as vectors of real numbers (sometimes integers
or Boolean values). This way, an individual z = (x4, ..., z,) can be regarded as an element
of the Euclidean space R". If not every z € R" is a valid individual (i.e., there are
constraints on the individuals), then the actual solution space is a subset 7 C R". Thus, a
population can be formally defined as a finite subset Pop C 7. The number of individuals
in a population (| Pop|) is usually a fixed number N. The fitness function is f : R" — R,
but it usually suffices if Dy = 7. On the other hand, some versions of GA require that
R; CR™.

3.2 Application to the partitioning problem

In this section I present the way that the above general scheme can be used for the parti-
tioning problem.

24

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

3.2.1 Individuals

The partitioning problem is fortunate from the point of view of a genetic algorithm. The
applicability of genetic algorithms requires that the solutions of the optimization problem
can be represented by means of a vector with meaningful components: this is the condition
for recombination to work on the actual features of a solution.

Fortunately, there is an obvious vector representation in the case of the partitioning
problem: each partition can be encoded as a bit vector of length n. The ¢th bit is 1 if v;
should be in hardware and 0 if it should be in software.

3.2.2 Population

The population is a set of individuals. The question is whether non-valid individuals, i.e.,
those violating the real-time constraint in the case of P3, should also be allowed in the
population. Since non-valid individuals violate an important design constraint, it seems
to be logical at first glance to work with valid partitions only. However, this approach
would have several drawbacks: first, invalid individuals may contain valuable patterns
that should be propagated, and second, it is hard to guarantee that genetic operations do
not generate non-valid individuals even from valid ones. This holds for both mutation and
recombination |12, 80, 87, 29]. For these reasons, I decided to allow non-valid individuals
as well in the population. Of course the GA must produce a valid partition at the end, so
it is important to insert some valid individuals into the initial population, and choose the
fitness function in such a way that it punishes invalidity. More details on these topics are
given in Section 3.2.3 and Section 3.2.4.

The size of the population, denoted by NV, is an important parameter of the GA. Typ-
ically, increasing N leads to better results; however, at the cost of increased running time.
Moreover, it is often the case that after a certain limit increasing N does not improve the
results significantly anymore (i.e., it only increases the running time). Therefore, an appro-
priate trade-off between running time and result quality has to be determined empirically.
This will be presented—along with the tuning of other parameters—in Section 3.3.

3.2.3 Initial population

In order to guarantee diversity in the population, the initial population usually consists
of randomly chosen individuals. However, this method does not guarantee that there will
be valid individuals in the initial population—in fact, if the problem space is big and
constraints are tight, then the chances are very low for this. Thus it is possible that the
algorithm will not find a valid partition at all. Therefore it has to be explicitly guaranteed
that the initial population contains valid individuals as well.

In the case of P3, at least one valid partition is known: the all-hardware solution. Usu-
ally there are other valid partitions as well, but they are not known in advance. On the
other hand, it would be a good idea to insert several different valid individuals into the ini-
tial population, so that optimization starts with many different good patterns. To this end,

25

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

it would be beneficial if random valid individuals could be generated with approximately
uniform distribution. Unfortunately, the set of valid solutions can have a very complex
structure, and thus it is by no means clear how one could implement such a scheme.

Therefore I chose to use the following compromise: one part of the initial population is
filled with randomly selected, not necessarily valid individuals, and the other part with valid
individuals generated by a fast greedy algorithm. This way, there are valid individuals,
but also a wide variety of other individuals in the initial population, from which the GA
will then hopefully be able to mix valid individuals with high quality.

Clearly, the ratio between the two kinds of individuals in the initial population is a
crucial parameter of the GA. This, too, had to be tuned based on empirical experience (see
Section 3.3).

The algorithm responsible for generating the valid individuals for the initial population
should fulfill the following requirements:

e [t should produce a valid partition.

e It should be much faster than the GA itself since it is only a pre-optimization step
that, on the other hand, will be run several times.

e It should be a randomized algorithm so that different runs may produce different
solutions.

For these reasons, I implemented a randomized greedy algorithm which starts from
the all-hardware solution, and moves in each step a randomly chosen node from hardware
to software as long as this is possible without corrupting the real-time constraint (see
Algorithm 3).

Algorithm 3 Generation of valid individuals for the initial population

1. Put all nodes to hardware.

2. Compute the set of nodes X that can be moved from hardware to software without
corrupting the real-time constraint.

3. If X = (), then exit and return the current partition.

4. Choose a vertex randomly from X and move it to software.

5. goto 2.

3.2.4 Fitness function

Since I focused on the P3 problem, the objective is to minimize hardware cost. Thus, a
first possibility for the fitness function would be the following:

f(P)=© — Hp.

Here, © is a sufficiently large constant, so that the fitness will always be positive
(which is beneficial for the implementation). For instance, © =1+ %" ., h(v) is a good

26

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

choice. This is only needed because the fitness should be maximized, whereas Hp should
be minimized.
However, the fitness function should punish invalid individuals. One possibility would
be the following:
£(P) = {@ —Hp it P is valid
0 otherwise.

The reason why I chose a more sophisticated fitness function is that invalid individuals
should be motivated to become ’less invalid,” i.e., those invalid individuals that almost
fulfill the real-time constraint should have a higher fitness than those that are far from
it. Therefore, I introduce a measure of invalidity, denoted by exc(P), defined as the
percentage by which the running time of the system exceeds the real-time constraint, i.e.,
exc(P) = Rp/Ry. Moreover, the fitness of an invalid individual should also be dependent
on its hardware cost, since an invalid individual with a low hardware cost is more likely to
contain valuable patterns than an invalid individual with a high hardware cost. Based on
these insights, the fitness function is defined as follows:

1(P) = © — Hp if P is valid
~ |©' — Hp —cxexc(P) — M if P is invalid.

Again, the role of ©' is to make the fitness positive. However, ©' must be bigger for
this purpose than © was. The role of ¢ is to define the relative importance of Hp and
exc(P) for invalid individuals. That is, it answers the question of ’how much decrease in
Hp can compensate for a unit increase in exc(P)?” The term M denotes a base penalty
for every invalid individual. Based on the value of M, two very different versions of the
fitness function can be defined: a rigorous one, which ranks every valid individual in front
of all invalid ones, and the less rigorous kind, which allows invalid individuals to beat valid
ones. Again, it is up to the tests to decide which version works best in practice.

Instead of combining Hp and Rp into a single fitness function, it would also have been
possible to construct a multi-objective genetic algorithm. This approach has already been
suggested in the literature [29]. It has to be noted though that this is useful only if the
constraints are not known in advance and the aim is to explore the solution space with the
goal of finding several Pareto-optimal solutions instead of one optimum. However, in the
problem formulations addressed in this dissertation, the constraints are given, and hence
there is no point in performing a multi-objective search.

3.2.5 Genetic operations

Mutation, recombination, and selection are used.

Mutation is done in the new population; each gene of each individual is altered with
the same probability. The number of mutations per generation (called mutation rate) is
another parameter for testing.

In the case of recombination I implemented and tested both one-point crossover and
two-point crossover (see Figure 3.1). In both cases, two parents are recombinated to yield

27

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

CLITTTTT] R [[(LTI TTT] HEN
CITTTTITT] LTI T e (LI TT[TT] HE || EEE
(a) One-point crossover (b) Two-point crossover

Figure 3.1: Recombination of two individuals

two children. The point(s) at which the chromosomes are cut is (are) chosen randomly.
Moreover, I implemented two different schemes for choosing the individuals for crossover:
in the first one, all individuals are chosen with the same probability, in the second one,
the probability of choosing a particular individual depends on its fitness, so that better
individuals are chosen with a higher probability. So I tested four different versions of the
recombination operation.

Selection is usually realized as filling some part of the new population with the best in-
dividuals of the old population. However, since the rigorous version of the fitness function
ranks all invalid individuals behind the valid ones, this would mean that invalid individ-
uals may be completely omitted from selection. Therefore, a given ratio of the selected
individuals is taken from the invalid individuals, so that potential valuable patterns that
are present in the invalid individuals will not be lost.

Both the ratio of selected individuals and the ratio of selected invalid individuals has
to be determined empirically.

3.2.6 Stopping criterion

Typically, the best fitness of the population steeply increases in the first generations, but
the improvement becomes much slower in the long run. In particular, after a certain
number of steps, there is hardly any noticeable improvement anymore. The stopping
criterion should be determined in such a way that the algorithm stops when there is no
improvement anymore. However, this does not happen after a fix number of generations,
and thus the stopping criterion should be adaptive.

In my implementation, the GA takes a given minimum number of steps (generations).
After that, it stops after x steps if the best found partition did not improve in the last 9 - x
steps. 0 < ¢} < 1 is also a parameter to test, just like the minimum number of steps.

3.3 Empirical evaluation

As can be seen from the above, the GA has several parameters that have a significant
impact on its efficiency and performance. The best settings for these parameters had to
be determined using empirical tests on practical problem instances. The parameters that
had to be tested are the following:

28

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

e Type of recombination (4 versions)

e The fitness function (rigorous vs. non-rigorous, the value of M in the non-rigorous
case,' the value of c)

e The size of the population

e The ratio of valid individuals in the initial population
e Mutation rate

e Recombination rate

e Ratio of selected invalid individuals

e Minimum number of generations, and 9

For each parameter, at least 3-4 different values had to be tried. The high number of
parameters made it intractable to test all configurations thoroughly, since each parameter
configuration should be tested on a number of benchmarks, with several different random
seeds. Rather, I first fixed all parameters to a plausible value, and then tuned them
one after the other, or at least in smaller, independent groups. For instance, the size of
the population can be tuned independently from the mutation and recombination rates.
Moreover, first the less sensitive parameters were tuned. Unfortunately, it is not easy to
decide which parameters are independent and how sensitive they are. I based my decisions
mainly on logic and previous experience with genetic algorithms.

For testing, I used the set of benchmarks presented in Section 6.2.1. Since in many
cases the best choice of the parameters was not equivocal (i.e., it is possible that parameter
configuration A works better on some benchmarks than parameter configuration B, but
B works better on other benchmarks), I used the average of all measurement results to
evaluate the quality of a given parameter configuration.

In order to conserve space, I omit the details of these experiments, only one example
is shown in Figure 3.2. This figure shows how the average result depends on the ratio
of selected individuals (i.e., the ratio of those individuals in the new population that are
copied without any change, and not generated by means of recombination). On the x axis,
different values for the selection rate are marked. The y axis shows the corresponding
average normalized cost. Thus, lower values are better. It can be seen that the minimum
of the curve is at around 0.1. Moreover, the curve hardly changes in the neighborhood
of 0.1, hence there is no point in trying to locate the best choice more accurately. Thus,
the selection rate can be fixed to 0.1, which means that the recombination rate should
be 0.45 (because 90% of the population has to be generated by recombination, and each
recombination yields two offsprings).

Using this methodology, I made the following findings:

'In the rigorous case, i.e., if M is sufficiently large, the exact value of M does not matter anymore.

29

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

0.9 T T T T T T T

0.85 -

0.75 4

Average normalized cost

0.7 -

0.65 - ,

0.6 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Selection rate

Figure 3.2: The effect of the selection rate on the cost of the found solution

e Recombination: those versions that select the individuals to recombinate based on
their fitness gave clearly better results than those that do not. The difference between
one-point and two-point crossover was very small: two-point crossover proved to be
slightly better.

e Fitness function: the rigorous version clearly won.

e Size of the population: more than 300 was not useful in most test cases, thus I fixed
it to 300.

e Ratio of valid individuals in the initial population: the best choice was around 0.7.
This means that the individuals generated by the randomized greedy algorithm (Al-
gorithm 3 on page 26) have a very important role in the operation of the GA.

e The best mutation rate was around 0.75%. This means that in a population of 300
individuals, about 2-3 mutations per generation take place on average.

e The best recombination rate was around 45%, which means that 90% of the popula-
tion should be generated by recombination and 10% by selection (see above).

e Of all the selected individuals, about 80% should be chosen from the invalid ones.
This is quite unexpected: it shows that a large percentage of the best patterns can
be found in the invalid individuals with relatively high fitness.

30

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

e Stopping criteria: just like the size of the population, this setting also directly affects
the trade-off between speed and result quality. The following values proved to be
best: minimum number of generations: 500, ¥ = 0.4.

After these tests, I fixed all parameters to their best values. Note that Chapter 6
presents a more detailed practical evaluation and a comparison between the GA and other
partitioning algorithms. During that comparison, all parameters are fixed to their best
values.

Finally, it should be noted that the whole tuning process was quite tedious, consuming
more effort than the implementation of the algorithm. In recent years, it has emerged as
an interesting research field on its own how tuning of heuristics can be automated or at
least supported by computer software. Some promising approaches include the usage of
function approximators [22] and experimental design [85, 3]. Hopefully that research will
produce robust and reliable tools for the tuning of parameters of heuristics in a couple of
years, but now the widely practiced methodology is still manual tuning.

3.4 Discussion

Several other genetic algorithms have already been suggested in the literature for hard-
ware /software partitioning. The novelty of my GA lies in the consistent handling of invalid
individuals. In particular:

e Invalid individuals are also allowed to participate in the population. In contrast,
it would also be possible to allow only valid individuals, and whenever an invalid
individual is generated by a genetic operation, it would be deleted. T also implemented
and tested this scheme, but it gave much worse results: the population became
degenerated after a few generations, and no further improvement took place.

e The fitness function is chosen in such a way that it punishes invalidity. This idea
was used in previous works as well; however, no thorough evaluation of the different
choices for the fitness function had been carried out. I tested several different settings
for the fitness function, and experienced significant impact on solution quality and
convergence speed. Thus I improved the efficiency of the algorithm significantly by
taking the most successful version of the fitness function.

e Extra care is taken to include many different valid individuals in the initial population
without sacrificing diversity. This is a feature that none of the previously proposed
GAs possessed. However, my experiments showed clearly that this is very important.
(Recall that 70% of the initial population should be valid!) In particular, if the initial
population does not contain valid individuals, then it is possible that the whole GA
does not find a valid partition. Both the way that the valid individuals are generated
for the initial population and their ratio plays a significant role.

31

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

e The efficiency of the selection operation is significantly improved by the fact that the
best invalid individuals are selected separately for the next generation. This is again
a unique feature of this GA. The empirical tests have shown that this feature alone
accounts for an about 15% improvement in result quality.

Finally, it should be pointed out that the presented algorithm can be extended to
accommodate several generalizations of the problem:

e Some nodes can be prescribed to be in hardware, some other in software. The
algorithm can be trivially extended.

e Several different cost metrics and constraints can be included. (For instance in
component-based hardware/software co-design [9] it is common to define more than
one use case of the system, and associate a separate real-time constraint with each
use case.) Only the fitness function has to be extended accordingly.

e Partitioning into more than two contexts can be achieved. In this case, the genes
would be k-valued instead of binary, for some k& > 2.

e As discussed in Section 1.1, some partitioning approaches also include scheduling.
Scheduling can be incorporated into the GA in two different ways:

— When calculating the fitness of an individual, an external scheduling algorithm
may be used to compute the Rp value for the given individual.

— The GA itself can optimize the schedule as well. In this case, the chromosomes
are extended to also include an encoding of the schedule.

32

Chapter 4
Kernighan-Lin-type algorithm

The contribution of this chapter can be summarized as follows:

ﬁI‘hesis 3: I developed a hardware/software partitioning heuristic based on the it}
erative improvement principle suggested by Kernighan and Lin. When compared to
previous work presented in the literature, the most important novelties of my approach
are the following:

e [investigated in detail how the numerous improvement possibilities that had
been suggested for the original Kernighan-Lin algorithm can be adapted to
hardware/software partitioning. In particular, I evaluated different tie-breaking
strategies, locking schemes, and ways to generate the initial partition.

e I investigated how different models for hardware/software partitioning affect the
applicability of a Kernighan-Lin-type algorithm.

e [provided an efficient implementation for the algorithm based on the range tree

\ data structure. /

4.1 Motivation

According to Vahid [92], one of the most promising directions in the research on hard-
ware/software partitioning is the application of the Kernighan-Lin (KL) heuristic. Orig-
inally, this algorithm was developed for a formulation of the circuit partitioning prob-
lem [54]. Its aim is to partition a graph into two parts of equal size with a minimal number
of cutting edges. It is a so-called iterative improvement algorithm, meaning that it starts
from an arbitrary partition, and swaps pairs of nodes in order to improve the cost of the
partition. The reason of the success of the KL heuristic is that it is fast as a greedy
algorithm, but it can escape some local optima.

Since its inception, several improvements have been suggested to the KL heuristic.
The most widely known is the work of Fiduccia and Mattheyses [34]. They presented—

33

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

among others—a powerful data structure to enable a linear-time implementation of their
algorithm, which I will refer to as the FM algorithm. Other works investigated tie-breaking
strategies and different locking schemes to enhance the efficiency of the algorithm. The
KL algorithm along with these improvement possibilities is reviewed in Section 4.2.1.

The application of the KL heuristic in the context of hardware/software partitioning
was suggested by Vahid |89, 92]. He extended the KL algorithm so that it optimizes an
execution-time metric instead of the original cut metric. Although his algorithm achieved
promising results, it did not use the full potential of the KL heuristic; in particular, it did
not make use of the many improvements that are known for KL. He also tried to devise
an efficient implementation by using a similar data structure as the one that had been
suggested in the FM algorithm; however, with partial success only. For more details, see
Section 4.2.2.

My aim was to remedy these shortcomings. More specifically, I present a KL-type
algorithm for hardware/software partitioning with the following merits when compared to
previous work in this field:

e Careful adaptation of the suggested improvements to the KL algorithm in the context
of hardware/software partitioning

e Investigation of how different formulations of the hardware/software partitioning
problem influence the applicability and efficiency of the KL heuristic

e Efficient implementation of the KL algorithm for hardware /software partitioning by
making use of a more advanced data structure.

More specifically, I proceed as follows. After reviewing previous work in Section 4.2, I
start with the description of the challenges that are associated with the adaptation of the
KL heuristic to hardware/software partitioning (Section 4.3).

The skeleton of my algorithm is described in Section 4.4. Afterwards, the details are
presented systematically. In particular, I investigate how the different cost metrics can
be joined to a single gain value for each node; as it turns out, this choice has important
implications on the efficiency of the whole algorithm (Section 4.5). I also discuss different
strategies for generating the initial partition (Section 4.6), for tie-breaking (Section 4.7),
and for locking (Section 4.8).

The opportunities for efficiently implementing the algorithm are discussed in Sec-
tion 4.9. I prove that—under suitable conditions—any implementation of the algorithm
requires at least {2(nlogn) steps per pass, and thus no linear-time implementation is pos-
sible, unlike in the case of the FM algorithm. I also present an implementation based on
the range tree data structure that achieves this lower bound for sparse graphs.

The implications of the problem formulation are elaborated in more depth in Sec-
tion 4.10. In particular, I describe how more than two cost metrics can be incorporated
into the algorithm without sacrificing efficiency. I also investigate how scheduling and other
typical tasks of hardware /software co-design can be integrated into partitioning when using
a KL-type algorithm.

34

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

In order to compare the different configurations of my algorithm with each other, I ran
several empirical tests on benchmark problems. The results are presented in Section 4.11.

4.2 Previous work

4.2.1 The Kernighan-Lin algorithm and its variants

Originally, the KL algorithm was developed for circuit partitioning [54]. Its aim is to
partition a graph into two parts of equal size (i.e., to find a so-called bisection of the graph)
with a minimal number of cutting edges. The algorithm works by iterative improvement,
that is, it starts from an arbitrary bisection, and swaps pairs of nodes in order to improve
the cost of the partition.

The algorithm works in passes; in each pass every node moves exactly once. At the
beginning of the pass, each node is free. In each step, a pair of free nodes is selected and
swapped. The swapped nodes become locked (i.e., not free) afterwards. The algorithm is
greedy in the sense that in each step it chooses the pair of nodes with the highest gain,
where the gain of a pair of nodes is the decrease in cutsize achieved by swapping them.

The pass ends when there are no more free nodes. This also means that, as long as
there are free nodes, a move is always done, even if it is a worsening move. This is how
the algorithm can escape local optima. At the end of the pass, the algorithm reverts to
the lowest cost partition observed during the pass. All nodes are unlocked and a new pass
starts from this partition. The whole algorithm terminates when a pass does not find a
better partition than its starting partition.

The most important variant of the KL algorithm was suggested by Fiduccia and
Mattheyses [34|. Beside generalizing the KL algorithm to hypergraphs instead of graphs,
they presented two vital improvements. First, they slightly relaxed the strict bisection
constraint of KL, and suggested to move one node at a time instead of swapping a pair
of nodes. Second, they presented an efficient data structure, the gain bucket array, with
which a pass can be implemented in O(n + m) time, where n is the number of nodes and
m is the number of edges of the graph.

The gain bucket array concept depends on the fact that the gain of every node is an
integer from the interval [—d a2, dmaz|, Where dq, is the highest degree of a node. Hence
it is possible to index the nodes by their gains. In practice, this requires an array of size
2 dpmar + 1, indexed from —d,,,q; t0 d,ae- The element of the array with index i is a pointer
to a linked list of the nodes that have gain i. Moreover, there is a separate pointer to
the list corresponding to the highest gain. Beside this data structure, the efficiency of the
algorithm depends on the observation that after moving a node only its own gain and the
gain of its neighbors have to be updated, the other gains do not change.

A number of works focused on tie-breaking strategies in the KL or FM algorithm.
Empirical tests have shown that often many nodes share the same gain value, in which
case the tie-breaking strategy has an important role [43]. Krishnamurthy suggested a
look-ahead mechanism to more precisely estimate the long-term gain of a move, and thus

35

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

breaking ties [57]. This mechanism has also been generalized for multiway partitioning [79].
However, these efforts are beneficial primarily for hypergraphs. On the other hand, as
shown in [43], tie-breaking without look-ahead can also be efficient, in particular, the LIFO
strategy is more efficient than the FIFO or the random strategy, or even the look-ahead
mechanisms.

Another area of intensive research has been the choice of the locking strategy. Many
researchers felt that the original locking scheme was too rigid. In [46], a dynamic locking
mechanism was suggested: when a node is moved from part A to part B, it becomes locked,
but its neighbors in part A become free. This is beneficial because thus the neighbors have
the possibility to follow this node. In order to prevent endless cycles, at most ten moves
per pass are allowed for each node. Further relaxations were presented in |27, 95]; however,
they are mainly beneficial for multiway partitioning, where the number of parts is high.

A good survey on these and other circuit partitioning algorithms can be found in [5].

4.2.2 KL in the context of hardware/software partitioning

The huge success of the KL algorithm and its variants in several domains suggested that
these algorithms might be used for hardware/software partitioning as well. I know of two
such attempts.

The first one is due to Vahid and it is described in two papers: [89] and [92]. Vahid’s
work mostly focused on replacing the cut metric of K. with a more appropriate and more
complex execution-time metric. Essentially, the execution time of the system, with respect
to a given partition, can be computed as the sum of the execution times of each node plus
the sum of the transfer times along the edges. Here, each node’s execution time depends
on whether it is in hardware or software, and similarly, each edge’s transfer time depends
on whether the edge crosses the hardware/software boundary. This is almost the same
model as ours, with the difference that Vahid does not neglect the execution time of the
nodes in hardware, nor the communication penalty incurred by non-cut edges. Vahid uses
a containment relation between the nodes to be able to calculate efficiently the time spent
in a given node and its descendants. He also mentions that other metrics, such as hardware
size and software size, should also be taken into account, but does not elaborate this issue.

Apart from this extended metric, Vahid used the concepts of the FM algorithm: single
node moves in each step, and a gain bucket array for indexing move possibilities by their
associated gain values. Unfortunately, since the execution times can be very large numbers,
the gain bucket array also becomes huge. In fact, since only the logarithm of these numbers
appears in the size of the input, the resulting algorithm has a space requirement that is
exponential in the size of the input, and consequently, the running time of the algorithm
is also exponential in the size of the input. To work around this problem, Vahid suggested
normalizing the execution times to be integers between 0 and 1000. Unfortunately, this
loss of precision can heavily degrade the algorithm: if, for instance, there is a node whose
execution time is much bigger than that of the others, then the algorithm will not be able
to distinguish between the other nodes, i.e., it will randomly move the nodes around.

However, even if we accept the workaround suggested by Vahid, the running time of one

36

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

pass is still O(n?) in the worst case, which is of course much worse than the running time
of O(n+m) of the original FM algorithm.! Vahid argues that the worst case will likely not
happen in practice; however, nothing guarantees that. The work of Vahid also left open
the question of (i) whether the improvements suggested in the KL literature can be used
in the context of hardware/software partitioning as well, and (ii) if also other formulations
of the hardware/software partitioning problem allow the usage of a KL-type algorithm.

The second attempt to use a KL-type algorithm for hardware/software partitioning
is the recent work of Lopez and Lopez-Vallejo [61]. Unfortunately, they gave hardly any
details on how they adapted the algorithm. It seems that they addressed, at least partially,
the second question above: they used a more sophisticated problem definition and conse-
quently a more complex cost function. As the data structure for storing the gain values,
they used the Map implementation of the Standard Template Library, yielding logarithmic
time for accessing the gain values. However, because of the more complex cost function,
it is not true anymore that only the gains of the neighbors of the recently moved node
have to be updated. Rather, the gain of each node has to be recalculated after each move,
which makes it unnecessary to store the gain values at all.

4.3 Challenges

The application of the KL heuristic in the context of hardware/software partitioning is a
natural idea because of the ability of this heuristic to escape some local optima. Consider
again Proposition 1 on page 22: it means that in the case of hardware /software partitioning
local minima can be of very low quality, and escaping local minima is exactly where a KL-
type algorithm can excel.

However, adapting the KL heuristic to hardware /software partitioning involves resolv-
ing the following four main challenges:

1. The original algorithm optimizes a single, quite simple cost function: the number of
cut edges. In contrast, hardware/software partitioning typically deals with several
conflicting cost functions. Alternatively, the different cost metrics are sometimes
unified to a single cost function, but in this case, the cost function is much more
complex than the cut metric of the original KL algorithm. Therefore, the algorithm
has to be extended to handle the more complex cost metric(s).

2. The original KL algorithm maintains a very strict balance criterion, namely that the
two parts have to be of equal size. The FM extension slightly relaxes the balance
criterion: it aims at finding a partition with a given percentage of the nodes in one
part; moreover, small deviations from this ratio are allowed. In the case of hard-
ware/software partitioning, there is typically no explicit balance criterion. However,
there are often constraints that have a similar effect. For example, a real-time con-
straint typically limits the number of nodes that can be mapped to software, whereas

LAt least for sparse graphs, O(n?) is much worse than O(n + m), and the graphs representing real
designs are typically sparse.

37

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

a chip size constraint limits the number of nodes that can be mapped to hardware.
Two such constraints together work out as an implicit balance criterion. Neither the
original KL algorithm, nor the FM extension support such constraints.

3. As discussed in Section 1.1, the scope of hardware/software partitioning can vary
significantly. Some partitioning approaches also include problems of very different
nature, such as scheduling, routing, or interface synthesis. In contrast, the original
KL algorithm addresses only the problem of partitioning graphs. It is questionable
if it can also be extended to handle the other problems mentioned above.

4. FM is a very fast algorithm. However, as can be seen from the above, it has to be
extended in several ways for the purposes of hardware/software partitioning. There-
fore, it is an important but non-trivial objective to keep the extended algorithm
also as fast as possible. This also involves finding the right data structure for the
implementation.

The benefit of using the P3 problem formulation is that it illustrates well how to deal
with more than one, conflicting cost metrics. It also illustrates how cost metrics that are
bound from above (Rp in this case) and cost metrics that have to be minimized (Hp in this
case) can be handled together. However, it ignores the third of the above four challenges.
It will be investigated later in Section 4.10 how other steps, such as scheduling, can be
included.

4.4 The skeleton of the algorithm

As discussed in Section 4.3, there is typically no explicit balance criterion in hardware /soft-
ware partitioning, hence my algorithm makes single node moves rather than node swaps,
just as the FM algorithm. During the algorithm, two partitions are maintained:

e The current partition P.,,.,

e The partition that has been the best so far: Pj.;.

The skeleton of my algorithm is presented in pseudocode in Algorithm 4. The details
are described in the next sections.

4.5 The gain function

The gain concept of the original KL. algorithm has to be extended for the more complex
cost metric. In the original algorithm, the gain had two roles: (i) it enabled fast updating
of the cost of the current partition (without actually recomputing it) after a node had been
moved; and (ii) it was the basis for choosing the next node to move. In my algorithm,
these roles have to be separated, because each cost metric has to be updated separately

38

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Algorithm 4 The skeleton of the KL-type algorithm
procedure onePass()

{
calculate gains
free all nodes
while(there are free nodes) do

{

let v be a free node with maximum gain
move v to the other part
if P.,., is better than P, then

{

let Pbest - Pcurr
}
perform locking
update gains
}
}

procedure KL()
{
create initial partition, set P.,.. and Py to it
repeat
{
onePass()
let Pcurr = Pbest
} until the pass did not improve Py
return Py

but the choice of the next move should depend on all cost metrics. Therefore, I define the
following three numbers instead:

e AR(v) is the amount by which moving v to the other context increases R. (Some-
times, —AR(v) will be called the software gain of node v.)

e AH(v) is the amount by which moving v to the other context increases H. (Some-
times, —AH (v) will be called the hardware gain of node v.)

e gain(v) = f(AR(v), AH(v)) is the basis for choosing the next node to move. (Note
that—although it is not shown explicitly for the sake of readability—f can also
depend on other variables, such as for instance the parameters of P.,.,.)

The choice of the function f is crucial because it determines the order in which the
nodes are moved. This function incorporates the sought trade-off between the conflicting

39

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

cost measures. Specifically, by yielding the gain of a move with given AR(v) and AH (v)
values, it defines the relative importance of the design goals.

Of course, f can be chosen in several ways. Since the algorithm always chooses the node
with the highest gain, i.e., higher f values should indicate better moves, but AR(v) and
AH (v) are lower for better moves, this means that f has to be monotonously decreasing
in both of its arguments.

At this point it should be noted that my algorithm, at least in its current general form,
contains the original FM algorithm as a special case. If s(v) = h(v) = 0 for each node
v, c(v,w) = 1 for each edge (v,w), and f(AR(v),AH(v)) = —AR(v), then the gain of a
node is exactly the amount by which moving it would decrease the number of cut edges.

But the goal is now different, and therefore f should be specialized in another way: the
aim is to minimize Hp, while bounding Rp. The strictest solution for this is the following:

gain(v) = f(AR(v), AH(v), Rp,,,., o) = (4.1)

—00 if Rp,,,. + AR(v) > Ry
—AH(v) otherwise

That is, those moves that let the partition hurt the real-time constraint are infinitely
bad, the other moves are ranked according to the gain in hardware cost associated with
them. I will refer to this function as the strict gain function.

However, there are arguments in favor of less strict solutions. Suppose for example that
a move would slightly hurt the real-time constraint but would result in a dramatic decrease
in hardware cost. This move is infinitely bad according to the above function, yet it seems
to be a good idea to allow such moves. In other words: a sufficiently large decrease in
hardware cost can justify a small exceeding of the real-time constraint. One can hope that
this way a much better part of the search space can be reached.

A logical possibility is to use a gain function of the following form:

gain(v) = f(AR(v), AH(v), Rp,,,,, Ro) = —AH(v) — p(Rp,,,., AR(v), Ro) (4.2)

Here, p is a penalty function that penalizes the exceeding of the time limit. Typically, p
should depend on the percentage by which Rp, .+ AR(v) exceeds Ry, just like the fitness
function in the case of the GA.2 Note that it would also be possible to define p as a function
of the amount (instead of percentage) by which Ry is exceeded; however, it is much more
informative to say that, for instance, the limit is exceeded by 10% than by 10 units. So,
we can assume that p only depends on the quantity

Rp,.,, + AR(v)
Ry
The same argument holds also for the other term of the expression: instead of AH (v) it
is more informative to use the percentage by which Hp changes if this node is moved, i.e.,

EXC =

2The similarity and the differences between this approach and the GA will be investigated in more
detail in Section 6.1.

40

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

AH(v)/Hp,,, . This way, the ultimate formula for the gain function becomes as follows (I
will refer to such a function as a permissive gain function):

AH(v)

T, pexc). (4.3)

gain(v) =

+0o0

exc

Figure 4.1: Strict penalty function

Note that Equation (4.1) is a special case of Equation (4.2), in which the penalty is oo if
Ry is exceeded, and 0 otherwise (see Figure 4.1). Strictly speaking, Equation (4.1) is not a
special case of Equation (4.3) because of the division by Hp_, . in Equation (4.3). However,
when using the strict penalty function of Figure 4.1, the division by Hp_, does not change
the ranking of the nodes. Thus, when looking only at the ranking of the nodes and not
at the exact gain values, then Equation (4.1) is also a special case of Equation (4.3). This
argument also shows why it was not necessary to divide AH (v) by Hp,,,.. in Equation (4.1).

In the general case, it is also logical to set p = 0 if the limit is not exceeded. Moreover,
a threshold ¢ > 1 can be set, so that p = oo if even ¢Rj is exceeded. Clearly, p should
be monotonously increasing if exc is in the interval [1,¢]. Such a function is shown in
Figure 4.2.

Now that the different possibilities for the gain function have been introduced, a very
important property of these functions will be investigated.

In the following, a function ¢ : V' — R is said to possess the (x)-property if the following
holds: when moving a node v from one part to the other, p(w) does not change for any w
that is not adjacent to v nor the same as v. In other words: only the ¢ value of v and its
neighbors can change, all other ¢ values remain unchanged.?

Note that in the case of the original FM algorithm, the gain function, which was defined
as the decrease of the cutsize, possesses the (x)-property. In fact, this was one of the crucial
observations of Fiduccia and Mattheyses that lead to their highly efficient implementation.

3Hence the notation (*): the nodes for which ¢ can change define a star-shaped (not necessarily induced)
subgraph of G.

41

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

exrc

Figure 4.2: A possible permissive penalty function

The following theorem—which will have important consequences in Section 4.7 and Sec-
tion 4.9—shows the connection between the (x)-property and the different gain notions
defined here:

Theorem 8.

(i) AH possesses the (x)-property.

(i) AR possesses the (x)-property.

(#i) gain does not necessarily possess the (x)-property. In fact, not even the strict gain
function does.

Proof.
(i) From the definition of AH it is obvious that

h(v) ifveVy

AH(0) = {—h(v) if v € V.

Therefore, when moving v from one context to the other, only its own hardware gain
changes, that of the other nodes remains unchanged, and thus AH possesses the (x)-

property.
(ii) Similarly, it is clear from the definition of AR that
AR(U) — _S(U) + ZwGVS,(v,w)EE C(”’ w) - ZwEVH,(v,w)EE C(U7 U)) ifve VS
$(0) = D wevs (wanyer €V W) + D pevi wwer €V, w) ifv € V.

As can be seen, AR(v) depends on the context of v and that of its neighbors. Hence, when
moving a node, the AR(v) value of itself and that of its neighbors can change; that of
other nodes remains the same. That is, AR possesses the (x)-property.

42

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

(iii) As apparent from Equation (4.1), gain depends on Rp_, . When a node is moved
from one context to the other, Rp changes, and thus potentially the gain of all nodes
can change. O

Finally, I would like to point out that using a permissive gain function (i.e., one that
does not give infinite penalty to non-valid partitions) requires extra precautions. Although
one might get better results by temporarily allowing a small exceeding of the real-time
constraint, it has to be guaranteed that in the end the output will be a valid partition, i.e.,
one that obeys the real-time constraint (just like in the case of the GA). For this purpose,
the semantics of Pj.s should be changed slightly: Py is always the best valid partition
found so far. That is, Py is updated only if a better valid partition has been found; when
finding a partition with lower hardware cost but exceeding the time limit, Py should not
be updated.

4.6 The starting partition

In order to guarantee that P, will always be a valid partition, it is also necessary to start
from a valid partition (just like in the case of the GA; see Section 6.1 for a comparison).
There are several possibilities to generate a valid initial partition:

e The all-hardware partition is valid, hence it is a good candidate for the starting
partition. While this approach is very simple, it has the drawback that typically the
all-hardware partition is far from the optimum. A starting partition of higher quality
would make it more probable that the algorithm eventually finds a good partition.

e Any algorithm that produces a valid partition can be used to generate the starting
partition. Since the whole KL algorithm is typically quite fast, the algorithm to
create its starting partition should also be very fast. It can be for example a simple
greedy algorithm, or any other fast partitioning heuristic. On the other hand, it is
also interesting to test whether the KL algorithm can improve the partition found
by other full-fledged partitioning algorithms. This way, KL can be incorporated into
hybrid algorithms.

e A general way of improving the results of heuristics is to run them multiple times
and take the best result. Of course, this is only useful for randomized algorithms;
hence, it would be useful to start KL from a random partition. However, it is by
no means obvious how one can quickly generate random valid partitions with an at
least approximately uniform distribution. Here, I present a method that generates
valid partitions randomly (see Algorithm 5)—but not with uniform distribution. The
idea is to randomly map each node to either software or hardware, and check if the
resulting partition is valid. If it is not, then the probability of mapping nodes to
software is decreased. Sooner or later a valid partition is surely reached: in the worst
case when the probability of mapping nodes to software becomes 0, the all-hardware
solution is obtained. But the first valid partition that is found in this way is returned.

43

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Algorithm 5 Randomly generate a valid initial partition

1. let r =1 and N be a positive integer; let dr = r/N

2. map each node independently with probability r to software, with probability 1 — r to
hardware

3. if the resulting partition is valid, return with it

4. otherwise: let r = r — dr and goto 2.

The different methods for generating the initial partition are evaluated in Section 4.11,
based on experimental results.

As can be seen from the above, there are many similarities, but also some differences
between this algorithm and the GA. These questions are addressed in more depth in Sec-
tion 6.1.

4.7 Tie-breaking

Whenever the node with maximum gain is not unique, a tie-breaking strategy has to be
used to select one of the nodes with maximum gain. As discussed in Section 4.2.1, the
tie-breaking strategies suggested in the KL literature can be roughly categorized into two
groups: those that are based on look-ahead mechanisms and those based on previous
behavior. Since all suggested look-ahead mechanisms are useful mainly for hypergraphs,
we will consider here only the second group. It consists basicly of the following strategies
(M denotes the set of nodes with maximum gain):

e Random, i.e., a node is randomly selected from M
e LIFO, i.e., the node which was the last to get into M is selected

e FIFO, i.e., the node which was the first to get into M is selected

It has been reported that in general, the LIFO strategy outperforms the other two [43].
This can be intuitively explained as follows. One of the weaknesses of the FM algorithm is
that it only moves one node at a time, and hence it often does not recognize that a much
better partition could be reached through moving a highly connected subgraph from one
of the parts to the other. Therefore, if a node is moved from one part to the other, then
it is often beneficial to also let its neighbors follow it. The LIFO strategy encourages this,
because in the FM algorithm the gain function possesses the (x)-property, hence the gain
of a free node is changed only if one of its neighbors is moved, and thus the node selected
by the LIFO strategy will be one whose neighbor was moved recently.

Now let us investigate to what extent this can be transferred to the case of hard-
ware/software partitioning. Unlike in the original KL algorithm, the gain function is now
real-valued. Hence, in this case it is very unlikely that more than one nodes have exactly
the same gain value. Thus one could argue that no tie-breaking is needed. However, if
there are some nodes with very similar gain values, it might be better to regard them as

44

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

if they had the same gain value, and use one of the above tie-breaking strategies to select
the winner from them.

Thus it seems that we face a one-dimensional clustering problem [49]: given n points
with their gain values, it has to be determined which nodes have similar gains. However,
the problem is actually simpler because only the best cluster has to be determined, i.e., the
cluster with the highest gain value (denoted by M above). A possible method for this task
is the following. Let us fix a constant 0 < 7 < 1, and let B denote the highest gain value.
Now define M as the set of nodes with gain values in the interval [- B, B]. T should be
chosen near 1, so that only a few nodes will be in the interval [r - B, B]. (Note that the
case 7 = 1 corresponds to the strategy of considering only the node with the highest gain
value.)

A second difference between hardware/software partitioning and the original FM algo-
rithm is that, according to Theorem 8 on page 42, now the (x)-property does not necessar-
ily hold. Unfortunately, the LIFO strategy implicitly assumes the (x)-property in that the
node whose gain changed the last time is the same as the one whose neighbor was moved
the last time.

Therefore, the straight-forward adaptation of the LIFO tie-breaking strategy would
presumably be less efficient than in the case of the FM algorithm. Hence, I suggest a more
direct implementation of the actual aim of this tie-breaking strategy, i.e., to encourage
moving the neighbors of recently moved nodes. More specifically, a variable ¢(v) is defined
for each node v, which stores the last time step when a neighbor of v was moved. (That is,
a counter ctr is maintained, which is initialized to be zero at the beginning of each pass,
and is incremented by one each time when a node is moved. Moreover, when node v is
moved, the ¢ values corresponding to its neighbors are updated: for each neighbor w, let
¢(w) = ctr.) Now the LIFO strategy can be adapted as selecting the node with the highest
¢ value from M, and similarly, FIFO is adapted as selecting the node with the lowest ¢
value from M.

4.8 Locking schemes

From the many alternative locking schemes that have been suggested for KL (see Sec-
tion 4.2.1 and [5]), the most promising for the purposes of hardware/software partitioning
is the dynamic locking scheme proposed by Hoffman [46]. The other suggested locking
schemes have been reported to be mainly beneficial for multiway partitioning with many
parts, whereas hardware/software partitioning is inherently a bipartitioning problem.

Hoffman’s method is based on the same intuition as the LIFO tie-breaking strategy
discussed above: after moving a node from one part to the other, its neighbors should be
encouraged to follow it. Hence, Hoffman suggests that after moving a node from part A
to part B, its neighbors in A should be freed (the moved node however becomes locked).
In order to prevent endless loops, a node can only be freed a given number of times—ten
in Hoffman’s work—during a pass.

Fortunately, this locking scheme can be adapted to hardware/software partitioning

45

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

without any problems. However, it is questionable whether ten is the right number in this
context as well.

4.9 Efficiency

One pass of the FM algorithm can be implemented in linear time, i.e., in O(n + m) time.
This depends on the following two crucial facts: (i) the possible moves can be indexed by
their associated gain values, and thus stored in the gain bucket array data structure; (ii)
the (x)-property holds for the gain function, i.e., after moving a node, only its own gain
and the gain of its neighbors has to be updated.

Unfortunately, none of these two properties holds in the case of hardware/software
partitioning: the gains can be large real numbers, which prohibits the usage of a gain
bucket array, and the (x)-property does not hold (see Theorem 8 on page 42). In the
following, it is investigated under which circumstances it is still possible to provide an
efficient—but more tricky—implementation.

As it turns out, the efficiency of the algorithm depends very much on the gain function.
First, let us consider the most general case: the gain is specified by some function f, on
which no restrictions are imposed, except that it can be calculated in O(1) time. In the
worst case, the gain of all nodes can change after each move. Since a pass consists of ©(n)
moves (exactly n moves when using the original locking scheme, and at most ¢n moves
when using dynamic locking, where ¢ is a small constant), and after each move, the gain
of all free nodes has to be calculated, and there are n/2 free nodes on average, this means
that the duration of one pass is ©(n?). Also note that this can be achieved without any
complicated data structures: the maximum gain can be selected while calculating the gains
of all nodes, and there is no need to even store the calculated gain values, since only their
maximum is needed, and all of them will be recomputed after the move anyway.

However, we are interested in a special class of gain functions, so that one can hope for
a more efficient implementation. One could even hope for a linear-time implementation,
as was the case with FM. However, this is not possible:

Theorem 9. When using the strict gain function, every implementation has at least
Q(nlogn) time complexity.

Proof. Tt will be shown that it is possible to sort numbers using the presented algorithm.
Since it is known that sorting n numbers takes 2(nlogn) time [26], the theorem will follow.

Assume that the numbers x4, ..., x, have to be sorted. A graph G is defined with n
vertices (v1,...,v,) and no edges. For each node v;, let s(v;) = 0 and h(v;) = z;. Let
Ry be any non-negative number, then Rp < R, will always hold (since Rp will always be
0). Assume that the initial partition is the all-hardware partition, and the original locking
scheme is used. Then the gain of node v; will always be h(v;) = x;. Since the algorithm
moves the nodes in decreasing order of their gain values, observing the order in which the
nodes are moved yields the decreasing order of the x;s. O

46

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Since the permissive gain function family contains the strict gain function as a special
case, the same holds also for the permissive gain functions.

Now I present an implementation which is almost as efficient as this lower bound. First,
the case of the strict gain function is considered.

According to Theorem 8 on page 42, not even the strict gain function possesses the
(x)-property, and thus it is by no means obvious how the algorithm can be faster than the
trivial O(n?). The key idea is that AH and AR do possess the (x)-property, and the strict
gain function has such a simple structure that the node with highest gain can be found
without actually storing or even computing the gain values of each node explicitly. Rather,
only the AH and AR values are stored for each node. Because of the (x)-property, these
can be updated efficiently: all updating steps together require O(n + m) time per pass.

The gain depends beside AH(v;) and AR(v;) also on Rp,,,.. In a given step of the
algorithm, Rp has a concrete value. We are only interested in those nodes for which
Rp,,..+AR(v;) < Ry because all other nodes have gain —oo. And from these ’good’ nodes,
the one with the highest hardware gain has to be selected.

The nodes can be thought of as points in the plane, where the x coordinate of v;
is x; := AR(v;) and its y coordinate is y; := AH(v;). Then, the task of selecting the
node with the highest gain becomes this: select the point with lowest y coordinate in the
x < Ry — Rp,,,, half plane.

Thus a data structure is needed in which 2-dimensional points can be stored, such
that queries of the form ’select the point with lowest y coordinate from the ones with
xr < xy’ can be executed efficiently, and it can be updated efficiently if the coordinates
of a point change or a point is deleted. Fortunately, such a data structure is known in
the computational geometry community: the range tree [19]. Actually, the range tree was
developed to support queries of the form ’select all points in the rectangle xy,y;, x2, yo.’
However, it can be trivially adapted to the above kind of query. With a range tree, all the
needed operations can be performed in O(logn) time, thus yielding a time complexity of
O((n + m)logn) for one pass of the algorithm (O(n) searches and O(n + m) updates).

As can be seen, the simple structure of the strict gain function and the powerful range
tree data structure made it possible to find the node with highest gain without explicitly
calculating the gain of each node, and only storing and updating the AH and AR values.
Now let us investigate how this can be generalized to the permissive gain functions. The
problem here is that the penalty function is not constant between Ry and qRy. In the case
of the strict gain function it was possible to rephrase the problem as a simple geometric
query because the penalty function had only two values, one of which was infinite.

Fortunately, we have some freedom in choosing the penalty function. It is not pre-
scribed what it should look like between Ry and gRy, it is only required that it should be
monotonously increasing from 0 to co. For the sake of efficiency, p will be required to be a
‘staircase’-like function, i.e., it should consist of a small number of constant parts. Actually,
this is not a big restriction, since every function can be approximated with staircase-like
functions. For instance, the function in Figure 4.2 can be approximated with the staircase-
like function in Figure 4.3.

For a staircase-like penalty function, the algorithm works as follows. Let (z1,22) be an

47

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

‘ ‘ exrc

Figure 4.3: A staircase-like penalty function. This is an approximation of the function in
Figure 4.2 on page 42.

interval in which p is constant. This means that in this interval the software gain does not
influence the gain; the gain is proportional to the hardware gain. Therefore, our task is to
select the point with lowest y coordinate from the ’track’ {(z,y) : z1 < x < z2}. Again,
a range tree can be used to efficiently implement such queries. Thus, a best node can be
obtained for each interval where p is constant. Afterwards, the winner is selected from this
handful of nodes based on their gains. That is, the gain has to be explicitly calculated
only for these nodes. This way, assuming that there are O(1) intervals with constant p,
the whole pass can be implemented in O((n 4 m)logn) time for (staircase-like) permissive
gain functions as well.

Note that for sparse graphs, i.e., if m = O(n), this is the same as O(nlogn), so that
this algorithm has optimal performance—up to constant factors—for sparse graphs.

4.10 Extension possibilities

4.10.1 Considering more than two cost metrics

Until now, two cost metrics were considered: execution time and hardware cost. However,
in some cases, other cost metrics have to be considered as well, such as power consumption
or chip size. In general, assume there are k cost metrics (where k is a small constant):
c1,...,c. In order to define a proper optimization problem, assume that there is a con-
straint on £ — 1 of the cost metrics, and the aim is to minimize the kth cost metric. That
is, the problem is to find a partition P such that ¢;(P) < C,...,c,_1(P) < Ck_1 and
cx(P) is minimal among all such partitions.

48

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Just as above, we can define for each node v; and each cost metric ¢; the change of
that cost metric caused when moving v;, denoted by Ac;(v;). The gain of a node v; is now
defined as

S

-1

gain(v;) = f(Aci(vi), ..., Acp(vi)) = =Ack(vi) — > pi(Aci(vi), ¢j(Peurr), Cy),

1

.
Il

where the p;s are appropriate penalty functions (p; penalizes the exceeding of the constraint
on ¢;). Again, it is possible to define strict or permissive penalty functions.

If no further assumptions can be made concerning the gain function or the Ac; func-
tions, then the algorithm can be again implemented in a straight-forward way yielding a
performance of O(n?). Conversely, if the Ac; functions satisfy the (x)-property, and if the
penalty functions are staircase-like, then it is again possible to devise an O((n + m)logn)
implementation. In this case, the nodes can be modeled as points of the k-dimensional
space with coordinates (Acy(v;), ..., Ack(v;)), and queries of the form ’select the point
(x1,...,) with minimum xj from the set a; <y <by,...,a5-1 < k1 < br_1’ must be
performed. This, too, can be implemented efficiently using k-dimensional range trees.

4.10.2 Incorporating scheduling and other tasks

Until now, it has been assumed that the cost metrics are additive. For example, it was
assumed that the hardware cost of a partition is the sum of the hardware cost of the
nodes in hardware. Likewise, it was assumed that the execution time of the system can
be calculated as the sum of the execution time of the nodes in software plus the sum of
the communication overhead of the edges. In this respect, I followed the assumptions of
Vahid [89]. However, Vahid’s model is quite restrictive: it assumes a single hardware unit
and a single software unit and excludes parallelism between the two. In a more general
framework with several hardware and software units, some additional factors have to be
considered, such as:

e In general, execution time is not additive. Rather, it depends on the number of
available processing units, and on the precedence constraints between the nodes
that constrain parallelism. Therefore, the calculation of the execution time involves
scheduling the modules on the given processing units.

e Likewise, communication events have to be scheduled on the available communication
links. Moreover, depending on the topology of the communication links, communi-
cation events may have to be routed along the communication links.

e Hardware costs are often not additive because of hardware sharing. That is, several
modules can use the same hardware resource, thus reducing costs. It has to be noted
that scheduling and hardware sharing are not independent: if two modules share a
hardware resource, then they must not be active at the same time.

49

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

A hardware/software co-design framework has to consider all of these effects. How-
ever, as demonstrated in Section 1.1, there is no consensus in the literature whether all
these aspects should be considered during partitioning. In some works, the whole co-design
framework is a single optimization step, in which partitioning, scheduling, routing etc. are
performed together; in others, partitioning only means deciding which modules to imple-
ment in hardware and which ones in software. In this latter group, powerful methods
have been devised to decouple partitioning from the other problems (see e.g., [62]). Such
decoupling results in a loss of precision because the partitioning algorithm has only an
estimate of the cost metrics. Conversely, as discussed in Section 1.3, the complexity of
the problem is drastically reduced, and thus a bigger percentage of the search space can
be searched. This way, similar or even better results are achieved than by considering all
aspects together but scanning only a small fraction of the huge search space.

My adaptation of the KL algorithm, as described so far, clearly belongs to the second
group. I believe that the KL algorithm is intrinsically more appropriate for the second
group because its strength lies in partitioning graphs by the efficient optimization of simple
cost metrics. However, I will now briefly sketch how it can also accommodate scheduling
of modules, scheduling of communication events, routing, hardware sharing etc. The cost
metrics are then not additive anymore; rather, the cost metrics are calculated by external
scheduling, routing etc. algorithms that can be included as black box into the algorithm.
The Ac;(v;) values that are needed by the algorithm are calculated by tentatively moving
v; to the other part, and then running the appropriate external algorithm in charge of
calculating c; (e.g., running a scheduler to calculate the execution time), and then moving
the node back. In this case, the (x)-property is clearly lost, because after moving a node,
all Ac; values can change. For instance, moving a node from hardware to software can
make it so slow that it invalidates every schedule that was considered so far.

Therefore, no ’tricky’ implementation can be hoped for. The time complexity of the
algorithm for one pass is O(n?p), where O(p) is the time needed to run the external
algorithms. This is because a pass consists of O(n) moves, and after each move, the
gain of O(n) nodes has to be recomputed, and one such recomputation lasts O(p) time.
Typically, ¢ will be non-negligible, since it is the time for solving a hard problem such as
scheduling. The fastest list schedulers need O(n) time, more advanced schedulers much
more. Therefore, the complexity of the algorithm will be at least 2(n?), maybe significantly
more.

To sum up: it is possible to include scheduling and hardware sharing into the KL
algorithm; however, the algorithm will then lose its main advantages. (For example, it
will calculate many schedulings, from which many will turn out to be equivalent and/or
not needed.) But as demonstrated above, the algorithm is indeed very efficient for the
other group of hardware/software partitioning formulations that make use of simplified
cost metrics.

90

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

4.11 Empirical results

As can be seen from the previous sections, the algorithm has many variants and many
parameters that can be tuned. I implemented several versions in order to compare them
empirically. At this point, only the results of these tests will be sketched; the comparison
of this algorithm to other partitioning methods is deferred to Chapter 6.

Here is a list of the implemented variants and parameters:

e Penalty function: strict vs. permissive

e Initial partition: all-hardware vs. greedy heuristic vs. the presented randomized al-
gorithm (Algorithm 5 on page 44)

e Tie-breaking strategy: FIFO vs. LIFO vs. random. Moreover, the value of 7 also had
to be tuned.

e Locking scheme: original vs. dynamic

e In the case of dynamic locking: how many moves should be allowed?

As can be seen from this list, there are altogether 36 variants, plus an integer and a
real-valued parameter. For testing I used the 17 benchmarks that will be presented in more
detail in Chapter 6. In the case of the randomized algorithms, I ran the program 100 times
and took the average result. The whole testing process was automated by a test script.
The results can be summarized as follows:

e A general experience: my findings are mostly in accordance with the results reported
for the original KL algorithm. That is, the winner is typically the same version for my
algorithm as for plain KL. However, the results on hardware/software partitioning
seem to be much more noisy than those for plain graph bisection. It is probably due
to this fact that the difference between the different versions is often not as clear in
the case of hardware/software partitioning than it is for the original algorithms.

e Concerning the penalty function: in most cases the permissive function yielded better
results.

e Initial partition: the presented randomized algorithm (Algorithm 5 on page 44) of-
fered the best results. Moreover, there was no significant difference between the
results obtained from the all-hardware partition and the one obtained from the re-
sult of the greedy heuristic. This may be attributed to the fact that the KL algorithm
itself is an improved greedy algorithm, and thus a greedy pre-optimization does not
improve it.

e Tie-breaking: the LIFO strategy won, but not as clearly as reported for the original
KL algorithm. The best value of 7 was about 0.95. Note that I also tested the
possibility of 7 = 1, and it was sub-optimal. This means that it is indeed useful

ol

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

to choose from the best couple of moves using a tie-breaking strategy, instead of
choosing simply the best one.

e Locking: the dynamic locking scheme proved to be significantly better than the
original locking strategy. This difference was much clearer than the others mentioned
above.

e Allowed number of moves: in contrast to the result reported in [46], I found that
allowing more than 5 moves per node per pass does not improve the performance
significantly anymore. With 5 allowed moves, the improvement over the original
locking scheme was about 18% (averaged over all runs).

1 T T T T T T T T T

0
0
0
0

0
0
0
0
0
0
0
0

0.85 .

Minimum normalized cost

0.8 | B

0.75 - 1

0.7 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20

Number of runs

Figure 4.4: Improving the result by running the algorithm multiple times

It should also be mentioned that the randomized versions of the algorithm can be
improved by running them multiple times, and taking the best result. A typical example
is shown in Figure 4.4. As can be seen, 10-15 runs of the algorithm produce a result
which is about 5% better than the first one. However, the improvement becomes very slow
afterwards.

Altogether, the best configuration of the algorithm (permissive penalty function, Al-
gorithm 5 for generating the initial partition, LIFO tie-breaking, dynamic locking) offered
an improvement in result quality of about 31% over the plain version.

92

Chapter 5

MFMC-based algorithm

ﬁ‘hesis 4: 1 developed a heuristic algorithm for the P3 problem, which is—in contrasm
to most other heuristics for hardware/software partitioning—not the application of a
general-purpose heuristic, but rather an algorithm that makes use of the combinatorial
properties of the partitioning problem.

This algorithm works by creating auxiliary graphs from the original graph, which are
different instances of the P5 problem. These problem instances are in turn solved by
the exact polynomial-time algorithm for P5 that was presented in Section 2.2. Thus,
candidate partitions are generated, and the best one from these that does not violate
the constraint is selected.

This way, only high-quality candidate partitions are evaluated, which makes it possible
to find good solutions even if only a small fraction of the search space is scanned. A
second consequence is that the algorithm is able to infer non-trivial lower bounds
on the cost of the optimum solution—a feature that no other partitioning heuristic
@ggested in the literature possesses. /

5.1 Motivation

The aim of this chapter is to present a more powerful partitioning algorithm by capturing
the combinatorial structure behind the partitioning problem. That is, instead of applying
general-purpose heuristics to hardware/software partitioning, I devise an algorithm based
on the graph-theoretic properties of partitioning. This way, one can hope to obtain a more
scalable algorithm.

Scalability is a major concern when applying general-purpose heuristics. Namely, in
order to be fast, such heuristics evaluate only a small fraction of the search space. As the
size of the problem increases, the search space grows exponentially (there are 2™ different
ways to partition n components), which means that the ratio of evaluated points of the
search space must decrease rapidly, leading to worse results. This effect can be overcome

93

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

only if the small evaluated region contains high-quality solutions. This is exactly what I
intend to achieve by making use of the combinatorial properties of the problem.

At this point I would like to refer back to Section 2.2, where I showed that the P5
problem can be solved optimally in polynomial time. In fact, the proof was constructive,
i.e., an efficient algorithm has been described (see Algorithm 1 on page 19).

The main contribution of this chapter is a completely novel heuristic algorithm for the
P3 problem which is based on the polynomial-time exact algorithm for the P5 problem.
This heuristic has the property mentioned above that it only evaluates points of the search
space that have a high quality in some sense. Moreover, the new heuristic has the unique
property that it can determine a lower bound on the cost of the optimum solution, and
therefore it can estimate how far the best result it found so far lies from the optimum.
This is a feature that no previous partitioning algorithm possessed.

The idea is to run the polynomial-time algorithm for the P5 problem (Algorithm 1 on
page 19) with several different o, 3, and «y values. This way, a set of candidate partitions is
generated, with the property that each partition is optimal for the P5 problem with some
a, 3, and v parameters. Then the best partition from this set that fulfills the given limit
on Rp is selected.

As already mentioned, the scalability of a heuristic depends on whether the evaluated
small fraction of the search space contains high-quality points. I believe that this can be
achieved with the above choice of candidate partitions, because this way the candidate
partitions are optimal for at least a related problem.

5.2 Description of the algorithm

Obviously, the result of the run of the polynomial-time algorithm for the P5 problem
(Algorithm 1 on page 19) is determined by the ratio of the three weights, and not by their
absolute values. Therefore, one of the three, e.g., 3, can be fixed, and only the other two
will be varied. This leads to a two-dimensional search problem, in which the evaluation
of a point involves running the polynomial-time algorithm for the P5 problem with the
appropriate weights.

In order to keep the algorithm fast, I use two phases: in the first phase, coarse-grained
steps are used in the two-dimensional plane to find the best valid partition approximately,
and in the second phase a more fine-grained search is performed in the neighborhood of
the point found in the first phase (see Algorithm 6 for more details).

In both phases, possible a and 7 values are scanned with increments da and dy. Choos-
ing the values for da and dvy constitutes a trade-off between quality and performance: if
small increments are used, then the search is very thorough but slow, if the increments are
high, the search becomes fast but superficial. As can be seen in Algorithm 6, T apply a
searching scheme that adjusts the increments dynamically. More specifically, da and dvy
are multiplied with 1 4 ¢ (where ¢ is a fixed small positive number) in each step when no
better solution is found. This way, the algorithm accelerates exponentially in low-quality
regions of the search space. On the other hand, da and dv are reset whenever a better

o4

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Algorithm 6 MFMC-based algorithm

Phase 1: //Scan the whole search space
for(a = amin; @ < Qpas; @ = a+ da)
for(y = Vimin; ¥ < Vimaa; ¥ =7+ d7) {
run Algorithm 1 with parameters «, (3, and -, let the resulting partition be P;
if(Rp < Ry and Hp < best_so_far) {
save current solution;
save previous and next « value (preps next);
save previous and next y value (Yprevs Yneat);
reset da and dv;
}
else
do = (1+¢)da, dy = (1 + ¢)dr;
}

Phase 2: //Scan the region around the best point found in Phase 1

reset da and d~;

perform same method as in Phase 1, with o going between o, and ¢4+, 7 going between
Yprev A0d Vneqt, and using €' < ¢ instead of .

solution is found, thus the search slows down as soon as it finds a better solution. (After
an initial set of tests, I fixed ¢ = 0.02 and &’ = 0.01, which seemed to offer a good trade-off
between speed and quality.)

This way, the first phase can find the approximately best values for a and ~, but it
is possible that the algorithm jumps over the best values. This is corrected in the second
phase. Clearly, this approach works fine if the cost functions are smooth enough and have
a relatively simple structure. This issue will be investigated in more detail, first from a
theoretical point of view in Section 5.3, and then empirically in Section 5.6.

5.3 Monotonicity

Let P(a, 3,7) denote the partition for which aHp + 3Sp + vCp is minimal. (If there are
more than one such partitions, then one of them.)

The aim of this section is to investigate Hp(, 3, and Rp34) as a function of «, f3,
and 7. These are six separate tasks.

The intuitive expectation is that, by decreasing «, hardware becomes cheaper, and
hence the algorithm puts more nodes into hardware, thus Hp(3, should increase and
Rp(a,3,) should decrease. Similarly, the opposite effect is expected when 3 is decreased.
This would be a possible positive answer to the question raised at the end of the last
section: whether the cost functions have a simple structure. For changing v, there is no
such expectation.

Let us start with a positive result:

%)

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Theorem 10. Hp(, g, is monotonously decreasing in .

Proof. Let P = P(«, 3,7) and P’ = P(d/, 3,7), where o < . Now it will be shown that
Hp > Hp.
Since P is optimal with respect to («, 3,7),

OZHP + ﬁSP + ’}/OP S OéHp/ + 65}3/ + ’}/Op/.
Similarly, since P’ is optimal with respect to (o, 3,7),
O/Hp/ + ﬁSp/ + ’YCP/ S O/HP + 65}3 + ’}/Op.

Using the abbreviations A = Sp + vCp and B = (3Sp: + vCpr, these can also be written
as
OéHP+A§OéHP/+B, (51)

O/HP/ —+ B S O/HP —+ A (52)
Using (5.1) and (5.2),

ASB—FO((HP/—HP) S (A+Oé/(HP—HP/))+Oé(HP/—HP) :A—i-(Oél—Oé)(HP—HP/).

Therefore,
0 S (O/ - Oé)(HP — Hp/).

Since o/ — « < 0, this is only possible if Hp — Hp < 0. O

Unfortunately, in the other five cases, no monotonicity can be guaranteed. Here is a
proof for one of the negative results:

Theorem 11. Rp(,) is neither monotonously increasing nor monotonously decreasing
m Q.

Proof. Two examples will be shown. In each example, « is decreased, § and v remain
unchanged. In the first example, Rp(, 3,) decreases, in the second example, it increases.

Example 1. The graph consists of a single vertex v with s(v) = 1 and h(v) = 1. At the
beginning, & = 3 and = 2 (the value of v does not matter, since there are no edges). In
this case, the optimum is clearly to put v to software, yielding R = 1. Now « is decreased
to 1. The new optimum is obviously to put v to hardware, yielding R = 0.

Example 2. The graph consists of two vertices u and v, connected by edge e. The costs
are as follows:

96

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

First, « = 100, 8 = 10 and v = 1. Then the optimum is to put both nodes to software,
because this partition has total cost 20, whereas putting any node to hardware induces a
total cost of at least 100. This yields R = 2.

Now, « is decreased to 1. The software-only partition has still total cost 20; however,
putting u to hardware and v to software now only has total cost 13. The other two
partitions have much higher costs because in those cases, v is in hardware, inducing a total
cost of at least 100. Thus the optimum is to put v to hardware and v to software, yielding
R =3. O

In order to conserve space, the proof of the other four negative results is omitted.

As can be seen, the intuition proved only partially true, and the cost functions do not
necessarily offer the conjectured simple structure. However, as shown in Section 5.6, in
practical cases there is a simple structure.

5.4 Extreme values for o, 3, and v

In this section, the description of the MFMC-based algorithm (Algorithm 6 on page 55) is
continued, and the aim is to clarify the following question: which region of the oo —~ plane
should be scanned for meaningful solutions? The intuition is that after certain extreme
values of o or 7y, there is no point in continuing the search, because no new solution will
be found.

To formalize this, the following notations will be useful. Let P*H denote the trivial
partition in which all nodes are in hardware, and P*S the trivial partition in which all
nodes are in software. Moreover, the following simple lemma will be used:

Lemma 2. For any non-negative numbers x1, ...,z and positive numbers yi, ..., Yi,

k
. Xy i—1 Lq X
min — < 2141 < max —

1<i<k y; — Zle y; 1<isk y;

Proof.

k T
k koow, , maxi<i<k -~ | Y; k
Zi:l Ti Zi:l Yi Yi < ZZ:l (1Sj<ky; Yi (ﬂﬁz) Zi:l Yi T

% = % = % % iR,
D ic1 Vi D ic1 Vi > i1 Yi i Yio SERY

The other inequality can be proven in the same way. O

This lemma remains true if some of the y;s can be 0 (¢/0 is defined to be +o0 for ¢ > 0).
The only constraint is that V1 < i < k: x; > 0 or y; > 0 must hold. Accordingly, it will
be assumed in the following that Vo € V' : h(v) > 0 or s(v) > 0 holds (so that Lemma 2
can be used for these numbers). Of course, this is not a serious limitation in a practical
setting.

Now it is possible to formulate the first result which states that there is indeed no point
in scanning « values that are lower than a given extreme:

o7

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Theorem 12. If o < - ming,ey %, then the partition P*H 1is optimal with respect to «,

B, and y (regardless of the value of).

Proof. Since o < 3 - miney %, using Lemma 2 it follows that

VWW£AXCV: a<p-

Therefore,
VIAXCV: a-hX)<p-s(X)+7 ¢X,V\X).

Adding « - h(V'\ X) to both sides:
VIALXCV: a-h(V)<a-h(V\X)+0 -s(X)+7-cX,V\X).
Using the notation Y = V' \ X this can be rewritten as

VWV a-h(V)<a-h(Y)+8-s(V\Y)+v-¢Y,V\Y).
Here, the left-hand side is exactly the total cost of P*H, the right hand side is the total
cost of any other partition. O

Similarly, the next theorem shows that there is no point in scanning « values that are
greater than a given extreme:

Theorem 13. If o > (- max,cy ﬂ, then the partition P*S 1s optimal with respect to «,
h(v)

B, and vy (regardless of the value of).
s

Proof. Since o > 3 - max,cy TZ))’ using Lemma 2 it follows that

VWW£AXCV: a>pj-
Therefore,
VWW#XCV: a h(X)+v-c¢(X,V\X)>Fs(X).
Adding - s(V \ X) to both sides:
VW#XCV: a hMX)+8-s(V\NX)+7-c¢(X,V\X)>p3-s(V).

Here, the right-hand side is exactly the total cost of P*S, the left-hand side is the total
cost of any other partition. O

Finally, the next theorem shows that there is no point in scanning too high ~ values.
Unlike in the previous theorems, here it must be assumed that the graph is connected.
However, this is again no serious limitation when considering real communication graphs.

28

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Theorem 14. Suppose that G is connected, and let c,,;, denote the smallest edge cost.
If min (o - K(V), 8- s(V)) <7 Cmin, then either P*H or P*S is optimal with respect to c,
B, and 7.

Proof. Assume that neither of P*H and P*S is optimal. Then, since GG is connected, the
optimal partition P(«, 3,7) cuts at least one edge. Hence, its total cost is at least v - ¢,in-
On the other hand, according to the property that min(a-h(V), 5-s(V)) < v Cpin, €ither
P*H or P*S offers a smaller total cost than this. O

Putting these three theorems together, one can conclude that the region that should
be scanned is defined by the following inequalities:

a > ﬁ.%i\lflh(v) (5.3)
s(v)

a < ﬁ-rgleagcw (5.4)

7 = &-@ (5.5)

v < B-# (5.6)

Suppose that (3 is fixed. This region is bounded if ¢,,;, > 0 and h,,; > 0 hold.
Again, this can be assumed without imposing any serious limitations in the case of real
communication graphs. Then the region to be scanned looks like the one depicted in
Figure 5.1.

In order to see this, one only has to prove that the point in which the line v = « -
intersects the horizontal line v = (3 - % is indeed between the two vertical lines a =

. s(v) _
06 - min,ey o) and a = 3 - max,cy

h(V)

Cmin

s@)
h(v)

In the intersection point « - (=y=0" =7 Z((“i According to
(v

Lemma 2, this is indeed between ﬁ ming,ey o) and (- max,cy h((and so the intersection
point is really between the two vertical lines.

5.5 Determining lower bounds

As mentioned earlier, the MFMC-based algorithm can also incorporate the feature of deter-
mining lower bounds on the cost of the optimal solution of the given P3 problem instance.
This is a unique feature of this algorithm, that is offered by no other competing heuristic.
With the help of this feature, the MFMC-based algorithm can maintain an estimate of
how far the best solution it found so far is from the optimum. This is very advantageous
because it helps evaluate the performance of the algorithm. Moreover, if the lower bound
and the found best solution are not far from each other, this may indicate that there is
no point in continuing the search. For instance, if the cost values assigned to the nodes

29

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

a = [- min,ey % o

0= 5 musier 2

Figure 5.1: The region to be scanned

and edges of the graph are measured values with a precision of 5%, then there is no point
in continuing the search if the gap between the lower bound and the found best solution
is under 5% of the lower bound. This way, we can reduce the runtime of the algorithm
without any practical loss in the quality of the found solution.

Informally, the MFMC-based algorithm is able to determine the lower bounds because
every candidate partition that it evaluates is optimal for the P5 problem with some «, (3,
and ~ values. Hence, each evaluated candidate partition yields some information about
the costs of all partitions. This is formalized by the following theorem.

Theorem 15. Suppose that P is an optimal solution of the P5 problem with the weights
a, B, and 7. Let Q) be any solution of the P3 problem (i.e., a partition that satisfies the
bound Rg < Ry). Then

BSp +~vCp — max(f,7v)Ro

Hg > Hp + - (5.7)
Proof. Since P is optimal with respect to the weights «, 3, and ~, it follows that
aHp + 3Sp +vCp < aHg + 3Sg +vCq,
and hence 88p +1Cp — S0 — 1Cq
Hg > Hp + . (5.8)

(%

60

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Of course, this is also a lower bound on Hg, but the right-hand side cannot be computed
because Sg and Cg are not known. However, since () is a valid partition, it follows that

SQ + OQ = RQ < Ry
and therefore

BSq +7Cqo < max(f,7v)Sq + max(3,v)Cq = max(3,v)Rq < max(f,~)Ro
Substituting this into (5.8) proves the theorem. O

Note that the right-hand side of (5.7) contains only known numbers. Therefore, the
algorithm can compute a lower bound based on each evaluated candidate partition, and use
the best one of the lower bounds determined so far. Unfortunately, there is no guarantee
that the lower bound will not be far off the optimum. However, as shown in Chapter 6,
the gap between the found best partition and the lower bound is not big for practical
benchmarks.

5.6 Implementation and empirical results

5.6.1 Implementation

I implemented the polynomial-time algorithm for the P5 problem (Algorithm 1 on page 19)
and the MFMC-based algorithm (Algorithm 6 on page 55) using the minimum cut algo-
rithm of Goldberg and Tarjan [38, 25]. I had to modify the construction in the proof of
Theorem 6 (page 18), which is the basis of Algorithm 1, slightly because the used minimum
cut algorithm works on directed graphs.

Generally, in order to find the minimum cut in an undirected graph using an algorithm
for directed graphs,' every undirected edge has to be replaced with two directed edges
going in opposite directions. However, edges directed to the source or from the sink can be
removed, because this does not change the value of the maximum flow, and hence it does
not change the value of the minimum cut. In our case, this means that the edges in the
original graph are introduced in two copies in the new graph, in opposite directions, but in
the case of the additional edges (i.e., edges in E; and Ej, in the terminology of Theorem 6
on page 18), only one copy is needed, directed to vy, or from vy, respectively.

The algorithms have been implemented in C. The detailed tests and comparisons with
other algorithms are presented in Chapter 6. In the rest of this section, two aspects of
the empirical results are presented which do not affect the other heuristics: the speed of
the polynomial-time algorithm for the P5 problem (Algorithm 1 on page 19) on practical
problem instances and the smoothness of the cost functions.

!There are also algorithms for finding the minimum cut in an undirected graph, which are even faster
than the ones for directed graphs. However, what is needed here is a cut that separates two given vertices
(a so-called s — t-cut), and for this problem, no faster algorithms are known for the undirected case.

61

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

5.6.2 Experience with Algorithm 1

Since Algorithm 1 finds the optimal solution for the P5 problem, I only had to test its
speed on practical problem instances (and not the cost of the found solution). Recall from
Section 2.2 that it is an O(n?) algorithm, but this is only an asymptotic upper bound on
its running time.

For testing Algorithm 1, several random graphs of different size and with random costs
have been used. In order to reduce the number of test runs and the amount of test data
to process, I fixed the ratio of edges and vertices in the test graphs to 2, which means
that on average, each vertex has four neighbors. Previous experience with real-world task
graphs [6] has shown that this average is typical.

n Running time of Algorithm 1 [sec]
100 0.0007
1000 0.0198
3000 0.0666
5000 0.1264
7000 0.1965
10000 0.2896

Table 5.1: Running time of Algorithm 1

Table 5.1 shows measurement results concerning the running time of Algorithm 1 on
graphs of different size. As can be seen, the algorithm is extremely fast: it finds the
optimum in the case of a graph with 10000 vertices and 20000 edges in less than 0.3
seconds. Moreover, the practical running time of the algorithm seems to be roughly linear.

5.6.3 Smoothness

Another question that I addressed empirically is whether the two-dimensional search ap-
proach of Algorithm 6 is adequate. Recall from Section 5.2 that this search approach works
well if the cost functions have a simple and smooth structure. Recall also from Section 5.3
that it can be proven that Hp(,) is monotonously decreasing in «, but that the other
conjectured monotonicity results do not hold.

On the other hand, the empirical results have shown that the structure of these functions
is indeed smooth and simple, and they are ’almost monotonous.” A typical example can be
seen in Figure 5.2 showing the hardware cost of the optimal partition in the P5 problem
for different values of the hardware weight o and communication weight ~ (the software
weight (was fixed to 100 in this example).

Notice that Hp(,) is indeed monotonously decreasing in «, just as proven in Sec-
tion 5.3. In contrast, it is not monotonous in . However, it is almost monotonous in the
following sense: for small values of «, Hp(, 3) is monotonously increasing in v, whereas

62

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

HW cost

\—‘_\,"“—_\‘—‘w—»

"B‘
‘%w‘-lll I |
“ ‘—,,ﬂ‘,—_;”»"‘»

— ‘—‘ ‘-l
,—.a'»?-»""“""‘

Figure 5.2: Hardware cost of the optimal partition in the P5 problem as the function of
the weights o and ~

for big values of « it is monotonously decreasing. Another interesting observation is that
for small values of v, Hp(, s,y can be very precisely tuned by modifying o, whereas this
is not possible for large values of . This is not surprising, since for large values of v the
problem is dominated by the edge costs, and thus it is highly non-linear. It is obviously a
consequence of this fact, that the best («,) point found by the MFMC-based algorithm
typically has a relatively small v coordinate.

In some test cases I also ran a modified version of the MFMC-based algorithm in which
the two-dimensional search space is searched uniformly in small steps, without augmenting
da and dvy. The test results showed no improvement in the results; however, the speed of
the algorithm worsened significantly. This also justifies the search strategy of the MFMC-
based algorithm.

5.7 Extension possibilities

The MFMC-based algorithm essentially has two main components: (i) the polynomial-
time algorithm for the P5 problem (Algorithm 1 on page 19) is used to generate candidate
solutions; and (ii) these candidates are evaluated based on their merit concerning the P3
problem to choose the best. Accordingly, the MFMC-based algorithm can be extended in
two main ways:

e Extensions to the polynomial-time algorithm for the P5 problem (Algorithm 1 on
page 19). Algorithm 1 can handle any number of cost metrics assigned to soft-
ware/hardware side, provided their weighted sum should be minimized; for example

63

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

every vertex v; might have a software execution time st;, a software implementa-
tion effort se;, a hardware execution time ht;, a hardware chip area ha;, and each
edge e might be assigned a communication cost c(e). If our aim is to minimize
OéSTP + ﬂSEP + ")/HTP + 5HAP + 80}3 with ST'p7 SEP,HTP,HAP defined in the
obvious way, then a similar auxiliary graph can be built as in the construction of
Theorem 6 (page 18), but the new edge weights b(e) are as follows.

ec(e), ifeec E
ble) = ¢ yht; + dha;, if e = (v;,v,) € E
ast; + Bse;, if e = (v;,vp,) € Ey,

Lemma 1 (page 19) remains true for this graph, hence this extended problem can
be solved similarly as the original P5 problem. This way, the whole MFMC-based
algorithm can be easily extended to include more than three cost functions.

e Extensions to the evaluation of the candidate solutions. For instance, scheduling of
the nodes can also be incorporated in the MFMC-based algorithm. The subroutine of
Algorithm 1 returns with a possible solution candidate. One can use any scheduling
algorithm available in the literature to evaluate this candidate. The scheduling should
be inserted just after the call to Algorithm 1 in line 4 of Algorithm 6. Of course,
such an extension makes the algorithm more complicated and significantly slower.

64

Chapter 6

Comparison of the algorithms

This chapter aims at comparing the three presented heuristic algorithms:

e The GA, presented in Chapter 3
e The KL-type algorithm, presented in Chapter 4

e The MFMC-based algorithm, presented in Chapter 5

The main goal is to investigate under which circumstances which algorithm works best.
Such an understanding of the performance characteristics is of course vital for the practical
applicability of heuristic algorithms. However, the HSCD literature does not contain an
unbiased, systematic treatment of this important issue.

The comparison is performed in two stages: first Section 6.1 provides a more theoret-
ical comparison based on the analysis of the algorithms. Section 6.2 on the other hand
complements this with empirical experience on the practical performance of the algorithms.

6.1 Analytical comparison

In this section, the proposed algorithms are analyzed and compared based on those aspects
that can be deduced without empirical tests. Each of the next subsections details a different
aspect.

6.1.1 Initial partitions

The MFMC-based algorithm does not need an initial partition, the KL-type algorithm
starts from one initial partition, whereas the GA starts with a set of initial partitions. It
follows that the performance of the KL-type algorithm depends very much on its initial
partition, much more than the GA. In the case of the GA, the aim is not to create one
very good initial partition, but rather to generate many different partitions, from which
the genetic operations are later able to mix much better ones.

65

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

This is also the reason why I used two different methods to generate initial partitions
for the KL-type algorithm and the GA, respectively. The algorithm that is used to generate
the initial partition for the KL-type heuristic (Algorithm 5 on page 44), aims at finding a
valid partition, which is almost invalid, i.e., its Rp value is very near to the limit. This is
because typically, good partitions place as many nodes as possible into software in order to
decrease hardware costs; hence the best solutions typically lie near the limit. In contrast,
the algorithm that generates the random valid individuals for the initial population of the
GA (Algorithm 3 on page 26), does not aim at getting as near as possible to the real-time
constraint. This is simply not necessary because there are also many invalid individuals in
the population, so that the genetic operations will be able to generate individuals which
are near the limit.

On the other hand, the fact that the KL-type algorithm depends so heavily on its
initial partition, combined with the experience that it is a very fast algorithm, makes it
promising to use it as a post-optimization stage in combination with any other algorithm:
the resulting partition of the other algorithm can be used by the KL-type algorithm as
initial partition, so that it may further improve it.

6.1.2 Stopping

The stopping criterion of the KL-type algorithm and the MFMC-based algorithm is quite
clear: the KL-type algorithm ends when a pass fails to find a better solution, and the
MFMC-based algorithm ends when it finished searching the set of meaningful o, (3, v
values. In the first case, it does not make sense to go on since all subsequent passes would
yield the same result; in the second case, it is simply not possible to continue the algorithm.

However, in the case of the GA, the stopping criterion is much more arbitrary. Specifi-
cally, the GA is stopped when there has been no improvement recently. However, this does
not mean that the algorithm could not have run further. Actually, it can be proven that
under quite mild conditions genetic algorithms converge to the optimum [55]. That is, if
the algorithm runs infinitely long, it reaches the optimum with probability 1.

The other two algorithms do not possess this property because they only scan a well-
defined subset of the whole search space and the optimum is not guaranteed to be in that
subset. However, the KL-type algorithm can be extended to possess it by running it again
and again, every time with a new random initial partition.

However, it should be noted that even if the GA or the KL-type algorithm reaches
the optimum, it will not recognize this fact. This is in contrast with the MFMC-based
algorithm which always has—based on the lower bounds it produces—an estimate of how
far it is from the optimum.

Let us also consider the other extreme, in which we have very little time, and thus
cannot wait until the end of the algorithms. Fortunately, all three algorithms maintain a
best-so-far partition, so that all of them can be stopped prematurely, and yet they yield
a valid partition, the quality of which gets only better if more time is allowed. (Such
algorithms are often called anytime algorithms because they can be stopped at any time.)

66

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

6.1.3 Parallelization

What if an unlimited set of processors is available? Is it possible to significantly accelerate
the algorithms?

In the case of the GA, the answer is clearly yes. Most of the time the algorithm performs
recombinations and fitness computations. Since these can be done independently for the
individuals, the algorithm can be very well parallelized.

In the case of the MFMC-based algorithm, parallelization is also possible, but it requires
slight changes to the algorithm. Most of the time is spent in the calls to Algorithm 1, which
are basicly independent of each other, and can thus be done in parallel. The only problem is
the search strategy of the algorithm, which adjusts the increments da and dy dynamically,
based on the last result. Thus, the next point to consider depends on the last result, and
so there is some dependence between the calls to Algorithm 1. However, this is not a
real problem, because it is of course allowed to evaluate more («,~y) points. If really an
unlimited set of processors is available, then the easiest solution is to evaluate all ()
points of the grid defined by da and d~y (without ever incrementing do and dy). These pairs
can then be evaluated independently. If, on the other hand, the number of processors is
limited, then the region to be scanned should be divided into sub-regions of approximately
the same size, each sub-region should be mapped to one of the processors, and scanned
using the original search strategy.

In the case of the KL-type algorithm, parallelization is rather problematic.! It is inher-
ently a serial algorithm because every partition that the algorithm evaluates is computed
from the previous one. The only possibility for parallelization is offered by the gain recom-
putations, because these are independent of each other. As discussed in detail in Section 4.9
and Section 4.10, either all gains have to be recomputed after a move, or just the gain of
the neighbors of the lastly moved node. In the latter case, the algorithm can be hardly
accelerated, since typical communication graphs are sparse, and thus only a small number
of gain recomputations take place after a move. However, if the cost metrics or the gain
function is such that all gains have to be recomputed after each move, then the algorithm
can be accelerated by a factor of roughly n if a sufficient number of processors is available.

6.1.4 Stability

By stability, I mean the property of not ’forgetting’ already visited promising parts of the
search space and being able to return to them [96]. A typical example is the GA: since it
maintains a whole set of solutions at the same time, it can also evaluate different regions
of the search space simultaneously. Thus, it does not have to give up its position in one
part of the search space in order to evaluate another part. Rather, the population provides
a kind of 'memory’ in which the best positions of the search space can be remembered.

LOf course, even the KL algorithm can be parallelized by using multiple runs starting from different
initial partitions. That is, each processor runs its own KL, and at the end the overall best result is
taken. However, this is not an intrinsic property of the KL algorithm: every randomized heuristic can be
parallelized this way.

67

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

The same applies to the MFMC-based algorithm as well, because it systematically scans
its—limited—search space.

However, the KL-type algorithm does not possess this property. This is typical generally
for algorithms based on local search. Such algorithms are 'memoryless’: it is possible that
they follow a seemingly promising trace, lose their starting point meanwhile, and thus fail
to find the best solution for which another path should have been followed. The situation
is slightly better in the case of my KL-type algorithm than generally with local search
algorithms, because my algorithm maintains two partitions (P..., and Pj.g), thus it has
some very limited memory, but much less than the GA.

6.1.5 Extension possibilities

Although this aspect has already been mentioned in the description of every algorithm, I
would like to summarize which extensions are supported by which algorithm:

e Some nodes prescribed to be in software, some others prescribed to be in hardware:
all three algorithms can be easily extended.

e More than two cost functions: all three algorithms can be extended.

e Non-linear cost functions (this includes scheduling, hardware sharing etc.): all three
algorithms can be extended. However, such extensions typically make the algorithms
significantly slower.

e Multiway partitioning: the GA and the KL-type algorithm can be easily extended. In
the case of the MFMC-based algorithm, this is not straight-forward. The construction
of Theorem 6 (page 18) can be generalized for multiway partitioning as well, but the
resulting problem (minimum multiway cut) is N”P-hard. However, there are effective
approximation algorithms for this problem [63], which can be used instead of the
conventional minimum cut algorithm.

e More than one constraint (example: more than one use case of the system; a separate
real-time constraint is associated with each use case): all three algorithms can be
extended.

Moreover, each of the three algorithms can also be easily adapted to the P2 or P4
problems.

6.1.6 Tuning

The MFMC-based algorithm has hardly any parameters. The GA and the KL-type al-
gorithm on the other hand have many parameters with which their performance can be
tuned. This can be both an advantage and a disadvantage. It is advantageous because the
algorithm can be fine-tuned for each problem instance to yield the best result. However,
this tuning process is very tedious and time-consuming, and thus it is questionable whether
it can be expected from the designer that he or she should always perform it.

68

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

6.1.7 Generating candidate partitions

Each of the three algorithms works by evaluating a number of partitions and choosing the
best one from them.? They differ only in the way they generate the candidate partitions
to consider. The time spent for this can be regarded as the overhead of the algorithms.
This overhead has to be paid for the intelligent choice of candidate partitions.

In the case of the GA, this overhead is incorporated by the genetic operations, from
which recombination is the most powerful and also the most time-consuming. But recom-
bination is still very fast, because it can be done in O(n) time. It is a problem-independent
operation that necessarily generates many low-quality individuals as well.

The mechanism to generate the next partition is more problem-specific in the case
of the KL-type algorithm. Thus it can be assumed that it will less often generate low-
quality partitions. In the case of the MFMC-based algorithm, this mechanism is much
more sophisticated than in the other two cases, and it is also more time-consuming. Thus
the MFMC-based algorithm evaluates typically less partitions in a given time frame than
the other two algorithms.

6.1.8 Relative importance of the cost metrics

Both in the case of the GA and the KL-type algorithm it was an important decision how
the hardware cost of a partition and the measure of its exceeding of R, should be combined
into a single metric. This meant in particular that the relative importance of these two
factors had to be determined. The best solution was in both cases to allow the exceeding
of Ry but to penalize it. However, the penalty function in the two cases was quite different.
The reason of the difference is similar to the one discussed in Section 6.1.1. That is, the goal
of the penalty function in the case of the KL-type algorithm is to not allow the algorithm
to get far from the valid region of the search space, because it would be hard to get back,
and thus computational power would be wasted in an unpromising part of the search space.
Therefore a steep, highly non-linear penalty function is used. In the case of the GA, it is
not a problem if some individuals are far from the valid region because they will simply
not survive.

In the case of the MFMC-based algorithm, the whole question did not appear. In this
case, non-valid partitions are simply discarded, even if they contain 'valuable patterns.’
The algorithm simply does not have a mechanism for transferring such patterns to later
solutions.

6.1.9 Determinism

The GA is definitely a random algorithm. The KL-type algorithm is also randomized if
it starts from a random partition. The MFMC-based algorithm on the other hand is a

2While this may sound trivial, it is not necessarily true for all possible partitioning algorithms. For
instance an algorithm based on the branch-and-bound paradigm would spend most of its time working
with partial solutions.

69

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

deterministic algorithm.

Deterministic algorithms have the advantage of reproducible results. In contrast, ran-
domized algorithms have the advantage that they can be run several times, and the best
result can be taken. This way, if sufficient time is available, the result of random algorithms
can be improved.

6.2 Empirical comparison

In this section, the proposed heuristics are compared based on empirical experience gained
from running them on numerous benchmark problems.

6.2.1 The benchmarks
In order to have a representative mix of benchmark problems, I used three different sources:

e The MiBench benchmark suite [42]
e The own designs of our research group
e Large random graphs

The characteristics of the test cases are summarized in Table 6.1. n and m denote the
number of nodes and edges, respectively, in the communication graph. Size denotes the
length of the description of the graph. This is necessary because the performance of an
algorithm is usually evaluated as a function of the length of the input. I calculated the size
as 2n+3m because each node is assigned two values—its hardware and software costs—and
each edge is assigned three numbers—the IDs of its endpoints and its communication cost.

It has to be noted that most previous algorithms in the literature were tested on graphs
with only some dozens of vertices, like the crc32, patricia, or dijkstra benchmarks. The
next five benchmarks (segment, fuzzy, rc6, mars, and ray) are significantly larger, and
they are typical of current industrial problems. However, the systems to be designed
become more and more complex, and therefore I also included some really large random
benchmarks as well, which are above today’s typical problem sizes. Note also that the
graphs corresponding to the real designs are sparse, i.e., they have few edges. The densest
is the dijkstra example with m/n = 2.73, and the sparsest is the rc6 benchmark with
m/n = 1.39. Therefore, the random graphs were also generated with similar m/n ratios.

In order to illustrate the non-trivial nature of the partitioning problem, Figure 6.1
depicts the communication graph of the segment benchmark. The plot was created with
the automatic graph-drawing tool dot [36]. For the sake of visibility, the cost values are
not shown.

In the case of our own designs, all cost values were available. However, in the case of
the benchmarks from MiBench only a software implementation was available,® thus the

3In these cases, the communication graphs were generated from the available C programs with a tool
developed by our research group.

70

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Name n m Size Description

crc32 25 34 152 32-bit cyclic redundancy check. From
the Telecommunications category of
MiBench.
patricia 21 50 192 Routine to insert values into Patricia
tries, which are used to store routing
tables. From the Network category of
MiBench.
dijkstra 26 71 265 Computes shortest paths in a graph.
From the Network category of
MiBench.
segment 150 333 1299 Image segmentation algorithm in a
medical application.
fuzzy 261 422 1788 Clustering algorithm based on fuzzy
logic.
rco 329 448 2002 RC6 cryptographic algorithm.
mars 417 600 2634 MARS cipher.
ray 495 908 3714 Ray-tracing algorithm for volume visu-
alization.
randoml 1000 1000 5000 Random graph.
random2 1000 2000 8000 Random graph.
random3 1000 3000 11000 Random graph.
random4 1500 1500 7500 Random graph.
random5 1500 3000 12000 Random graph.
random6 1500 4500 16500 Random graph.
random7 2000 2000 10000 Random graph.
random8 2000 4000 16000 Random graph.
random9 2000 6000 22000 Random graph.

Table 6.1: Summary of the used benchmarks

software costs could be determined using profiling, but the other cost values were not
available. And of course in the case of the random graphs, no cost values were available at
all.

Therefore, I made use of the following methodology to generate the missing cost values:

e Where software costs were not available, they were generated as uniform random
numbers from the interval [1,100].

e Where hardware costs were not available, they were generated as random numbers
from a normal distribution with expected value « - s; and standard deviation \- k- s;,
where s; is the software cost of the given node. That is, there is a correlation, as

71

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Figure 6.1: The communication graph of the segment benchmark

defined by the value of A\, between a node’s hardware and software costs. (When
A =0, then h; = ks; will hold for each node. But when A is higher, the h; values can
deviate from the respective ks; values, and thus the correlation becomes lower.) This
corresponds to the fact that more complicated components tend to have both higher
software and higher hardware costs. I tested two different values for A: 0.1 (high
correlation) and 0.6 (low correlation). The value of x only corresponds to the choice
of units for software and hardware costs, and thus it has no algorithmic implications.

e Where communication costs were not available, they were generated as uniform ran-
dom numbers from the interval [0, 2 - 1 - S;az], Where .4, is the highest software
cost. Thus, communication costs have an expected value of 1 - $,,4., and p is the
so-called communication-to-computation ratio (CCR). I tested two different values
for p: 1 (computation-intensive case) and 10 (communication-intensive case).

e Finally, the limit Ry can be arbitrarily defined for every benchmark. Note that Ry = 0
means that all components have to be mapped to hardware, whereas Ry = > s;
means that all components can be mapped to software. All sensible values of Ry lie
between these two extremes. I tested two types of values for Ry: one generated as
a uniform random number from the interval [0 , $ 3 s;| (strict real-time constraint)
and one taken randomly from [> s; , Y s;] (loose real-time constraint).

72

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

6.2.2 Optimal solutions

It would make the test results more informative if the results of the heuristics could be
compared to the optimal solution of the problems. However, since P3 is an N'P-hard
problem, it is not likely that the optimum of large problem instances can be found within
reasonable time.

I used an exact algorithm based on integer linear programming (ILP), which was pre-
sented in [6], to try to solve at least the smaller problems optimally. As expected, the
ILP-based algorithm could solve the three smallest benchmark problems quite quickly, and
in a couple of hours, it could even solve some of the bigger ones as well. It could not solve
the ray problem within one day, and also some configurations of the mars problem proved to
be too hard to solve optimally in this period of time. Of course, none of the large random
instances could be solved optimally within a day of computation time.

To sum up: for the benchmarks up to the rcé problem, the results of the heuristics can
be compared to the optimum, but for bigger problems the optimum is not known. In the
latter case, the best alternative is to compare the results to the lower bound generated by
the MFMC-based algorithm.

6.2.3 Test configuration

All algorithms were implemented in C and compiled and linked using gcc v3.2. The tests
were performed on a PC with a 400MHz PII Celeron processor, 128 kB cache, and 128
MB main memory. The operating system was SuSE Linux 8.1 with Kernel 2.4.19-4GB.
For time-related measurements, GNU time v1.7 was used.

6.2.4 Results

Cost of the found solution

In the first set of experiments, I compared the cost of the solution found by the three
algorithms. Note that in the case of the GA and the KL-type algorithm, the best configu-
ration was used, as described in Section 3.3 and Section 4.11, respectively. The results are
summarized in Figures 6.2-6.5. I included four plots because I tested two different values
for Ry and two different values for the CCR. T also tested two different values for A but I
found that the change of A had no significant impact on the relative performance of the
algorithms.

Note that the y axis of the figures represents the cost of the found solution, therefore
lower values are better. Based on the results, the following observations can be made:

e For relatively small graphs, all three heuristics yield equal or very similar results,
regardless of the parameter settings. However, for bigger graphs, there are clear
differences between the algorithms, and these are dependent on the parameters (CCR
and Ry).

73

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

100000

90000

80000

70000

60000

50000

Cost

40000

30000

20000

10000

O 5000 10000 15000 20000
Size

Figure 6.2: Cost of the solution found by the three algorithms. CCR=low, Ry=low

70000 T T T T

60000

50000

40000

Cost

30000

20000

10000

o 5000 10000 15000 20000
Size

Figure 6.3: Cost of the solution found by the three algorithms. CCR=low, Ry=high

e In the low-CCR cases (Figures 6.2 and 6.3), the MFMC-based algorithm clearly offers
the best results. Its advantage is bigger in the Ry=high case (Figure 6.3). Here, the
difference was about 19% for the largest graphs. The performance of the GA and the

74

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

120000

100000

80000

60000

Cost

40000

20000

O 5000 10000 15000 20000
Size

Figure 6.4: Cost of the solution found by the three algorithms. CCR=high, Ry=low

120000 T

100000

80000

Cost

60000

40000

20000

O” 5000 10000 15000 20000
Size

Figure 6.5: Cost of the solution found by the three algorithms. CCR=high, Ry=high

KL-type algorithm is similar.

e In the high-CCR cases (Figures 6.4 and 6.5), the difference between the algorithms
is smaller. This is probably due to the easier nature of these problem instances

75

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

(note that with growing CCR, the partitioning problem becomes essentially a simple
minimum cut problem with polynomial complexity). In particular, in the CCR=high,
Ro=high case (Figure 6.5), there is no clear winner. In the CCR=high, Ry=low case
(Figure 6.4), however, clearly the GA performed best. Its result was about 6% better
than the ones of the other two algorithms for the largest graphs. The other two
algorithms performed very similarly.

Running time

The settings for CCR and R, did not significantly impact the running time of the al-
gorithms, hence only one plot is shown (Figure 6.6). The following observations can be
made:

4000

3500

3000

2500

2000

Time [sec]

1500

1000

500

Figure 6.6: Running time of the three algorithms

e Again, for relatively small graphs, the speed of the algorithms is comparable. How-
ever, for bigger graphs, KL and the MFMC-based algorithm are much faster than
GA, and the difference keeps growing with bigger graphs. For the biggest graphs,
GA is about 15 times slower than the MFMC-based algorithm.

e The running time of GA oscillates wildly. In some cases, it took over an hour for the
GA to terminate. However, even the shortest GA runs were much slower than the
other two algorithms.

e The fastest of the three is clearly the KL-type algorithm. On average, it was about
3 times faster than the MFMC-based algorithm.

76

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

e The speed of both the KL-type algorithm and the MFMC-based algorithm is clearly
acceptable because both could solve even the biggest problems in a couple of minutes,
and the smaller ones in a couple of seconds. The higher running time of the GA
might cause problems in some environments. Notice though that for the smaller
benchmarks, the GA, too, was quite fast. It is safe to assume that in a couple of
years, when it will be necessary to partition graphs of several thousand nodes, the
computers on which the heuristics are run will also be significantly faster, so that the
GA is also fast enough for most applications.

Quality/speed trade-off

800000 ————— ————— ———

700000 [+ T MEMG] e 4

600000 - *
500000 - *
400000 [~ *

300000 - *

Cumulated cost

200000 - *

100000 - *

0 . | | . L
100 1000 10000 100000
Cumulated time

Figure 6.7: Cost/speed trade-off of the three algorithms. CCR=low, Ry=low

The presented measurement results concerning result quality and running time can be
combined into more informative diagrams. Figures 6.7-6.10 show the cost/speed tradeoff
of the three algorithms. Each algorithm is represented by a point in the cost—speed plane.
The coordinates of this point were calculated by adding the running time of all the runs,
and the cost of the result of all the runs, respectively, of the given algorithm. Note that
on both axes smaller values are better. Note also the logarithmic scale on the time’ axis.

Again, four plots are presented according to the settings for CCR and Ry. These dia-
grams clearly show the characteristics of the different algorithms, which can be summarized
as follows:

e The KL-type algorithm is always the fastest, and as such, it is in all cases a Pareto-
optimal choice. (This means that none of the other algorithms dominate it, i.e.,
none of the other algorithms offers both better speed and better result cost.) Con-
cerning the cost of the resulting solution, it is usually not the best. However, in

7

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

500000 —————y —————

450000 - -
A00000 [z 2z zzrrrrrsiderm m s s .

350000 - |
300000 f e |
250000 - |
200000 - |

Cumulated cost

150000 *
100000 - *

T
|

50000

0 . R Ll . L
100 1000 10000 100000
Cumulated time

Figure 6.8: Cost/speed trade-off of the three algorithms. CCR=low, Ry=high

900000

T
T

MFMC

800000

700000 - *

600000 - *

500000 - *

T
|

400000

Cumulated cost

300000 - *

T
|

200000

T
|

100000

0 . | | . L
100 1000 10000 100000
Cumulated time

Figure 6.9: Cost/speed trade-off of the three algorithms. CCR=high, Ry=low

the CCR=high, Ry=high case (Figure 6.10), where all of the three algorithms offer
approximately the same result quality, the KL-type algorithm is the rational choice
because of its low running-time.

e The MFMC-based algorithm offers the best result quality in the low-CCR cases
(Figures 6.7 and 6.8), and therefore it is a Pareto-optimal choice in these cases. Note
that it is also Pareto-optimal in the CCR=high, Ry=low case (Figure 6.9) because it
offers better result quality than the KL-type algorithm (although it is slower) and it
offers lower running time than the GA (although its result quality is worse). In the

78

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

900000 —————y —————

800000

700000

600000 - *

500000 - *

400000 [~ *

Cumulated cost

300000 - *

200000 - *

T
|

100000

L
1

0 L I
100 1000

10000 100000
Cumulated time

Figure 6.10: Cost/speed trade-off of the three algorithms. CCR=high, Ry=high

CCR=high, Ry=high case (Figure 6.10), it is dominated by the KL-type algorithm
because of the difference in running time.

e In the low-CCR cases (Figures 6.7 and 6.8) the GA is dominated by the MFMC-based
algorithm. In the CCR=high, Ro=high case (Figure 6.10), it is dominated by both
the KL-type and the MFMC-based algorithm. However, in the CCR=high, Ry=low
case (Figure 6.9) the GA offers the best result quality, and thus it is Pareto-optimal.

It should be noted that the presented results on the effect of CCR and constraint tight-
ness on the relative performance of the algorithms is unprecedented in the HSCD literature.
Most papers on hardware/software partitioning try to convince the reader that a given al-
gorithm is better than all other approaches. However, my results show a more sophisticated
picture: depending on some key parameters of the problem as well as the relative impor-
tance of algorithm speed vs. result quality, different algorithms should be chosen. This
is vital information for the practitioners of hardware/software partitioning. Also novel is
the kind of diagrams used in Figures 6.7-6.10 that enable the compact visualization of the
relative performance of the algorithms.

Lower bound

I also investigated the gap between the result of the MEMC-based algorithm and the lower
bound that it produces. Again, the results are shown in four diagrams (Figures 6.11-6.14).
The following can be observed:

e For small graphs, the difference between the result found by the algorithm and the
lower bound is very small. This is true for all four configurations. This proves both
the high quality of the found solution and that of the lower bound.

79

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

100000 T T T T
90000 |- [MFMC --<>-- &]

80000

70000

60000

50000

Cost

40000

30000

20000

10000 [

0 5000 10000 15000 20000
Size

Figure 6.11: Lower bound vs. result of MEFMC-based algorithm. CCR=low, Ry=low

50000 . T T T
/
45000 | LMEMC --<>-- e

40000 | T .

35000 & & -
30000 -

25000

Cost

20000

15000

10000

5000

0 5000 10000 15000 20000
Size

Figure 6.12: Lower bound vs. result of MFMC-based algorithm. CCR=low, Ry=high

e With bigger graphs, the gap clearly grows. This is not surprising since the algorithm
is only a heuristic for a tough problem.

e The speed by which the gap grows is quite different between the four configurations.

80

ZOLTAN ADAM MANN

PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Cost

120000 T T
MFMC --<>--
100000

80000

60000

40000

20000

5000

10000 15000
Size

20000

Figure 6.13: Lower bound vs. result of MEFMC-based algorithm.

CCR=high, Ry=low
120000 . . : .
MEMC --<>—-
100000 | %]
80000 ¢ L
AN &
- & Vo
pS &
40000 - 2 g
20000 |-
0 %
0 5000 10000 15000
Size

20000

Figure 6.14: Lower bound vs. result of MFMC-based algorithm. CCR=high, Ry=high

In the Ro=low cases (Figures 6.11 and 6.13) the gap grows quite slowly. In particular,
in the CCR=low, Ry=low case (Figure 6.11), the gap is only about 12% even for the
biggest graph. On the other hand, the gap grows quite rapidly in the Ry=high cases

81

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

(Figures 6.12 and 6.14). In particular, in the CCR=high, Ry=high case (Figure 6.14),
the gap is about 72% for the biggest graph.

It would be very interesting to know if this big gap is due to poor result quality or poor
lower bounds. In other words: it would be interesting to know where the optimum lies.
However, with the techniques currently available, it is not possible to answer this question
for those graphs for which it would be interesting.

7000 T T T
Bound ——
MFMC -->¢--
6000 - OPT ---&>--
5000
4000
@
o
O
3000
2000 -
1000
0 i :
0 500 1000 1500 2000

Size

Figure 6.15: Lower bound vs. result of MFMC-based algorithm vs. the optimum

For the smaller graphs, I compared the lower bound and the result of the algorithms
also with the optimum. The results are shown in Figure 6.15. Only one diagram is given
because the curves are similar for all four configurations. The following can be observed:

e For the three smallest benchmarks all three algorithms find the optimum, and the
lower bound also equals the optimum.

e For the three bigger benchmarks for which the exact algorithm can still produce
results in acceptable time, the gap between both the result of the algorithm and the
optimum and between the optimum and the lower bound grows. Both gaps grow
very slowly, but the gap between the optimum and the lower bound grows a little
faster. Whether this also holds for bigger graphs is not known.

82

Chapter 7

Applications

This chapter describes in which practical settings the presented algorithms have already
been applied.

The results of the first thesis (the complexity results) found mainly indirect applications:
the polynomial-time exact algorithm of Section 2.2 became the basis for the MFMC-based
heuristic algorithm presented in Chapter 5; the hardness results helped to better under-
stand the problem and lead my attention to the presented heuristics.

My heuristic partitioning algorithms have been applied in the following contexts:

e In an exact partitioning algorithm based on branch-and-bound [13]. That algorithm,
which T will refer to as BB, is able to optimally solve partitioning problems of several
hundred nodes in reasonable time. It also significantly outperforms the similar ILP-
based algorithm. In BB, my genetic algorithm and the MFMC-based algorithm have
been applied as pre-optimization heuristics: they generate initial solutions and thus
initial upper bounds for the branch-and-bound algorithm. As demonstrated in [13],
both of these algorithms are very useful for decreasing the running time of the BB
algorithm without sacrificing optimality.

Moreover, the polynomial-time algorithm for the P5 problem also has an important
role in the BB algorithm: it is used to determine whether a given partial solution can
be extended to a valid complete solution with lower cost than the best one found so
far. Thus, this algorithm helps in cutting off unpromising parts of the search space
and so improving the performance of the BB algorithm.

e In a project funded by Akita Industrial Development Center (Japan), our research
group participated in the development of some medical applications. Our task
was to create efficient implementations for several neural algorithms using hard-
ware/software co-design. The neural algorithms included Kohonen’s self-organizing
map, an image segmentation algorithm, and a clustering algorithm based on fuzzy
logic. The most important step in the implementation of these algorithms was to
find a good trade-off between the conflicting requirements on chip size, cost, and per-
formance. In the first phase of the project, this was done manually, but as later the
presented partitioning algorithms became ready, this work was substantially eased [8].

83

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

e In the EasyComp project, funded by the European Union, our research group par-
ticipated in the development of new component-based system design methodologies.
In particular, we developed a component-based process for hardware/software co-
design [9]. The main idea of this methodology is to compose complex systems out of
abstract building blocks in an intuitive way using a graphical tool. In order to cope
with design complexity, implementation-specific details of the components are hidden
from the designer. In particular, the components may have more than one implemen-
tation, for instance a hardware implementation and a software implementation; our
tool shields the designer from such low-level issues. This means in particular, that
partitioning decisions have to be made automatically. This is where the heuristic
partitioning algorithms presented in this work are used [11].

As can be seen from the above, my partitioning algorithms have proven to be useful
in practical applications: they made our work in other projects significantly easier, and I
hope that in future they will also help others design more powerful and more cost-effective
electronic systems.

84

Acknowledgments

I am grateful to my supervisor Péter Arat6é and my colleague Andréas Orban for supporting
my work. Furthermore, I would like to thank Viktor Farkas, Sindor Juhész, Tibor Kandér,
David Papp, Andras Recski, and Aron Sisak for their valuable help.

For financial support, I would like to thank the following organizations: Hungarian
National Science Fund (OTKA grants T030178, T043329, T042559), European Union (IST
1999-14191), Akita Industrial Development Center, Timber Hill LLC.

85

Appendix A

Notations

0

(*)-property

c(e), ¢

Cp

CCR

AH(v)
AR(v)

Ep

exc(P)
FIFO

FM

The empty set

When moving a node, only its own gain value and the gain of its neighbors
can change, all other gain values remain unchanged.

The weight of the hardware cost in Tp
The weight of the software cost in Tp
Communication cost of edge e or edge (v;, v;)

The communication cost of partition P, i.e., the sum of the communication
costs of the edges in Ep.

Communication-to-computation ratio

Domain of function f

The increment of «, used in the MFMC-based algorithm

The increment of ~y, used in the MFMC-based algorithm

The amount by which moving v to the other context increases H
The amount by which moving v to the other context increases R

Given a partition P, Ep is the set of edges that connect vertices in different
parts of P.

The percentage by which Rp exceeds the constraint, i.e., Rp/Ry

The FIFO tie-breaking strategy means that, from the set of nodes with the
highest gain, the one that was the first to enter this set is selected.

Fiduccia—Mattheyses

86

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

G=(V,E)
GA

HSCD
ILP
KL
LIFO

MFMC

RTL

A graph with vertex set V and edge set E

Genetic algorithm

The basis for choosing the next node to move in the KL-type algorithm
The weight of the communication cost in 7p

Hardware cost of node v;

The hardware cost of partition P, i.e., the sum of the hardware costs of the
vertices that are in hardware.

Hardware/software co-design
Integer linear programming
Kernighan-Lin

The LIFO tie-breaking strategy means that, from the set of nodes with the
highest gain, the one that was the last to enter this set is selected.

The number of edges in the graph

Maximum flow, minimum cut

The number of nodes in the graph

Size of the population in the GA

The penalty function used in the KL-type algorithm

A hardware/software partition P; Vj is the set of nodes in hardware, Vs is
the set of nodes in software

The optimal partition in the P5 problem with respect to the weights «, 3,
and v

During the course of the KL-type algorithm, P, stores the partition that
has been the best so far.

During the course of the KL-type algorithm, P,,,,. stores the current parti-
tion.

The set of real numbers
The set of positive real numbers

The n-dimensional real space

87

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

Ry
Ry
Rp

s(v;), s

Sp

s — t-cut

A real-time constraint, expressed as an upper bound on Rp
Range of function f

Shortcut for Sp + Cp. This is the running time of the system with respect
to partition P if software costs represent running time and communica-
tion costs represent time penalty of communication between hardware and
software.

Software cost of node v;

The software cost of partition P, i.e., the sum of the software costs of the
vertices that are in software.

A cut of the graph that separates two given vertices (s and)
The total cost of partition P, defined as Tp = aHp + 55p + 7Cp.
The ith node of the graph

The set of nodes that are mapped to hardware

The set of nodes that are mapped to software

88

Appendix B

Basics of complexity theory

This chapter contains a brief introduction to the basic notions of complexity theory that
are used in this dissertation. More details can be found, e.g., in [74].

B.1 Asymptotic growth rates

e f(n) =0(g(n)) means that f(n) is at most order g(n), that is, f(n) < a + bg(n) for
all n > 0 and some non-negative constants a and b.

) = O(g(n)) means that f(n) is—apart from logarithmic factors—at most order
(n), that is, f(n) = O(g(n)log"n) for some non-negative constant k.

B.2 P and NP

An algorithm solves a problem in polynomial time if there is a polynomial g such that the
algorithm can solve every instance of the given problem in at most g(d) steps, where d is
the length of the description of the given problem instance.

Let us now concentrate on decision problems. A decision problem has yes-instances,
for which the output is ’yes,” and no-instances, for which the output is 'no.’

P denotes the set of decision problems that can be solved in polynomial time. These
are the efficiently solvable problems. Unfortunately, there are many problems for which it
is not known whether or not they are in P.

NP denotes the set of decision problems for which the positive answer can be checked
in polynomial time using some appropriate polynomial-size extra information (also called
proof or witness). For instance, the problem whether a graph has a Hamiltonian cycle
is in NP, because, if the answer is positive, then the Hamiltonian cycle itself is a good

89

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

proof for it. Indeed, a Hamiltonian cycle can be compactly represented, for example as a
sequence of nodes, and it can be quickly verified that the given sequence of nodes is really
a Hamiltonian cycle. Most of the naturally arising decision problems are easily shown to
be in N'P.

It is obvious that P C NP but it is not known whether P = NP or P C NP. If
P = NP were true, this would mean that virtually all naturally arising problems could be
solved in polynomial time. This is unlikely and therefore it is conjectured that P C NP,
which means that there are hard problems in NP that cannot be solved in polynomial
time.

Candidates for this are the N"P-complete problems because they are the hardest prob-
lems in N'P. In order to define N"P-completeness, first the notion of Karp-reduction has
to be clarified. Let P, and P, be two decision problems. A Karp-reduction of P, to P,
is a polynomially computable function £ such that for each problem instance x of P; the
following holds: x is a yes-instance of P; if and only if k(x) is a yes-instance of P,. This
means that, if we can solve P,, then we can also solve P, with some little extra work: we
calculate the function k& for the given input, and then ask the ’oracle’ for P,. This is why
it is called a reduction: in order to solve P, it is essentially sufficient to solve P.

If there exists a Karp-reduction of P; to P, then we say that P, can be reduced to Ps.
An easy consequence is that, if P, € P and P; can be reduced to P,, then P, € P.

Now we can define N'P-completeness. A problem is NP-complete if it is in NP and
every problem in AN/P can be reduced to it.

There are many problems that are proven to be NP-complete. No polynomial-time
algorithm is known for any of these problems; in fact, if any of these problems were in P,
then P = NP would follow. Therefore it is conjectured that there is no polynomial-time
algorithm for A'P-complete problems.

A problem is said to be N'P-hard if all problems in N"P can be reduced to it. (That is, a
problem is N"P-complete if it is in /P and it is A'P-hard.) The notion of Karp-reduction
can also be defined for optimization problems instead of decision problems. That is, it
makes sense to say that a decision problem can be reduced to an optimization problem.
This way, NP-hardness can also be defined for optimization problems, and again, the
P C NP conjecture implies that there are no polynomial-time algorithms for A/P-hard
optimization problems.

In order to prove that a given problem is AN/P-hard, it is not necessary to show that all
problems in NP can be reduced to it. It is sufficient to show that one A/P-hard problem
can be reduced to it.

B.3 Pseudo-polynomiality and strong N P-hardness
In many problems, there are some numbers, and the problem is difficult only because these
numbers can be exponentially high with respect to the length of the description of the

input. For instance, the KNAPSACK problem is difficult because the numbers in it can be
exponentially high. There are algorithms for the KNAPSACK problem that are polynomial

90

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

with respect to these numbers. Such an algorithm is called pseudo-polynomial. In general,
such algorithms have an exponential worst-case complexity (with respect to the length of
the description of the input). However, in many practical cases, the numbers are not very
high. If the numbers can be bound with a polynomial of the length of the description of
the input, then such algorithms become polynomial.

On the other hand, there are problems that are structurally difficult, without any
exponentially high numbers. An example is the optimization version of the MINIMUM
BISECTION problem, in which there are no numbers at all (the aim is here to cut the graph
into two parts of equal size with a minimum number of cut edges). Another example is the
weighted version of the same problem (the edges have weights, and the aim is to minimize
the sum of the weights of the cut edges): here, there are numbers in the problem, but the
problem is hard even if the numbers are small.

A problem is N'P-hard in the strong sense if it is N"P-hard even if the numbers in it
are bound by a polynomial of the length of the description of the problem.

The P C NP conjecture implies that there are even no pseudo-polynomial algorithms
for problems that are A/P-hard in the strong sense.

91

Appendix C

Problem definitions

C.1 Variants of the hardware/software partitioning prob-
lem

P1 Given the graph G with the cost functions h, s, and ¢, and Ry > 0, Hy > 0, decide
whether there is a hardware /software partition P with Rp < Ry and Hp < H,.

P2 Given the graph G with the cost functions h, s, and ¢, and Hy > 0, find a hard-
ware/software partition P with Hp < H, that minimizes Rp among all such parti-
tions.

P3 Given the graph G with the cost functions h, s, and ¢, and Ry > 0, find a hard-
ware/software partition P with Rp < R, that minimizes Hp among all such parti-
tions.

P4 Given the graph G with the cost functions h, s, and ¢, and Sy > 0, Hy > 0, such that
there are hardware/software partitions with Sp < Sy and Hp < Hy, find a partition
P with Sp < .5y and Hp < H, that minimizes Cp among all such partitions.

P5 Given the graph G with the cost functions h, s, and ¢, and the constants «, 3,y > 0,
find a hardware/software partition P with minimum 7.

C.2 Other problems

C.2.1 The KNAPSACK problem

There are n objects, each one has a weight w; and a price p;. There is a knapsack with a
given capacity (i.e., limit on the weight that can be carried in it) W.

In the optimization version of the problem, the aim is to pick some objects so that they
fit into the knapsack and their total price is maximal. Formally, the aim is to find a subset
X of objects, so that >, w; < W and), p; is maximal.

92

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

In the decision version of the problem, a minimum total price K is also given. The aim
is to decide whether some objects can be picked so that they fit into the knapsack and
their total price is at least K. Formally, the aim is to decide whether there exists a subset
X of objects, so that >,y w; <W and) .. p; > K.

C.2.2 The MINIMUM BISECTION problem

We are given a graph G = (V| F) with n vertices, where n is even, and m edges. A bisection
is a bipartition of the graph into two parts with the same number of vertices. The cost of
a bisection is measured by the number of edges that connect vertices in different parts of
the bipartition (i.e., the number of cut edges).

In the optimization version of the problem, the aim is to find a bisection with minimum
cost, i.e., with minimum number of cut edges.

In the decision version of the problem, a limit K is also given (KX < m). The aim is to
decide whether there is a bisection with at most K cut edges.

93

Bibliography

[1]

2]

3]

4]

[5]

[6]

[7]

8]

19]

[10]

T. F. Abdelzaher and K. G. Shin. Period-based load partitioning and assignment for
large real-time applications. IEEE Transactions on Computers, 49(1):81-87, 2000.

J. K. Adams and D. E. Thomas. Multiple-process behavioral synthesis for mixed
hardware/software systems. In Proceedings of the IEEE/ACM 8th International Sym-
posium on System Synthesis, 1995.

B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experi-
mental designs and local search. Operations Research, in press.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, 1993.

C. J. Alpert and A. B. Kahng. Recent developments in netlist partitioning: A survey.
VLSI Journal, 19(1-2):1-81, 1995.

P. Araté, S. Juhész, Z. A. Mann, A. Orban, and D. Papp. Hardware/software parti-
tioning in embedded system design. In Proceedings of the IEEE International Sympo-
stum on Intelligent Signal Processing, 2003.

P. Arat6, Z. A. Mann, and A. Orban. Genetic scheduling algorithm for high- level
synthesis. In Proceedings of the IEEE 6th International Conference on Intelligent
Engineering Systems, 2002.

P. Arat6, Z. A. Mann, and A. Orban. Hardware-software co-design for Kohonen’s
self-organizing map. In Proceedings of the IEEE 7th International Conference on
Intelligent Engineering Systems, 2003.

P. Arato, Z. A. Mann, and A. Orban. Component-based hardware-software co-design.
In 17th International Conference on Architecture of Computing Systems, Lecture Notes
in Computer Science (LNCS 2981), pages 169-183. Springer-Verlag, 2004.

P. Arato, Z. A. Mann, and A. Orban. Algorithmic aspects of hardware /software parti-
tioning. ACM Transactions on Design Automation of Electronic Systems, 10(1):136—
156, 2005.

94

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

[11] P. Arat6, Z. A. Mann, and A. Orban. Extending component-based design with hard-
ware components. Flsevier Journal of Science of Computer Programming, Special
Issue on New Software Composition Concepts, 56(1-2):23-39, 2005.

[12] P. Arato, Z. A. Mann, and A. Orban. Time-constrained scheduling of large pipelined
datapaths. Journal of Systems Architecture, accepted.

[13] P. Arato, Z. A. Mann, and A. Orban. Finding optimal hardware /software partitions.
IEEFE Transactions on Computers, submitted.

[14] P. Arato, T. Visegrady, and I. Jankovits. High-Level Synthesis of Pipelined Datapaths.
John Wiley & Sons, Chichester, United Kingdom, 2001.

[15] P. Athanas and H. F. Silverman. Processor reconfiguration through instruction-set
metamorphosis. IEEE Computer, pages 11-18, March 1993.

[16] E. Barros, W. Rosenstiel, and X. Xiong. Hardware/software partitioning with UNITY.
In 2nd International Workshop on Hardware-Software Codesign, 1993.

[17] E. Barros, W. Rosenstiel, and X. Xiong. A method for partitioning UNITY language
in hardware and software. In Proceedings of the IEEE/ACM European Conference on
Design Automation, 1994.

[18] A. Basu, R. Mitra, and P. Marwedel. Interface synthesis for embedded applications
in a co-design environment. In 11th IEEE International conference on VLSI design,
pages 8590, 1998.

[19] M. de Berg, O. Schwarzkopf, M. van Kreveld, and M. Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2nd edition, 2000.

[20] 1. Zs. Berta and Z. A. Mann. Smart cards—present and future. Hiraddstechnika,
Journal on C5, (12):24-29, 2000.

[21] N. N. Binh, M. Imai, A. Shiomi, and N. Hikichi. A hardware/software partitioning
algorithm for designing pipelined ASIPs with least gate counts. In Proceedings of the
33rd Design Automation Conference, 1996.

[22] J. Boyan and A. Moore. Learning evaluation functions to improve optimization by
local search. Journal of Machine Learning Research, 1:77-112, 2000.

[23] R. Camposano. From behaviour to structure: high-level synthesis. IEEE Design and
Test of Computers, 10:8-19, 1990.

[24] K. S. Chatha and R. Vemuri. MAGELLAN: Multiway hardware-software partitioning
and scheduling for latency minimization of hierarchical control-dataflow task graphs.
In Proceedings of CODES 01, 2001.

95

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

[25] B. V. Cherkassky and A. V. Goldberg. On implementing push-relabel method for the
maximum flow problem. Algorithmica, 19(4):390-410, 1997.

[26] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algo-
rithms. MIT Press, 2nd edition, 2001.

[27] A. Dasdan and C. Aykanat. Two novel multiway circuit partitioning algorithms using
relaxed locking. IEEFE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 16(2):169-177, February 1997.

[28] L. Davis. Handbook of genetic algorithms. Van Nostran Reinhold, 1991.

[29] R. P. Dick and N. K. Jha. MOGAC: A multiobjective genetic algorithm for hardware-
software co-synthesis of hierarchical heterogeneous distributed embedded systems.
IEEFE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
17(10):920-935, 1998.

[30] D. Edenfeld, A. B. Kahng, M. Rodgers, and Y. Zorian. 2003 technology roadmap for
semiconductors. IEEE Computer, 37(1):47-56, 2004.

[31] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. Hardware/software partitioning of
VHDL system specifications. In Proceedings of EURO-DAC °96, 1996.

[32] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System level hardware/software
partitioning based on simulated annealing and tabu search. Design Automation for
Embedded Systems, 2(1):5-32, January 1997.

[33] R. Ernst, J. Henkel, and T. Benner. Hardware/software cosynthesis for microcon-
trollers. IEEE Design and Test of Computers, 10(4):64-75, 1993.

[34] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In Proceedings of the 19th Design Automation Conference, 1982.

[35] D. Gajski. High-Level Synthesis. Kluwer Academic Publishers, 1992.

[36] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for drawing
directed graphs. IEEE Transactions on Software Engineering, 19(3):214-230, 1993.

[37] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of
coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete Methods,
2(1):216-227, 1980.

[38] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem.
Journal of the ACM, 35:921-940, 1988.

[39] J. Grode, P. V. Knudsen, and J. Madsen. Hardware resource allocation for hard-
ware/software partitioning in the LYCOS system. In Proceedings of Design Automa-
tion and Test in Europe (DATE ’98), 1998.

96

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

[40] R. K. Gupta. Co-Synthesis of Hardware and Software for Digital Embedded Systems.
PhD thesis, Stanford University, December 1993.

[41] R. K. Gupta and G. de Micheli. Hardware-software cosynthesis for digital systems.
IEEFE Design & Test of Computers, 10(3):29-41, 1993.

[42] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. MiBench: A free, commercially representative embedded benchmark suite. In
Proceedings of the IEEE jth Annual Workshop on Workload Characterization, 1997.

[43] L. Hagen, J. H. Huang, and A. B. Kahng. On implementation choices for iterative
improvement partitioning algorithms. IEEE Transactions on CAD, 16(10):1199-1205,
1997.

[44] J. Henkel and R. Ernst. An approach to automated hardware/software partitioning
using a flexible granularity that is driven by high-level estimation techniques. IEEE
Transaction on VLSI Systems, 9(2):273-289, 2001.

[45] D. S. Hochbaum, editor. Approzimation Algorithms for NP-Hard Problems. PWS
Publishing, Boston, MA, 1997.

[46] A. G. Hoffmann. The dynamic locking heuristic — a new graph partitioning algorithm.
In Proceedings of the IEEE International Symposium on Circuits and Systems, pages
173-176, 1994.

[47] X. Hu, T. Zhou, and E. Sha. Estimating probabilistic timing performance for real-time
embedded systems. IEEE Transactions on VLSI Systems, 9(6), 2001.

[48] E. Hwang, F. Vahid, and Y. C. Hsu. FSMD functional partitioning for low power. In
Proceedings of the Design Automation and Test in Europe Conference, 1999.

[49] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice Hall, 1988.

[50] A. Jantsch, P. Ellervee, and J. Oeberg. Hardware/software partitioning and minimiz-
ing memory interface traffic. In Proceedings of the IEEE/ACM European Conference
on Design Automation, 1994.

[51] A. Kalavade. System-level codesign of mized hardware-software systems. PhD thesis,
University of California, Berkeley, CA, 1995.

[52] A. Kalavade and E. A. Lee. The extended partitioning problem: hardware/software
mapping, scheduling and implementation-bin selection. Design Automation for Em-
bedded Systems, 2(2):125-164, 1997.

[53] A. Kalavade and P. A. Subrahmanyam. Hardware/software partitioning for multifunc-
tion systems. IEEE Transactions on Computer-Aided Design of Integrated Chrcuits
and Systems, 17(9):819-837, September 1998.

97

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

[54] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal, 49(2):291-307, 1970.

[55] W. Kinnebrock. Optimierung mit genetischen und selektiven Algorithmen. Oldenburg,
1994.

[56] P. V. Knudsen and J. Madsen. PACE: a dynamic programming algorithm for hard-
ware/software partitioning. In Proceedings of the IEEE/ACM 4th International Work-
shop on Hardware/Software Codesign, 1996.

[57] B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI networks.
IEEFE Transactions on Computers, 33(5):438-446, 1984.

[58] S. J. Krolikoski, F. Schirrmeister, B. Salefski, J. Rowson, and G. Martin. Methodol-
ogy and technology for virtual component-driven hardware/software co-design on the
system level. In ISCAS, 1999.

[59] M. Lopez-Vallejo, J. Grajal, and J. C. Lopez. Constraint-driven system partitioning.
In Proceedings of DATE, pages 411-416, 2000.

[60] M. Lopez-Vallejo and J. C. Lopez. A knowledge based system for hardware-software
partitioning. In Proceedings of DATE, 1998.

[61] M. Lopez-Vallejo and J. C. Lopez. On the hardware-software partitioning problem:
system modeling and partitioning techniques. ACM Transactions on Design Automa-
tion of Electronic Systems, 8(3):269-297, July 2003.

[62] J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen, and A. Haxthausen. LYCOS: The
Lyngby co-synthesis system. Design Automation of Embedded Systems, 2(2):195-236,
1997.

[63] Z. A. Mann. Metric-based approximation algorithms for graph cut problems. Master’s
thesis, E6tvos Lorand University, 2004.

[64] Z. A. Mann and K. Kondorosi. Tracing system-level communication in distributed
systems. Software: Practice & Ezrperience, 34:727-755, 2004.

[65] Z. A. Mann and A. Orban. Integrating formal, soft and diagrammatic approaches
in high-level synthesis and hardware-software co-design. In Proceedings of Informatik
2001, Workshop on Integrating Diagrammatic and Formal Specification Techniques,
volume I, pages 649-654, September 2001.

[66] Z. A. Mann and A. Orban. Optimization problems in system-level synthesis. In
Proceedings of the 3rd Hungarian-Japanese Symposium on Discrete Mathematics and
Its Applications, 2003.

98

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

[67] P. L. Marrec, C. A. Valderrama, F. Hessel, A. A. Jerraya, M. Attia, and O. Cayrol.
Hardware, software and mechanical cosimulation for automotive applications. In /IEEFE
International Workshop on Rapid Systems Prototyping, 1998.

[68] S. T. McCormick, M. R. Rao, and G. Rinaldi. Easy and difficult objective functions
for max cut. Math. Program., Ser. B, 94(2-3):459-466, 2003.

[69] B. Mei, P. Schaumont, and S. Vernalde. A hardware /software partitioning and schedul-
ing algorithm for dynamically reconfigurable embedded systems. In Proceedings of
ProRISC, 2000.

[70] R. Niemann. Hardware/Software Co-Design for Data Flow Dominated Embedded Sys-
tems. Kluwer Academic Publishers, 1998.

[71] R. Niemann and P. Marwedel. An algorithm for hardware/software partitioning using
mixed integer linear programming. Design Automation for Embedded Systems, special
wssue: Partitioning Methods for Embedded Systems, 2:165-193, March 1997.

[72] M. O’Nils, A. Jantsch, A. Hemani, and H. Tenhunen. Interactive hardware-software
partitioning and memory allocation based on data transfer profiling. In International
Conference on Recent Advances in Mechatronics, 1995.

[73] A. Orban. Approximation of the minimum bisection and the hardware-software par-
titioning problem. Master’s thesis, E6tvos Lorand University, 2004.

[74] C. H. Papadimitriou. Computational complexity. Addison Wesley, 1994.

[75] M. F. Parkinson and S. Parameswaran. Profiling in the ASP codesign environment.
In Proceedings of the IEEE/ACM 8th International Symposium on System Synthesis,
1995.

[76] S. Qin and J. He. An algebraic approach to hardware /software partitioning. Technical
Report 206, UNU/IIST, 2000.

[77] G. Quan, X. Hu, and G. Greenwood. Preference-driven hierarchical hardware/software
partitioning. In Proceedings of the IEEE/ACM International Conference on Computer
Design, 1999.

[78] Y. G. Saab. A fast and robust network bisection algorithm. IEEE Transactions on
Computers, 44(7):903-913, July 1995.

[79] L. A. Sanchis. Multiple-way network partitioning. IEEE Transactions on Computers,
38(1):62-81, 1989.

[80] A. E. Smith and D. M. Tate. Genetic optimization using a penalty function. In Int.
Conf. Genetic Algorithms, 1993.

99

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

[81] G. Spivey, S. S. Bhattacharyya, and Kazuo Nakajima. Logic Foundry: A rapid proto-
typing tool for FPGA-based DSP systems. Technical report, Department of Computer
Science, University of Maryland, 2002.

[82] V. Srinivasan, S. Radhakrishnan, and R. Vemuri. Hardware software partitioning with
integrated hardware design space exploration. In Proceedings of DATE, 1998.

[83] G. Stitt, R. Lysecky, and F. Vahid. Dynamic hardware/software partitioning: a first
approach. In Proceedings of DAC, 2003.

[84] H. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE
Transactions on Software Engineering, 3(1):85-93, Jan 1977.

[85] K. Sugihara. A case study on tuning of genetic algorithms by using performance
evaluation based on experimental design. Technical Report ICS-TR-97-01, Dept. of
Information and Computer Sciences, Univ. of Hawaii at Manoa, 1997.

|86] J. Sziray. A test model for hardware and software systems. Journal of advanced
computational intelligence and intelligent informatics, 8(5):523-529, 2004.

|87] J. Teich, T. Blickle, and L. Thiele. An evolutionary approach to system-level synthesis.
In Int. Workshop Hardware/Software Codesign, 1997.

|88] S. R. Thatté. Automated synthesis of interface adapters for reusable classes. In
Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of pro-
grammang languages, 1994.

[89] F. Vahid. Modifying min-cut for hardware and software functional partitioning. In
Proceedings of the International Workshop on Hardware-Software Codesign, 1997.

[90] F. Vahid. Partitioning sequential programs for CAD using a three-step approach.
ACM Transactions on Design Automation of Electronic Systems, 7(3):413-429, July
2002.

[91] F. Vahid and D. Gajski. Clustering for improved system-level functional partitioning.
In Proceedings of the 8th International Symposium on System Synthesis, 1995.

[92] F. Vahid and T. D. Le. Extending the Kernighan/Lin heuristic for hardware and
software functional partitioning. Design Automation for Embedded Systems, 2:237—
261, 1997.

[93] W. Wolf. An architectural co-synthesis algorithm for distributed embedded computing
systems. IEEE Transactions on VLSI Systems, 5(2):218-229, June 1997.

[94] W. Wolf. A decade of hardware/software codesign. IEEE Computer, 36(4):38-43,
2003.

100

ZOLTAN ADAM MANN PARTITIONING ALGORITHMS FOR HARDWARE/SOFTWARE CO-DESIGN

[95] C.-W. Yeh, C.-K. Cheng, and T.-T. Y. Lin. A general purpose, multiple-way parti-
tioning algorithm. IEEE Transactions on CAD, 13(12):1480-1487, 1994.

[96] G. Ziegler, Z. A. Mann, A. Orban, Zs. Palotai, L. Grad, and A. Lérincz. Three-level
memory for optimization. Journal of Applied Soft Computing, submitted.

101

